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Abstract

Due to significant advances made over the last few decades in the areas of (wireless) net-

working, communications and microprocessor fabrication, the use of sensor networks to

observe physical phenomena is rapidly becoming commonplace. Over this period, many

aspects of sensor networks have been explored, yet a thorough understanding of how to

analyse and process the vast amounts of sensor data collected, remains an open area of

research. This work therefore, aims to provide theoretical, as well as practical, advances

this area. In particular, we consider the problem of inferring certain underlying properties

of the monitored phenomena, from our sensor measurements. Within mathematics, this

is commonly formulated as an inverse problem; whereas in signal processing it appears as

a (multidimensional) sampling and reconstruction problem. Indeed it is well known that

inverse problems are notoriously ill-posed and very demanding to solve; meanwhile viewing

it as the latter also presents several technical challenges. In particular, the monitored field

is usually nonbandlimited, the sensor placement is typically non-regular and the space-time

dimensions of the field are generally non-homogeneous. Furthermore, although sensor pro-

duction is a very advanced domain, it is near impossible and/or extremely costly to design

sensors with no measurement noise. These challenges therefore motivate the need for a

stable, noise robust, yet simple sampling theory for the problem at hand.

In our work, we narrow the gap between the domains of inverse problems and modern

sampling theory, and in so doing, extend existing results by introducing a framework for

solving the inverse source problems for a class of some well-known physical phenomena.

Some examples include: the reconstruction of plume sources, thermal monitoring of multi-

core processors and acoustic source estimation, to name a few. We assume these phenomena

and their sources can be described using partial differential equation (PDE) and parametric

source models, respectively. Under this assumption, we obtain a well-posed inverse problem.

Initially, we consider a phenomena governed by the two-dimensional diffusion equation

– i.e. 2-D diffusion fields, and assume that we have access to its continuous field mea-

surements. In this setup, we derive novel exact closed-form inverse formulae that solve

the inverse diffusion source problem, for a class of localized and non-localized source mod-

els. In our derivation, we prove that a particular 1-D sequence of, so called, generalized

measurements of the field is governed by a power-sum series, hence it can be efficiently

solved using existing algebraic methods such as Prony’s method. Next, we show how to

obtain these generalized measurements, by using Green’s second identity to combine the

continuous diffusion field with a family of well-chosen sensing functions. From these new

inverse formulae, we therefore develop novel noise robust centralized and distributed re-
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construction methods for diffusion fields. Specifically, we extend these inverse formulae

to centralized sensor networks using numerical quadrature; conversely for distributed net-

works, we propose a new physics-driven consensus scheme to approximate the generalized

measurements through localized interactions between the sensor nodes. Finally we provide

numerical results using both synthetic and real data to validate the proposed algorithms.

Given the insights gained, we eventually turn to the more general problem. That is,

the two- and three-dimensional inverse source problems for any linear PDE with constant

coefficients. Extending the previous framework, we solve the new class of inverse problems

by establishing an otherwise subtle link with modern sampling theory. We achieved this

by showing that, the desired generalized measurements can be computed by taking linear

weighted-sums of the sensor measurements. The advantage of this is two-fold. First, we

obtain a more flexible framework that permits the use of more general sensing functions,

this freedom is important for solving the 3-D problem. Second, and remarkably, we are

able to analyse many more physical phenomena beyond diffusion fields. We prove that

computing the proper sequence of generalized measurements for any such field, via linear

sums, reduces to approximating (a family of) exponentials with translates of a particular

prototype function. We show that this prototype function depends on the Green’s function

of the field, and then derive an explicit formula to evaluate the proper weights. Furthermore,

since we now have more freedom in selecting the sensing functions, we discuss how to make

the correct choice whilst emphasizing how to retrieve the unknown source parameters from

the resulting (multidimensional) Prony-like systems. Based on this new theory we develop

practical, noise robust, sensor network strategies for solving the inverse source problem,

and then present numerical simulation results to verify the performance of our proposed

schemes.
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Chapter 1.

Introduction

As humans we are, in general, endowed with five senses through which we can perceive, ex-

perience and interact with our surrounding environment. Indeed having developed, refined

and specialized this ability via complex evolutionary mechanisms over millions of years,

our capability to sense our surroundings and react accordingly is key to survival in nature.

However, certain phenomena remain imperceptible—to us—as such humankind have devel-

oped, and will continue to develop, external devices to sense these otherwise imperceptible

phenomena; thereby further enriching our level of interaction with the surrounding envi-

ronment. Through the years, these external sensing devices have assumed many different

forms and complexities: ranging from the simple cheugugi which was the first rain gauge

invented and used by the Joseon Dynasty of Korea to measure rainfall, to the more intri-

cate ATLAS and CMS detectors of the famous large hadron collider, used to detect the

elusive Higgs boson (aka god particle). In these examples, the information collected by the

sensor is used to answer an important question, respectively: “how much rainwater has

been absorbed into the ground?”, or, “does the Higgs boson exist?” Consequently, a sensor

is any device that detects, interacts or measures the physical reality by responding to it in

some way.

Recently sensors, and the use thereof, have become ubiquitous in almost all aspects of

life such as: healthcare, environmental monitoring, safety, entertainment, astronomy, com-

munication and many more. Moreover, significant advances in sensor technologies leading

to cheaper and more efficient devices, over the years, has necessitated the development of

tools and techniques to store, process and even transmit the collected information. This

new paradigm has led to an exponential surge in the amount of data collected, thus fuelling

the growth of many fields like sampling & interpolation, compression, estimation and de-

noising. It is clear that signal processing holds the key to answering many of the questions

posed by this big data paradigm.

1.1. Motivation: sensing reality

Most signals that we encounter in reality are, generally, continuous over space and time;

hence in order to store, process, or transmit them using digital systems, and digital signal

processing techniques, they have to be discretized. In general, a discretized version of a
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continuous signal can be obtained by sampling it on a discrete set. For example a youtube

video recording is simply a sequence of images obtained at uniform time intervals, and each

image is acquired by sampling light intensities—of the scene—on a uniform (Cartesian)

grid. Whilst this instance describes a uniform sampling setup, the sampling set needn’t

be uniform; specifically nonuniform polar and spiral sampling sets are common in comput-

erized tomography and magnetic resonance imaging, for example. In these applications,

and beyond, the natural sampling problem that arises presents two challenges. The first

challenge is to specify the conditions under which it is possible to recover the original signal

from different sets of its discrete samples; whilst, the second is to develop explicit signal

reconstruction schemes for analysing and processing these samples.

Let the sampling sets be S = {xn}n∈N ⊂ Rd, where N is a countable index set and d is

the number of (spatial) dimensions. In fact it is well known that, there are infinitely many

functions that can result in the the same sampled values on S, therefore in order to obtain

a meaningful sampling problem, some a priori constraints must be imposed on the origi-

nal continuous signal. The classical constraint is that the signal (or function) of interest

belongs to a space of bandlimited functions – which means that it is limited to a known

maximum frequency. In addition if S is a uniform sampling set, then the classical result

of Shannon[135], Nyquist [114], Whittaker [155] and Kotel’nikov [85] provides an explicit

reconstruction formula. On the other hand, for nonuniform sampling sets, the works of Pa-

ley and Weiner [156], Kadec [79], Beurling [21] and Landau [89] provide suitable conditions

on S and corresponding reconstruction formulae. Furthermore, in the last few decades

these results have been generalized to produce a more unified framework of sampling on

shift-invariant spaces. Specifically, the class of bandlimited functions are a subspace of a

shift-invariant space [8].

Whilst these elegant results have been extremely useful and important in signal process-

ing, certain assumptions are an idealization. In reality, signals very rarely live in a ban-

dlimited or shift-invariant space. Given a nonbandlimited signal, for example, it is common

to artificially bandlimit it, by prefiltering with an ideal antialiasing filter, before sampling

and performing a bandlimited reconstruction using Shannon’s formula. Although, it has

been shown that this process yields the “best” bandlimited approximation of the original

signal, in certain practical situations (such as imaging and monitoring of physical fields) it

is generally impossible to apply a spatial prefilter before sampling. Hence we either need

to place an extremely large number of sensors in the monitored region or suffer the effects

of aliasing errors when using a bandlimited reconstruction approach. In this work, we aim

to solve the (inverse) problem relating to the inference of certain unknown parameters of

some physical fields of interest from their temporal samples obtained at a discrete set of

spatial sensor locations S. Take for example, the Fukushima disaster where it is of interest

to find the sources (i.e. the exact locations, release times and initial intensities) of the

nuclear fallouts diffusing through space. In applications such as these, the induced field

is nonbandlimited and the monitoring sensors are sparse. Therefore, it becomes difficult

to extract useful information using standard techniques. Hence it becomes necessary to

29



Chapter 1. Introduction

develop new and sophisticated signal processing tools and techniques with which to process

our sensor data.

In this thesis we will derive a sampling framework for analysing physical fields. In

particular, we explore and present new robust signal processing algorithms to solve the

resulting class of inverse source problems for diffusion fields, given sensor measurements of

the field. Next we leverage from our results to develop a universal framework for analysing

a wider class of physical fields driven by well-known partial differential equations.

1.2. Outline of the thesis

The remainder of this thesis is organised as follows. In Chapter 2 we begin our treatment

of physics-driven inverse source problems with an overview of the present state of the art

in sampling theory, along with a review of the necessary mathematical prerequisites.

Chapter 3 considers the inverse diffusion source problem for a class of source models.

Specifically, we consider diffusion fields induced by a given class of parametric source mod-

els and derive simple, yet exact closed-form inversion formulae given continuous measure-

ments of the field. In our treatment, we demonstrate through the use of Green’s second

identity, that by combining the diffusion field using a family of well-chosen sensing func-

tions we can transform the inverse problem into one of estimating the amplitudes and

frequencies of a superposition of sinusoids from a specific sequence, which we refer to as

generalized measurements. In fact this new, frequency estimation problem is well-studied

in applied mathematics and signal processing and can be solved using Prony’s method and

its variations to reveal the desired source parameters.

In Chapter 4 we adapt the exact inversion formulae obtained in Chapter 3 to realistic

settings. In this new situation the diffusion field can only be measured using a network

of digital sensors situated at arbitrary spatial locations in space; as such we would only

have access to discrete spatiotemporal measurements of the field. We provide noise robust

schemes that successfully solves this discrete inverse source problem for the diffusion equa-

tion when all the measurements are made available at a fusion centre. Next we show how

to distribute the computation, in particular we derive a physics-based gossip scheme for

solving the inverse source problem via localized communications between the monitoring

sensors.

In Chapter 5 we present simulation results to validate the proposed centralized and

distributed diffusion source estimation schemes. We demonstrate the performance of our

algorithms on both synthetic and real data.

In Chapter 6 we demonstrate that it is possible to generalize the proposed approach to a

larger class of physical fields governed by linear partial differential equations. Specifically

we show that the inverse source problem, for this class of fields, can be mapped again to the

same problem in Chapter 3 of estimating the amplitude and frequencies of a superposition

of sinusoids from generalized measurements. We show how to compute these generalized

measurements for arbitrary fields using recent results in modern sampling theory. We then

30



1.3. Publications

conclude the chapter with some numerical results for different fields.

Finally, in Chapter 7 we conclude the thesis by summarizing the main contributions,

whilst also providing possible directions for future research studies.
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Chapter 2.

Sampling theory: generalized sampling of

multidimensional signals

Sampling theory underpins the connection between the (continuous) real world and the

(discrete) digital systems. This connection between the continuous and discrete worlds

is established via sampling and interpolation. Broadly speaking sampling produces a nu-

merical sequence from a function by observing or measuring it at specific points; whilst

the converse of producing a continuous function from a sequence of numbers is known as

interpolation. Sampling theory was heavily influenced by the pioneering works of Shan-

non, Nyquist, Whittaker and Kotel’nikov [85, 135, 155, 113], which led to the Whittaker-

Kotel’nikov-Shannon sampling theorem. Their theorem describes a class of signals, called

bandlimited signals, that can be perfectly reconstructed from their samples and provides

an elegant reconstruction formula. In reality however, most signals do not fall within this

class, hence several approaches have been proposed to generalized and extend this classical

sampling theorem. The first half of this chapter will review the main generalizations. In

particular, we will begin with an overview of uniform sampling using the classical sampling

theory for bandlimited signals, and then discuss its generalization to the sampling of signals

in shift-invariant spaces, as well as, the sampling of signals with finite rate of innovation

whilst touching on some of the mathematical preliminaries that will be used throughout

this thesis. Moreover, both of these modern sampling frameworks allow us to analyse more

realistic signals, for example the bandlimitedness requirement in the classical framework

can be completely eliminated. During our discussion, we will also describe their various

extensions to multidimensional sampling and briefly mention some of the works done in

nonuniform sampling of signals in shift-invariant spaces.

The second half of the chapter, describes the sampling problem associated with the sens-

ing of physical fields using sensor networks. Specifically due to their ubiquity in modelling

many real life situations, we first provide a brief history of diffusion fields along with an

overview of the research by the signal processing community related to sampling diffusion

fields; also, we use a numerical example to illustrate the detrimental effects of a bandlimited

reconstruction from the field samples. Finally moving beyond diffusion, we conclude this

chapter with a motivation for sampling other types of fields. To this end, we review the

literature related to sampling potential and wave fields also.
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2.1. Classical sampling theory: uniform sampling of

bandlimited signals

Sampling theory aims to provide (theoretical) conditions and (practical) algorithms with

which we can pass conveniently between the continuous and discrete worlds. To this end

one of the most important works, in this area, entitled “Communications in the presence

of noise” was published by Shannon in 1949 [135]. Therein, Shannon stated and provided

a concise proof of the following theorem:

Theorem 2.1 (Shannon, 1949 [135]). If a function f(x) contains no frequencies higher

than W cycles per second, it is completely determined by giving its ordinates at a series of

points spaced 1/2W seconds apart.

Noting that this theorem was “common knowledge in the communication art,” he called

the uniform interval ∆x = 1/2W between the samples the Nyquist interval in recognition

of Nyquist’s previous contributions to the “communication art” [113, 114]. Shannon also

provided an intuitive justification, arguing that if the signal contains no frequencies higher

than W , then it is not possible for it to change to a substantially different value in an

interval that is less than half its highest frequency, i.e. 1/2W . Let the sampling frequency

be fs = 1/∆x Hz and denote the n-th sample of the signal by ϕn, such that:

ϕn = f(x)|x=n∆x
. (2.1)

If f(t) is bandlimited—i.e. its Fourier transform vanishes outside [−2πW, 2πW ]—then we

can perfectly recover the continuous signal from the sequence {ϕn}+∞n=−∞ obtained at the

Nyquist rate, using Shannon’s reconstruction formula:

f(x) =

+∞∑
n=−∞

ϕn sinc

(
x

∆x
− n

)
, (2.2)

where sinc (x)
def
= sin(πx)/πx.

2.1.1. Non-bandlimited signals, aliasing and antialiasing

Shannon’s result requires that the continuous signal be bandlimited. Now, if we decide to

proceed with sampling it and then using (2.2) for reconstruction, we will obtain an aliased

reconstruction (a numerical simulation which shows the detrimental effects of aliasing for

physical fields will be presented later on). The origin of the aliasing errors can be explained

diagrammatically by considering the spectrum of the signal as shown in Figure 2.1.

As seen in Figure 2.2, bandlimiting the continuous signal f(t) prior to sampling will

truncate its spectrum and so suppress the effect of aliasing, leading to an antialiased recon-

struction. This reconstruction however is only a lowpass approximation of f(x). In fact this

process (summarized schematically in Figure 2.3) of, prefiltering the continuous signal with
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2.1. Classical sampling theory: uniform sampling of bandlimited signals

−2fs −fs 0 +fs +2fs

2W

Figure 2.1.: Spectrum of aliased signal. The spectrum of the continuous signal is
compactly supported on [−W,W ] and the sampling frequency is fs < 2W .
The spectrum of our sampled signal (shaded region) is a superposition
of the original signal’s spectrum and shifted copies, shifted by integer
multiples of the sampling frequency fs. Thus, Shannon’s formula will
return a spectrum that is both aliased and truncated to [−fs/2, fs/2]; the
aliasing errors are the shaded areas above the dark (blue) curve.

the ideal lowpass antialiasing filter h(x) = sinc (x/∆x), sampling it at the Nyquist rate and

then reconstructing it using (2.2), has been demonstrated to give the “best” approximation

of f(x)—in a least-squares sense—in the bandlimited subspace.

Whilst the result of classical sampling theory presented so far, has played a crucial

role in signal processing and communications, it is not without drawbacks. First, the

reconstruction scheme (2.2) is difficult to realize in practice due to the very slow decay

of the sinc function [119]. Second, real world signals are never exactly bandlimited [137]

hence it is an idealization. Third, although one could attempt to use an antialiasing filter

to bandlimit the signal as we have seen, such ideal lowpass filters are not realizable in

practice. Moreover, it is generally impossible to achieve spatial lowpass filtering, in the

case of sensor networks. As a direct consequence of these, Shannon’s result is rarely used

in practice. Indeed most practitioners resort to the use of simpler techniques such as linear

interpolation.

We note that the classical, 1-D Shannon’s sampling theorem was extended by Parzen

[120], in 1956, to include the sampling of (bandlimited) functions u(x) with d variables,

i.e. x = (x1, x2, . . . , xd) ∈ Rd. Specifically, the multidimensional sampling theorem asserts

that the continuous function can be reconstructed from its samples ϕn = u(n∆x) =

u(n1∆x1 , n2∆x2 , . . . , nd∆xd), where ∆xi = 2Wi, using the formula:

f(x) =
∑
n∈Zd

ϕnsinc

(
x

∆x
− n

)
, (2.3)

where sinc(x) =
∏d
i=1 sinc(xi), provided the function is bandlimited to the d-dimensional

hypercube centred at the origin and with vertices {±W1,±W2, . . . ,±Wd}. Note that, with
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−2fs −fs −fs/2 0 +fs/2 +fs +2fs

Ideal antialiasing filter

Figure 2.2.: Spectrum of antialiased signal. Prefiltering with an ideal antialiasing
filter means the spectrum is now supported on [−fs/2, fs/2] as such there
is no overlap in the shifted copies obtained due to sampling, Shannon’s
formula will return the truncated but non-aliased baseband spectrum.

sinc(−x/∆x) sinc(x/∆x)

antialiasing filter reconstruction filterx = n∆x

f(x)
ϕn

f̂(x)

Figure 2.3.: Schematic of practical sampling process. The continuous signal is
prefiltered, sampled and then postfiltered to obtain the optimal least-
squares approximation of f(x) in the space of bandlimited functions.

a slight abuse of notation, we take x
∆x

=
(

x1
∆x1

, x2
∆x2

, . . . , xd
∆xd

)
.

Furthermore, in 1977 Papoulis [118] generalized the sampling theorem to multichannel

sampling, demonstrating that a bandlimited signal can be reconstructed from samples of

response of m linear shift-invariant systems sampled at 1/m the reconstruction rate. This

framework has been extended to multidimensional signals [33] also. Although Papoulis’s

scheme is conceptually straightforward, it has been shown that it is not always possible

due to potential instabilities [32]. For a more comprehensive review of sampling theory up

to 1977, we refer to the paper of Jerri’s [77].

2.2. Modern sampling theory: sampling in shift-invariant

spaces

Shannon’s sampling theorem admits a more modern Hilbert space L2 interpretation [143],

which views the sampling and interpolation process as a projection from the Hilbert space

to the space of bandlimited functions – i.e. the space V (sinc) = span ({sinc(x− n)}n∈Zd)
spanned by uniform translates of the sinc function. It is this interpretation that allows

us to see the classical sampling process as a special case of the so called: sampling in

shift-invariant spaces. We provide a review of the main ideas of sampling in shift-invariant
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spaces (SIS), our presentation is based on the review papers of Unser [143], as well as,

Aldroubi and Gröchenig [8].

2.2.1. Uniform and non-uniform sampling in shift-invariant spaces

Sampling in shift-invariant spaces retains some of the basic flavours of the classical theory

but generalizes the basis functions by replacing the sinc function with an arbitrary generator

function g(x). Consequently when we assume a uniform sampling setup, the corresponding

approximation space below is obtained:

V (g) =

∑
n∈Zd

wng(x− n)

 , (2.4)

where wn ∈ R. The validity of this model relies of three conditions. First, for convergence

the coefficients wn must be square-summable. Second in order to ensure a stable and

unique representation, the family of functions {g(x− n)} should form a Riesz basis of

V (g), meaning there must exist two constants 0 < a ≤ A < +∞ such that:

a‖w‖2l2 ≤

∥∥∥∥∥∥
∑
n∈Zd

wng(x− n)

∥∥∥∥∥∥
2

≤ A‖w‖2l2 , (2.5)

where ‖w‖2l2 =
∑
n|wn|2 and ‖f(x)‖ =

√
〈f, f〉 is the norm induced by the usual L2-inner

product,

〈f, g〉 =

∫
x∈Rd

f(x)g(x)dx. (2.6)

The final condition, called the partition of unity condition:∑
n∈Zd

g(x + n) = 1,

ensures that the model can represent any function as closely as possible, by selecting suffi-

ciently small sampling intervals. Having established an approximation space, the next logi-

cal step is to describe how to obtain the wn’s in (2.4) so as to obtain a faithful reconstruction

of the original signal. The idea here is that we want to reconstruct f̂(x) =
∑
nwng(x−n),

where wn are the new samples chosen in such a way that f̂(x) is as close as possible to

f(x). The most straightforward approach is the so called minimum error sampling, which

enforces an optimal solution in the least-squares sense via the projection:

PV (g)f(x) =
∑
n∈Zd
〈f(x), g̃(x− n)〉g(x− n)

where the projection operator PV (g) : L2 → V (g) is the orthogonal projection of the space

L2 onto V (g), and the g̃(x − n) ∈ V (g)’s are the unique dual basis functions which can

be computed using the biorthogonality condition 〈g̃(x− n), g(x− n′)〉 = δ(n − n′) for
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Chapter 2. Sampling theory: generalized sampling of multidimensional signals

n,n′ ∈ Zd. In the case where a = A = 1, then the generator g is orthonormal and so

g̃(x) = g(x); an example of this is the sinc function. Other approaches for computing

the wn’s based on consistent sampling [144], interpolation and so on also exist and can be

found in [143].

On the other hand, the problem of non-uniform sampling in SIS, i.e.

f(x) =
∑
n∈Zd

wng(x− xn) (2.7)

is relatively more recent. As usual the sampling problem consists of:

(i) Finding, for some generator g, the conditions on the sampling points S = {xn}n,

such that f(x) can be stably and uniquely determined from its samples {f(xn)}n.

(ii) Designing practical algorithms for realizing the reconstruction.

In this setting however, it is generally very difficult to obtain closed form expressions

for the desired coefficients wn given an arbitrary set of sampling points S. As a result,

the earliest contributions [45] in the area focussed on perturbation of uniform sampling in

SIS, whilst some recent results due to Aldroubi et al (see [8] and the references therein)

resort to iterative algorithms [7]. In the latter, it is assumed that S is a so called set of

sampling for V (g). This means that there must exist two constants 0 < b ≤ B < ∞ that

are independent of f , such that:

b‖f‖2 ≤

(∑
xn∈S

|f(xn)|2
)1/2

≤ B‖f‖2. (2.8)

2.2.2. Sampling finite rate of innovation signals

Finite rate of innovation (FRI) signals [150, 26, 61] are a specific class of signals that extend

the bandlimited formulation in (2.2)—to signals that are neither bandlimited nor reside in

a fixed subspace—as follows:

f(x) =
∑
m∈Z

R∑
r=0

γm,rgr(x− ξm), (2.9)

where the set of functions {gr(x)}Rr=0 is known a priori. Due to this fact, although nonban-

dlimited, the signal f is fully specified by the set of amplitudes γm,r and locations ξm, which

are called the degrees of freedom. Let Cf (xa, xb) be a function that counts the degrees of

freedom in f(x) over some interval [xa, xb], then the rate of innovation is defined as follows

[150]:

ρ = lim
L→∞

1

L
Cf (−L

2
,
L

2
). (2.10)

With this, it is now possible to give a precise definition of FRI signals:
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ξ1 ξ2 ξ3 ξ4

ξ1 ξ2 ξ3 ξ4 ξ5

ξ1 ξ2 ξ3 ξ4 ξ5

(a)

(b)

(c)

Figure 2.4.: Examples of FRI signals. (a) A superposition of four damped and
compactly supported sinusoids with different locations and amplitudes,
i.e. f(x) =

∑4
m=1 cmg(x − ξm) where the characteristic pulse shape

g(x) = (1.3 + cos(x))e−
x2

30 (H(x+ 50)−H(x− 50)) and H(x) is the Heav-
iside step function. (b) Superposition of five Dirac deltas with differ-
ent amplitudes and locations, i.e. f(x) =

∑5
m=1 cmδ(x − ξm). (c) The

superposition of four truncated sinusoids with different amplitudes, fre-
quencies, phases and locations, specifically f(x) =

∑4
m=1 cm cos(ωmx +

φm) (H(x− ξm)−H(x− ξm+1)). When the pulse shapes are known,
these signals are fully specified once the corresponding pulse locations
and amplitudes are found.

Definition 2.1 (FRI signals [150]). A signal with finite rate of innovation is a signal whose

parametric representation is given in (2.9) and with a finite ρ, as defined in (2.10).

In certain cases, it may be more convenient to consider a local rate of innovation with

respect to some interval of size L. Note also that 1-D bandlimited signals can also be viewed

as FRI signals, specifically we can say that their rate of innovation is W since they have

as many degrees of freedom per unit of time. We show plots of some common examples of

FRI signals in Figure 2.4.

The typical sampling setup for 1-D FRI signals is shown in Figure 2.5. Clearly, using

this setup one obtains the samples given by:

ϕn = 〈f(x), g (x/∆x − n)〉 , (2.11)
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g
(
− x

∆x

)
f(x)

u(x)

x = n∆x

ϕn

Figure 2.5.: Schematic of FRI sampling process. The sampling kernel g(x) now
enjoys the freedom to be more general than the sinc function, however
but it must have certain function reproducing properties, such as being
polynomial and exponential reproducing.

where g(x) is the sampling kernel (which may either be imposed upon or chosen by us)

with certain desirable properties. The main sampling question within this FRI framework

is two-fold. First, what properties must g(x) posses in other to allow a stable recovery

of the parameters (amplitudes and locations) of f(x) from the samples ϕn? And second,

what are the (stable) reconstruction algorithms? We provide some brief answers to these

questions in what follows, the interested reader may find a more in-depth treatment in

[61, 145] and references therein.

