581 research outputs found

    A New RSSI-based Centroid Localization Algorithm by Use of Virtual Reference Tags

    Get PDF
    A good design of node location is critical for efficient and effective wireless communications. This paper presents an improved algorithm, in order to solve the low localization accuracy caused by traditional centroid algorithm. The improved algorithm combined with VIRE system and traditional centroid algorithm. The VIRE algorithm is introduced and the signal propagation model is utilized to construct virtual reference tags in the location area. Simulation shows that this further developed algorithm has further improved the accuracy of positioning up to 35.12% compared to the traditional centroid algorithm. It is concluded that this algorithm can further improve the locating accuracy in comparison with the original centroid algorithm

    RSSI Based Indoor Localization for Smartphone Using Fixed and Mobile Wireless Node

    Get PDF
    Nowadays with the dispersion of wireless networks, smartphones and diverse related services, different localization techniques have been developed. Global Positioning System (GPS) has a high rate of accuracy for outdoor localization but the signal is not available inside of buildings. Also other existing methods for indoor localization have low accuracy. In addition, they use fixed infrastructure support. In this paper, we present a novel system for indoor localization, which also works well outside. We have developed a mathematical model for estimating location (distance and direction) of a mobile device using wireless technology. Our experimental results on Smartphones (Android and iOS) show good accuracy (an error less than 2.5 meters). We have also used our developed system in asset tracking and complex activity recognition

    Antenna Radiation Pattern Based 3D Localization

    Get PDF
    3D location knowledge of sensor node in a sensor network has many practical applications. This paper proposes a new algorithm for finding 3D location of sensor node in a sensor network by using radiation pattern of antenna with Received Signal Strength Indication (RSSI). Proposed localization algorithm is developed by considering target node equipped with half wave dipole antenna which has omnidirectional radiation pattern. The results show that proposed algorithm estimates 3D location of sensor node in a sensor network with low average error (< 0.5m), when compared to its actual location

    Sensing physical fields: Inverse problems for the diffusion equation and beyond

    Get PDF
    Due to significant advances made over the last few decades in the areas of (wireless) networking, communications and microprocessor fabrication, the use of sensor networks to observe physical phenomena is rapidly becoming commonplace. Over this period, many aspects of sensor networks have been explored, yet a thorough understanding of how to analyse and process the vast amounts of sensor data collected, remains an open area of research. This work therefore, aims to provide theoretical, as well as practical, advances this area. In particular, we consider the problem of inferring certain underlying properties of the monitored phenomena, from our sensor measurements. Within mathematics, this is commonly formulated as an inverse problem; whereas in signal processing it appears as a (multidimensional) sampling and reconstruction problem. Indeed it is well known that inverse problems are notoriously ill-posed and very demanding to solve; meanwhile viewing it as the latter also presents several technical challenges. In particular, the monitored field is usually nonbandlimited, the sensor placement is typically non-regular and the space-time dimensions of the field are generally non-homogeneous. Furthermore, although sensor production is a very advanced domain, it is near impossible and/or extremely costly to design sensors with no measurement noise. These challenges therefore motivate the need for a stable, noise robust, yet simple sampling theory for the problem at hand. In our work, we narrow the gap between the domains of inverse problems and modern sampling theory, and in so doing, extend existing results by introducing a framework for solving the inverse source problems for a class of some well-known physical phenomena. Some examples include: the reconstruction of plume sources, thermal monitoring of multi-core processors and acoustic source estimation, to name a few. We assume these phenomena and their sources can be described using partial differential equation (PDE) and parametric source models, respectively. Under this assumption, we obtain a well-posed inverse problem. Initially, we consider a phenomena governed by the two-dimensional diffusion equation -- i.e. 2-D diffusion fields, and assume that we have access to its continuous field measurements. In this setup, we derive novel exact closed-form inverse formulae that solve the inverse diffusion source problem, for a class of localized and non-localized source models. In our derivation, we prove that a particular 1-D sequence of, so called, generalized measurements of the field is governed by a power-sum series, hence it can be efficiently solved using existing algebraic methods such as Prony's method. Next, we show how to obtain these generalized measurements, by using Green's second identity to combine the continuous diffusion field with a family of well-chosen sensing functions. From these new inverse formulae, we therefore develop novel noise robust centralized and distributed reconstruction methods for diffusion fields. Specifically, we extend these inverse formulae to centralized sensor networks using numerical quadrature; conversely for distributed networks, we propose a new physics-driven consensus scheme to approximate the generalized measurements through localized interactions between the sensor nodes. Finally we provide numerical results using both synthetic and real data to validate the proposed algorithms. Given the insights gained, we eventually turn to the more general problem. That is, the two- and three-dimensional inverse source problems for any linear PDE with constant coefficients. Extending the previous framework, we solve the new class of inverse problems by establishing an otherwise subtle link with modern sampling theory. We achieved this by showing that, the desired generalized measurements can be computed by taking linear weighted-sums of the sensor measurements. The advantage of this is two-fold. First, we obtain a more flexible framework that permits the use of more general sensing functions, this freedom is important for solving the 3-D problem. Second, and remarkably, we are able to analyse many more physical phenomena beyond diffusion fields. We prove that computing the proper sequence of generalized measurements for any such field, via linear sums, reduces to approximating (a family of) exponentials with translates of a particular prototype function. We show that this prototype function depends on the Green's function of the field, and then derive an explicit formula to evaluate the proper weights. Furthermore, since we now have more freedom in selecting the sensing functions, we discuss how to make the correct choice whilst emphasizing how to retrieve the unknown source parameters from the resulting (multidimensional) Prony-like systems. Based on this new theory we develop practical, noise robust, sensor network strategies for solving the inverse source problem, and then present numerical simulation results to verify the performance of our proposed schemes.Open Acces

    WSN-Based Height Estimation of Moving Object in Surveillance Systems

    Get PDF

    A Localization System for Optimizing the Deployment of Small Cells in 2-Tier Heterogeneous Wireless Networks

    Get PDF
    Due to the ever growing population of mobile device users and expansion on the number of devices and applications requiring data usage, there is an increasing demand for improved capacity in wireless cellular networks. Cell densification and 2-tier heterogeneous networks (HetNets) are two solutions which will assist 5G systems in meeting these growing capacity demands. Small-cell deployment over existing heterogeneous networks have been considered by researchers. Different strategies for deploying these small-cells within the existing network among which are random, cell-edge and high user concentration (HUC) have also been explored. Small cells deployed on locations of HUC offloads traffic from existing network infrastructure, ensure good Quality of Service (QoS) and balanced load in the network but there is a challenge of identifying HUC locations. There has been considerable research performed into techniques for determining user location and cell deployment. Currently localization can be achieved using time dependent methods such as Time of Arrival (ToA), Time Difference of Arrival (TDoA), or Global Positioning Systems (GPS). GPS based solutions provide high accuracy user positioning but suffer from concerns over user privacy, and other time dependent approaches require regular synchronization which can be difficult to achieve in practice. Alternatively, Received Signal Strength (RSS) based solutions can provide simple anonymous user data, requiring no extra hardware within the mobile handset but often rely on triangulation from adjacent Base Stations (BS). In mobile cellular networks such solutions are therefore often only applicable near the cell edge, as installing additional BS would increase the complexity and cost of a network deployment. The work presented in this thesis overcomes these limitations by providing an observer system for wireless networks that can be used to periodically monitor the cell coverage area and identify regions of high concentrations of users for possible small cell deployment in 2-tier heterogeneous networks. The observer system comprises of two collinear antennas separated by λ/2. The relative phase of each antenna was varied using a phase shifter so that the combined output of the two antennas were used to create sum and difference radiation patterns, and to steer the antenna radiation pattern creating different azimuth positions for AoA estimation. Statistical regression analysis was used to develop range estimation models based on four different environment empirical pathloss models for user range estimation. Users were located into clusters by classifying them into azimuth-range classes and counting the number of users in each class. Locations for small cell deployment were identified based on class population. BPEM, ADEM, BUEM, EARM and NLOS models were developed for more accurate range estimation. A prototype system was implemented and tested both outdoor and indoor using a network of WiFi nodes. Experimental results show close relationship with simulation and an average PER in range estimation error of 80% by applying developed error models. Based on both simulation and experiment, system showed good performance. By deploying micro-, pico-, or femto-cells in areas of higher user concentration, high data rates and good quality of service in the network can be maintained. The observer system provides the network manager with relative angle of arrival (AoA), distance estimation and relative location of user clusters within the cell. The observer system divides the cell into a series of azimuthal and range sectors, and determines which sector the users are located in. Simulation and a prototype design of the system is presented and results have shown system robustness and high accuracy for its purpose