There are a few choices of sampling kernels available in the FRI literature. A common

choice which we will use to clearly illustrate the power of the FRI framework, in what

follows, is the exponential reproducing kernel. These exponential reproducing kernels are

so called, because they are able to reproduce real or complex exponentials and so satisfy

the property: ∑
n∈Z

wk,ng (x/∆x − n) = ejαkx/∆x , (2.12)

where wk,n are the exponential reproducing coefficients, more on this and how to compute

it in Chapter 6. For notational convenience and without loss of generality, we will let

∆x = 1. Assume now that the samples ϕn are linearly combined using the exact exponential

reproducing coefficients wk,n in (2.12), then we obtain:

R(k) =
∑
n

wk,n 〈f(x), g (x− n)〉

=

〈
f(x),

∑
n

wk,ng (x− n)

〉
=
〈
f(x), ejαkx

〉
, (2.13)

where the second equality follows from the linearity of the inner product, whilst the final

equality follows from the exponential reproduction property. Notice that R(k) can be seen

as the Fourier transform of f(x) evaluated at −αk. Moreover when f(x) is a stream of M

40



2.2. Modern sampling theory: sampling in shift-invariant spaces

Diracs, i.e. if
∑M

m=1 cmδ(x− ξm), and αk = k = 0, 1, . . . ,K then (2.13) reduces to:

R(k) =
M∑
m=1

cme
jkξm =

M∑
m=1

cmv
k
m, (2.14)

where vm = ejξm . We have therefore seen that the FRI sampling scheme has allowed us to

recast the problem of estimating a stream of Diracs as that of estimating the amplitudes and

phases of a sum of sinusoids. This parameter estimation problem is well known in spectral

estimation [140] and in fact we will frequently encounter it in our proposed approaches for

solving the inverse source problem for physical fields, presented in subsequent chapters. We

now consider the two main approaches for solving it.

Prony’s method: the annihilating filter

The Prony system (2.14) and those which we will encounter in subsequent chapters can be

written in the general form:

R(k) =
M∑
m=1

cmv
k
m, (2.15)

where cm, vm ∈ C are unknowns. Such a system although linear in the unknown parameters

cm, is nonlinear in the parameters vm. Hence there is some difficulty associated with finding

these nonlinear parameters. Fortunately this problem is well studied and will be solved here

by applying Prony’s method. A brief overview of the method is given here, for a more in

depth treatment see [140].

The method is based on the observation that when the input of a filter having zeros at

vm is the sequence R(k), then the output will be zero. This filter is called the annihilating

filter, and has transfer function:

A(z) =
M∑
l=0

a(l)z−l =
M∏
m=1

(1− vmz−1), (2.16)

where a(k) is the impulse response of the filter A(z). Specifically,

(a ∗ R)(k) =

M∑
l=0

a(l)R(k − l)

=
M∑
l=0

a(l)
M∑
m=1

cmv
k−l
m

=
M∑
l=0

a(l)v−lm︸ ︷︷ ︸
=A(vm)

M∑
m=1

cmv
k
m = 0, (2.17)

since A(z)|z=vm = 0. Given the sequence R(k), the convolution between (a ∗ R)(k) may
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be written in the matrix/vector form as Ra = 0, such that:

...
... · · ·

...
R(M) R(M − 1) · · · R(0)
R(M + 1) R(M) · · · R(1)

...
...

. . .
...

R(2M) R(2M − 1) · · · R(M)
...

... · · ·
...





a(0)
a(1)

...

a(M)


= 0. (2.18)

The matrix R is rank deficient with rank M and is therefore overdetermined. Imposing

a(0) = 1 enforces a unique solution—since there are now M coefficients of the filter to be

found—therefore we need at least 2M consecutive terms of the sequence {R(k)}Kk=0; i.e.

K ≥ 2M − 1. Once a has been found, then the values of vm are simply the roots of the

polynomial A(z). Finally the amplitudes cm can be determined by simply taking any M

equations in (2.15) and solving the corresponding Vandermonde system.

In the presence of model mismatch, (2.18) is no longer satisfied exactly, yet minimizing

the Euclidean norm ‖Ra‖2 subject to ‖a‖2 = 1, gives a good estimate for a [26]. Hence,

the Total Least-Squares (TLS) method is used to solve for a, where a is chosen to be the

eigenvector which corresponds to the smallest eigenvalue of the matrix R>R. More details

of the TLS method can be found in [26].

Matrix pencil method

The matrix pencil method offers an alternative way to computing {cm, vm}m. This method

is based on subspace techniques for estimating generalized eigenvalues of matrix pencils

[75]. The matrix pencil of order J for a set of square matrices M0,M1, . . . ,MJ , is defined

as

PJ(x) = M0 + M1x+ · · ·+ MJx
J .

Akin to the terminology used for polynomials, the pencil M0 + M1x is known as the lin-

ear matrix pencil. In order to solve the parameter estimation problem, the matrix pencil

method capitalizes on the structure of the Toeplitz matrices constructed from 2M consec-

utive values of the sequence R(k). Specifically we construct the matrix R ∈ R(M+1)×M ,

R =


R(M − 1) R(M − 2) · · · R(0)
R(M) R(M − 1) · · · R(1)

...
...

. . .
...

R(2M − 1)R(2M − 2) · · · R(M)

 . (2.19)

Next we form two new matrices R and R, by deleting the first and last rows respectively

of the Toeplitz matrix R. Then it follows that these two M × M matrices form the

linear matrix pencil R − σR with rank M − 1 for σ = vm but is otherwise full rank.

Hence the unknowns {vm}m can be computed by solving the generalized eigenvalue problem
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Rv = σRv; by observing that

(R− σR)v = 0⇔ (R−1R− σI)v = 0,

it follows therefore that the vm’s we are after are the eigenvalues of R−1R. Note that, the

matrix R is square and is also full rank, therefore it is invertible.

2.2.3. Sampling multidimensional FRI signals

The FRI framework has also been properly extended to sample and reconstruct certain

parametric 2-D signals [104, 136, 40]. For these classes of two-dimensional FRI signals, it

can be shown that finding the innovation parameters reduces to finding the amplitudes and

phases of a 2-D coupled sum of exponentials, which is of the general form:

R(k) =

M∑
m=1

bmu
k1
mv

k2
m , (2.20)

where k = (k1, k2) ∈ Z2. Given access to the 2-D sequence {R(k)} governed by (2.20),

obtained using the 2-D FRI sampling principle, the next step is to devise practical algo-

rithms for recovering the unknowns bm, um, vm from it. In theory one could consider k2 = 0

for example and recover {um}m from {R(k1, 0)}2M−1
k1=0 using any of the previously discussed

1-D approaches and then repeat for k1 = 0 to find {vm}m. However, we must then pair the

solutions by performing an exhaustive search. To alleviate this costly approach, Vanpoucke

et al [149] present an efficient algorithm—called the algebraically coupled matrix pencils

(ACMP) method—to solve the parameter estimation problem by extending the matrix

pencil method.

Algebraically coupled matrix pencils method

We provide a concise outline of the ACMP algorithm, and note that more details can be

found [149]. First define the matrix:

Ri,j =


R(i, j) R(i, j + 1) · · · R(i,M + 1)
R(i+ 1, j) R(i+ 1, j + 1) · · · R(i+ 1,M + 1)

...
...

. . .
...

R(M + 1, j)R(M + 1, j + 1) · · · R(M + 1,M + 1)

 .

(1) Construct the so called enhanced matrix J ∈ RM(M+1)×M(M+1),

J =


R1,1 R2,1 · · · RM,1

R1,2 R2,2 · · · RM,2
...

...
. . .

...
R1,M R2,M · · ·RM,M

 ,
which requires 2M × 2M terms of the 2-D sequence to construct.
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(2) Construct the following four sub-matrices of J, by row-column deletion as follows:

� Jtl = J|, i.e. delete the last row and last column of J.

� Jtr = |J, i.e. delete the last row and first column of J.

� Jbl = J|, i.e. delete the first row and last column of J.

Theses matrices are related by the linear matrix pencils Jtr − σJtl and Jbl − λJtl.

(3) Factorize the matrix Jtl using the singular value decomposition (SVD) to get,

Jtl = UΣVH. (2.21)

Moreover by using the matrices U and U from this decomposition, one can couple the

pencils of J above, i.e. Jtr − σJtl and Jbl − λJtl, as follows:

UH (Jtr − σJtl) V = Htr − σHtl and

UH (Jbl − λJtl) V = Hbl − λHtl.

(4) From the decomposition and the new linear matrix pencils obtained above, compute

Htl, Htr and Hbl by evaluating:

� Htl = Σ.

� Htr = UHJtrV.

� Hbl = UHJblV.

(5) Finally compute the poles, i.e. the M pairs {(um, vm)}m by computing the eigenvalues

of H−1
tl Htr and H−1

tl Hbl respectively.

Once the unknowns {(um, vm)}m have been found, bm can be retrieved by solving the linear

system formulated using (2.20).

Remark 2.1. In subsequent chapters of this thesis, particularly in Chapters 3 and 4, we

will sometimes encounter special situations where um and vm in (2.20) are exponentials. As

an example, consider the particular scenario where um = ejξ1,m and vm = ejξ2,m so that our

unknowns are the M -pairs (ξ1,m, ξ2,m). In this setup, notice that by setting k = (k1, k2) =

(jk,−k) we can obtain the following scalar indexed sequence

R(k) = R(jk,−k) =

M∑
m=1

bme
−k(ξ1,m+jξ2,m) =

M∑
m=1

bmṽ
k
m, (2.22)

where ṽm = e−(ξ1,m+jξ2,m). The choice k = (jk,−k) allows us to turn the 2-D prob-

lem into a coupled one-dimensional Prony system. Thus we can recover the unknowns

{(ξ1,m, ξ2,m)}m from {R(k)}Kk=0 by using either Prony’s or matrix pencil method as de-

scribed in Section 2.2.2, provided K ≥ 2M − 1. Specifically, Prony’s or matrix pencil gives

ṽm = e−(ξ1,m+jξ2,m), from this we can immediately conclude that ξ1,m = −<(log(vm)) and
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ξ2,m = −=(log(vm)), where <(z) and =(z) are used to denote the real and imaginary parts

of a complex number z, respectively.

2.3. Sensing physical fields: diffusion and beyond

Due to several significant advances over the last few decades in the fields of (wireless)

networking, communications and in the fabrication of microprocessors, the use of sensor

networks (SNs) for sensing and monitoring physical fields has become a fast-growing area

of research. During this period many aspects of SNs have been explored and developed

[2, 87, 71, 162], alongside, a myriad of interesting applications in localization, tracking and

parameter estimation have also been considered [102, 28, 96]. Typically, these SNs comprise

of many cheap and low-powered nodes—capable of performing both sensing, communica-

tion and inference tasks—deployed over a region of interest. The sensor nodes obtain spa-

tiotemporal samples of physical fields over the region of interest. There are several natural

mechanisms that govern the propagation of physical fields through space and time. In most

situations, these mechanisms typically involve the transportation of matter/particles or the

transportation of energy, from one point to another and can be described by well-known

partial differential equations. In the example of a factory leakage mentioned previously,

the emitted substance comprises of tiny microscopic particles which, over time, propagate

from the source thereby spreading throughout the factory. Therein, the mode of transport

is well-known to be diffusion and the associated diffusion field is the concentration of the

released substance over time, at each point in space.

Although the work presented in initial chapters of this thesis will focus on devising signal

processing tools specifically for analysing diffusion fields and the related inverse source

problems thereof, they will provide useful insights for sampling fields beyond diffusion.

Notably in the penultimate chapter, we establish a certain link with generalized sampling

theory that will enable us to extend these tools to also analyse other types of physical

fields beyond diffusion. This is an important result since there are phenomena—examples

include the propagation of sound and the variation of electric potential—that cannot be

adequately described by diffusion.

We motivate our interest in sampling multidimensional physical fields using sensor net-

works in the following section: specifically, we start by giving a (very) concise tour of the

history of diffusion, related problems and applications, as well as, a review of the current

state-of-the-art. Finally we move beyond diffusion to some other popular examples of phys-

ical fields of interest, whilst providing our motivation thereof, along with an overview of

recent research on the sampling of such fields.

2.3.1. Diffusion: from Brown to Fourier

Definition 2.2 (Diffusion). Diffusion is defined as a stochastic movement of a collection

of particles from regions of high concentration to regions of lower concentration (until an
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equilibrium is established).

Specifically this stochastic movement is precisely a Brownian motion, named after its

discoverer – botanist Robert Brown. In an experiment, Brown noticed a highly irregular

but incremental path in the motion of pollen suspended in a fluid, whilst observing his

experimental setup through a microscope and published his findings in 1828 in [34]. This

highly irregular motion is due to collisions with other particles within the fluid. Later on in

1855, a partial differential equation—now known as the diffusion equation—that describes

the diffusion field (i.e. the variation of the concentration of particles over space and time)

was derived. This diffusion equation is a generalization of the heat equation which models

the propagation of heat through a medium. It was during the study of heat flow and the

heat equation, so as to solve it in the general case, that led Fourier to the discovery of

his Fourier series [51]. Since then the forward problem of predicting the diffusion field

induced by a source has been well-studied. More recently however, the reverse problem

has received considerable research interests and will be the main focus of our work, albeit

with a sensor network flavour. In particular, our goal is to be able to extract certain useful

information (such as fully reconstructing the original field, or inferring its sources) from its

spatiotemporal sensor measurements.

Sampling diffusion fields

In this thesis, we first consider processes governed by the diffusion equation. An efficient

and robust sampling and reconstruction strategy for such fields will impact several real-

life applications, from the detection of pollution and plume sources [63] in environmental

monitoring to controlling the spread of fungal diseases in precision agriculture [90], as

well as retracing the sources of biochemical and nuclear wastes and leakages [107, 44,

134]. Furthermore, understanding the distribution of hot and cold spots due to energy

inefficiencies in processors [30, 126], as well as, large data centre clusters [23] can lead to

better load balancing.

Consequently considerable research efforts, from the signal processing community, have

recently concentrated on developing robust sensor data fusion schemes that aim to either,

infer the sources inducing the field [59, 125, 124, 99, 100, 91] or to reconstruct directly the

field [131, 129, 147]. These fields are typically non-bandlimited and hence require an ex-

tremely dense set of samples in order to achieve a faithful recovery using the classical linear

bandlimited (BL) reconstruction framework – see [86] and also the 2-D spatial sampling

example given in Figure 2.6. Ranieri and Vetterli [123] suggest that in some interesting

cases, specifically when the initial field distribution is not important, a BL reconstruction

is sufficient since the spatial bandwidth decays exponentially fast with time and frequency.

To alleviate the limitations of a BL reconstruction, Reise et al [129, 128] propose the use of

hybrid shift-invariant spaces, since these spaces allow the modeling of smooth non-BL fields

without imposing strict band-limitation. They investigate the use of B-splines for static

fields and extend their construction to time-varying fields using an iterative procedure. In
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(a) (b) (c)

(d) (e) (f)

Figure 2.6.: Estimating the thermal distribution of a two-dimensional plate.
Shown in (a) is the thermal distribution of a 2-D plate heated by four
unknown localized and instantaneous sources. Using a network of 121
sensors the field is sensed at locations in (d); assuming ideal sensors the
noiseless samples obtained are visualized in (e); whereas the noisy samples
in a more realistic situation are visualized in (f). Using these noiseless
and noisy samples, we obtain corresponding bandlimited reconstructions
presented in (b) and (c) respectively. We notice significant errors in both
reconstructions due to aliasing since the field is not bandlimited, also, we
cannot apply an antialiasing filter in space.

[126] Ranieri et al also propose a subspace-based method for successfully recovering thermal

maps; in this case, an optimal low-dimensional approximation is used, by first estimating

the principal bases—eigenmaps—through an experiment carried out at design-time. Tech-

niques based on the use of finite element method (FEM) [65, 29] to solve the static field

reconstruction problem have also been researched. For example, van Waterschoot and

Leus [147, 148] propose to combine the spatiotemporal samples with the PDE-based field

model to achieve static field estimation at certain points of interest. Furthermore, several

strategies based on compressive sensing (CS) [47] have been proposed. In particular, Yan

et al [161] developed a CS-based environmental monitoring algorithm, wherein the sparse

basis matrix is constructed from discretized versions of the Gaussian kernel, whereas [131]

incorporates the diffusion equation in their work, thereby extending the approach of [124].
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For non-static fields however, it is common to first estimate the sources of the field as

this allows complete field reconstruction in space and time. Statistical estimation meth-

ods, see [112, 154, 163, 132] and the references therein, based on Bayesian estimation and

Kalman filtering have been proposed. In addition, Le Niliot et al propose to estimate the

sources using boundary element methods (BEM) [91] and validate their proposed iterative

algorithm through real-life experiments [92]. In [107] Matthes et al develop a single source

localization algorithm based on continuous concentration measurements of the field. Dok-

manic et al [59] retrieve the single source parameters by approximating the single source

field using a truncated Fourier series, whereas Lu et al demonstrate that by solving a set

of linear equations the single source parameters can be estimated [99]. In addition, Lu and

Vetterli propose two methods for source estimation, namely spatial super-resolution [98]

and an adaptive scheme for sources with smooth spatial distributions [97]. We note that

existing schemes based on FEM may require the use of dense meshes for a faithful recov-

ery of the field, whilst compressed sensing-based schemes rely on uniform spatial sampling

which is often difficult to achieve in practice. A more realistic assumption is a uniform

placement of nodes but subjected to some random jitter [127]. Furthermore some of these

existing methods make no assumptions on the temporal nature of the sources, and so are

more generally applicable, but they may become unstable in the presence of noise or unable

to fully reconstruct the entire field in both space and time.

In the SN setup many centralized solutions to this field/source estimation problem, such

as [112, 98, 59, 124, 100, 147, 110, 125, 12, 84, 103], have been recently proposed. It

is well-known however that centralized estimation strategies over sensor networks can be

vulnerable to single point failures, for instance the network becomes inoperational if the

fusion center (FC) fails. In addition, communicating with the FC typically involves long

range transmission from the sensor nodes which can result in bottlenecks due to contention.

To this end, some decentralized and fully distributed algorithms have also been proposed

in the literature, where the aim has been to improve the network’s robustness to node

failures whilst also reducing transmission costs by relying only on local communication

between nodes. Lu and Vetterli, for example, propose a distributed adaptive sampling

scheme [97], van Waterschoot and Leus [148] develop a distributed scheme based on finite

element method. A distributed field reconstruction method using hybrid shift-invariant

spaces is proposed in [129], whilst a distributed extension of standard compressed sensing

techniques is developed in [133].

These SNs often comprise of sensor nodes that are often battery powered and, as such,

must adhere to strict communication and processing constraints for practical viability.

However most of the current approaches violate these constraints due to high computa-

tional complexity; they also implicitly assume that the communication links between nodes

are noiseless and, thus, of infinite capacity. Although a distributed sequential Bayesian

estimation method which is suitable under strict power and computational constraints is

proposed in [165], it also assumes that messages can be exchanged with infinite precision,

i.e. over a noiseless channel. Moreover, a fast distributed detection, localization and esti-
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mation algorithm was developed in [6], to solve the single point diffusion source problem, by

constructing two non-linear least squares problems (locally and globally) and then solving

them using sequential quadratic programming. This approach was further robustified in

[5], through the use of the Huber loss function.

In our work, for the centralized approach, we first derive novel exact inversion formulas

for our class of source distributions, through the use of Green’s second identity and a family

of sensing functions, to compute generalized field samples. These generalized samples can

then be inverted using variations of existing algebraic methods such as Prony’s method.

Next, we develop a novel and robust reconstruction method for diffusion fields by properly

extending these formulas to operate on the spatiotemporal samples of the field.

For the distributed approach, we demonstrate that computing the generalized measure-

ments from the field samples can be distributed using a modification of the distributed

gossip algorithms [27] for average consensus, such that each sensor in the network only

needs to exchange some properly modified versions of its sensor measurements to its neigh-

bouring nodes. This modification is based on the physics of the problem and thus allows

each sensor to converge, through these localized interactions with its neighbours, to the

desired generalized measurements. Hence the unknown source parameters can then be

recovered as usual using Prony’s method and its variations.

2.3.2. Beyond diffusion

There are of course a host of other physical phenomena beyond diffusion that can be de-

scribed by PDEs; ranging from systems in such domains as fluid dynamics and finance to

radio communications and tomography. These PDEs and their associated fields have been

studied by engineers, mathematicians and physicists alike. However with the development

of increasingly sophisticated measurement sensors for monitoring, new signal processing

techniques for analysing such data has become a necessity. Consequently, in over the past

few decades, the problem of solving these PDE-driven inverse problems—for many interest-

ing applications—has received significant attention from the signal processing community

at large. For example:

Potential fields: Poisson’s equation

In biomedical engineering, the localization of sources of neuronal activity (also known as

brain source imaging (BSI)) from electroencephalographic (EEG) signals [18, 73, 3, 157, 16]

is of interest. For this problem the use of Poisson’s equation has been ubiquitous, for

modelling the brain activity, since this PDE accurately describes the relationship between

the measured electrical potentials (i.e. the field) and the current dipoles (i.e. the sources).

To solve this EEG-related inverse source problem, several approaches based on least-squares

regularization have been proposed. For instance, the authors of [48, 121] formulate and

solve a related optimization problem that includes a regularization term (in the objective

function) based on the L2-norm of the signal measurements. These methods generally
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lead to a blurred source distribution, and in order to alleviate this issue some authors have

proposed sparsity-based regularization methods in [106, 95, 159]. More recently, techniques

exploiting the use of cosparsity have been also been explored [110, 4], in these approaches

the idea is to incorporate the physical model of the problem when deriving the analysis

operator [84].

Furthermore, a number of methods based on Bayesian modelling have also been proposed

[4, 70, 158], wherein a probabilistic model is assumed of the data, whilst the measurements

and the sources are assumed to be random variables. Beamforming techniques (see [146,

94, 122] and references therein), as well as, subspace-based tools [3, 43] have been proposed

for the source localization problem. More in-depth reviews of this EEG-related inverse

problem can be found in [73, 18].

Wave and radiating fields: the wave equation

The collection of inverse problems governed by the wave equation continues to receive

considerable research interests. This interest is primarily due to its importance in speech

recognition [13], acoustic tomography [78], speech and sound enhancement [41], sound/wave

source localization [103, 41], to name only a few. In most of these applications: fully re-

constructing the wave field, or inferring the sources of the field is often of interest. To this

end, several interesting techniques have been proposed. The classical and most common

techniques for solving this problem is based on maximum likelihood estimation and beam-

forming (see [164, 42] and references therein). Recently, Dokmanic̀ demonstrated how to

solve the simultaneous localization and mapping problem for sound sources in rooms by

making a crucial link between euclidean distance matrices and the acoustic echoes [60, 58].

Kitić et al [84] formulated an optimization problem based on the cosparse regularization

framework, in order to solve the sound source localization problem; whilst the Finite Differ-

ence Time Domain method is used to achieve source localization and signal reconstruction of

acoustic pressure fields in [12]. Furthermore, Doğan et al present a finite-rate-of-innovation

framework to solve the inverse source problem for radiating fields given boundary only mea-

surements [57]. In their approach, the authors also utilize the, so called, reciprocity gap

principle to provide a relationship between the field measurements and the sources.

2.4. Summary

In this chapter we reviewed the classical sampling theorem for bandlimited signals along

with its multidimensional extension. In addition, we also discussed the main ideas of

sampling signals in shift-invariant spaces, as well as, the notion of sampling FRI signals,

viewing them as generalizations of classical sampling. Finally we described the idea of

sensing physical fields as a multidimensional sampling problem and presented an overview

of related literature.
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Chapter 3.

Inverse source problem for the diffusion

equation

In this chapter we will consider an inverse problem for the diffusion equation and present

a novel method for solving it. Specifically we will begin with a precise description of

the particular inverse problem of interest—the so-called inverse diffusion source problem—

wherein the goal is to find the source distribution inducing the field measurements. For this

problem, we consider an interesting class of source distributions inspired by reality, and then

present some novel closed-form solutions for the problem under the assumption that we have

access to a set of continuous field measurements in some domain containing the sources.

Such an assumption is common in the applied mathematics and physics communities [111,

31, 37, 1, 10, 160]. Although seemingly unusual in the sensor network setting, understanding

and tackling the continuous problem can serve as a stepping-stone towards solving the

related inverse source problem that arises when we have access only to noisy (discrete)

spatiotemporal sensor network measurements – this will be the main focus of Chapter 4.

3.1. Introduction: on inverse problems for the diffusion

equation

Inverse problems arising in nature, can broadly be divided into two different categories.

Specifically for the diffusion equation, the problem either reduces to an inverse diffusion

source problem (IDSP) or an inverse diffusion coefficient problem (IDCP). To outline the

key differences between the IDSPs and the IDCPs, consider the PDE

∂

∂t
u(x, t) = ∇ · (µ(x, t)∇u(x, t)) + f(x, t). (3.1)

When the diffusivity µ(x, t) = µ, is a constant with respect to space and time we obtain

the (popular) isotropic diffusion equation in (3.2). In fact, (3.1) is the more general model

for the propagation of diffusion fields, and, is most appropriate for situations where the

induced field is propagating through a non-isotropic medium.

Definition 3.1 (Inverse diffusion source problem). Given the diffusion field u(x, t), gov-

erned by (3.1), over some domain Ω × [0, T ] that is compactly supported on Rd × R+ and
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if the diffusivity µ(x, t) is known for all (x, t) ∈ Rd×R+, the problem of finding the source

or inhomogeneous term f(x, t) compactly supported on Rd × R+ is known as the inverse

diffusion source problem.

Definition 3.2 (Inverse diffusion coefficient problem). Given the diffusion field u(x, t),

governed by (3.1), over some domain Ω × [0, T ] that is compactly supported on Rd × R+,

and given the source term f(x, t) over (x, t) ∈ Ω × [0, T ], then the problem of finding the

diffusivity/transport coefficient term µ(x, t) for any (x, t) ∈ Rd×R+ is known as the inverse

diffusion coefficient problem.

More details on the IDC problems can be found in [36, 130, 88, 81, 10] and their references.

In the rest of this thesis, we will only concern ourselves with IDS problems with the constant

diffusivity property, i.e. µ(x, t) = µ for any x, t, since this assumption is sufficient for the

sensor network applications which we are interested in.

Motivated by practical applications we consider diffusion fields induced by a finite number

of spatially localized and non-localized sources and address the problem of estimating these

sources from continuous measurements of the field induced by them. Within this framework,

we consider two different time evolutions: the case where the sources are instantaneous,

as well as, the case where the sources decay exponentially in time after activation. We

derive novel exact inversion formulas for these source distributions of interest, through the

use of Green’s second identity and a family of spatial and temporal sensing functions that

provide generalized samples of the field. These generalized samples can then be inverted

using variations of existing algebraic methods such as Prony’s method [54, 140] in order to

exactly recover the unknown source distributions.

Naturally in any mathematical treatment of inverse problems, a useful and fundamental

starting point is to, first of all, study and understand its corresponding forward problem.

The key reason being that such an exercise can equip us with useful insights about the

underlying phenomena which may be exploited when tackling the inverse problem. There-

fore we will begin our discourse on the inverse diffusion source problem with a description

of the forward problem and then present a well-known approach for solving it, before pre-

senting our treatment of the inverse problem. In particular this will lead us to the main

contribution of this chapter, i.e. the derivation of novel analytical solutions for the inverse

diffusion source problem relating to an interesting class of sources.

The remainder of this chapter is organized as follows. In Section 3.2 the forward problem

is presented along with a method of solving it, called the Green function method. Subse-

quently, in Section 3.3 we present and precisely formulate the inverse source problem (ISP)

for the diffusion equation, therein we give a parametric representation along with practical

justifications for the source models of interest. In Section 3.4, we present the derivation

of our closed-form inversion formulas and present algorithms to summarize our proposed

approach for solving the IDSP. In Section 3.5 we present an extension of our framework to

the advection-diffusion equation, before concluding the present chapter with a summary in

Section 3.6.
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3.2. Forward problem

3.2. Forward problem

Consider the diffusion field induced by a real-valued space- and time-varying source dis-

tribution f(x, t) embedded in an infinite, homogeneous and isotropic medium such as free

space. The induced real-valued field, denoted with u(x, t), propagates through space x ∈ Rd

and time t ∈ R+ according to the inhomogeneous diffusion equation:

∂

∂t
u(x, t) = µ∇2u(x, t) + f(x, t), (3.2)

where µ ∈ R is the diffusivity of the medium through which the field propagates. The

solution to this inhomogeneous diffusion equation, as it stands, is not unique. Specifically,

notice that we can add to u(x, t) any solution to the homogeneous diffusion equation,

∂

∂t
υ(x, t) = µ∇2υ(x, t) (3.3)

and still obtain a valid solution to (3.2). To guarantee uniqueness it is necessary to further

specify initial and/or boundary conditions [109].

Consequently in what follows we describe the so called Green function method, which is a

classical approach for solving the PDE (3.2) subject to certain initial/boundary conditions,

in order to obtain the induced field u(x, t).

3.2.1. Solution to the diffusion equation: Green’s function method

Otherwise known as the method of fundamental solutions, the Green function method is an

approach that allows us to construct solutions to initial/boundary value problems from the

so called Green functions/fundamental solutions of the PDE [62, 109, 153]. Qualitatively

this means, we can generate the solution to any linear, inhomogeneous PDE with constant

coefficients by taking the convolution between its Green’s function and the source (or

inhomogeneous) term in the PDE.1 Mathematically,

Definition 3.3 (Green’s function). Is a distribution g that satisfies the distributional equa-

tion

Wg = δ

where W denotes a linear, constant coefficient partial differential operator (for e.g. W =
∂
∂t − µ∇

2 in (3.3)) and δ is the Dirac delta function situated at the origin.

Let g(x, t) denote the Green’s function for the inhomogeneous diffusion equation (3.2);

then for any smooth, compactly supported function f = f(x, t),(
∂

∂t
− µ∇2

)
(f ∗ g) = f ∗

(
∂

∂t
− µ∇2

)
g

1This is however not true for non-constant coefficient PDEs. Intuitively, for non-constant coefficient
equations we would require a different fundamental solution at each point and then proceed to compute
their weighted sum, which is no longer a convolution.
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= f ∗Wg = f ∗ δ

= f.

Therefore we can conclude that the PDE (3.2) has the solution:

u(x, t) = (g ∗ f)(x, t). (3.4)

We are now left with finding an explicit expression for g(x, t).

The Green function for the diffusion equation

Subject to the Sommerfeld radiation condition, i.e. a quiescent condition at an initial time

u(x, t)|t=0 =
∂

∂t
u(x, t)

∣∣∣∣
t=0

= 0, (3.5a)

and a convergence condition at infinity

u(x, t)|‖x‖→∞ = 0 and ∇u(x, t)|‖x‖→∞ = 0, (3.5b)

it can be shown that the Green function for a d-dimensional field obeying (3.2) is given by

[160, 152]:

g(x, t) =
1

(4πµt)d/2
e
− ‖x‖

2

4µt H(t) (3.6)

where H(t) denotes the Heaviside unit step function.

In our setting an implication of the Green function method is that, according to (3.4), the

entire field u(x, t) can be perfectly reconstructed provided we know the source distribution

f(x, t) exactly.

3.3. The inverse diffusion source problem

We are interested in solving the inverse diffusion source problem. Specifically we intend to

find the source distribution f(x, t) inducing some known diffusion field u(x, t) governed by

the PDE (3.2). This chapter will treat the case when the field u(x, t) is known continuously

over a compactly supported spatiotemporal domain Ω× [0, T ], where Ω ⊂ Rd and 0 < T <

∞; whilst the case when the field is known only at a finite number of discrete points in

Ω × [0, T ] is deferred to Chapter 4. Henceforth, we will assume that d = 2. Moreover, we

note that both problems, in their present form, are ill-posed in the Hadamard sense [160,

101, 38, 66], in that—without a suitable structure imposed upon f—we could construct

examples where two distinct source distributions (say f1 and f2) will lead to the same

field measurements on Ω × [0, T ], hence implying non-uniqueness. Therefore to guarantee

uniqueness of solutions in what follows, we impose a parametric structured model to the

sources of diffusion fields that are of interest to us.
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3.3.1. The class of localized sources

The localized source model assumes that the source is largely concentrated at a single in-

finitesimal point in space. This model is most suitable when each source of the field is

several orders of magnitude smaller than the monitored region containing the field. Many

typical examples of such situations are encountered in environmental monitoring applica-

tions, including the detection of plumes [63], gaseous leakages [112], and nuclear wastes as

in the Fukushima disaster [44, 105]. For this class of sources we will be concerned with two

temporal distributions,

1. Instantaneous sources: under this model the sources of interest are localized in both

space and time. It describes a point that is active only for an extremely short burst

of time compared to the measurement duration. The parameterization for a super-

position of M such sources is given by

f(x, t) =
M∑
m=1

cmδ(x− ξm, t− τm), (3.7)

where cm, τm ∈ R are the intensity and activation time of the m-th source respectively

and ξm ∈ Ω is the source location, specifically Ω ∈ R2 and ξm = (ξ1,m, ξ2,m). As a

result of this source parameterization, the IDS problem becomes:

Problem 3.1. Estimating the parameters {cm, ξm, τm : m = 1, . . . ,M} from contin-

uous measurements u(x, t) of the diffusion field taken over the domain Ω× [0, T ], and

induced by the distribution (3.7).

2. Non-instantaneous sources: for time-varying emissions like factory leakages where,

for example, a gas container gradually empties, a suitable model is an exponential

decaying emission intensity. This is because leakages are generally modelled using

first order ordinary differential equations (ODEs) which usually have an exponential

family of solutions, making the decaying exponential function a suitable model for

the time evolution of such sources. Given a superposition of M such time-varying

point sources, the model imposed on f becomes

f(x, t) =

M∑
m=1

cme
αm(t−τm)δ(x− ξm)H(t− τm), (3.8)

where αm < 0 is called the decay coefficient. For this source model the continuous

IDSP is equivalent to the following problem:

Problem 3.2. Estimating the parameters {αm, cm, ξm, τm}Mm=1 from continuous mea-

surements u(x, t) of the diffusion field taken over the domain Ω× [0, T ], and induced

by the distribution (3.8).
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3.3.2. The class of non-localized sources

Whilst the localized model remain ubiquitous in many real world applications, there are

certain instances where the spatial support of the source is comparable to (either dimension

of the) monitored region. These situations are encountered typically in applications includ-

ing the monitoring of overheating servers in large data center clusters [23], or of individual

cores in multi-core processors [30, 126] due to energy inefficiencies. In these applications a

non-localized distribution may be more appropriate; this leads to the following interesting

class of non-localized source models:

1. Straight line source: we parameterize these as follows

f(x, t) = cL(x)δ(t− τ), (3.9)

where c, τ ∈ R are the intensity and activation time respectively, and L(x) ⊂ Ω

describes a line coinciding with the position of the straight line source. In this case,

clearly the geometry of the source is uniquely defined by its endpoints, i.e. the pair

ξ1, ξ2 ∈ Ω, with ξ1 = (ξ1,1, ξ2,1) and ξ2 = (ξ1,2, ξ2,2). We can now summarize the

problem of interest:

Problem 3.3. Given continuous measurements of the diffusion field, u(x, t) for all

(x, t) ∈ Ω × [0, T ], induced by a line source with the parameterization (3.9), the

inverse diffusion source problem is to estimate the source intensity, activation time

and endpoints (c, τ, {ξ1, ξ2}).

2. Convex polygonal source: these are characterized by the following model on f

f(x, t) = cF (x)δ(t− τ), (3.10)

where c, τ ∈ R are again the intensity and activation time respectively, and F (x) ⊂ Ω

is the region describing the location and shape of the convex polygonal diffusion

source. By noticing that a convex polygon F (x) is uniquely specified by its vertices,

that is, the collection {ξ1, ξ2, . . . , ξM}, with ξm = (ξ1,m, ξ2,m) ∈ Ω, we can now state

precisely the problem of interest as follows:

Problem 3.4. Given continuous measurements of the diffusion field, u(x, t) for all

(x, t) ∈ Ω × [0, T ], induced by an M -sided polygonal source with parameterization

(3.10), the inverse diffusion source problem is to estimate the source intensity, acti-

vation time and endpoints (c, τ, {ξm}Mm=1).

Although the models (3.9) and (3.10) above are for instantaneous sources, it is straight-

forward to extend these models to the temporally non-instantaneous source case by re-

placing the time evolution accordingly with a decaying exponential. Specifically, the non-

instantaneous line source would be:

f(x, t) = cL(x)eα(t−τ)H(t− τ), (3.11)
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whilst the non-instantaneous (M -sided) polygonal source is modelled as:

f(x, t) = cF (x)eα(t−τ)H(t− τ), (3.12)

where c, α, τ ∈ R and L(x), F (x) ⊂ Ω take their usual definitions.

3.4. Closed-form inversion of a class of inverse diffusion

source problems

In this section, we derive exact closed-form inversion formulas for diffusion fields induced

by localized and non-localized sources as defined in (3.7) to (3.12). For the localized source

models, we use Green’s second identity to demonstrate that given access to generalized

measurements of the form:

Q(k, r) = 〈Ψk(x)Γr(t), f(x, t)〉 =

∫
Ω

∫
t
Ψk(x)Γr(t)f(x, t)dtdV, (3.13)

it is possible to uniquely determine the unknown source parameters in f(x, t). Here, V is

the variable of integration performed over Ω (a surface in 2D), Ψk(x) and Γr(t) are properly

chosen sensing functions. Specifically, we show that the generalized measurements Q(k, r)

for k, r ∈ Z are given by a weighted-sum of complex exponentials. In fact, given a sum

of exponentials of the form Q(k, r) =
∑M

m=1cme
−k(ξ1,m+jξ2,m)e−jrτm/T , where j =

√
−1,

we then demonstrate how to map uniquely the weights and exponents of this sum to the

unknown source parameters in f(x, t) using Prony’s method. This method is frequently

encountered in spectral estimation [140] and in the finite rate of innovation (FRI) framework

[150, 61, 26, 115]. For completeness, a brief overview was provided in Section 2.2.2.

The use of Green’s second identity here allows us to relate, in a simple yet precise way, the

boundary and interior measurements of the field, to the sources inducing the field. This is

the basis of the reciprocity gap method [11] used in non-destructive testing of solids [11, 17];

it has also been exploited for the identification of heat sources from boundary measurements

[14] and for estimating the sources of static fields governed by Poisson’s equation in [80].

Herein we propose an extension of the reciprocity gap method to the identification of

instantaneous and non-instantaneous localized sources of diffusion in both space and time,

whilst also exploiting the use of stable sensing functions. In addition, we further extend

this approach to non-localized source fields and solve the associated IDSP through a simple

transformation of the generalized measurements Q(k, r). This transformation is obtained

precisely using tools from the field of complex analysis.

Although the inversion formulas derived herein are based on continuous full-field mea-

surements, which are generally inaccessible in practice, they provide insights on how to

combine the discrete spatiotemporal measurements that we obtain using a sensor network

in order to compute the generalized sequence Q(k, r), or at least an approximation of it,

which then allows for source recovery using Prony’s method.
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3.4.1. Diffusion fields of multiple instantaneous point sources

We begin by relating the diffusion field u(x, t) inside Ω to the source parameters. Let Ψk

be a twice differentiable function in Ω, then Green’s second identity relates the boundary

integral and the integral over the bounded region as follows:∮
∂Ω

(Ψk∇u−u∇Ψk) · n̂∂ΩdS=

∫
Ω

(
Ψk∇2u−u∇2Ψk

)
dV, (3.14)

where n̂∂Ω is the outward pointing unit normal vector to the boundary ∂Ω of Ω. Moreover,

if Ψk satisfies
∂Ψk

∂t
+ µ∇2Ψk = 0 (3.15)

in Ω, then given that u(x, t) satisfies (3.2) we may substitute ∇2Ψk = − 1
µ
∂Ψk
∂t and ∇2u =

1
µ

(
∂u
∂t − f

)
into the right hand side (RHS) of (3.14) to obtain:

∮
∂Ω

(Ψk∇u−u∇Ψk)·n̂∂ΩdS=
1

µ

∫
Ω
Ψk

(
∂u

∂t
−f
)

+u
∂Ψk

∂t
dV

=
1

µ

∫
Ω
Ψk

∂u

∂t
+u

∂Ψk

∂t
−ΨkfdV

=
1

µ

∫
Ω

∂

∂t
(uΨk)−Ψkf dV.

Finally multiplying through by µ and rearranging yields:∫
Ω

∂

∂t
(uΨk)dV − µ

∮
∂Ω

(Ψk∇u− u∇Ψk) · n̂∂ΩdS =

∫
Ω

ΨkfdV. (3.16)

This integral equation gives a simple yet interesting relationship between the source f and

the induced field. Specifically, it is interesting to us because of the similarity between the

right hand side (RHS) of (3.16) with the spatial integral in the RHS of (3.13). Given the

source model (3.7), we can now establish how this expression can be used to recover the

unknown source parameters:

Proposition 3.1. For the instantaneous source parameterization (3.7), providing Ψk(x) is

analytic and of the form e−k(x1+jx2) k = 0, 1, . . . ,K with K ≥ 2M − 1 and Γr(t) = e−jrt/T ,

r = 0, 1, . . . , R with R ≥ 1, then the integral equation in (3.16) can be used to recover jointly

the intensities, locations and activation times of the M instantaneous sources.

Proof. Recall (3.16) and, for conciseness, denote its left hand side (LHS) by Qk(t); hence

it follows that Qk(t) =
∫

Ω Ψk(x)f(x, t) dV . This identity holds true for any t, as such we

can multiply both sides by some arbitrarily chosen window Γr(t). Hence,

Γr(t)Qk(t) = Γr(t)

∫
Ω

Ψk(x)f(x, t) dV, ∀t.
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Integrating this new expression over t ∈ [0, T ] yields:∫ T

t=0
Γr(t)Qk(t) dt =

∫ T

t=0
Γr(t)

∫
Ω

Ψk(x)f(x, t) dV dt=〈Ψk(x)Γr(t), f(x, t)〉 ,

which is precisely the aforementioned generalized measurements (3.13) we seek.

Next we show that this generalized measurement relates the unknown source parameters

to the known field measurements. To see this let f(x, t) be the instantaneous point source

model (3.7), then∫ T

t=0
Γr(t)Qk(t)dt = 〈Ψk(x)Γr(t), f(x, t)〉

=

∫ T

t=0
Γr(t)

∫
Ω

Ψk(x)
M∑
m=1

cmδ(x− ξm, t− τm) dV dt

=
M∑
m=1

cm

∫ T

t=0
Γr(t)δ(t− τm) dt

∫
Ω

Ψk(x)δ(x− ξm)dV

=
M∑
m=1

cmΓr(τm)Ψk(ξm).

Notice that because Qk(t) has been defined to be the LHS of (3.16), the LHS of the equation

above is also equivalent to:2∫ T

t=0
Γr(t)Qk(t) dt =

∫ T

t=0
Γr(t)

∫
Ω

∂

∂t
(u(x, t)Ψk) dV dt

− µ
∫ T

t=0
Γr(t)

∮
∂Ω

(Ψk∇u− u∇Ψk) · n̂∂Ω dS dt.

Given the field measurement u(x, t) along with a proper choice of spatial and temporal

sensing functions Ψk(x) and Γr(t), respectively, this integral can be evaluated exactly to

produce an expression dependent only on k and r, for this reason we will denote it by

Q(k, r). Specifically:

Q(k, r)
def
=

∫ T

t=0
Γr(t)

∫
Ω

∂

∂t
(u(x, t)Ψk) dV dt

−µ
∫ T

t=0
Γr(t)

∮
∂Ω

(Ψk∇u− u∇Ψk)·n̂∂Ω dSdt,

(3.17)

for k = 0, 1, . . . ,K and r = 0, 1, . . . , R. Therefore we have insofar shown that the sought

after generalized measurement Q(k, r) is precisely the inner product 〈Ψk(x)Γr(t), f(x, t)〉,
which can be evaluated exactly using (3.17) above. Consequently, this means that Q(k, r)

2To see this we simply substitute the expression Qk(t)
def
=

∫
Ω

∂
∂t

(uΨk)dV −µ
∮
∂Ω

(Ψk∇u− u∇Ψk) · n̂∂ΩdS

into
∫ T
t=0

Γr(t)Qk(t) dt
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is also related to the unknown source terms through,

Q(k, r) = 〈Ψk(x)Γr(t), f(x, t)〉 =
M∑
m=1

cmΓr(τm)Ψk(ξm),

hence substituting the expressions Ψk(x) = e−k(x1+jx2) and Γr(t) = e−jrt/T into the above

immediately produces the Vandermonde system:

Q(k, r) =
M∑
m=1

cme
−k(ξ1,m+jξ2,m)e−jrτm/T . (3.18)

Now (3.18) allows us to uniquely and simultaneously retrieve cm, τm and ξm. Specifically,

for joint location, intensity and activation time recovery given M instantaneous sources,

notice that the sequence obtained by setting r = 1 in (3.18) for any k ∈ N is governed by

the following Vandermonde system:

Q(k, 1) =
M∑
m=1

cme
−jτm/T e−k(ξ1,m+jξ2,m). (3.19)

where the exact values making up the sequence {Q(k, 1)}Kk=0 are evaluated using (3.18)

with r = 1.

The sequence {Q(k, 1)}Kk=0 in (3.19) above is governed by a weighted sum of a finite

number of complex exponentials and so we can use Prony’s method to retrieve uniquely

the pairs

{cme−jτm/T , ξm}Mm=1

from the sequence, provided K ≥ 2M − 1 (as outlined in the overview Section 2.2.3,

Remark 2.1). Then given the pair {cme−jτm/T , ξm} it is straightforward to retrieve cm and

τm as the absolute value and angle (multiplied by −T ) of cme
−jτm/T respectively.

Remark 3.1. The choice of Ψk(x) and Γr(t) here is important. Firstly, Ψk(x) has to

satisfy (3.15) in order to obtain (3.16). This is why we pick Ψk(x) to be analytic. Amongst

the class of analytic functions, we choose Ψk(x) to be the damped complex exponential for

numerical stability. Similarly, whilst Γr(t) can be any arbitrary function of time, again for

stability reasons, we choose the exponential function with purely imaginary exponent.

3.4.2. Diffusion fields of multiple non-instantaneous point sources

In what follows, we consider Problem 3.2 and solve it by extending the approach in Propo-

sition 3.1. Specifically we derive closed-form expressions for simultaneous recovery of all

unknown non-instantaneous localized source parameters.
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Exact recovery of source locations

It was shown in Section 3.4.1 that the M triples {cm, τm, ξm}Mm=1 can be recovered when

the diffusion field has been induced by a superposition of M localized and instantaneous

sources. In this section however, we will be concerned with the IDSP for fields of non-

instantaneous point sources. Indeed under the source model f in (3.8) we show that the

Prony’s system is preserved. As such the localization step (discussed in Section 3.4.1) can

still reveal the locations, along with corresponding coefficients that we will refer to as the

generalized energies of the non-instantaneous sources. The following proposition presents

this new result.

Proposition 3.2. For non-instantaneous source fields, with source parameterization (3.8),

providing Ψk(x) is analytic, and is chosen such that Ψk(x) = e−k(x1+jx2), then the integral

equation in (3.16) is governed by the following Vandermonde system:

R(k) =

M∑
m=1

c′me
−k(ξ1,m+jξ2,m), k = 0, 1, . . . ,K (3.20)

where R(k) = Q(k, 0) is used to denote the family of definite integrals (3.17) for k ∈ N and

r = 0, whilst c′m = cm
αm

(
eαm(T−τm) − 1

)
is the generalized energy of the m-th source.

Proof. Firstly substitute Ψk = e−k(x1+jx2) into (3.16) and integrate both sides of the re-

sulting equation over t ∈ [0, T ], to obtain:∫
Ω
(Ψku)(x, T )dV−µ

∮
∂Ω

(Ψk(x)∇U(x)−U(x)∇Ψk(x))·n̂∂ΩdS =

∫ T

0

∫
Ω

Ψk(x)f(x, t) dV dt,

(3.21)

where as before we denote U(x) =
∫ T

0 u(x, t)dt. Notice that the left hand side of (3.21)

coincides with the integral family Q(k, 0); we will henceforth denote it by R(k) for brevity.

However, given the localized and non-instantaneous source parameterization (3.8) for f ,

the power-sum series for R(k) is different to that obtained for instantaneous sources, but

can be easily obtained by substituting (3.8) into the right hand side of (3.21) as follows:

R(k) =

∫ T

t=0

∫
Ω

Ψk(x)f(x, t)dV dt

=

∫ T

τm

∫
Ω

Ψk(x)

M∑
m=1

cme
αm(t−τm)δ(x− ξm) dV dt

=
M∑
m=1

cm

∫
Ω

Ψk(x)δ(x− ξm) dV

∫ T

τm

eαm(t−τm)dt

=

M∑
m=1

cmΨk(ξm)

[
1

αm
eαm(t−τm)

]T
τm

=
M∑
m=1

cm
αm

(
eαm(T−τm) − 1

)
Ψk(ξm)
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=

M∑
m=1

c′me
−k(ξ1,m+jξ2,m)

where c′m = cm
αm

(
eαm(T−τm) − 1

)
as required.

Again the sequence {R(k)}Kk=0, governed by the weighted sum of exponentials (3.20) can

be solved to recover the M locations {ξm}Mm=1 of the instantaneous sources, as well as their

corresponding generalized energies c′m using Prony’s method.

Corollary 3.1. From (3.16), given any arbitrary temporal parameterization of M sources,

it is possible to recover their locations by evaluating the integral expression R(k), for k =

0, 1, . . . ,K and applying Prony’s method on the resulting sequence {R(k)}Kk=0, as long as

all M sources are localized in space. Specifically, one can show that R(k) will always take

the form R(k) =
∑M

m=1Cme
−k(ξ1,m+jξ2,m), k = 0, 1, . . . ,K, where Cm is the generalized

energy given by Cm =
∫ T

0 hm(t)dt for the generic source with parameterization f(x, t) =∑
m hm(t)δ(x− ξm).

We are now left with establishing novel expressions for directly recovering the remaining

source parameters: αm, τm and cm from the generalized energy c′m.

Exact recovery of decay coefficients, activation times and source intensities

Let us start by noting that c′m = cm
αm

(
eαm(T−τm) − 1

)
for m = 1, . . . ,M depends on the

interval [0, T ] over which the time-integration, in (3.21), is performed; thus we may write,

c′m(T ) =
cm
αm

(
eαm(T−τm) − 1

)
(3.22)

to emphasize this dependency. There are three unknowns (αm, cm, τm) in (3.22) hence in

order to find them, we need at least three linearly independent expressions. The simplest

way to achieve this is to assume that we can obtain the coefficients {c′m(T ) : m = 1, . . . ,M}
for the three distinct intervals T = T1, T2 = T1 + ∆T, and T3 = T1 + 2∆T , then:

c′m(T1) =
cm
αm

(
eαm(T1−τm) − 1

)
, (3.23)

c′m(T2) =
cm
αm

(
eαm(T1+∆T−τm) − 1

)
=
cm
αm

(
eαm(T1−τm)eαm∆T − 1

)
, (3.24)

c′m(T3) =
cm
αm

(
eαm(T2+∆T−τm) − 1

)
=
cm
αm

(
eαm(T2−τm)eαm∆T − 1

)
. (3.25)

Fortunately it is now possible to solve these simultaneously in closed-form as follows: sub-

tract (3.23) from (3.24) and similarly (3.24) from (3.25), to obtain

c′m(T2)− c′m(T1)=
cm
αm

(
eαm(T1−τm)eαm∆T − eαm(T1−τm)

)
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=
cm
αm

eαm(T1−τm)
(
eαm∆T − 1

)
=

2cm
αm

eαm
∆T
2 eαm(T1−τm) sinh(αm∆T/2), (3.26)

and

c′m(T3)− c′m(T2)=
2cm
αm

eαm
∆T
2 eαm(T2−τm) sinh(αm∆T/2), (3.27)

respectively. Dividing (3.26) by (3.27) gives,

c′m(T2)− c′m(T1)

c′m(T3)− c′m(T2)
=
eαm(T1−τm)

eαm(T2−τm)
= eαm(T1−T2). (3.28)

Therefore,

αm =
1

T1 − T2
ln

(
c′m(T2)− c′m(T1)

c′m(T3)− c′m(T2)

)
. (3.29)

Given αm it is then possible to retrieve the activation time of the m-th source if we divide

(3.23) by (3.24),

c′m(T1)

c′m(T2)
=

cm
αm

(
eαm(T1−τm) − 1

)
cm
αm

(
eαm(T2−τm) − 1

) (3.30)

and re-arrange to obtain,

e−αmτm
(
c′m(T1)eαmT2−c′m(T2)eαmT1

)
=c′m(T1)− c′m(T2).

This yields

τm =
1

αm
ln

(
c′m(T1)eαmT2 − c′m(T2)eαmT1

c′m(T1)− c′m(T2)

)
. (3.31)

Finally, with access to estimates of αm and τm, it is straightforward to estimate cm using

any of (3.23), (3.24), and (3.25). In particular

cm =
αmc

′
m(Ti)

eαm(Ti−τm) − 1
, i = 1, 2, 3 (3.32)

as required.

Remark 3.2. An interesting point to notice about the proposed framework is that, for

sources lying outside the region Ω their contribution to the integral expressions (3.17) and

(3.21) is zero. We can leverage this fact to still recover the sources of diffusion fields

in bounded regions, i.e. when the medium through which the field propagates is finite.

Specifically, the method of image sources allows us to model reflections in bounded regions as

an unbounded medium containing in addition to real sources, several virtual ones. However,

our integrals enclose only the real sources, hence using our inverse formulae only these real

sources will be recovered because the contributions of the virtual sources to the integrals will

be zero. Consequently, the inversion formulas remain valid and we are still able to estimate

the unknown source parameters as far as the impermeable (or semi-permeable) boundaries
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of the medium are outside Ω. We will demonstrate through simulations, using both synthetic

and real data, that we are able to fully recover the unknown source distribution f in the

case where the field propagates a finite region with impermeable boundaries.

Algorithm 3.1 Localized IDS problem for continuous measurements

Require: Field u(x, t)∀(x, t) ∈ Ω× [0, T ], total number of sources M , diffusivity µ, source
model SM.

1: Initialize K ≥ 2M − 1.
2: if SM == ‘instantaneous’ then
3: Compute the sequence {Q(k, 1)}Kk=0 using (3.17).
4: Apply Prony’s method to {Q(k, 1)}Kk=0 to obtain M pairs of (cme

−jτm/T , ξm).
5: For every m, cm =

∣∣cme−jτm/T
∣∣ and τm = T arg

(
cme

−jτm/T
)
.