    LiDAR aided simulation pipeline for wireless communication in vehicular traffic scenarios

    Get PDF
    Abstract. Integrated Sensing and Communication (ISAC) is a modern technology under development for Sixth Generation (6G) systems. This thesis focuses on creating a simulation pipeline for dynamic vehicular traffic scenarios and a novel approach to reducing wireless communication overhead with a Light Detection and Ranging (LiDAR) based system. The simulation pipeline can be used to generate data sets for numerous problems. Additionally, the developed error model for vehicle detection algorithms can be used to identify LiDAR performance with respect to different parameters like LiDAR height, range, and laser point density. LiDAR behavior on traffic environment is provided as part of the results in this study. A periodic beam index map is developed by capturing antenna azimuth and elevation angles, which denote maximum Reference Signal Receive Power (RSRP) for a simulated receiver grid on the road and classifying areas using Support Vector Machine (SVM) algorithm to reduce the number of Synchronization Signal Blocks (SSBs) that are needed to be sent in Vehicle to Infrastructure (V2I) communication. This approach effectively reduces the wireless communication overhead in V2I communication

    A Novel Approach to Complex Human Activity Recognition

    Get PDF
    Human activity recognition is a technology that offers automatic recognition of what a person is doing with respect to body motion and function. The main goal is to recognize a person\u27s activity using different technologies such as cameras, motion sensors, location sensors, and time. Human activity recognition is important in many areas such as pervasive computing, artificial intelligence, human-computer interaction, health care, health outcomes, rehabilitation engineering, occupational science, and social sciences. There are numerous ubiquitous and pervasive computing systems where users\u27 activities play an important role. The human activity carries a lot of information about the context and helps systems to achieve context-awareness. In the rehabilitation area, it helps with functional diagnosis and assessing health outcomes. Human activity recognition is an important indicator of participation, quality of life and lifestyle. There are two classes of human activities based on body motion and function. The first class, simple human activity, involves human body motion and posture, such as walking, running, and sitting. The second class, complex human activity, includes function along with simple human activity, such as cooking, reading, and watching TV. Human activity recognition is an interdisciplinary research area that has been active for more than a decade. Substantial research has been conducted to recognize human activities, but, there are many major issues still need to be addressed. Addressing these issues would provide a significant improvement in different aspects of the applications of the human activity recognition in different areas. There has been considerable research conducted on simple human activity recognition, whereas, a little research has been carried out on complex human activity recognition. However, there are many key aspects (recognition accuracy, computational cost, energy consumption, mobility) that need to be addressed in both areas to improve their viability. This dissertation aims to address the key aspects in both areas of human activity recognition and eventually focuses on recognition of complex activity. It also addresses indoor and outdoor localization, an important parameter along with time in complex activity recognition. This work studies accelerometer sensor data to recognize simple human activity and time, location and simple activity to recognize complex activity
    corecore