6: Return all M intensities, activation times and locations {(cm, τm, ξm)}Mm=1.
7: else
8: Initialize ∆T so that ∆T ≤ T/3.
9: for i = 1 : 3 do

10: Ti = T − (3− i)∆T .

11: Using measurements over Ω× [0, Ti] compute the sequence {R(k)
def
= Q(k, 0)}Kk=0

using (3.17) (equivalently (3.21)).
12: Apply Prony’s method to {R(k)}Kk=0 to obtain M pairs (c′m(Ti), ξm).
13: end for
14: By matching the locations form M quadruples (c′m(T1), c′m(T2), c′m(T3), ξm).
15: For each m recover αm, τm, and cm from (c′m(T1), c′m(T2), c′m(T3), ξm) using (3.29),

(3.31) and (3.32) respectively.
16: Return all M source decay coefficients, intensities, activation times and locations:
{αm, cm, τm, ξm}Mm=1.

17: end if

Consequently, we can leverage from the results herein to develop a localized source esti-

mation algorithm, shown in Algorithm 3.1, that solves the Problems 3.1 and 3.2.

3.4.3. Estimating a single non-localized source

We now outline our proposed schemes for recovering non-localized source distributions (3.9)

and (3.10) respectively, assuming access to the following generalized measurements:

Q(k, r)=〈Ψk(x)Γr(t), f〉=
∫

Ω

∫
t
Ψk(x)Γr(t)f(x, t)dtdV, (3.33)

where Ψk(x) = e−k(x1+jx2) and Γr(t) = e−jrt/T , with k, r ∈ N. Specifically, we show that

the above sequence of integral measurements when appropriately modified results in a new

sequence that is governed by a power sum series, that when solved gives again the unknown

source parameters.
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Analytic recovery of instantaneous line sources

In what follows we demonstrate how to recover the unknown straight line source parameters

(c, τ, ξ1, ξ2) from the generalized measurements Q(k, r).

Proposition 3.3. Let Ψk(x) be the analytic function Ψk(x) = e−k(x1+jx2), where k =

1, 2, . . . ,K with K ≥ 4 and let Γr(t) = e−jrt/T , where r = 0, 1, . . . , R and R ≥ 1, then the

generalized measurements Q(k, r) in (3.13) can be used to recover jointly, the unknown line

source intensity, location and activation time.

Proof. We begin the proof by considering the expression (3.13) and substitute the source

parameterization (3.9) as follows:

Q(k, r)= 〈Ψk(x)Γr(t), f〉=
∫

Ω

∫
t
Ψk(x)Γr(t)f(x, t)dtdV

= c

∫
t
Γr(t)δ(t− τ)dt

∫
Ω

Ψk(x)L(x)dV

= cΓr(τ)

∫
L(x)

Ψk(x)dS, (3.34)

the last equality follows from the fact that L(x) is only non-zero along the shortest line

joining the endpoints ξ1 and ξ2. Next given a parametric representation of the line segment

such as

L (x(θ)) :

x1(θ) = (1− θ)ξ1,1 + θξ1,2

x2(θ) = (1− θ)ξ2,1 + θξ2,2

, θ ∈ [0, 1], (3.35)

we have that

∫
L(x)

Ψk(x)dS =

∫ 1

0
Ψk(x(θ))

√(
dx1

dθ

)2

+

(
dx2

dθ

)2

dθ

=

√
(ξ1,2 − ξ1,1)2 + (ξ2,2 − ξ2,1)2

∫ 1

0
Ψk(x(θ))dθ

= −1

k
`(ξ1, ξ2)

(
e−k(ξ1,2+jξ2,2) − e−k(ξ1,1+jξ2,1)

)
,

providing k 6= 0. Thus

∫
L(x)

Ψk(x)dS=− 1

k
`(ξ1, ξ2)

2∑
m=1

(−1)me−k(ξ1,m+jξ2,m), (3.36)

where

`(ξ1, ξ2) =

√
(ξ1,2 − ξ1,1)2 + (ξ2,2 − ξ2,1)2

(ξ1,2 − ξ1,1) + j(ξ2,2 − ξ2,1)
. (3.37)

Substituting (3.36) into (3.34) and recalling that Γr(t) = e−jrt/T yields the following power
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Chapter 3. Inverse source problem for the diffusion equation

sum series,

− kQ(k, r) = `(ξ1, ξ2)ce−jrτ/T
2∑

m=1

(−1)me−k(ξ1,m+jξ2,m). (3.38)

Applying Prony’s method, as usual, to the sequence {−kQ(k, 1)}Kk=1 given that K ≥ 4 pro-

duces {(−1)m`(ξ1, ξ2)ce−jτ/T , ξm}2m=1. Using ξ1 and ξ2 we can compute exactly `(ξ1, ξ2).

Thus c and τ can then be directly recovered from {(−1)m`(ξ1, ξ2)ce−jτ/T }2m=1.

Notice again that the choice Ψk(x) = e−k(x1+jx2) and Γr(t) = e−jrt/T is key to obtaining

the desired power sum series (3.38), once more highlighting the roles of the functions Ψk(x)

and Γr(t) here as spatial and temporal sensing functions respectively.

Thus the algorithm that solves the continuous IDSP, Problem 3.3, using the above propo-

sition is summarized in Algorithm 3.2.

Analytic recovery of instantaneous polygonal sources

We now outline how to estimate the unknown parameters c, τ and {ξm}Mm=1 for an M -sided

convex polygonal diffusion source given access to the generalized measurements Q(k, r). We

firstly state the following lemmas that will be useful in proving the scheme for recovering

polygonal sources.

Lemma 3.1. Let Ψk(x) = e−k(x1+jx2), then

Ψk(x) =
1

k2
Ψ′′k(x), (3.39)

where (·)′ is used to denote the derivative with respect to the complex variable ‘x1 + jx2’.

Proof. Follows directly from two straightforward applications of the complex derivative

(w.r.t the complex variable ‘x1 + jx2’).

Lemma 3.2. Let Ψk(x) be analytic inside the convex polygon F (x), with vertices {ξm}Mm=1,

then [49] ∫
F (x)

Ψ′′k(x)dV =
M∑
m=1

amΨk(ξm), (3.40)

where the coefficients am are related to the vertices of the polygon via,

am =
j

2

(
(ξ1,n−1 − jξ2,n−1)− (ξ1,n − jξ2,n)

(ξ1,n−1 + jξ2,n−1)− (ξ1,n + jξ2,n)
− (ξ1,n − jξ2,n)− (ξ1,n+1 − jξ2,n+1)

(ξ1,n + jξ2,n)− (ξ1,n+1 + jξ2,n+1)

)
. (3.41)

Proof. For a proof of this lemma, see [49, 50, 64].

Proposition 3.4. Let Ψk(x) be the analytic function Ψk(x) = e−k(x1+jx2), where k =

1, 2, . . . ,K with K ≥ 2M and let Γr(t) = e−jrt/T , where r = 0, 1, . . . , R and R ≥ 1, then

the generalized measurements Q(k, r) in (3.13) can be used to recover jointly, the unknown

intensity, vertices and activation time of an M -sided convex polygonal diffusion source.
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Proof. Consider now the expression (3.13) and substitute the source parameterization

(3.10) as follows:

Q(k, r)= 〈Ψk(x)Γr(t), f〉=
∫

Ω

∫
t
Ψk(x)Γr(t)f(x, t)dtdV

= c

∫
t
Γr(t)δ(t− τ)dt

∫
Ω

Ψk(x)F (x)dV

= cΓr(τ)

∫
F (x)

Ψk(x)dV

(i)
= cΓr(τ)

∫
F (x)

1

k2
Ψ′′k(x)dV

(ii)
=

1

k2
cΓr(τ)

M∑
m=1

amΨk(ξm)

where the equality (i) follows from Lemma 3.1 and (ii) from Lemma 3.2. Multiplying

through by k2, k 6= 0 and substituting the expressions for Ψk(x) and Γr(t) gives

k2Q(k, r)= ce−jrτ/T
M∑
m=1

ame
−k(ξ1,m+jξ2,m) (3.42)

which is again a coupled power sum series. Thus the unknowns of the M -sided polygonal

diffusion source can be recovered from {Q(k, 1)}Kk=1 using Prony’s method provided K ≥
2M .

Consequently, we can summarize the procedure for solving the IDSP of Problem 3.4 as

shown in Algorithm 3.3.

In this section we considered and presented results for the IDSP for a certain class of

source models. Interestingly, these results can be further extended to solve the inverse

source problem for diffusion fields in the presence of an advection current.

3.5. An extension to advection-diffusion fields

The advection-diffusion equation (ADE) is the underlying mathematical model for trans-

port in a range of biological and physical situations, specifically, when the transport is a

combination of both diffusion and advection (also called convection or drift depending on

the context). The dispersion of biochemical/nuclear contaminant released into the atmo-

sphere in the presence of wind [139] and the flow of gases or liquids in porous soils and rocks

[68, 69], are two typical examples. Indeed the identification of sources of advection-diffusion

fields has been a topic of great interest in several environmental and industrial applications

and as such has received a lot of research efforts. Herein, we define analogously to the

IDSPs a class of inverse advection-diffusion source problems (IADSPs) and prove that the

results for IDSPs can be extended to this new setting.

67



Chapter 3. Inverse source problem for the diffusion equation

Algorithm 3.2 Solve Line IDS problem given continuous measurements

Require: Field u(x, t)∀(x, t) ∈ Ω× [0, T ], total number of sources M , diffusivity µ, source
model SM.

1: Initialize K ≥ 4.
2: if SM == ‘instantaneous’ then
3: Compute the sequence {Q(k, 1)}Kk=1 using (3.17).
4: From {Q(k, 1)}Kk=1, for each k ∈ 1, . . . ,K form a new sequence {−kQ(k, 1)}Kk=1.
5: Apply Prony’s method to {−kQ(k, 1)}Kk=1 to obtain (c`(ξ1, ξ2)e−jτ/T , ξ1, ξ2).

6: Compute the value of `(ξ1, ξ2) using (3.37), hence c =
∣∣∣ c`(ξ1,ξ2)e−jτ/T

`(ξ1,ξ2)

∣∣∣ and τ =

−T arg
(
c`(ξ1,ξ2)e−jτ/T

`(ξ1,ξ2)

)
.

7: Return intensity, activation time and endpoints (c, τ, ξ1, ξ2) of the line source.
8: else
9: Initialize ∆T so that ∆T ≤ T/3.

10: for i = 1 : 3 do
11: Ti = T − (3− i)∆T .

12: Using measurements over Ω× [0, Ti] compute the sequence {R(k)
def
= Q(k, 0)}Kk=1

using (3.17) (equivalently (3.21)).
13: For each k = 1, . . . ,K multiply corresponding term in {R(k)}Kk=1 by −k to get
{−kR(k)}Kk=1.

14: Apply Prony’s method to {−kR(k)}Kk=0 to obtain (c′(Ti)`(ξ1, ξ2), ξ1, ξ2).
15: end for
16: Compute `(ξ1, ξ2) using (3.37) and divide the above generalized energies by it to

get (c′(T1), c′(T2), c′(T3)).
17: Recover α, τ, and c from (c′(T1), c′(T2), c′(T3)) using (3.29), (3.31) and (3.32) re-

spectively.
18: Return the decay coefficient, intensity, activation time and endpoints (α, c, τ, ξ1, ξ2)

of the line source.
19: end if

As usual we begin with the forward model for the advection-diffusion phenomena. In

particular, the field u(x, t) induced by the source distribution f(x, t) undergoing both

diffusion and advection transport is governed by the advection-diffusion equation,

∂

∂t
u(x, t) = µ∇2u(x, t)− va · ∇u(x, t) + f(x, t), (3.43)

where x ∈ Rd is the d-dimensional spatial domain, t ∈ R+ is the temporal domain, µ ∈ R
is the diffusivity of the medium through which the field propagates and va ∈ Rd is the

velocity of the advection current (wind velocity for instance).

Assuming Ψk(x) is twice-differentiable in Ω and once again invoking Green’s second

identity (3.14), we can obtain the following corollary:

Corollary 3.2. Let u(x, t) be an advection-diffusion field induced by an unknown source

distribution f(x, t), i.e. u(x, t) satisfies the ADE (3.43) with a known advection velocity

va. Given that Ψk(x) is chosen to be a complex analytic function of the form Ψk(x) =

e−k(ξ1+jξ2) where k = 0, . . . ,K with K ≥ 2M − 1, and Γr(t) = e−jrt/T for r = 0, 1, . . . , R
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3.5. An extension to advection-diffusion fields

Algorithm 3.3 Solve M -gon IDS problem given continuous measurements

Require: Field u(x, t)∀(x, t) ∈ Ω× [0, T ], total number of sources M , diffusivity µ, source
model SM.

1: Initialize K ≥ 2M .
2: if SM == ‘instantaneous’ then
3: Compute the sequence {Q(k, 1)}Kk=1 using (3.17).
4: Multiply corresponding term in {Q(k, 1)}Kk=1 by k2, for each k = 1, 2, . . . ,K to get
{k2Q(k, 1)}Kk=1.

5: Apply Prony’s method to {k2Q(k, 1)}Kk=1 to obtain M pairs (came
−jτ/T , ξm).

6: Evaluate am using (3.41) and hence find c =
∣∣∣ came−jτ/T

am

∣∣∣ and τ = −T arg
(
came−jτ/T

am

)
.

7: Return the intensity, activation time and M vertices
(
c, τ, {ξm}Mm=1

)
of polygonal

source.
8: else
9: Initialize ∆T so that ∆T ≤ T/3.

10: for i = 1 : 3 do
11: Ti = T − (3− i)∆T .

12: Using measurements over Ω× [0, Ti] compute the sequence {R(k)
def
= Q(k, 0)}Kk=1

using (3.17) (or equivalently (3.21)).
13: For each k = 1, . . . ,K multiply corresponding term in {R(k)}Kk=1 by k2 to get
{k2R(k)}Kk=1.

14: Apply Prony’s method to {k2R(k)}Kk=0 to obtain M pairs of {c′(Ti)am, ξm}Mm=1.
15: end for
16: Compute am using (3.41) and divide generalized energies above by it to get

(c′(T1), c′(T2), c′(T3)).
17: Recover α, τ, and c from (c′(T1), c′(T2), c′(T3)) using (3.29), (3.31) and (3.32) re-

spectively.
18: Return estimated decay coefficient, intensity, activation time and M vertices(

α, c, τ, {ξm}Mm=1

)
of the polygonal source.

19: end if

with R ≥ 1, then given any source distribution f(x, t) admitting a parameterization (3.7),

(3.8), (3.9), or (3.10) it is possible to retrieve simultaneously the unknown source parameters

from the corresponding continuous field measurements taken over Ω× [0, T ].

Proof. It is clear that one would only need to show it is possible to obtain such a sequence

{Qa(k, r)}k,r, where Qa(k, r) = 〈Ψk(x)Γr(t), f(x, t)〉, from the continuous measurements of

the field on Ω× [0, T ]. If we can obtain this sequence then all the properties of {Q(k, r)}k,r
(and its various modified versions) also hold. For example applying Prony’s method to:

1. {Qa(k, 1)}Kk=0 when K ≥ 2M − 1 returns the unknown parameters for localized in-

stantaneous sources undergoing advection-diffusion transport; or

2. to {Ra(k)
def
= Qa(k, 0)}Kk=0, similarly to the IDSP non-instantaneous point sources,

gives the unknown source parameters for the non-instantaneous point sources.

We proceed as follows: consider a complex analytic Ψk(x) satisfying ∇2Ψk(x) = 0, then
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Chapter 3. Inverse source problem for the diffusion equation

(3.14) reduces to ∮
∂Ω

(Ψk∇u−u∇Ψk)·n̂∂ΩdS=

∫
Ω
Ψk∇2udV. (3.44)

Now substitute ∇2u = 1
µ
∂
∂tu(x, t) + 1

µva · ∇u(x, t) − 1
µf(x, t), i.e. (3.43), into (3.44) and

rearrange to get∫
Ω
Ψk

(
∂u

∂t
+va·∇u

)
dV−µ

∮
∂Ω

(Ψk∇u−u∇Ψk) ·n̂∂ΩdS=

∫
Ω
ΨkfdV. (3.45)

Consider the time-integral of the product between Γr(t) and (3.16) over the interval t ∈
[0, T ],

def
=Qa(k,r)︷ ︸︸ ︷∫

t
Γr(t)

∫
Ω
Ψk

(
∂u

∂t
+va·∇u

)
dV−µΓr(t)

∮
∂Ω

(Ψk∇u−u∇Ψk) ·n̂∂ΩdSdt=

∫
t
Γr(t)

∫
Ω

ΨkfdV dt.

(3.46)

We notice that the left hand side of (3.46), denoted by Qa(k, r), depends only on the field

u(x, t), the known advection velocity va and the sensing functions Ψk(x) and Γr(t), as

such it can be evaluated exactly for any k, r ∈ N, given the continuous field measurements

u(x, t) for all (x, t) ∈ Ω × [0, T ]. This gives a sequence of measurements governed by

Qa(k, r) =
∫
t∈[0,T ]

∫
Ω Γr(t)Ψk(x)f(x, t)dV dt as required. Therefore we could simply replace

every occurrence of Q(k, r) in Algorithms 3.1 to 3.3 with the quantity Qa(k, r) (computed

using (3.46)) to obtain algorithms for solving the inverse source problems governed by the

ADE for the respective source models of interest.

Example 3.1. As an example, under the instantaneous and localized source model (3.7)

we obtain the usual sum of exponentials: i.e. Qa(k, r) =
∑M

m=1 cme
−jrτm/T e−k(ξ1,m+jξ2,m)

for each k = 0, 1, . . . ,K and r = 0, 1, . . . , R.

3.6. Summary and Conclusion

In this chapter, we have studied inverse source problems related to the diffusion equation.

More precisely, we studied the problems assuming a class of source models as defined in

Section 3.3. These models although inspired by real world applications and scenarios, also

play the role of parametric regularizers – allowing us to obtain meaningful and unique

solutions for the inverse source problems considered.

Consequently, our proposed methodology results in a framework that provides a novel

closed form expression, (3.17), for computing a set of generalized measurement sequence

{Q(k, r)}k,r—from the continuous field u(x, t)—with a certain sum-of-exponentials struc-

ture, in the localized source setting. Although for non-localized source fields this sum-of-

exponentials structure is no longer preserved, we demonstrated that it can be successfully

restored through a simple multiplication of the terms in {Q(k, r)}k,r by a suitable constant

(that depends on k). We summarized the approach for solving the IDSP for point, line
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3.6. Summary and Conclusion

Table 3.1.: Summary of the source distributions of interest along with their corresponding
generalized sequence to which Prony’s method or matrix pencil method can be
applied.

Source Model f(x, t) Gen. sequence K

P
oi

n
t

Instantaneous
M∑
m=1

cmδ(x− ξm, t− τm) {Q(k, 1)}Kk=0 K ≥ 2M − 1

Time-varying
M∑
m=1

cme
αm(t−τm)δ(x− ξm)H(t− τm) {R(k)}Kk=0 K ≥ 2M − 1

L
in

e Instantaneous cL(x)δ(t− τ) {kQ(k, 1)}Kk=1 K ≥ 4

Time-varying cL(x)eα(t−τ)H(t− τ) {kR(k)}Kk=1 K ≥ 4

M
-p

ol
y
go

n

Instantaneous cP (x)δ(t− τ) {k2Q(k, 1)}Kk=1 K ≥ 2M

Time-varying cP (x)eα(t−τ)H(t− τ) {k2R(k)}Kk=1 K ≥ 2M

and polygonal sources in Algorithms 3.1 to 3.3 respectively. In addition Table 3.1 provides

a summary/reminder of the class of source models considered, along with corresponding

proper generalized sequence.
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Chapter 4.

Estimating sources of diffusion fields from

sensor network measurements

This chapter deals with the problem of estimating the sources of a diffusion field from

its spatiotemporal samples. Specifically we consider the scenario where spatiotemporal

samples of the field are obtained using a sensor network, made of monitoring sensor nodes

deployed over a region of interest (see Figure 4.1 for an example). In this scenario, our goal

is then to estimate the unknown source distribution f—inducing the measured field u(x, t)

satisfying (3.2)—from discrete spatial and temporal samples of u(x, t).

In stark contrast to the continuous problem treated in Chapter 3, in this new setting we

are able to capture more realistic signal processing and sensor network scenarios. However,

this comes at a cost; in particular, if we wish to leverage from the results and inverse

formulae derived for the continuous measurements IDSP we will be faced with two main

issues: first, not having access to continuous-field measurements means we must (stably)

approximate them from the sensor measurements; second, the actual sensor measurements

may be noisy, therefore the inversion formulas derived need to be adjusted in order to

promote stability and robustness of our proposed estimation schemes. Consequently, we

will pay particular attention to these issues as we develop the theory and algorithms for

solving the IDSP given discrete field measurements.

The rest of this chapter is organized as follows. In Section 4.1 we give details of the

centralized sensor network model and assumptions, allowing us to then define precisely

the resulting class of discrete IDSP under our choice of source models. We develop a cen-

tralized strategy for estimating the generalized measurement Q(k, r) from spatiotemporal

sensor measurements of the diffusion field in Section 4.2. Then, in Section 4.3 we present

noise robust algorithms to solve the class of discrete IDSP. In Section 4.4 we describe the

underlying assumptions for the distributed sensor network. Then in Section 4.5 we give an

overview of gossip schemes for distributed average consensus, subsequently in Section 4.6,

we develop a novel diffusion equation-driven gossip scheme that can solve our IDSPs in a

distributed fashion over a sensor network.
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Figure 4.1.: Sensor Placement. An arbitrary sensor placement and the monitored
domain Ω.

4.1. Sensor network model and problem formulation

Prior to formulating our class of inverse diffusion source problem for discrete spatiotemporal

sensor measurements, we outline some model assumptions about the sensor network used

to monitor the diffusion field, namely:

1. The sensor network comprises N sensor nodes that are deployed (uniformly or ran-

domly) over the region of interest (Ω).

2. All N sensors are assumed to lie in the same plane.

3. The n-th sensor is positioned at a known location xn ∈ Ω, where n = 1, 2, . . . , N , and

collects temporal samples of the field locally at time instants tl for l = 0, 1, . . . , L.

Hence the noiseless field samples is simply the diffusion field evaluated at x = xn and

t = tl as follows:

ϕn(tl) = u(xn, tl). (4.1)

4. To model noisy sensor measurements, it is assumed that the spatiotemporal sam-

ples (4.1) above are further corrupted with zero mean additive white Gaussian noise

(AWGN), i.e.:

ϕεn,l = ϕn(tl) + εn,l, (4.2)
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Chapter 4. Estimating sources of diffusion fields from sensor network measurements

where εn,l ∼ N (0, σ2).

5. The sensor nodes are synchronized, as such the field samples obtained by the n-th

sensor are {ϕn(tl)}Ll=0, and similarly {ϕεn(tl)}Ll=0 in the noisy setting.

4.1.1. Centralized network model

In the centralized estimation scenario, the sensor network is assumed to comprise N dumb

sensor nodes, that are without any data processing capabilities. Specifically, they are

only able to: (i) sense/measure the field locally with a given temporal sampling frequency

f = 1
∆t

, so that tl = l∆t; as well as, (ii) communicate/forward their field measurements

(spatiotemporal samples) directly to a central processing unit called the fusion centre (FC),

via some (noiseless communication) channels. The FC however can perform the desired

(batch) processing on the received data samples, in order to perform the inference tasks of

recovering the unknown source distribution f .

Under this centralized sensor network model, we will first address the IDS problems given

noiseless spatiotemporal samples, before considering the corresponding noisy data case.

We can now precisely state the new discrete IDS problems of interest for our class of

source models (3.7), (3.8), (3.9) and (3.10), respectively, as follows:

Problem 4.1. Given spatiotemporal samples ϕn(tl) = u(xn, tl), at discrete spatial locations

xn ∈ Ω with n = 1, . . . , N and time instants tl ∈ R+ with l = 0, 1, . . . , L, of a diffusion

field u(x, t) induced by the instantaneous point source distribution (3.7), the discrete IDSP

for this source model is to estimate all M source intensities, locations and activation times

{cm, ξm, τm}Mm=1 of the source distribution f .

Problem 4.2. The discrete IDSP for (3.8) is to estimate the M source decay coefficients,

intensities, locations and activation times {αm, cm, ξm, τm}Mm=1 of the source distribution

f , given its field samples ϕn(tl) = u(xn, tl) as described in Problem 4.1.

Problem 4.3. For the instantaneous line source distribution (3.9), the discrete IDSP re-

duces to estimating the intensity, activation time and endpoints (c, τ, ξ1, ξ2) of the source,

from its field samples ϕn(tl) = u(xn, tl) as described in Problem 4.1.

Problem 4.4. The discrete IDSP for (3.10) is to recover the intensity, activation time and

vertices (c, τ, {ξm}Mm=1) of the M -sided polygonal source distribution f , from the samples

of the induced field ϕn(tl) = u(xn, tl) as described in Problem 4.1.

4.2. Generalized measurements from spatiotemporal

samples: A centralized approach

In the previous chapter (Section 3.4) we demonstrated the possibility of recovering the

unknown source distribution f under a particular class of source models, from a sequence

of so called generalized measurements {Q(k, r)}k,r. Therein, we obtained these generalized
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measurements from the continuous field measurements taken over the domain Ω × [0, T ];

specifically in that setting, we derived an exact expression for computing {Q(k, r)}k,r from

the field, i.e. (3.17), restated below, for ease of reference:

Q(k, r)
def
=

∫ T

t=0
Γr(t)

∫
Ω

∂

∂t
(u(x, t)Ψk) dV dt−µ

∫ T

t=0
Γr(t)

∮
∂Ω

(Ψk∇u− u∇Ψk)·n̂∂Ω dSdt.

In fact we can interchange the order of the time and space integrals to obtain

Q(k, r) =

∫
Ω

∫ T

t=0
Γr(t)

∂

∂t
(u(x, t)Ψk) dt dV−µ

∮
∂Ω

∫ T

t=0
Γr(t)(Ψk∇u− u∇Ψk)·n̂∂Ω dtdS

=

∫
Ω

ΨkU̇r(x, T ) dV−µ
∮
∂Ω

(Ψk∇Ur(x, T )−Ur(x, T )∇Ψk)·n̂∂Ω dS, (4.3)

where the last equality above follows from a single application of integration by parts,

whilst Ur(x, T ) and U̇r(x, T ) are defined as follows:

Ur(x, T ) =

∫ T

0
Γr(t)u(x, t)dt, and, (4.4a)

U̇r(x, T ) = Γr(T )u(x, T )−
∫ T

0

∂Γr(t)

∂t
u(x, t)dt. (4.4b)

Analogously, the task for this section will be estimating these generalized measurements

from the discrete field samples instead of the continuous data assumed of Chapter 3. In

particular, given only spatiotemporal samples {ϕn(tl)}n,l of the field, we propose a central-

ized strategy that approximates the integrals (3.17) (and (3.21)) using standard quadrature

techniques [46]. We will focus on the estimation of Q(k, r), since R(k) is governed by (3.21)

and so can be easily obtained from it. For the temporal integrals, a straightforward ap-

plication of trapezium rule produces a good approximation. However the spatial integrals

require some care; specifically, we are concerned with approximating:

� The family of path integrals along a boundary (∂Ω) of Ω given by:∮
∂Ω

(Ψk(x)∇Ur(x, T )−Ur(x, T )∇Ψk(x))·n̂∂Ω dS,

as well as,

� The family of surface integrals on the bounded region Ω:∫
Ω

Ψk(x)U̇r(x, T ) dV.

Approximating these integrals with sums relies on obtaining non-overlapping subdivisions

of the domain over which the integral is performed. Let us denote these subdivisions that

make up the path (∂Ω) or surface (Ω) integrals, that is the line or triangular segments
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by δli with i = 1, . . . , I and ∆j with j = 1, . . . , J , respectively. Hence for path integrals,

providing δli
⋂
δlj = ∅ for i 6= j and

⋃I
i=1 δli = ∂Ω, a well-known approximation exists,

namely the path integral of some function h(x) along ∂Ω is approximated as follows:

∮
∂Ω
h(x)dS ≈

I∑
i=1

[h(li,1) + h(li,2)]

2
· |δli|, (4.5)

where li,1 ∈ R2 and li,2 ∈ R2 denote the end points of the line segment δli and |δli| is its

length.

Moreover, with surface integrals, if these non-overlapping subdivisions {∆j}Jj=1 are tri-

angular such that
⋃I
i=1 ∆i = Ω and ∆i

⋂
∆j = ∅ for i 6= j, the surface integral of h(x)

over a bounded region Ω is approximated by the sum [72]:

∫
Ω
h(x)dV ≈

J∑
j=1

1

3

3∑
j′=1

h(vj,j′)|∆j |, (4.6)

where {vj,j′ : j′ = 1, 2, 3} are the vertices of ∆j .

In our setup, these vertices coincide with the sensor locations, hence the triangular

subdivisions depend directly on them.

Denote the collection of all sensor locations by S = {x1,x2, . . . ,xN}, we intend to con-

struct non-overlapping triangular subdivisions given the set S. This allows us to define

the domains Ω and ∂Ω (its boundary) over which the surface and line integrals will be

performed, respectively. In order to obtain stable approximations of these integrals, we

will seek a triangulation that minimizes the occurrence of skinny triangles as these can

sometimes introduce numerical instabilities. The so called Delaunay triangulation (DT )

[52] meets this requirement. Thus given S, its Delaunay triangulation is denoted by

DT (S) = {∆j}Jj=1, and the union of all these subdivisions gives the Convex Hull (CH)

of S, i.e. CH(S). Therefore, for a given sensor distribution, we define the monitored region

Ω to be CH(S) and the convex hull boundary to be ∂Ω as shown in Figure 4.2. Notice that

all N sensors {xn}Nn=1 are in CH(S). Whereas only a subset of sensors1 lie on the boundary

∂Ω; we call these the boundary sensors and denote the set of all boundary sensors for a

given network by S∂Ω. Given this construction, we can then retrieve an approximation of

the family of integrals in (3.17) and (3.21), as follows:

Again let {vj,j′ : j′ = 1, 2, 3} be the vertices of the triangular element ∆j . Then the

family of surface integrals in (3.17) are approximated as follows:

∫
Ω

Ψk(x)U̇r(x, T ) dV ≈ 1

3

J∑
j=1

3∑
j′=1

Ψk(vj,j′)Φj,j′,r(tL)|∆j |, (4.7)

where Φj,j′,r(tL)
def
= U̇r(vj,j′ , tL) is the properly weighted, time-integrated measurement of

the sensor situated at the vertex vj,j′ over the time interval t ∈ [0, T ] with T = tL. In

1The red ones in Figure 4.2 for instance.
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Figure 4.2.: A sensor network and its Delaunay triangulation. The (approxi-
mate) monitored domain Ω divided into triangular meshes and the domain
boundary divided into straight line segments (black solid lines).

particular this specific time-integrated measurement is given by (4.4b) and can be simplified

to,

U̇r(vn, T ) = Γr(T )u(xn, T )−
∫ T

0

∂Γr(t)

∂t
u(xn, t)dt

= Γr(T )u(xn, T ) +
jr

T

∫ T

0
Γr(t)u(xn, t)dt

= Γr(T )u(xn, T ) +
jr

T
Ur(xn, T ). (4.8)

The second equality follows by recalling that for our temporal sensing function Γr(t) =

e−jrt/T , then ∂Γr(t)
∂t = − jr

T Γr(t) holds true. Whereas the last equality is obtained by sub-

stituting (4.4a). Moreover, we can approximate the time integral using trapezoidal rule for

example,

Ur(xn, T )|T=tL
=

∫ tL

0
Γr(t)u(xn, t)dt

≈

[
1

2
(ϕn(t0)Γr(t0) + ϕn(tL)Γr(tL)) +

L−1∑
l=1

ϕn(tl)Γr(tl)

]
∆t.
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=

[
1

2
ϕn(tL)Γr(tL) +

L−1∑
l=1

ϕn(tl)Γr(tl)

]
∆t

def
= Φn,r(tL). (4.9)

From this, an approximation for (4.8) (and of course (4.4b)) is,

U̇r(xn, T )
∣∣∣
T=tL

≈ Γr(tL)ϕn(tL) +
jr

tL
Φn,r(tL)

def
= Φ̇n,r(tL). (4.10)

Similarly we can also derive a suitable approximation formula for the line integral,∮
∂Ω (Ψk∇Ur − Ur∇Ψk) · n̂∂Ω dS. First ∇Ur(xn, T ) =

[
∂
∂x1

Ur(x, T ), ∂
∂x2

Ur(x, T )
]T∣∣∣∣

x=xn
can be obtained using a first order central finite difference scheme, such that ∇Ur(xn, T ) ≈[
(Φn,r(T ))x1

, (Φn,r(T ))x2

]T
, where (Φn,r(T ))x1

and (Φn,r(T ))x2
are used to denote the ap-

proximation of the field’s spatial derivatives at the specific sensor location xn. Moreover

given our choice of Ψk(x), ∇Ψk(xn) = −kΨk(xn) [1, j]T. Hence,

Ψk(xn)∇Ur(xn, T )− Ur(xn, T )∇Ψk(xn) ≈ Ψk(xn)

[
(Φn,r(T ))x1

+ kΦn,r(T )

(Φn,r(T ))x2
+ jkΦn,r(T )

]
. (4.11)

Finally for n̂∂Ω dS, let us assume S∂Ω = {x1, . . . ,xn−1,xn, . . . ,xI} is the set of boundary

sensors such that xn ∈ ∂Ω for any n = 1, . . . , I. Furthermore assume it is a cyclically

ordered set, arranged in an anticlockwise order, then:

n̂∂Ω ≈
1

‖xn − xn−1‖

(
x2,n − x2,n−1

x1,n−1 − x1,n

)

and

dS ≈ ‖xn − xn−1‖.

Therefore, ∮
∂Ω

(Ψk∇Ur − Ur∇Ψk) · n̂∂Ω dS

≈
∑

xn∈S∂Ω

Ψk(xn)
[(

(Φn,r(tL))x1
+ kΦn,r(tL)

)
(x2,n − x2,n−1)

+
(

(Φn,r(tL))x2
+ jkΦn,r(tL)

)
(x1,n−1 − x1,n)

]
.

(4.12)

Note that due to the cyclic ordering of the boundary sensors, x0 = xI .

Combining (4.7) with (4.12) and using the discrete sensor measurements {ϕn(tl)}n,l of
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the field, we conclude that the desired generalized measurements are approximately:

Q(k, r) ≈1

3

J∑
j=1

3∑
j′=1

Ψk(vj,j′)Φ̇j,j′,r(tL)|∆j |

− µ
∑

xn∈S∂Ω

Ψk(xn)
[(

(Φn,r(tL))x1
+ kΦn,r(tL)

)
(x2,n − x2,n−1)

+
(

(Φn,r(tL))x2
+ jkΦn,r(tL)

)
(x1,n−1 − x1,n)

]
.

(4.13)

4.3. Robust centralized source estimation algorithms

Having computed the sequence of generalized measurements {Q(k, r)}k,r from {ϕn(tl)}n,l,
using (4.13) for example, we could apply Prony’s method to it (or its properly modified

version depending on the source model assumed – see Table 3.1) in order to recover the

unknown source parameters and hence solve the Problems 4.1 to 4.4. However in a realistic

SN setting ϕn(tl) will be noisy, meaning that at the FC we will have access to:

ϕεn,l = ϕn(tl) + εn,l,

where we assume that εn,l ∼ N (0, σ2). From these noisy samples we can only obtain

a perturbed sequence {Qε(k, r)}k as the estimate of the true generalized measurements

{Q(k, r)}k. The perturbed sequence Qε(k, r) is precisely given by,

Qε(k, r) =
1

3

J∑
j=1

3∑
j′=1

Ψk(vj,j′)Φ̇
ε
j,j′,r(tL)|∆j |

− µ
∑

xn∈S∂Ω

Ψk(xn)
[((

Φε
n,r(tL)

)
x1

+ kΦε
n,r(tL)

)
(x2,n − x2,n−1)

+
((

Φε
n,r(tL)

)
x2

+ jkΦε
n,r(tL)

)
(x1,n−1 − x1,n)

]
,

(4.14)

where

Φε
n,r(tL)

def
=

[
1

2
ϕεn(tL)Γr(tL) +

L−1∑
l=1

ϕεn(tl)Γr(tl)

]
∆t,

Φ̇ε
n,r(tL)

def
= Γr(tL)ϕεn(tL) +

jr

tL
Φε
n,r(tL),

and
[(

Φε
n,r(T )

)
x1
,
(
Φε
n,r(T )

)
x2

]T
denotes the 2-D central finite difference approximation of

∇Ur(x, T ) at x = xn, from the noisy quantities {Φε
n,r(tL)}n found above.

Therefore since robustness and noise resilience are paramount we explore two prepro-

cessing techniques, in the sequel, based on Cadzow’s algorithm [35], to handle any noise

and other sources of model mismatch (due, for example, to our approximation schemes),

whilst estimating the unknown parameters from {Qε(k, r)}k.
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4.3.1. Handling noise and model mismatch: Subspace-based denoising of

Qε(k, r)

Given access to K > 2M−1 consecutive terms of the generalized sequence, {Qε(k, r)}Kk=0,2

we denoise it using Cadzow’s algorithm [35] for some fixed integer r (r = 0 or r = 1 for

example). The basic idea of the method is as follows: when applying Prony’s method on

the sequence, we build a Toeplitz matrix Tε ∈ RL1×L2 (which is as square as possible) of

the form,

Tε =


Qε(L2, r) Qε(L2 − 1, r) · · · Qε(0, r)
Qε(L2 + 1, r) Qε(L2, r) · · · Qε(1, r)

...
...

. . .
...

Qε(K, r) Qε(K − 1, r) · · · Qε(L1, r)

 , (4.15)

where L2 = dK/2e and L1 = K − L2. Moreover as highlighted in Section 2.2.2, in the

absence of noise, the rank of Tε is exactly the number of sources/vertices M . However,

noisy sensor measurements and the approximation of integrals using finite sums lead to

model mismatches which subsequently makes Tε full rank. Cadzow’s algorithm denoises

Tε by first setting to zero the L1−M smallest singular values of Tε which are typically due

to noise so as to obtain a rank M matrix. The next step of the algorithm is to enforce the

Toeplitz structure by averaging along the diagonals of the reconstructed low-rank matrix.

The method is iterated a number of times. The end result of applying Cadzow to Tε is,

therefore, to denoise {Qε(k, r)}Kk=0 for a chosen integer r. We stress that we first of all fix

r, say r = 0, before performing the denoising iterations.

4.3.2. Non-instantaneous source activation time & decay coefficient

estimation with Cadzow

In this section, we outline a scheme to further improve certain estimates of the unknown

non-instantaneous source parameters in the presence of perturbations. To achieve this we

will need to notice that the generation of (3.23), (3.24) and (3.25) using equally spaced

subintervals ∆T suggests deeper underlying connections with Prony’s method and its vari-

ations. We will explore this relationship and show how to further improve noise robustness

using Cadzow’s denoising algorithm.

We begin by defining

Dp
def
= c′m(Tp+1)− c′m(Tp)

=
cm
αm

(
eαm(Tp−τm)eαm∆T − eαm(Tp−τm)

)
=

2cm
αm

eαm
∆T
2 eαm(Tp−τm) sinh(αm∆T/2), (4.16)

2Similarly {−kQε(k, r)}Kk=1 with K > 4 for the line source; or {Qε(k, r)}Kk=1 with K ≥ 2M for the M -sided
polygonal source
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for positive integer values of p = 1, 2, . . . , P . Then it immediately follows that:

A(p, q)
def
=

Dp

Dp+q
=

c′m(Tp+1)− c′m(Tp)

c′m(Tp+q+1)− c′m(Tp+q)

=
2cm
αm

eαm
∆T
2 eαm(Tp−τm) sinh(αm∆T/2)

2cm
αm

eαm
∆T
2 eαm(Tp+q−τm) sinh(αm∆T/2)

=
eαm(Tp−τm)

eαm(Tp+q−τm)

= eq∆Tαm , (4.17)

where q = 0, 1, . . . , P − 2.

We stress that the terms A(p, q) ∀p, q are given by A(p, q) =
c′m(Tp+1)−c′m(Tp)

c′m(Tp+q+1)−c′m(Tp+q)
where

the c′m(Ti)’s are computed by applying Prony’s method to the sequence {R(k)}k (satisfying

(3.20)) computed for a given time window t ∈ [0, Ti]. Moreover, notice that for any fixed q

the terms A(p, q), p = 1, 2, . . . , P − q − 1 are equal. This is true only in the ideal scenario

when there exists no model mismatches in the system, but is false in the presence of noise

and other model imperfections. Assuming that the perturbations can be modelled as an

approximately i.i.d process, then taking the average should give a better estimate. As such

we can form a new sequence as follows:

B(q) =
1

P − q − 1

P−q−1∑
p=1

A(p, q). (4.18)

It is easy to see that B(q) still satisfies B(q) = eq∆Tαm , where q = 0, 1, . . . , P − 2. This is

again a sequence where we can apply Prony’s method, but with a single unknown, hence

it admits a solution when P − 2 ≥ 1 ⇒ P ≥ 3. Moreover, if P > 3 we can also apply

Cadzow’s denoising algorithm to the sequence {B(q)}P−2
q=0 , in much the same way as we did

in Section 4.3.1 on {Q(k, r)}k.
We can now outline the complete joint centralized estimation scheme with subspace

denoising for localized sources in Algorithm 4.1, whilst the corresponding schemes for line

and polygonal sources are listed in Algorithm 4.2 and Algorithm 4.3 respectively. These

algorithms solve discrete IDSPs of interest to us.

4.3.3. Sequential estimation of multiple localized sources

Algorithm 4.1 can be readily used to jointly estimate multiple localized sources of diffusion

fields from arbitrary field samples; and this approach works both in the case where sources

become active simultaneously (i.e. sources at distinct locations with equal activation times)

and also in the case of sequential activation. In the latter scenario, however, it is more

effective to estimate one source at a time and then removing its contribution from the

sensor measurements before estimating the next source. This is possible when: the sources

have suitably distinct activation times; so that, the sampling interval is small enough to
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Algorithm 4.1 Simultaneous Estimation of M point sources from field samples

Require: {ϕn(tl)}N,Ln=1,l=0, sensor locations {xn}n, number of sources M , sampling interval
∆t, diffusivity µ, source temporal model STM.

1: Retrieve the convex hull (CH) of the set of points {xn}. CH and its boundary define
Ω and ∂Ω respectively, in (3.17) and (3.21).

2: Initialize K ≥ 2M − 1.
3: if SM == ‘instantaneous’ then
4: Compute the sequence {Q(k, 1)}Kk=0 using (4.13) as explained in Section 4.2.
5: Denoise {Q(k, 1)}Kk=0 using Cadzow’s algorithm.
6: Apply Prony’s method to {Q(k, 1)}Kk=0 to obtain M pairs of (cme

−jτm/T , ξm).
7: For each m, cm =

∣∣cme−jτm/T
∣∣ and τm = T arg

(
cme

−jτm/T
)
.

8: return M intensities, activation times and locations {cm, τm, ξm}Mm=1.
9: else

10: Initialize P ≥ 3.
11: Initialize ∆T so that ∆T ≤ T/P .
12: for i = 1 : P do
13: Tp = T − (P − p)∆T .

14: Using measurements over Ω× [0, Tp] compute the sequence {R(k)
def
= Q(k, 0)}Kk=0

using (4.13) with r = 0.
15: Denoise {R(k)}Kk=0 using Cadzow’s algorithm.
16: Apply Prony’s method to {R(k)}Kk=0 to obtain M pairs (c′m(Tp), ξm).
17: end for
18: By matching the locations form M such sequences: ({c′m(Tp)}Pp=1, ξm).
19: for m = 1, . . . ,M do
20: Construct {B(q)} from {c′m(Tp)}Pp=1 using (4.18).
21: Denoise {B(q)} using Cadzow.
22: For αm apply Prony’s method to the denoised sequence.
23: Find τm and cm using (3.31) and (3.32) respectively.
24: end for
25: return M source decay coefficients, intensities, activation times and locations:
{αm, cm, τm, ξm}Mm=1.

26: end if
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Algorithm 4.2 Single line source estimation algorithm from samples

Require: {ϕn(tl)}N,Ln=1,l=0, sensor locations {xn}n, sampling interval ∆t, diffusivity µ,
source temporal model STM.

1: Retrieve the convex hull (CH) of the set of points {xn}. CH and its boundary define
Ω and ∂Ω respectively, in (3.17) and (3.21).

2: Initialize K ≥ 4 and T = tL.
3: if STM == ‘instantaneous’ then
4: Compute the sequence {Q(k, 1)}Kk=1 using (4.13) as explained in Section 4.2.
5: From {Q(k, 1)}Kk=1, for each k ∈ 1, . . . ,K form the new sequence {−kQ(k, 1)}Kk=1.
6: Denoise {−kQ(k, 1)}Kk=1 using Cadzow’s algorithm.
7: Apply Prony’s method to {−kQ(k, 1)}Kk=1 to reveal (c`(ξ1, ξ2)e−jτ/T , ξ1, ξ2).

8: Compute the value of `(ξ1, ξ2) using (3.37), hence c =
∣∣∣ c`(ξ1,ξ2)e−jτ/T

`(ξ1,ξ2)

∣∣∣ and τ =

−T arg
(
c`(ξ1,ξ2)e−jτ/T

`(ξ1,ξ2)

)
.

9: return intensity, activation time and endpoints (c, τ, ξ1, ξ2) of the line source.
10: else
11: Initialize P ≥ 3.
12: Initialize ∆T so that ∆T ≤ T/P .
13: for i = 1 : P do
14: Tp = T − (P − p)∆T .

15: Using measurements over Ω × [0, Tp] compute sequence {R(k)
def
= Q(k, 0)}Kk=1

using (4.13) with r = 0.
16: For each k = 1, . . . ,K multiply corresponding term in {R(k)}Kk=1 by −k to get
{−kR(k)}Kk=1.

17: Denoise {−kR(k)}Kk=1 using Cadzow’s algorithm.
18: Apply Prony’s method to {−kR(k)}Kk=0 to obtain (c′(Tp)`(ξ1, ξ2), ξ1, ξ2).
19: end for
20: Compute `(ξ1, ξ2) using (3.37) and divide the above generalized energies by it to

get {c′(T1), c′(T2), . . . , c′(TP )}.
21: Construct {B(q)}P−2

q=0 from {c′(Tp)}Pp=1 using (4.18).

22: Denoise {B(q)}P−2
q=0 using Cadzow.

23: Apply Prony’s to the denoised sequence to obtain α.
24: Recover τ, and c from {c′(Tp)}Pp=1 using (3.31) and (3.32) respectively.
25: return decay coefficient, intensity, activation time and endpoints (α, c, τ, ξ1, ξ2) of

the line source.
26: end if
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Algorithm 4.3 Single M -sided polygonal source estimation from samples

Require: {ϕn(tl)}N,Ln=1,l=0, sensor locations {xn}n, number of edges M , sampling interval
∆t, diffusivity µ, source temporal model STM.

1: Retrieve the convex hull (CH) of the set of points {xn}. CH and its boundary define
Ω and ∂Ω respectively, in (3.17) and (3.21).

2: Initialize K ≥ 2M and T = tL.
3: if STM == ‘instantaneous’ then
4: Compute the sequence {Q(k, 1)}Kk=1 using (4.13) as explained in Section 4.2.
5: Multiply corresponding term in {Q(k, 1)}Kk=1 by k2, for each k = 1, 2, . . . ,K to get
{k2Q(k, 1)}Kk=1.

6: Denoise {k2Q(k, 1)}Kk=1 using Cadzow’s algorithm.
7: Apply Prony’s method to {k2Q(k, 1)}Kk=1 to obtain M pairs (came

−jτ/T , ξm).
8: Evaluate am.

9: Hence c = 1
M

∑M
m=1

∣∣∣ came−jτ/T

am

∣∣∣ and τ = − T
M

∑M
m=1 arg

(
came−jτ/T

am

)
.

10: return intensity, activation time and M vertices
(
c, τ, {ξm}Mm=1

)
of polygonal

source.
11: else
12: Initialize P ≥ 3.
13: Initialize ∆T so that ∆T ≤ T/P .
14: for i = 1 : P do
15: Tp = T − (3− p)∆T .

16: Using measurements over Ω× [0, Tp] compute the sequence {R(k)
def
= Q(k, 0)}Kk=1

using (4.13) with r = 0.
17: For each k = 1, . . . ,K multiply corresponding term in {R(k)}Kk=1 by k2 to get
{k2R(k)}Kk=1.

18: Denoise {k2R(k)}Kk=1 using Cadzow’s algorithm.
19: Apply Prony’s method to {k2R(k)}Kk=0 to obtain M pairs of {c′(Ti)am, ξm}Mm=1.
20: end for
21: Compute am and divide generalized energies above by it to get {c′(Tp)}Pp=1.

22: Construct {B(q)}P−2
q=0 from {c′(Tp)}Pp=1 using (4.18).

23: Denoise {B(q)}P−2
q=0 using Cadzow.

24: Apply Prony’s to the denoised sequence to obtain α.
25: Recover τ, and c from {c′(Tp)}Pp=1 using (3.31) and (3.32) respectively.

26: return decay coefficient, intensity, activation time and vertices
(
α, c, τ, {ξm}Mm=1

)
of the polygonal source.

27: end if
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4.4. Distributed sensor network model

resolve the activation of any two consecutive sources. In such a scenario, we propose the

following approach. Firstly, we find a time window over which only a single source is

active. We can achieve this by examining the rank of the Toeplitz matrix constructed from

{Qε(k, r)}k. We then estimate the source parameters as described in Algorithm 4.1 (with

M = 1). Given these preliminary estimates, a selection of sensor measurements collected

in the neighbourbood of the estimated source location are used to obtain a more precise

estimate for the activation time, as well as the decay coefficient if we are estimating a

non-instantaneous source model. These sharper estimates are obtained by performing a

simple local search around the initial estimates of τm (and αm if necessary), as follows:

Instantaneous sources: activation time refinement

Given the initial estimate of the intensity, location and activation time, ĉ, ξ̂ and τ̂ , respec-

tively, consider the measurements {ϕεn(tl)}Ll=0 collected by the n-th sensor (located at xn)

and the re-synthesized sequence ϕ̂n(tl)
∗ = û∗(xn, tl) = ĉ

4πµ(tl−τ̂∗)e
− ‖xn−ξ̂‖

2

4µ(tl−τ̂∗) H(t − τ̂∗). By

comparing the normalized inner-product between the reconstructed sequence and the mea-

surements {ϕεn(tl)}Ll=0, we choose the τ̂∗ ∈ [δτ τ̂ ,
1
δτ
τ̂ ] where δτ ∈ (0, 1] that maximizes this

normalized inner product – a modification of the Cauchy-Schwarz inequality for vectors.

Non-instantaneous sources: activation time & delay coefficient refinement

Again we assume a single source field and the initial estimates ĉ, α̂, ξ̂ and τ̂ for the source

parameters. The measured field {ϕεn(tl)} is compared with the reconstructed field {ϕ̂∗n(tl)}
to obtain better estimates of α and τ . In this case however, we perform a local 2D search

over τ̂∗ ∈ [δτ τ̂ ,
1
δτ
τ̂ ] and α̂∗ ∈ [δαα̂,

1
δα
α̂] where δτ , δα ∈ (0, 1] are some constants.

We perform the same search using the β ∈ N sensors closest to the estimated source

location, and then obtain a final estimate for the activation time and decay coefficient by

averaging the estimates obtained from the measurements due to the β selected sensors.

The complete sequential method is summarized in Algorithm 4.4.

Remark 4.1. The strategy of selecting the β closest sensors to the estimated field is im-

plicitly noise reducing, as these sensors will, in general, have a higher SNR since the field

intensity is greater at these locations (close to the source) whilst all sensors experience the

same noise power.

4.4. Distributed sensor network model

In contrast to the centralized network, the distributed SN in this work will compriseN smart

sensor nodes that, in addition to local field sensing, can each perform typical mathematical

operations on their field measurements (and on any received data). However due to power

considerations the sensors no longer have long-range transmission capabilities.
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Chapter 4. Estimating sources of diffusion fields from sensor network measurements

Algorithm 4.4 Robust sequential estimation of M point sources

Require: {ϕn(tl)}N,Ln=1,l=0, sensor locations {xn}n, number of edges M , sampling interval
∆t, diffusivity µ, source temporal model STM.

1: Retrieve CH({xn}Nn=1).
2: Let m← 0 and the number of valid sources Mvs ← 0.
3: while m < M do
4: Construct {R(k)} with K ≥ 2M ′ − 1 and M ′ ≥ 2.
5: Estimate the M ′ generalized energy-location pairs {σ′m′ , ξ′m′}M

′
m′=1.

6: Set Mvs to be the number of pairs of {σ′m′ , ξ′m′} having both σ′m′ greater than some
predefined threshold and ξ′m′ ∈ CH.

7: if Mvs > 1 then
8: Decrease window size T and Go to 4.
9: else if Mvs < 1 then

10: Increase window size T and Go to 4.
11: else if Mvs == 1 then
12: Estimate source parameters cm, ξm, τ̂ (and α̂ if appropriate) using Algorithm 4.1.
13: Select the β ∈ N nearest sensors to ξm. For each of the β sensors, retrieve

τ̂∗1 , . . . , τ̂
∗
β , and for time-varying sources α̂∗1, . . . , α̂

∗
β too, as described in Sections 4.3.3

and 4.3.3 respectively.
14: τm ←Ave{τ̂∗1 , . . . , τ̂∗β}, αm ←Ave{α̂∗1, . . . , α̂∗β}.
15: Reconstruct its field and adjust {ϕn(tl)}n,l.
16: m← m+ 1.
17: Increase window size T and Go to 4.
18: end if
19: end while
20: return source parameters {cm, αm, ξ, τm}Mm=1.

Therefore within the distributed setup, our intention is to estimate the source distribu-

tion f using sensor networks with underlying communication constraints; specifically we

assume that: (i) each sensor can only communicate with a subset of neighbouring sensors;

additionally, (ii) the communication links are assumed to have finite bandwidth. These con-

straints imply that what we seek here are distributed estimation strategies for solving our

class of discrete IDS problems, so that each sensor performs local data acquisition (senses

the diffusion field), and then through localized data processing and communications (i.e.

exchanging properly modified versions of its measurements with its neighbors) can estimate

the unknown source parameterization, f , inducing the measured field. Thus eliminating

the need for a FC.

To prevent long-range (power hungry) transmissions we assume that each sensor node

within the distributed network is able to communicate only with those sensors that are

within some fixed radius of it. As such we can model the sensor network as a connected

random geometric graph (RGG), denoted G(N, rcon), with N sensor nodes and connectivity

radius rcon. This system may be realized by placing N nodes uniformly at random over a

square region and then placing an edge between a pair of nodes if their Euclidean distance

is at most rcon, as shown in Figure 4.3. In this figure, an edge between a pair of nodes
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4.4. Distributed sensor network model

depicts the existence of a communication link between them.

Figure 4.3.: A sensor network example. Links between sensors as modelled by a
random geometric graph.

These communication links are assumed initially to be ideal; we then relax this assump-

tion and consider the case when the links have finite capacity, so that the data exchanged

between sensors need to be quantized. In this case, it is assumed that a capacity achieving

communication scheme is used and the receiver is therefore able to recover the original

message with zero error. Finally, we assume that upon deployment of the sensors a process

is initiated whence:

(A) The sensors learn the topology of the network.

(B) They each compute the Delaunay triangulation, see Figure 4.4 for an example, such

that we obtain a graph Gdel = (V, E), with the vertex set V, corresponding to the

locations of the sensors and E are the edges of the triangulation. Hence every sensor

n knows if it lies, either on the convex hull boundary of the triangulation, or, in the

interior of the convex hull.

(C) Given the triangulation, each sensor n also knows the total number (Jn) of triangles

for which it is a vertex. Hence ∆n,j is used to refer to the j-th triangle of the n-th

sensor and |∆n,j | is the corresponding area of the triangle, with j = 1, . . . , Jn.

The first assumption, (A), above means that each sensor knows its position relative to

other sensors in the network, this is important when recovering the location information

of the unknown diffusion sources. Whilst remaining assumptions ‘(B) and (C)’, as we will

demonstrate in Section 4.6, are required in order for the n-th sensor to be able to compute

the weights with which to multiply its field measurements, before communicating its sum

(i.e. a scalar value) to a neighbouring sensor. Under these assumptions, we wish to solve

the discrete IDSPs stated in Problems 4.1 to 4.4—without the need for a fusion centre—

through local in-network interactions between the monitoring sensors. To this end we first

provide an overview of gossip algorithms for distributed average consensus in the following

section and then demonstrate how to properly extend these gossip algorithms to solve our

discrete IDSPs in Section 4.7.
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Figure 4.4.: A sensor network and its Delaunay triangulation. The (approxi-
mate) monitored domain Ω divided into triangular meshes and the domain
boundary divided into straight line segments (black solid lines).

4.5. Gossip schemes for distributed average consensus

Gossiping [142, 55] is a distributed strategy for achieving consensus amongst agents in a

network through a local exchange of data. Following the early works of [142] in the area, it

has gained considerable interest for in-network processing in sensor networks as it mitigates

the need for specialized routing protocols. In addition, gossip-based algorithms are robust

to bottlenecks and link failures making it suitable for our distributed estimation problem.

The results derived in this paper can be immediately extended to other gossiping schemes,

such as those introduced in [15, 19]. An in depth survey of gossiping algorithms in sensor

networks is given in [55], and analysis of general averaging sum-weight-like algorithms in

WSNs can be found in [76].

For the purpose of demonstration, in our simulation results the archetypal pairwise ran-

domized gossip algorithm [27] will be used. In this scheme, each node preserves an es-

timate of the sum and hence average of the node values. Let the value of node n after

the i-th pairwise gossip round be yn,i, hence yn,0 is its initial value. In an iteration, a

node n selected uniformly at random wakes up and contacts a randomly selected neigh-

bor n′ within its connectivity radius, and they both update their estimates by setting

yn,i+1 = yn′,i+1 = (yn,i+yn′,i)/2. Let y(i) = [y1,i, y2,i, . . . , yN,i]
T be the vector of the val-

ues of the N agents in the network at the i-th gossip round, then this pairwise gossiping
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4.5. Gossip schemes for distributed average consensus

operation can be summarized in the following way

y(i+ 1) = P(i)y(i) (4.19)

where P(i) are doubly stochastic matrices selected at random at the i-th iteration. For

pairwise gossip algorithm, P(i) has entries such that elements (n, n), (n, n′), (n′, n) and

(n′, n′) are equal to 1/2 and P(i) is a diagonal identity elsewhere. Under this scheme it can

be shown that, if a network (of N nodes) is connected and each pair of nodes communicate

often enough the estimate at each node is guaranteed to converge to the global network

average ȳ = 1
N

∑N
n=1 yn,0, i.e. limi→∞ y(i) = 1ȳ. Performance guarantees and convergence

results have also been studied (see [27] and the references therein).

The localized interactions in our field estimation setting will be based on the use of gossip

algorithms for the distributed computation of a family of integrals whose final values can

be used to reveal the unknown source parameters. In Section 4.6 we present our strategy

for estimating these family of integrals, and hence recover the unknown source parameters,

through the use of gossip.

4.5.1. Quantized gossip

When the interactions between the agents are over a channel with finite capacity, the mes-

sages exchanged needs to be quantized. It is then natural to wonder if the values of the

agents can still achieve consensus and converge to ȳ using the pairwise gossip scheme dis-

cussed previously. In what follows we briefly investigate this question and briefly overview

some proposed solutions in the literature. The inter-agent communication is through a

channel employing a uniform quantizer with quantization step δQ. This communication

can be modelled by introducing the quantization map Qq : R 7→ Q such that,

Qq(y) = kδQ,

(
k − 1

2

)
δQ ≤ y <

(
k +

1

2

)
δQ, (4.20)

where k ∈ Z and Q is the set of permissible quantization levels, i.e. Q = {Qq(y) : k ∈ Z}.

Average consensus via a Naive Quantized Gossip (NQG) scheme

This is a straightforward extension of the standard gossip consensus scheme, whereby after

each (pairwise) exchange of messages the agents requantize their values and exchange this

quantized value at the next iteration. It is summarized as follows,

y(i+ 1) = P(i)Qq(y(i)), (4.21)

where i denotes the i-th iteration, Qq denotes the mapping due to a uniform q-bit quantizer

and P(i) is the transition matrix.

Under such a scheme, the agents in the network reach a consensus. However convergence

results are poor in the sense that the consensus value can be far away from the true average
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Chapter 4. Estimating sources of diffusion fields from sensor network measurements

as is shown in Figure 4.5(a). The poor convergence result observed is known to be due to the

loss of symmetry between neighbors in the use of received information. Consequently, there

has been considerable research efforts put towards devising average consensus strategies for

networks with finite communication capacity, where it becomes impossible for sensors to

exchange real numbers and hence arrive at the real-valued network average ȳ.

We consider in what follows some common quantized consensus strategies which are well

suited to our field estimation task.

Kashyap’s Quantized consensus Gossip (KQG) scheme

In [82] Kashyap et al propose a quantized consensus algorithm that aims to preserve the

network average at every iteration. They prove that the collection of values at each agent in

the network will converge to a quantized consensus distribution. Specifically, each node will

converge to either Ȳ or Ȳ + 1, where Ȳ =
∑N

n=1 yn,0 modN , if the pair of communicating

agents (n, n′) use an update such as:

yn,i+1 =

⌈
yn,i + yn′,i

2

⌉
,

yn′,i+1 =

⌊
yn,i + yn′,i

2

⌋
,

(4.22)

where yn,i ≤ yn′,i, and d·e, b·c is used to denote rounding up and down to the next quantizer

level. We validate this approach through the simulation results shown in Figure 4.5(b). We

refer to [82] for a theoretical analysis of convergence.

Average consensus via a Symmetric Quantized Gossip (SQG) scheme

Frasca et al [67] propose a scheme which aims to restore the symmetry lost by using an

update scheme such as (4.21). This algorithm can be summarized as follows,

y(i+ 1) = y(i) + (P(i)− I)Qq(y(i)) (4.23)

where i denotes the i-th iteration, Qq(·) is the mapping due to a uniform q-bit quantizer,

P(i) is the diffusion (transition) matrix and I is the identity matrix.

Under such a scheme, the agents in the network achieve quantized consensus in the sense

that the value at each node is at most one quantizer level away from the true average.

Specifically, as well as the total sum of the states being preserved, the states of the agents

in the network converge but to different values which are close to the true average, and in

fact only differ from this true average by at most one bin. This can be seen in Figure 4.5(c)

which shows the state evolution of the agents in the network assuming a 5-bit (32-Level)

uniform quantizer.
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Figure 4.5.: State evolution of quantized gossip schemes. Shows at each gossip
iteration the state evolution of the agents in the network assuming a 5-bit
uniform quantizer is used; the desired average is denoted by the dashed
grey line. We use in: (a) Naive Quantized Gossip (NQG); (b) Kashyap’s
Quantized Gossip (KQG); and (c) Symmetric Quantized Gossip (SQG).

4.6. Towards a distributed source recovery: a physics-driven

consensus scheme

As highlighted in Section 4.4, we assume that the sensors know the topology of the network

and that each sensor performs the Delaunay triangulation as shown in Figure 4.4.

4.6.1. Consensus-based estimation of the Generalized Measurements

over Sensors Networks

With the aforementioned assumptions, we can now derive the consensus-based diffusion

source estimation scheme and we focus here on the case of instantaneous and localized

sources.

Firstly consider the surface integral contribution in (3.17). We have seen that if we

partition the monitored domain Ω into non-overlapping triangular subdivisions {∆j}Jj=1

such that
⋃I
i=1 ∆i = Ω and ∆i

⋂
∆j = ∅ for i 6= j, as shown in Figure 4.4 for instance,

then the integral can be approximated by the sum (4.7), restated below

∫
Ω

(ΨkU̇)(x, T ) dV ≈ 1

3

J∑
j=1

3∑
j′=1

Ψk(vj,j′,r)Φ̇j,j′(tL)|∆j |,

where vj,j′ is the j′-th vertex of triangle j-th and Φ̇j,j′,r(tL) = U̇r(vj,j′ , tL) is the measure-

ment of the sensor situated at this vertex at time t = tL = T . Moreover the double sum,

in the above approximation (4.7), can be re-written in the following form:

∫
Ω

(ΨkU̇)(x, T ) dV≈1

3

J∑
j=1

3∑
j′=1

Ψk(vj,j′,r)Φ̇j,j′(tL)|∆j |
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=
1

3

J∑
j=1

|∆j |
(
Ψk(vj,1)Φ̇j,1,r(tL) + Ψk(vj,2)Φ̇j,2,r(tL) + Ψk(vj,3)Φ̇j,3,r(tL)

)

=
N∑
n=1

1

3
Ψk(xn)

Jn∑
j=1

|∆n,j |


︸ ︷︷ ︸

:=An(k)

Φ̇n,r(tL) (4.24)

where ∆n,j and |∆n,j | are used to denote the j-th triangle and its area respectively, for

which some node n is a vertex. The last equality follows by noticing that Φ̇j,j′,r(tL)

is always weighted by the product of the area of triangle j and the term 1/3Ψk(vj,j′).

Hence letting the set of all triangles that share a common vertex n located at xn be

Tn = {∆n,1,∆n,2, . . . ,∆n,Jn}, the measurement Φ̇n,r(tL)
def
= U̇r(xn, tL) is always weighted

by the sum of the areas of its corresponding triangles and 1/3Ψk(xn). We denote this weight

that directly depends on the sensing function and Delaunay triangulation (equivalently, the

topology of the network) by An(k).

For the boundary integral, the time-integrated field Ur(xn, T ) and its spatial derivative

∇Ur(xn, T )=
[
∂Ur
∂x1

, ∂Ur∂x2

]T
are required. Recall that S∂Ω = {x1, . . . ,xn−1,xi, . . . ,xI} denote

the cyclically ordered set of the boundary sensors, that coincide with the vertices of the

convex hull CH(S). Furthermore, assume the elements of S∂Ω are in anticlockwise order,

then: n̂∂ΩdS ≈ [x2,n−x2,n−1, x1,n−1−x1,n]T. Under this construction, it has been shown

that the boundary integral can be approximated by (4.12):∮
∂Ω

(Ψk∇Ur−Ur∇Ψk) · n̂∂Ω dS≈
∑

xn∈S∂Ω

Ψk(xn)
[(

(Φn,r(tL))x1
+kΦn,r(tL)

)
(x2,n−x2,n−1)

+
(

(Φn,r(tL))x2
+ jkΦn,r(tL)

)
(x1,n−1 − x1,n)

]
.

The first term in (4.12) depends on Φn,r(tL), as well as, its spatial derivative which must

be approximated from spatiotemporal samples of u(x, t). Recall that Φn,r(tL), can be

obtained by sensor n independently of the others using trapezium rule (see (4.9) on 78).

However, (Φn,r(tL))x1
and (Φn,r(tL))x2

can only be estimated reliably using neighbouring

sensor measurements; herein, we will use a polynomial fitting approach due to its simplicity

and accuracy. Using this approach, the task at hand is to find the regression function

Φn,r(tL) = αnx1,n + βnx2,n + γn by estimating (αn, βn, γn) for each boundary sensor xn ∈
S∂Ω, (where n = 1, . . . , I), using measurements from its nearest neighbours (sensors closest

to the location xn). We denote the set of all such sensors by S ′∂Ω.

Let the n-th sensor located at xn with measurement Φn,r(tL) have as its two closest

sensors x′n and x′′n with their corresponding measurements Φn′,r(tL) and Φn′′,r(tL). Given

these three pairs {xn,Φn,r(tL)}, {x′n,Φn′,r(tL)} and {x′′n,Φn′′,r(tL)} we can estimate the
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parameters (αn, βn, γn) by solving the linear system: Φn′′,r(tL)

Φn,r(tL)

Φn′,r(tL)

 =

 x′′1,n x′′2,n 1

x1,n x2,n 1

x′1,n x′2,n 1


 αn

βn

γn

 , (4.25)

un = Xndn. (4.26)

The system admits a unique solution, if x′′n,xn and x′n are not collinear. Therefore, the

approximation
[
(Φn,r(tL))x1

, (Φn,r(tL))x2

]T
of the local spatial derivative ∇Ur(x, T )|x=xn

can be retrieved immediately from the solution to this system by noticing that the poly-

nomial p(x) = αx1 + βx2 + γ has the derivative ∇p(x) = 〈α, β〉. Hence ∇Ur(xn, T ) =[
∂
∂x1

Ur(xn, T ), ∂
∂x2

Ur(xn, T )
]T∣∣∣∣

x=xn

≈
[
(Φn,r(tL))x1

, (Φn,r(tL))x2

]T
= [αn, βn]T, where

αn=
(x2,n−x′2,n)Φn′′,r(tL)+(x′2,n−x′′2,n)Φn,r(tL)+(x′′2,n−x2,n)Φn′,r(tL)

det(Xn)
,

βn=
(x′1,n−x1,n)Φn′′,r(tL)+(x′′1,n−x′1,n)Φn,r(tL)+(x1,n−x′′1,n)Φn′,r(tL)

det(Xn)
.

Then substituting these back into (4.12) gives

∮
∂Ω

(Ψk∇Ur − Ur∇Ψk)·n̂∂Ω dS ≈
I∑

xn∈S∂Ω

b′′n(k)Φn′′,r(tL)+bn(k)Φn,r(tL)+b′n(k)Φn′,r(tL),

(4.27)

where

b′′n(k)=
Ψk(xn)

det(Xn)

[
x1,n−1 − x1,n

x2,n − x2,n−1

]T [
x′1,n − x1,n

x2,n − x′2,n

]
, (4.28a)

bn(k)=
Ψk(xn)

det(Xn)

[
x1,n−1 − x1,n

x2,n − x2,n−1

]T [
x′′1,n − x′1,n
x′2,n − x′′2,n

]
+kΨk(xn) [(x2,n−x2,n−1)+j(x1,n−1−x1,n)] , (4.28b)

b′n(k)=
Ψk(xn)

det(Xn)

[
x1,n−1 − x1,n

x2,n − x2,n−1

]T [
x1,n − x′′1,n
x′′2,n − x2,n

]
. (4.28c)

The terms b′′n(k), bn(k) and b′n(k) in (4.28) are dependent only on the topology of the

network (specifically the locations of the sensors) and our choice of sensing function Ψk(x).

Indeed given the assumptions detailed in Section 4.4, these weights can be precomputed

for every sensor in the network, such that∮
∂Ω

(Ψk(x)∇Ur(x, T )− Ur(x, T )∇Ψk(x)) · n̂∂Ω dS ≈
∑

xn∈S
Bn(k)Φn,r(tL), (4.29)
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where Bn(k) is non-zero only if the n-th sensor is a boundary sensor or if it is one of the

two nearest sensors to a boundary sensor, i.e. xn ∈ S∂Ω ∪ S ′∂Ω. Otherwise Bn(k) is zero.

Finally, we can combine (4.24) and (4.29), to obtain the estimates for Q(k, r):

Q(k, r) ≈
∑
n∈N

An(k)Φ̇n,r(tL)− µBn(k)Φn,r(tL) (4.30)

=
1

N

∑
n∈N

yn(k, r). (4.31)

where

yn(k, r) = N
(
An(k)Φ̇n,r(tL)− µBn(k)Φn,r(tL)

)
, (4.32)

whilst the terms Φn,r(tL) and Φ̇n,r(tL) are approximations of the time-integrals Ur(xn, tL)

and U̇r(xn, tL), in (4.4), obtained using (4.9) and (4.10) respectively.

Upon deployment of the sensors, each sensor can precompute its unique weights {An(k)}k
and {Bn(k)}k for k = 0, . . . ,K. This is possible as a result of the assumptions stated in

Section 4.4. After which they can start to monitor the region of interest Ω, by sensing

the field locally. To initiate the estimation process, the sensor n exchanges its modified

measurements {yn(k, r)}k with a randomly chosen neighbor. This begins the gossip round,

as detailed in Section 4.5, it continues until convergence to {Q(k, r)}k. All sensors in the

network can now independently apply Prony’s method to its current estimate of {Q(k, r)}k
in order to recover all unknown source parameters as described in Section 3.4. Consequently,

we can now state the following proposition for solving the IDSP concerning instantaneous

sources of diffusion fields:

Proposition 4.1. By exchanging the measure yn(k, r)=N
[
An(k)Φ̇n,r(tL)− µBn(k)Φn,r(tL)

]
which is a properly weighted sum of the sensor measurements {ϕn(tl)}l of the n-th sensor, it

is possible for each sensor in the network to converge to the same generalized measurements

{Q(k, r)}k of the centralized algorithm, and hence recover the unknown diffusion source pa-

rameters with the same estimation performance. Here An(k) and Bn(k) are dependent on

Ψk(x) and the topology of the network, whilst Φn,r(tL) and Φ̇n,r(tL) are approximations of

the time integrals (4.4a) and (4.4b) respectively obtained by sensor n at location x = xn,

with T = tL.

The non-instantaneous source models require a more careful treatment, however. As

usual for this class of models, we consider R(k) = Q(k, 0) and recover the unknown pa-

rameters from its field samples in a distributed manner as follows.

Recovery of non-instantaneous sources

It is clear from (3.20) that applying Prony’s method directly on {R(k) = Q(k, 0)}Kk=0 where

K ≥ 2M − 1, reveals the unknowns {(c′m, e−(ξ1,m+jξ2,m))}m, thus the locations of the M

sources can be immediately recovered.
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4.6. Towards a distributed source recovery: a physics-driven consensus scheme

However to recover the remaining source parameter, we notice that c′m and thus {R(k)}
depend on T , i.e. the window over which the time-integrals are computed, hence we will

write c′m(T ) and {R(k, T )} respectively to emphasize this dependence (this is not true

for instantaneous sources). By considering three sequences {R(k, T1)}, {R(k, T2)} and

{R(k, T3)} obtained when we take the time integrals in (3.17) over three intervals [0, T1],

[0, T2] and [0, T3], where T2 = T1 + ∆T and T3 = T1 + 2∆T , and applying Prony’s method

to the three sequence {R(k, T1)}, {R(k, T2)} and {R(k, T3)} leads to {c′m(T1)}, {c′m(T2)}m
and {c′m(T3)}m. From these, it has been shown that αm, τm and cm are given by (3.29),

(3.31) and (3.32), respectively.

Given only spatiotemporal samples of the field the sequences {R(k, T1)}, {R(k, T2)} and

{R(k, T3)} will need to be approximated directly from the field samples. In this situation,

sensor n can compute locally y
(i)
n (k, 0)=N

(
An(k)Φ̇n,0(Ti)−µBn(k)Φn,0(Ti)

)
for i = 1, 2, 3

and k = 0, 1, . . . ,K. Gossiping can then begin: they all exchange locally and update their

sequence {y(i)
n,0(k)}k i = 1, 2, 3, until convergence, to obtain the desired approximation for

{R(k, Ti)}k i = 1, 2, 3. Where upon convergence each node will have the desired information

to recover all unknown source parameters as described in Section 3.4.2, providing K ≥
2M−1.

This results in the following proposition.

Proposition 4.2. By exchanging y
(i)
n (k, 0)=N

(
An(k)Φ̇n,0(Ti)−µBn(k)Φn,0(Ti)

)
which is

a properly weighted sum of the sensor measurements {ϕn(tl)}l of the n-th sensor, for i =

1, 2, 3 and Ti = T − (3 − i)∆T , it is possible for each sensor in the network to converge

to the same generalized measurements {Q(k, 0)}k in the centralized algorithm, and hence

recover the unknown diffusion source parameters with the same estimation performance.

Here An(k) and Bn(k) are dependent on Ψk(x) and the topology of the network, whilst

Φn,0(tL) and Φ̇n,0(tL) are approximations of the time integrals (4.4a) and (4.4b) respectively

obtained by sensor n at location x = xn, with T = tL.

4.6.2. Noise robust consensus-based estimation

Proposition 4.1 presents a diffusion equation-driven gossiping strategy for recovering the

unknown source model parameters from noiseless field samples. In a noisy scenario however,

whilst the underlying gossiping strategy stays the same, some further processing may be

required to enhance noise resilience. Specifically we will demonstrate how to design an

in-network noise prewhitening filter, Fpw, so that when applied to the noisy/perturbed

generalized measurement sequence, {Qε(k, r)}k, results in an improvement of the estimation

performance of Prony’s method and its variations.

We begin our exposition by recalling that: in Proposition 4.1 the sensors exchange

their local measures {yn(k, r)}k with neighbouring nodes in order to reach a consensus

on the desired generalized measurements {Q(k, r)}k (for a fixed r). In addition, for each

non-negative integer k, yn(k, r) = N
(
An(k)Φ̇n,r(tL)− µBn(k)Φn,r(tL)

)
, this is simply a

weighted sum of the temporal field measurements taken by sensor n, thus we can write
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yn(k, r) =
∑L

l=0wn,l(k, r)ϕn(tl) with wn,l(k, r) ∈ C, since An(k), Bn(k) ∈ C. Therefore, in

the noisy setting the sensors will instead exchange:

yεn(k, r) =

L∑
l=0

wn,l(k, r)ϕ
ε
n(tl)

=
L∑
l=0

wn,l(k, r) (ϕn(tl) + εn,l)

= yn(k, r) +

L∑
l=0

wn,l(k, r)εn,l. (4.33)

Consider now the consensus value. Upon convergence, each sensor in the network has the

perturbed generalized measurement: {Qε(k, r) = 1
N

∑N
n=1 y

ε
n(k, r)}Kk=0 from which they

construct the Toeplitz matrix, i.e. Toep
(
{Qε(k, r)}Kk=0

)
, in order to apply Prony’s method

(see Prony’s and the matrix pencil methods in Section 2.2.2). In the noisy scenario they

will instead construct,

Tε
def
= Toep ({Qε(k, r)}k) = Toep

({
1

N

N∑
n=1

yεn(k, r)

}
k

)

= Toep({Qε(k, r)}k) + Toep

({
1

N

N∑
n=1

L∑
l=0

wn,l(k, r)εn,l

}
k

)
= Toep({Qε(k, r)}k) + Toep({ε(k, r)}k)

= T + E. (4.34)

It is clear that the noise term in Toep
(
{Qε(k, r)}Kk=0

)
is now coloured due to the

weighted-sum. However Prony’s method and its variations implicitly assume that the noise

in the terms {Qε(k, r)}k are i.i.d, hence it must be prewhitened before estimating the un-

known source parameters from it. To this end, before applying Prony’s method, each sensor

can design and apply (by post-multiplying the Toeplitz matrix Tε
def
= Toep ({Qε(k, r)}k))

the pre-whitening filter Fpw given by:

Fpw = C
†
2
ε (4.35)

where (·)
†
2 , is the square root of the Moore-Penrose pseudoinverse, and

Cε = Cov{E} = E
{

EEH
}
. (4.36)

Notice that the covariance matrix, Cε depends directly on the variance of the sensor

noise and on the weights {wn,l(k, r)}n,l (hence the network topology), for a fixed r and any

k ∈ {0, 1, . . . ,K}. We shall now explicitly derive an expression for Cε.

For ease of exposition, we define the matrix of coefficients W(k, r) ∈ CN×(L+1), such

that its entries are given by [W(k, r)]n,l+1 = wn,l(k, r). Hence we can define the vector
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of coefficients w(k, r) = vec(W(k, r)) to be the vectorization of W(k, r) – i.e. w(k, r) ∈
CN(L+1) is formed by stacking the columns of the matrix W(k, r) into a single column

vector. Similarly, let ε ∈ RN(L+1) be the vector formed from the i.i.d noise sequence

{εn,l}n,l in the same way. Then ε(k, r) = 1
N

∑N
n=1

∑L
l=0wn,l(k, r)εn,l = 1

NwT(k, r)ε. From

this, if for instance E ∈ RN1×N2 , it follows that

E =


ε(N2−1, r) ε(N1−2, r) · · · ε(0, r)

ε(N2, r) ε(N2−1, r) · · · ε(1, r)
...

...
. . .

...

ε(N1+N2−2, r)ε(N1+N2−3, r)· · ·ε(N1−1, r)

 .

To reduce notational burden we will drop, without loss of generality, the dependence on r

in the remainder of our derivation. Thus we may write:

Cε = E
{

EEH
}

= E




ε(N2−1) ε(N1−2) · · · ε(0)

ε(N2) ε(N2−1) · · · ε(1)
...

...
. . .

...

ε(N1+N2−2)ε(N1+N2−3)· · ·ε(N1−1)



ε(N2−1) ε(N2) · · ·ε(N1+N2−2)

ε(N1−2)ε(N2−1)· · ·ε(N1+N2−3)
...

...
. . .

...

ε(0) ε(1) · · · ε(N1−1)




= E





N2−1∑
i=0

ε(i)εH(i)

N2−1∑
i=0

ε(i)εH(i+1) · · ·
N2−1∑
i=0

ε(i)εH(i+N1−1)

N2−1∑
i=0

ε(i+1)εH(i)

N2−1∑
i=0

ε(i+1)εH(i+1) · · ·
N2−1∑
i=0

ε(i+1)εH(i+N1−1)

...
...

. . .
...

N2−1∑
i=0

ε(i+N1−1)εH(i)

N2−1∑
i=0

ε(i+N1−1)εH(i+1)· · ·
N2−1∑
i=0

ε(i+N1−1)εH(i+N1−1)




.

Taking the expectation operator inside the matrix and noting that each element,

E

{
N2−1∑
i=0

ε(i+j)εH(i)

}
= E

{
N2−1∑
i=0

ε(i)εH(i+j)

}

=
1

N2

N2−1∑
i=0

E
{

wT(i)εεHw∗(i+j)
}

=
1

N2

N2−1∑
i=0

wT(i)
(
σ2I
)
w∗(i+j)

=
σ2

N2

N2−1∑
i=0

wT(i)w∗(i+j),
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allows us to write the covariance matrix (4.36) as,

Cε=
σ2

N2



N2−1∑
i=0

‖w(i)‖2
N2−1∑
i=0

wT(i)w∗(i+1) · · ·
N2−1∑
i=0

wT(i)w∗(i+N1−1)

N2−1∑
i=0

wT(i+1)w∗(i)

N2−1∑
i=0

‖w(i+1)‖2 · · ·
N2−1∑
i=0

wT(i+1)w∗(i+N1−1)

...
...

. . .
...

N2−1∑
i=0

wT(i+N1−1)w∗(i)

N2−1∑
i=0

wT(i+N1−1)w∗(i+1)· · ·
N2−1∑
i=0

‖w(i+N1−1)‖2


.

(4.37)

We can restore the dependence of the covariance matrix on r by replacing w(·), in (4.37)

above with, w(·, r).
Note that since all sensors know the network topology, they are actually able to compute

{wn,l(k, r)}n,l for all k = 0, 1, . . . ,K and a fixed r. From this sequence they can construct

the column vector w(k, r) and compute the desired covariance matrix Cε and so obtain the

desired prewhitening filter Fpw = C
†
2
ε as required.

To further improve the noise robustness of our source estimation approach, we may also

adapt the sequential local search technique introduced in 4.3.3. This sequential local search

technique for robustifying the estimation of τm (and αm for our non-instantaneous source

models), is performed independently and does not require the FC or data with other nodes,

hence can be implemented directly in a distributed network.

This modification is based on searching for a time interval over where only a single

diffusion source is active. When such an interval is found, the active source parameters

are estimated and its contribution to the spatiotemporal field measurements is removed

before the next source can be estimated. In summary, this is achieved by considering

measurements only from an initial time interval [0, T ] and initiating the following steps:

1. Assume there are M ′ ≥ 2 unknown sources. Approximate {Rε(k)}2M ′−1
k=0 using the

gossiping approach as described in Section 5.1.

2. Estimate the M ′ source intensities {σ′m′}M
′

m′=1 and locations {ξ′m′}M
′

m′=1 using Prony’s

method.

3. Each sensor can then check if their estimated sources are valid, i.e. the pair (σ′m′ , ξ
′
m′)

is valid if both conditions:

a) cm greater than some predefined threshold, and

b) ξ′m′ is inside the monitored region Ω,

are simultaneously satisfied. Let Mvs be the number of valid sources.

4. There are now three cases:

a) Mvs > 1: the time window [0, T ] is reduced and steps (i)-(iv) are repeated.
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b) Mvs < 1: the time window [0, T ] is increased and steps (i)-(iv) are repeated.

c) Mvs = 1: sensors estimate all unknowns, say (c1, ξ1, τ1), for this active source

as described in Section 4.6.1, and then perform a local line search around their

estimates of τ1 to refine this estimate.

5. Output the estimates (c1, ξ1, τ1).

The resulting algorithm that combines prewhitening and the sequential local search with

the gossiping strategy of Proposition 4.1 is described in the inset Algorithm 4.5. Under the

assumptions outlined in Section 4.4, Algorithm 4.5 guarantees that the unknown source

parameters can be recovered in a distributed way (by performing local exchanges of the

measurements {yn(k, r)}n using gossiping and then applying Prony’s method on conver-

gence) with the same estimation performance as the centralized estimation algorithm.

In this section, we have seen how to implement a distributed estimation of the unknown

source models f using gossiping in a sensor network. Implicitly however, we have assumed

that the communication links between sensors are ideal. In the following section, we develop

techniques for adapting our approach to operate properly even when this assumption does

not hold.

Algorithm 4.5 Robust Distributed Estimation of M sources

Require: {ϕn(tl)}l, sampling interval ∆t, µ, {An(k)} and {Bn(k)}.
1: The sensor n starts the process at some time T .
2: Sensors compute their {yn(k)} over window t ∈ [0, T ].
3: Then the gossip round begins, to compute {Q(k, 1)} with K ≥ 2M ′ − 1 and M ′ ≥ 2

using consensus.
4: Compute and apply the prewhitening filter Fpw.
5: Each sensor applies Prony’s to its estimate of {Q(k, 1)} to recover M ′ pairs of
{σ′m′ , ξ′m′}M

′
m′=1.

6: Each sensor sets Mvs(n) as the number of pairs {σ′m′ , ξ′m′} having both σ′m′ greater
than some threshold and ξ′m′ ∈ Ω.

7: They can now gossip Mvs(n) to get M̂vs, or a sensor is elected at random to decide
M̂vs. There now arises three cases:

8: if M̂vs > 1 then
9: Decrease window size [0, T ] and Go to 2.

10: end if
11: if M̂vs < 1 then
12: Increase window size [0, T ] and Go to 2.
13: end if
14: if M̂vs == 1 then
15: Sensors apply Prony’s to its estimate of {R(k)} to recover {cm, ξm, τm}.
16: Sensors perform a Local Line Search around τm, to refine this estimate.
17: Sensors reconstruct local field and adjusts {ϕn(tl)}l.
18: m← m+ 1.
19: Increase size of window [0, T ] and Go to 2, if m < M , else go to 18.
20: end if
21: return {cm}Mm=1, {αm}Mm=1, {ξm}Mm=1 and {τm}Mm=1.
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4.7. Source estimation over communication constrained

sensor networks: physics-driven quantized consensus

A limited communication bandwidth is a common constraint on many sensor networks

built for estimation/inference tasks. This limitation necessitates the quantization of data

transmitted over such networks. In this section we consider the distributed estimation of the

sources of a diffusion field using a bandwidth constrained network of sensors. In particular,

we propose an adaptation of the distributed diffusion source estimation algorithm outlined

in Section 4.6.1, which implicitly assumed that the measurement sequence {yn(k)}k of the

n-th sensor can be transmitted with infinite precision to its neighbours. Our adaptation is

based on the use of quantized gossip strategies. Although there exist a variety of quantized

gossip strategies some are much more suited to our estimation task. To this end, through

simulations we use a distortion measure which we introduce in the next section, to guide

our choice as to which quantized gossip strategy is the most suitable for our estimation

task when the sequence {yn(k, r)}k is quantized using a uniform q-bit quantizer.

4.7.1. Quantization Noise

Communicating over a quantized channel leads, in general, to a distortion in the trans-

mitted signals. Therefore, we will study through simulations the extent (and severity) of

the distortion introduced in the estimates of {R(k) = Q(k, 0)}k obtained at each node,

upon convergence to a quantized consensus resulting from localized exchanges of quantized

versions of {yn(k, 0)}k, ∀n ∈ {1, . . . , N}. The metric used here is called the signal-to-

discretization and-quantization noise ratio (SDQNR), and it measures the level of distor-

tion (compared to the ground truth values) present in the consensus values. The SDQNR

at the n-th sensor is defined as

SDQNR(n) = 10 log10


∑K

k=0

∣∣∣∑M
m=0 cme

−k(ξ1,m+jξ2,m)
∣∣∣2

∑K
k=0

∣∣∣∣∣ lim
i→∞

ỹn,i(k)−
M∑
m=0

cme
−k(ξ1,m+jξ2,m)

∣∣∣∣∣
2

 , (4.38)

where ỹn,i(k) is the quantized. Both quantized gossip schemes [82, 67] considered in Sec-

tions 4.5.1 and 4.5.1 respectively are known to achieve quantized consensus, such that

all sensors in the network converge to values which are within one bin of the true aver-

age. Both schemes lead to a distribution of values upon convergence, these values are

such that the initial network average is preserved. Figure 4.6 shows the SDQNR for

both schemes, this simulation is for two sources with intensities (c1 = c2 = 1), loca-

tions ξ1 = (0.113, 0.221), ξ2 = (0.234, 0.085) and activation times τ1 = 1.213, τ2 = 5.126.

For statistical significance, we perform 100 trials, where each new trial uses a different

realization of the random graph (i.e. a new RGG). In so doing, we obtain an SDQNR for

each sensor and each independent trial and so Figure 4.6 shows distribution of SDQNR of
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the quantized consensus states for a range of q-bit uniform quantizers using a box plot. It

can be seen that the scheme proposed by Frasca et al results in consistently higher SNR

compared to that of Kashyap et al. Consequently we propose the use of the quantized
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Figure 4.6.: SDQNR of Quantized Gossip Schemes. The realized SDQNR vs
number of quantization bits (q-bits for q = 2, . . . , 10) using (a) Frasca’s
Symmetric Quantized Gossip Scheme and (b) Kashyap’s Quantized Gossip
Scheme. This simulation uses M = 2, K = 5, N = 90, the network
is a RGG, G(N, 0.6). The solid line in both plots shows the signal-to-
noise ratio of the quantized version of ground truth Prony’s sequence, i.e.
{Qq(R(k))}k for each q.

pairwise gossip scheme summarized by (4.23) during the gossip stage as this results in a

sequence that is closer to the ground truth sequence of {R(k)}k.

4.8. Summary and conclusions

In this chapter we discuss both centralized and distributed schemes for solving a class of

discrete inverse diffusion source problems. Specifically, with the assumption that the field

of interest is monitored via a network of dumb and smart sensors, in the centralized and

distributed settings respectively, we show how to properly adapt the inversion formulae ob-

tained in Chapter 3 to solve the problem. In the centralized setting all measurements are

forwarded to a FC for processing, whereas in the distributed setting, a diffusion-equation

driven gossip algorithm is devised where we show how to properly modify the sensor mea-

surements using the mathematical model of the field, as well as the network topology, such

that each sensor node in the network is able to recover the unknown source parameters
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Chapter 4. Estimating sources of diffusion fields from sensor network measurements

through localized and quantized interactions with other nodes alone. This allows us to

eliminate the need for a fusion centre whilst also managing the communications costs. In

both of these centralized and distributed settings we also presented several iterative and

non-iterative approaches for robustifying the proposed methods under measurement noise

and other model mismatches.
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Chapter 5.

Simulation results

5.1. Introduction

Chapter 3 presented a precise framework for solving a class of IDSPs given continuous

measurements of the induced field. Specifically, using this framework we derived a set of

closed form inverse formulae from which we can recover the unknown source parameters.

Chapter 4 then demonstrated how to properly adapt these formulae to the case of discrete

spatiotemporal field measurements obtained through the use of a sensor network and de-

rived results for both the centralized and distributed cases. In the present chapter, our main

aim is to evaluate and understand the validity, robustness and limitations of the proposed

centralized and distributed algorithms for solving the class of discrete IDSPs, proposed in

Chapter 4.

In order for us to carry out proper numerical validations of the algorithms, we must first

obtain the field measurements to operate on. To this end we begin by considering numerical

results when we have access firstly, to synthetic data in Section 5.2 before considering the

case of real data experiments in Section 5.3. Particularly, we assess the performance of our

centralized schemes by:

(i) presenting estimation results in Sections 5.2.1 and 5.2.2, given noisy field measure-

ments, for fields induced by our class of source models; and

(ii) investigating which effect the error of approximating our family of integrals using

quadrature techniques has on our algorithms, in Section 5.2.3.

On the other hand, Sections 5.2.4 to 5.2.6 focus on the distributed algorithms for sensor

networks having either ideal or noisy links. In these distributed scenarios, we establish:

(i) the robustness of our distributed approaches to measurement noise for both single

and multiple source fields; and

(ii) that if the communication links are ideal the distributed estimation scheme achieves

the same performance as the centralized counterpart; and finally

(iii) the performance of the quantized distributed scheme can be improved by increasing

K (– the number of generalized measurements used).
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In Section 5.2.7 we present results that corroborate the claim outlined in Remark 3.2

concerning source estimation in bounded regions.

Section 5.3 validates both the centralized and distributed schemes for point sources on

real thermal data obtained experimentally and additionally demonstrates that we can also

achieve full field reconstruction having estimated the source inducing the field. We then

conclude the chapter in Section 5.4.

5.2. Synthetic data simulations and results

In this section, the synthetic 2D diffusion field measurements used have been simulated

numerically in MATLAB using (3.4) with (3.7) and (3.8) for fields induced by the class of

localized source models.1 Whereas COMSOL multiphysics software is used to simulate the

field measurements induced by our class of non-localized sources given in Section 3.3.2. To

simulate noisy measurements, zero mean additive white Gaussian noise (AWGN), εn,l ∼
N (0, σ2), is directly introduced to the ideal spatiotemporal samples as follows:

ϕεn(tl) = ϕn(tl) + εn,l, (5.1)

such that the noise power σ2 is the same for all sensors. Hence, the sensors closest to the

source will experience a higher SNR compared to sensors placed further away. As such the

sensor measurements will have an “average” signal-to-noise ratio (SNR) of

SNR
def
= 10 log10

(∑N
n=1

∑L
l=0 |ϕn(tl)|2

N(L+ 1)σ2

)
. (5.2)

Finally, these spatiotemporal samples are obtained by a collection of N sensors (ran-

domly) deployed over a square region. All results involving multiple independent trials,

unless otherwise specified, have been performed using both a new arbitrary placement of

sensors, as well as, a new realization of the AWGN process for each independent trial.

5.2.1. Centralized estimation of localized sources

In what follows, we examine the estimation accuracy and performance of our centralized

source estimation algorithms (i.e. Algorithms 4.2 to 4.4):

Instantaneous sources

Figure 5.1 shows results of the sequential source estimation algorithm (Algorithm 4.4); it

shows that our algorithm is able to recover the desired parameters with high accuracy even

1Consider an instantaneous source field for example, substituting (3.6) & (3.7) into (3.4) gives the closed

form expression for the field, u(x, t) =

M∑
m=1

cm
4πµ(t− τm)

e
− ‖x−ξm‖2

4µ(t−τm)H(t − τm). This expression can

therefore be evaluated explicitly at the sensor locations {xn}n and sampling instants {tl}l to obtain the
desired spatiotemporal sensor measurements without resorting to a grid.
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5.2. Synthetic data simulations and results

in the noisy setting. We show results separately for N = 45 (top) and N = 63 (bottom)

arbitrarily placed sensors respectively. Furthermore we present in Table 5.1 a summary

of the variation of the normalized mean absolute error (NMAE)2 for the activation time

and intensity estimates with noise, in the single source setting. The NMAE decreases

with increasing SNR, as expected; moreover at SNR= 10dB we achieve activation time

resolution NMAE that is much less than the sampling period, for both sensor densities.

When decreasing the SNR further, we notice the threshold effect characteristic of Prony’s

method, in that a large jump in the normalized MAE of the estimates is observed.

Non-instantaneous sources

Figure 5.2 shows our algorithm (Algorithm 4.1) operating on the spatiotemporal samples

of a single non-instantaneous source field. We compare the estimated parameters against

their true values and the plots demonstrate that our algorithm can successfully recover the

unknown source parameters. We also summarize the normalized MAE of the estimation

algorithm in Table 5.2, to highlight the algorithm’s performance.

5.2.2. Centralized estimation of non-localized sources

The field due to the non-localized sources have been simulated using COMSOL Multiphysics

and spatiotemporal samples are obtained at arbitrary spatial locations. We show results

for noiseless data samples in Figure 5.3(a) and (b) which shows almost perfect spatial

reconstruction for line and triangular sources, respectively. In both cases the sources are

assumed to be instantaneous in time, to this end we use COMSOL’s built-in Gaussian pulse

function ‘gp1()’ with a standard deviation σ = 0.0025 to simulate a delta. Then, on this

data we apply the proposed algorithms to reconstruct the non-localized diffusion sources.

Furthermore in order to demonstrate the noise resilience of the proposed algorithms, we

artificially corrupt the measurements with AWGN and employ the proposed non-point

source reconstruction schemes (i.e. Algorithms 4.2 and 4.3) to recover the line and polygonal

sources, respectively. We perform 10 independent trials on noisy data utilizing a new

realization of sensor placement and a new sensor noise process for each trial. The obtained

results are presented in Figures 5.4 and 5.5, in which we notice that the unknown source

parameters of interest (specifically the vertices and source activation times) are recovered

fairly reliably in this noisy setting.

2For I total independent estimates x̂i of some parameter x, the normalized mean absolute error of x is

defined here as: NMAE(x) = 1
x
·
∑I
i=1 |x−x̂i|

I
.

105



Chapter 5. Simulation results

0 0.1 0.2

0.05

0.1

0.15

0.2

0.25

Locations

x1

x
2

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

Independent Trial Index

t[
s]

Activation Time Estimates

τ̂1 τ̂2 τ̂3 True vals.

0 0.1 0.2

0.05

0.1

0.15

0.2

0.25

Locations

x1

x
2

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

Independent Trial Index

t[
s]

Activation Time Estimates

τ̂1 τ̂2 τ̂3 True vals.

(a)

(b)

Figure 5.1.: Estimation of M = 3 diffusion sources using randomly distributed
sensors. The spatiotemporal samples have SNR equal to 20dB and the
results of 20 independent trials are shown. Intensities c1 = c2 = c3 = 1;
locations ξ1 = (0.113, 0.221), ξ2 = (0.234, 0.175), ξ3 = (0.070, 0.100); and
activation times t1 = 3.2s, t2 = 8.1s, t3 = 15.4s. Field is sampled for
Tend = 20s at a frequency 1

∆t
= 2Hz and K = 5 i.e. k = 0, 1, . . . , 5

for the test function family Ψk(x) = e−k(x1+jx2). The scatter-plot shows
the true source locations (blue ‘+’), the estimated locations (red ‘×’)
and one typical realization of the sensor distribution (green ‘◦’) using
Algorithm 4.4. We use in (a) N = 45 randomly distributed sensors; whilst
in (b) N = 63 randomly distributed sensors.

Table 5.1.: Normalized Mean absolute error for an instantaneous point source estima-
tion using Algorithm 4.1 (500 independent trials). The field is induced by
M = 1 source with unknowns c1 = 1, τ1 = 1.213s and ξ1 = (0.1130, 0.2210),
sampled at f = 1

∆t
= 1

0.5 = 2Hz with 63 arbitrarily placed sensors. For
the estimation algorithm K = 10 and r = 1 is used.

SNR (dB)

5 10 20 30 40

τm
45 Sensors 0.6351 0.3112 0.1653 0.1345 0.1319

63 Sensors 0.5138 0.2267 0.0922 0.0707 0.0725

cm
45 Sensors 0.2163 0.1500 0.1202 0.1071 0.1071

63 Sensors 0.1610 0.1140 0.0766 0.0707 0.0698
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Figure 5.2.: Estimation of M = 1 non-instantaneous diffusion source using
63 randomly distributed sensors. The unknown source has intensity
c1 = 100, decay coefficient α1 = −0.1, location ξ1 = (0.1130, 0.2130),
and activation time τ1 = 3.5s. The field induced is sampled for T = 14s
at 1

∆t
= 2Hz and the samples obtained have SNR = 20dB. Moreover, we

perform 15 independent trials using K = 50 for {R(k)}Kk=0 whilst T1 = 6s,
∆T = 2s and P = Q + 2 = 5. The scatter-plot shows the true source
locations (blue ‘+’), their estimated locations (red ‘×’) and a typical
realization of the sensor network distribution (green ‘◦’) Algorithm 4.1.

Table 5.2.: Normalized Mean absolute error of single source parameter estimates using
Algorithm 4.1 (500 independent trials). The field is induced by a single
(M = 1) time-varying source with unknowns α1 = −0.1, c1 = 100, τ1 = 3.5s
and ξ1 = (0.1130, 0.2130) and is sampled at 1

∆t
= 1

0.5 = 2Hz with 63
arbitrarily placed sensors. For the estimation we use K = 50, T1 = 6s,
Tend = 14s, P = 5, Q = 3, and ∆T = 2s.

SNR (dB)

10 20 30 40

αm 0.9739 0.3263 0.2665 0.1285

τm 0.1493 0.0525 0.0329 0.0258

cm 1.4016 0.3721 0.2819 0.1677
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Figure 5.3.: Centralized estimation of non-localized sources using noiseless
spatiotemporal measurements obtained by randomly placed sen-
sors. The field is sampled at 10Hz for T = 7s using 45 sensors in (a)
and 90 sensors in (b). In addition, for the centralized estimation param-
eters, we use in: (a) R = 5 and K = 4 for the line source algorithm, i.e.
Algorithm 4.2, whereas (b) R = 5 and K = 6 for the triangular source
algorithm, i.e. Algorithm 4.3.
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Figure 5.4.: Line source estimation using noisy spatiotemporal measure-
ments. The field is sampled at 10Hz for T = 10s using 45 arbitrar-
ily placed sensors, with measurement SNR= 20dB. For the spatial and
temporal sensing functions family, K = 6 and R = 5 respectively using
Algorithm 4.2. For each trial we show in: (a) the estimated line source,
and in (b) the corresponding activation time estimates.
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Figure 5.5.: Triangular source estimation using noisy spatiotemporal mea-
surements. The field sampled at 10Hz for T = 10s using 90 arbitrarily
placed sensors, with measurement SNR= 35dB. For the spatial and tempo-
ral sensing functions, K = 9 and R = 8 respectively using Algorithm 4.3.
For each trial we show in: (a) the vertices of the estimated triangular
source, and in (b) the corresponding activation time estimates.
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5.2.3. Approximation errors due to the integral discretization

In this section we examine the effectiveness of the quadrature techniques used when obtain-

ing the generalized measurements from spatiotemporal samples. Specifically, we provide

simulation results which suggests that the error due to approximating the integrals in (3.17)

(and (3.21)) does not affect the estimation of the sources of the field, in that, even at fairly

high SNRs, the noise in the sensor measurements dominates the errors in the reconstruc-

tion. To see this, we compare the localization results obtained by applying Prony’s method

on two sequences, namely: {Rε(k)}Kk=0 and {R̃ε(k)}Kk=0. The first sequence, i.e. {Rε(k)}k
is obtained from noisy samples in the usual fashion; whilst {R̃ε(k)}k is obtained by adding

an equivalent noise process to the exact power-sum series {R(k)}k (here {Rε(k)}k repre-

sents the noisy continuous measurement scenario, where the integrals in (3.17) are known

precisely). Figure 5.6 shows the standard deviation of the estimated spatial locations of

M = 2 sources, separated by 0.08m, using {Rε(k)}k (dashed lines) and {R̃ε(k)}k (solid

lines) respectively. Observe that for realistic SNRs of interest, i.e. 30dB and below, the per-

formance of the location recovery coincides with that of the ideal, full-field measurement,

case.
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Figure 5.6.: Location estimation performance. Standard deviation (500 trials) for
localization estimates of 2 sources from 63 randomly distributed sensors,
using Algorithm 4.1 with K = 5. c1 = c2 = 1; ξ1 = (0.23, 0.15), ξ2 =
(0.15, 0.15) and τ1 = τ2 = 1.2s. Tend = 10s and 1

∆t
= 1Hz.

5.2.4. Distributed estimation over sensor networks: noiseless channels

We present numerical simulation results aimed at evaluating our proposed distributed

source estimation algorithms assuming that sensors in the distributed network can com-

municate locally over noiseless channels. The sensor distribution is modelled by the RGG
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Figure 5.7.: Single diffusion source estimation using distributed SNs with
noiseless links. The evolution of the estimated source parameters with
increasing number of pairwise message exchanges (Algorithm 4.5). Sensor
measurements are assumed to be noiseless and we use K = 1 and r = 1
for the generalized measurements {Q(k, r)}k. (a) Evolution of location
estimates; true source location is where the dashed lines intersect. (b)
Evolution of intensity (top) and activation time (bottom) estimates.

G(N, rcon), where N and rcon are stated for each simulation. We consider the following

scenarios:

Single source estimation: convergence of estimates

Figure 5.7 shows the performance of the distributed estimation algorithm in the single

source setting given noiseless spatiotemporal measurements. Specifically M = 1 and the

true parameters of the source inducing the field are: c1 = 1, ξ1 = (0.113, 0.221) and

τ1 = 1.213s. The induced field is sampled, assuming no measurement noise, using N = 45

randomly placed sensors at a rate 1
∆t

= 1Hz for Tend = 10s. Furthermore, the SN and

associated communication links are modelled by G(N, 0.4). The communication between

the sensors is assumed to be unquantized, hence simple pairwise gossiping is used. In

particular Figure 5.7(a) shows the evolution of the location estimates (solid directed grey

lines), for three randomly chosen sensors, with increasing number of pairwise message

exchanges. As we expect the location estimates progressively tend towards the true source

location. Figure 5.7(b) shows similarly the evolution of the intensity (top) and activation

time (bottom) estimates with each pairwise exchange. The three curves in each plot show

the evolution of the estimates due to (the same) three randomly chosen sensors. Again we

clearly notice, as expected, that the estimates converge to the desired values after several
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Figure 5.8.: Multiple diffusion source estimation over distributed SNs with
noiseless links. The unknown source parameters estimated by each sen-
sor using Algorithm 4.5 is shown for 10 independent trials. Communica-
tion links are ideal, and so messages are unquantized. Furthermore, the
spatiotemporal samples are assumed noisy with SNR= 20dB. Here we use
K = 10 and r = 1. (a) shows one realization of the SN (sensors and
links), the scatterplot in (b) shows the true source locations (blue ‘+’),
their estimates (red ‘×’) and a realization of the sensor locations (green
‘•’), whilst (c) shows the estimated activation times.

pairwise message exchanges.

Multiple source estimation: robustness

Next we evaluate the proposed distributed estimation algorithm in the case of multiple

sources given noisy sensor measurements. Specifically, field induced by M = 3 sources with

parameters c1 = c2 = c3 = 1, ξ1 = (0.113, 0.221), ξ2 = (0.250, 0.170), ξ3 = (0.070, 0.135)

and τ1 = 3.2s, τ2 = 8.1s, τ3 = 15.4s, is sampled at a rate 1
∆t

= 2Hz for Tend = 25s, in the

presence of measurement noise (SNR = 20dB) using a network of N = 63 nodes given by the

RGG G(N, 0.4). In Figure 5.8, we present results from 10 independent trials for this multiple

source setting. Specifically, Figure 5.8(a) shows one realization of the SN, the scatterplot

in Figure 5.8(b) shows estimates of the source locations, whilst Figure 5.8(c) indicates the

112



5.2. Synthetic data simulations and results

estimated activation times at convergence. In line with the theory, the unknown source

parameters are recovered reliably even when the sensor measurements are noisy.

5.2.5. Distributed estimation over sensor networks with noisy channels

The results presented here examine the proposed distributed diffusion source estimation

algorithms for communication constrained inter-sensor channels.

Single source estimation

The single source field with c1 = 1, ξ1 = (0.113, 0.221) and τ1 = 1.213s, is considered.

It is sampled (assuming no measurement noise) with N = 45 randomly placed sensors at
1

∆t
= 1Hz for Tend = 10s. Furthermore, a 10-bit uniform quantizer with dynamic range

[-20,20] is assumed. In Figure 5.9 K = 1, whereas K = 5 in Figure 5.10 for {Q(k, 1)}Kk=0.

Recall that under pairwise symmetric quantized gossip, as discussed in Section 4.5.1,

the sensors in the network converge to a distribution of values. Hence we expect that

the sensor n obtains, in general, a (slightly) different estimate—from the other sensors in

the network—for each estimated source parameter. In the scatterplots of Figure 5.9(b)

and Figure 5.10(b), we plot the source location estimates for each of the 45 sensors in the

network, obtained at convergence, with K = 1 and K = 5 respectively. Observe that the

variance of these location estimates is smaller when K = 5, this is due to the fact that

Prony’s method and its variations are more robust to noise when K is large. Furthermore,

we also show, with each gossip iteration, the evolution of the source location estimates by

three randomly chosen sensors for K = 1 in Figure 5.9(c) and for K = 5 in Figure 5.10(c),

where each trajectory corresponds to evolution of estimates due to one of the three chosen

sensors. Similarly, Figure 5.9(d) and Figure 5.10(d) shows the evolution of the intensity

(top) and activation time (bottom) estimates with increasing number of pairwise message

exchanges, for K = 1 and K = 5 respectively. In both cases the estimates converge with

the variance of the latter being smaller, again due to the increase in estimation accuracy

of Prony’s method for higher values of K.

Multiple source estimation

In the following results, we aim to evaluate the robustness of the proposed distributed source

estimation algorithm for quantized inter-sensor communication. Specifically we consider the

effectiveness of the algorithm at estimating multiple sources in the presence of measurement

noise. The field induced by M = 3 sources—with c1 = c2 = c3 = 1, ξ1 = (0.113, 0.221), ξ2 =

(0.250, 0.170), ξ3 = (0.070, 0.135) and τ1 = 3.2s, τ2 = 8.1s, τ3 = 15.4s—is sampled at a rate
1

∆t
= 2Hz for Tend = 25s, assuming measurement noise with SNR = 20dB using N = 63

randomly deployed sensors. Moreover, the SN is the RGG G(N, 0.4) and a 15-bit uniform

quantizer with dynamic range [-20,20] is assumed.

Figure 5.11 shows results of 10 independent trials for this multiple source scenario. Specif-

ically, in Figure 5.11(a) we show one realization of the SN, the scatterplot in Figure 5.11(b)
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Figure 5.9.: Single diffusion source estimation using distributed SNs with
noisy links (K = 1). We assume noiseless sensor measurements and
Algorithm 4.5 with quantized gossiping is utilized for K = 1 and r =
1. In (a) G(45, 0.4) and in (b) a scatterplot of the location estimates at
convergence. (c) Evolution of location estimates (directed grey lines) along
with the true location (intersection of the dashed lines). (d) Evolution of
source intensity (top) and activation time (bottom) estimates for three
randomly chosen nodes.
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Figure 5.10.: Single diffusion source estimation using distributed SNs with
noisy links (K = 5). We assume noiseless sensor measurements and
Algorithm 4.5 with quantized gossiping is utilized for K = 5 and r = 1.
In (a) G(45, 0.4) and in (b) a scatterplot of the location estimates at con-
vergence. (c) Evolution of location estimates (directed grey lines) along
with the true location (intersection of the dashed lines). (d) Evolution of
source intensity (top) and activation time (bottom) estimates for three
randomly chosen nodes.
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Figure 5.11.: Multiple diffusion source estimation over SNs with noisy links
(quantized gossip). Noisy sensor measurements with SNR= 20dB,
and noisy inter-sensor links are assumed. To estimate the unknowns we
utilize Algorithm 4.5 under quantized gossiping for K = 10 and r =
1 and show results (at convergence) for 10 independent trials. (a) a
realization of G(63, 0.4), whilst in (b) the scatterplot shows the true (blue
‘+’) and estimated (red ‘×’) source locations, along with a typical sensor
distribution (green ‘•’). (c) Estimated activation times due to each sensor
upon convergence.

shows distribution of the estimates of the source locations, whilst Figure 5.11(c) indicates

the distribution of the estimated activation times upon convergence. In these plots we

notice that the estimated source parameters are close to the desired as expected.

5.2.6. Comparing performance: Centralized vs Distributed estimation

We now present some statistical results in order to compare quantitatively the distributed

algorithm with its centralized counterpart.

In Table 5.3, we show the normalized MAE of the estimated diffusion source parameters
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obtained using the centralized and both distributed (unquantized and quantized commu-

nication links) schemes. To obtain the reported statistics, we simulate the field induced

by a single source (M=1), with c1 = 1, τ1 = 1.23s and ξ1 = (0.1130, 0.2210), for T=10s

and sample it with N=45 randomly placed sensors at a frequency 1
∆t

= 1Hz. Next, for

the noisy scenarios, we first corrupt the spatiotemporal samples with AWGN before ap-

plying the centralized, unquantized distributed and quantized distributed algorithms on

the samples to recover the unknown source parameters. We perform the experiment for

different sensor noise levels (i.e. noiseless and SNR= {10, 20}dB), and repeat it 1000 times

(for statistical significance). In each experiment we use a new arbitrary sensor placement

and a new sensor noise realization for the noisy case; the MAE of each parameter is then

computed from the estimates over the 1000 trials. We repeat this for K = 1 and K = 3

(and r = 1 for {Qε(k, r)}Kk=0), to show that the average error decreases gracefully with

increasing K. Moreover, the centralized and unquantized distributed estimation schemes

both perform similarly in all scenarios. In the noiseless case, for instance, when K = 1

the average percentage error in the intensity, activation time and location estimates are

around 8.1%, 12.3% and (4.4%, 2.8%) respectively. The MAEs for all estimates are greater

under quantized communications (q=10 bits and dynamic range of quantizer is [−20, 20])

than the unquantized counterpart. This observation is unsurprising and is a result of the

quantization.3 In this case given noiseless sensor measurements, when K = 1, we observe

average percentage errors of 10.1%, 41.3% and (11.5%, 5.7%) in the estimates of c1, τ1 and

(ξ1,1, ξ1,2) respectively, and a lot of improvement can be gained by increasing K. Going

from K = 1 to K = 3, the errors are roughly halved for all parameters to about 7.4%, 18.5%

and (6.5%, 3.1%) respectively. Given noisy spatiotemporal samples the NMAE, and hence

the percentage errors, for all algorithms increase but this increase can be largely com-

pensated by increasing K. As an example, the average percentage error at 20dB for the

activation time estimate using the quantized distributed estimation drops from around 48%

(at K = 1) to around 28% (at K = 3).

Furthermore, we now compare more closely the performance of the unquantized dis-

tributed and the centralized schemes. Particularly, we use the mean squared error (MSE) of

the estimates produced by each algorithm as a metric for evaluating performance. Moreover

through numerical simulations, we demonstrate that the performance of the unquantized

distributed and centralized schemes coincide (as claimed in Proposition 4.1). To obtain the

MSE, a single source field is simulated with the same setup as the MAE simulations above.

The field samples are then corrupted with AWGN and the desired source parameters are

estimated using both algorithms (centralized and unquantized distributed) with K = 1.

We repeat the experiment 5000 times, with each new trial using a new sensor noise realiza-

tion (but fix the topology). The experiment is repeated for several SNRs and the MSEs of

the estimate are computed and displayed in Figure 5.12 along with the Cramer-Rao bound

(CRB), see Appendix A.1 for an analytic expression of the CRB for this particular single

3This includes quantization errors and in addition since the quantized gossip scheme used only allows the
sensors converge to a distribution of values rather than a single value, this will also introduce errors.
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Figure 5.12.: Performance of the centralized (Algorithm 4.1) and distributed
(Algorithm 4.5) estimation algorithms. A single source field, with
c1=1, τ1=1.213, ξ1=(0.1130, 0.2210) is considered and its source param-
eters are estimated from the (noisy) spatiotemporal samples taken at
1

∆t
=1Hz over T=10s using N=45 sensors, with the spatial sensing func-

tion family chosen such that K = 1. We show the MSE of the centralized
and distributed algorithms computed using results from 5000 indepen-
dent trials for varying signal-to-noise ratios: in (a) MSE of ξ1,1, (b) MSE
of ξ2,1 and, (c) MSE τ1.

Table 5.3.: Normalized MAE of the centralized (Algorithm 4.1) and dis-
tributed (Algorithm 4.5) estimation algorithms. The induced single
(M = 1) source field, with c1=1, τ1=1.213, ξ1=(0.1130, 0.2210), is sampled
at 1

∆t
=1Hz over T=10s using N=45 sensors. The samples are corrupted

with AWGN to obtain the specified SNR. We choose r = 1 and K = 1
and K = 3 for the estimation algorithms and present the normalized MAE
statistic computed with results from 1000 independent trials at the chosen
SNR levels.

Centralized Unquantized (distr.) Quantized (distr.)

K=1 K=3 K=1 K=3 K=1 K=3

N
o

n
o
is

e

cm 0.0811 0.0683 0.0811 0.0684 0.1017 0.0740

τm 0.1375 0.1277 0.1231 0.1128 0.4127 0.1883

ξ1,m 0.0439 0.0306 0.0439 0.0306 0.1151 0.0644

ξ2,m 0.0285 0.0219 0.0285 0.0219 0.0571 0.0313

2
0d

B

cm 0.4385 0.1025 0.4385 0.1026 0.5939 0.1030

τm 0.2794 0.2565 0.2583 0.2267 0.4928 0.2887

ξ1,m 0.0861 0.0611 0.0861 0.0620 0.1893 0.0767

ξ2,m 0.0600 0.0415 0.0600 0.0415 0.1040 0.0451

10
d

B

cm 0.2417 0.2027 0.2417 0.2031 0.2785 0.2171

τm 0.7132 0.7310 0.6952 0.7102 0.8321 0.7240

ξ1,m 0.2081 0.1808 0.2081 0.1874 0.2627 0.1951

ξ2,m 0.1135 0.0990 0.1135 0.0995 0.1310 0.1037
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5.2. Synthetic data simulations and results

source estimation problem. The location plots for each dimension are shown in Figure 5.12

(a) and (b) respectively, whilst the MSE for the activation time with its CRB is shown in

Figure 5.12(c). We can see that the CRB is approximately achieved using both schemes

and more importantly the performance (MSEs) of both schemes exactly coincide for the

range of SNRs of interest.

5.2.7. Estimating field sources in rooms

We simulate the diffusion field in a square region, using the well-documented method of

image sources, which is based on the introduction of virtual sources to model reflections

due to the edges of the room. The edges of the bounded region are assumed to be perfectly

insulating, so that the field incident upon them is reflected back (i.e. it does not leak out

of the region through its walls). The resulting field therefore diffuses through the square

medium as shown in Figure 5.13.

We present results in Figure 5.14 which shows that our algorithm is able to recover the

multiple diffusion field sources even when they are in a bounded region.

(a) Time t = 20s (b) Time t = 50s

Figure 5.13.: Diffusion in bounded region. Spatial field distribution of a single
source in a bounded square region at different time instants after source
activation.
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Figure 5.14.: Multiple diffusion source estimation in a bounded region. The
M = 3 diffusion sources have c1 = c2 = c3 = 1, ξ1 = (0.113, 0.221), ξ2 =
(0.234, 0.175), ξ3 = (0.070, 0.100), and τ1 = 3.2s, τ2 = 8.1s, τ3 = 15.4s.
The field induced is sampled at 1

∆t
= 2Hz for Tend = 25s, using 45 sensors

placed randomly inside the square room. The samples have SNR= 20dB.
Estimation is performed using Algorithm 4.4 with K = 11 and r = 1.
The estimated locations (left) and activation times (right) are shown.
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Figure 5.15.: Real data experimental setup.
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Figure 5.16.: Measurements of two monitoring sensors obtained at different
spatial locations. The dotted vertical line in each plot indicates the
instant of source activation.
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Chapter 5. Simulation results

5.3. Real data experiments

In this section, we utilize real temperature data measurements obtained using a thermal

imaging camera to further validate the proposed source estimation algorithms. Firstly, we

outline the experimental set-up by providing a brief overview of how the thermal spatiotem-

poral samples are obtained and then we present some estimation results obtained when the

proposed algorithms are applied on the measured data.

5.3.1. Acquiring the experimental data

In this experiment, a silicon wafer disc of diameter d = 0.1m is used as the diffusion

medium. The wafer is placed s = 0.22m from a thermal camera, with the disc lying on the

focal plane of the camera; this arrangement, shown in Figure 5.15, allows us to measure the

entire surface temperature of the silicon plate. We obtain thermal recordings of the disc,

at specified frame rates (we use 10Hz and 25Hz). Then a heat gun, with a 1mm nozzle, is

used to apply a localized and instantaneous initial heat source on the reverse side of the

silicon plate (i.e. the face opposite that seen by the camera). We continue recording the

thermal images for 15s. We pre-process the recordings by averaging the first few frames

and subtracting this average from all frames in the video. This has the effect of imposing

the initial temperature distribution of ≈ 0◦C at all spatial locations at time t = 0s.4

The camera is properly calibrated so that true xy-locations can be assigned to the 384×
288 pixels of each frame. Then spatial sampling, in our setup, corresponds to obtaining

samples at a few (specified) pixel locations, and these spatial locations are chosen randomly.

The temporal evolution of two such sensors are shown in Figure 5.16. Moreover, the true

value of the source location is the center of the region where the heat source is first observed.

For the true activation time, since the frame rate is known, we assume that the source is

activated at the frame where we first observe a hot region minus half the sampling interval.

5.3.2. Source estimation over centralized SNs: real data

The results of our experimentation with real thermal data are summarized in what follows.

Figure 5.17(a) shows the complete temperature distribution of the monitored region im-

mediately after source activation with the hottest (light) region of the map indicating the

true source location. Furthermore, we show the estimated source location using a red cross

‘×’; this estimate has been obtained by applying our proposed algorithm on spatiotempo-

ral measurements obtained at the 13 locations marked by black circles ‘◦’. Note that the

sampling frequency f = 1
0.52Hz, of the sensors in this experiment is much lower than the

frame rate of the camera. This is achieved by downsampling the actual time measurements.

To demonstrate the robustness of the algorithm to the choice of sensor locations, we

draw randomly a new set of 13 locations and apply Algorithm 4.1 (with M = 1) on the

4Note that, due to external factors, we obtain noisy non-zero measurements as seen in Figure 5.16 and
Figure 5.17(a).
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5.3. Real data experiments

new spatiotemporal samples. This experiment is repeated 20 times and a scatterplot of

the estimated source location and the activation time estimates is shown in Figure 5.17(b).

The obtained estimates vary marginally about the true values. For statistical significance,

we repeat this experiment 1000 times and present the MAE of the location and activation

time estimates in Table 5.4. For the location estimates the MAEs are small compared

to the dimensions of the monitored region, and also smaller than the average inter-sensor

separation. Similarly, the normalized MAE of the activation time is around 0.0867, which

is almost an order of magnitude smaller than the temporal sampling interval (0.52s). Hence

on average we observe an absolute error of around 8.67% on the activation time estimates.
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Figure 5.17.: Centralized estimation of a single instantaneous heat source us-
ing real thermal data. Samples are obtained from the thermal images
by choosing 13 spatial locations (the circles ‘◦’ in plots (a) and (b)) at
random, and then downsampling so that f = 1

0.52 ≈ 1.9231Hz over the
interval Tend = 12s. The true source parameters ξ1 = (0.0594, 0.0298)m
and τ1 = 1.7800s. We use Algorithm 4.1 and choose K = 11. (a) Ther-
mal image immediately after activation, sensors ‘◦’ and estimated source
locations ‘×’. (b) Summary for 20 repetitions, estimated source locations
(‘×’ left) and activation times (right).
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Chapter 5. Simulation results

We now consider recordings of different source set-ups. Spatiotemporal measurements

are taken for different source activation times and locations; then we attempt to recover

the source parameters for each data set using our method. The estimates are presented,

alongside their true values, in Table 5.5, we observe that for each new experiment the

parameter estimates remain close to the true values.

Table 5.4.: MAE of centralized single source parameter estimates on real thermal
data. Field induced by point instantaneous source (τ = 1.7800s and ξ =
(0.0594, 0.0298)m) and its spatiotemporal samples are obtained at f = 1

0.52 ≈
1.9231Hz, over Tend = 12s. The MAEs are computed from 1000 independent
trials. Here K = 11 and r = 1 is used for Algorithm 4.1.

Source Parameter

ξ1 ξ2 τ

MAE 0.0036 0.0050 0.1544

Table 5.5.: Centralized source estimation results for six independent read data
set-ups. In each experiment the recording is downsampled so f = 1

0.52Hz and
f = 1

0.5Hz for Expts. I–II and III–VI, respectively. 13 locations are chosen
randomly as sensor positions. We estimate the unknowns from samples over
Tend = 12s. The true parameters and corresponding estimates obtained by
Algorithm 4.1 using K = 11 are shown.

Ground truth Estimate Absolute error

Experiment I

ξ1 0.0697 0.0664 0.0033

ξ2 0.0310 0.0361 0.0051

τ 8.7800 8.7883 0.0083

Experiment II

ξ1 0.0594 0.0590 0.0004

ξ2 0.0298 0.0347 0.0049

τ 1.7800 1.8933 0.1133

Experiment III

ξ1 0.0600 0.0589 0.0011

ξ2 0.0377 0.0451 0.0074

τ 5.3500 5.5767 0.2267

Experiment IV

ξ1 0.0606 0.0596 0.0010

ξ2 0.0347 0.0323 0.0024

τ 6.2500 6.4667 0.2167

Experiment V

ξ1 0.0582 0.0671 0.0089

ξ2 0.0359 0.0371 0.0012

τ 5.3500 5.8917 0.5417

Experiment VI

ξ1 0.0585 0.0629 0.0044

ξ2 0.0365 0.0359 0.0006

τ 4.9500 5.1833 0.2333
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5.3. Real data experiments

5.3.3. Source estimation over distributed SNs with quantized channels:

real data

Figures 5.18 and 5.19 both summarize the performance of our proposed distributed source

recovery method over quantized communication channels. In particular, Figure 5.18 shows a

summary of the results when multiple independent experiments, with different sensor place-

ments, are carried out. Figure 5.18(a) visualizes one realization of the SN. The scatterplot

in Figure 5.18(b) shows the estimated source locations of each trial, whilst Figure 5.18(c)

shows the estimated activation times. We see that estimates vary only marginally around

the true values, suggesting that the proposed recovery algorithm remains robust to the

sensor distribution. Furthermore, in Figure 5.19(a) the complete thermal distribution of

the monitored region is shown immediately after source activation, where the epicentre of

the hot (lighter) region indicates the true source location. We use measurements from the

chosen sensors to estimate the source parameters and then reconstruct the field (from these

estimates). For comparison the reconstructed field is shown alongside the noisy recorded

field for some specific time instants in Figure 5.19.
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Figure 5.18.: Distributed single source estimation with real thermal data.
The RGG, scatterplot of the locations and activation times estimated
by the sensors are shown for each independent trial. The distributed
estimation is performed by SNs with noisy communication links using
Algorithm 4.5 under quantized gossiping, such that a 15−bit uniform
quantizer with dynamic range (−1, 1) is used.
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(a) Thermal distribution (just after activation) and ξ1 estimates

(c) Real field (left) and reconstruction (right) at 8.2s

x1

x
2

Initial thermal distr.

0 0.02 0.04 0.06 0.08 0.1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x1

x
2

0 0.02 0.04 0.06 0.08 0.1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x1

x
2

0 0.02 0.04 0.06 0.08 0.1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x1

x
2

0 0.02 0.04 0.06 0.08 0.1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x1

x
2

0 0.02 0.04 0.06 0.08 0.1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x1

x
2

0 0.02 0.04 0.06 0.08 0.1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x1

x
2

0 0.02 0.04 0.06 0.08 0.1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(b) Real field (left) and reconstruction (right) at 7.1s

(d) Real field (left) and reconstruction (right) at 10.2s

Figure 5.19.: Sensor distribution, location estimates and the field reconstruc-
tions. Source is located at (0.06058, 0.03465) and activated at τ = 6.25s.
A 15−bit uniform quantizer with dynamic range (−1, 1) is used, whilst
the estimation is performed with Algorithm 4.5 under quantized gossip-
ing for the choice K = 5 and r = 1.
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5.4. Summary and conclusions

5.4. Summary and conclusions

The main content of this chapter was dedicated to the verification and assessment of the

sensor network algorithms proposed in Chapter 4 using numerical simulations. In particular

we presented numerical simulations results carried out on synthetic data to demonstrate

the robustness of the proposed method even in the presence of noise and other model

mismatches. Furthermore, we have also validated our algorithm using real thermal data

obtained experimentally. Specifically, we have shown that we can also successfully recover

the unknown source parameters given real thermal data as well as achieve an alias-free

reconstruction of the entire field in space and time.
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Chapter 6.

Universal framework for physics-driven

inverse source problems

6.1. Introduction

In Chapter 3 we showed that given a proper sequence of generalized measurements it is

possible to recover the unknown parameters for a specific class of source distributions.

We will revisit this concept in the current chapter, herein however, our motive will be

to devise a generalization of the the previous approach to one that is capable of solving

a more “general” class of inverse source problems. Doing this, as we will see, allows us

to: firstly, develop a unified framework for solving the higher dimensional inverse source

problem; specifically we will be able to transition from solving just the two-dimensional

problem to also solving the three-dimensional one. Secondly and more importantly, we

obtain a powerful result which generalizes our previous source estimation approach to solve

the inverse source problem for a wider class of PDEs—such as (6.1) and (6.5) for instance—

rather than just the two-dimensional diffusion equation (3.2).

The source estimation schemes proposed in Chapter 3 can be essentially summarized in

the following two steps:

1) compute the sequence of generalized measurements {Q(k, r)}k, for some fixed r by

evaluating a specific family of integrals (3.17); and then,

2) apply Prony’s method to {Q(k, r)}k (or some properly modified version of it) to retrieve

the unknown source parameters.

The first step, which involves evaluating integrals, can generally be interpreted as taking

properly weighted sums of the sensor measurements. Exploring this new idea enables us

to show that the weighted sums yield the desired generalized measurements, when these

weights coincide with those that reproduce exponentials from weighted translates of a

certain prototype function. As we will see this prototype function is exactly the space- and

time-reversed Green’s function of the PDE model for the monitored physical phenomenon.

This new interpretation highlights an otherwise subtle link between inverse source problems

and modern sampling theory, and so paves the way for the main contributions of the present

chapter, which we organise as follows.
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6.2. Physics-driven inverse problems: Problem formulation

In Section 6.2 we give a brief account of some common linear, constant coefficient PDEs

encountered in reality and state the related inverse source problem. Next, we begin Sec-

tion 6.3 by arguing that in order to fully exploit the new interpretation, we will need to refine

our choice of sensing functions. Hence we discuss and state explicitly our new choice of

“multidimensional” spatial sensing functions for the 2-D and 3-D problems, i.e. d = {2, 3}.
Additionally, we argue that these new sensing functions directly invalidate the family of

integrals (3.17) and hence evaluating them no longer gives the desired generalized measure-

ments. Consequently, inspired by certain results from modern sampling theory, we explore

a new approach for computing the desired generalized measurements in Section 6.4, using

proper linear combinations of the sensor data. In particular we demonstrate that taking

these proper linear combinations leads to the well-known problem—of exponential repro-

duction using translates of a prototype function—encountered in approximation theory and

in the finite rate of innovation (FRI) framework; where the prototype function, also called

the generator, coincides with the space- and time-reversed Green’s function of the physi-

cal field. Therefore leveraging from results in those domains, in particular the exact and

approximate Strang-Fix conditions, we provide corresponding conditions on the Green’s

function under which this exponential reproduction problem can either be solved exactly

or approximately. We will see that the approximate exponential reproduction framework

leads to a more flexible way to analyse and solve inverse source problems relating to a wider

class of PDE-driven phenomena, therefore, extending the framework of Chapter 4, which is

suitable only for IDSPs. In Section 6.5, we properly adapt this new framework to solving

ISPs using sensor networks, considering both uniform and nonuniform sensor placements.

Moreover we develop explicit centralized and distributed estimation strategies whilst taking

into account the usual limitations of typical SNs, such as noise and the impossibility of real-

ising a spatial antialiasing filter. However, since filtering in the time domain is allowed, we

show how to exploit this property, such that we may alter the underlying Green’s function

in a way that is more amenable to our new approach. Then in Section 6.6, we provide nu-

merical simulation results to validate the new framework. Finally we conclude this chapter

in Section 6.7 by drawing some comparisons between the framework of Chapter 4 and the

present one.

6.2. Physics-driven inverse problems: Problem formulation

We use the term physics-driven to refer to phenomena, in particular physical fields, that

are governed by linear PDEs with constant coefficients. Typical examples of these fields

and their respective PDE models are:

1. Poisson’s equation: is encountered frequently in many situations arising in physics

such as the fields of electrostatics, (Newtonian) gravitation and so on. Mathemati-

cally, it can be written as

∇2u(x, t) = f(x, t). (6.1)
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Chapter 6. Universal framework for physics-driven inverse source problems

The Green’s function for this PDE in 2D (i.e. d = 2) is,

g(x) =
1

2π
log(‖x‖) . (6.2)

Whilst for d = 3 the Green’s function becomes,

g(x) = − 1

4π‖x‖
. (6.3)

2. Diffusion equation: as previously discussed, this PDE is of the form ∂
∂tu(x,t) =

µ∇2u(x,t)+f(x,t), with the following Green’s function when d = {2, 3}:

g(x, t) =
1

(4πµt)d/2
e
− ‖x‖

2

4µt H(t), (6.4)

where H(t) is the unit step function.

3. Wave equation: describes many situations arising in acoustics, electromagnetism

and so on. The wave equation is given by:

∇2u(x, t)− 1

c2

∂2

∂t2
u(x, t) = f(x, t), (6.5)

where the wave field u(x, t) induced by the source distribution f(x, t) propagates

through the medium at a speed c. The Green’s function for the 2-D wave equation

(i.e. d = 2) is given by:

g(x, t) =
c

2π
√
c2t2 − ‖x‖2

H(ct− ‖x‖). (6.6)

Moreover, when x ∈ R3 (i.e. d = 3), it can be shown that:

g(x, t) =
1

4π‖x‖
δ(t− ‖x‖/c). (6.7)

The corresponding Green’s functions stated for the examples above assume a Sommerfeld

radiation condition, i.e. a quiescent condition at an initial time such that u(x, t)|t=0 =
∂
∂tu(x, t)

∣∣
t=0

= 0 and a convergence condition at infinity meaning that u(x, t)|‖x‖→∞ =

∂
∂x1

u(x, t)
∣∣∣
‖x‖→∞

= ∂
∂x2

u(x, t)
∣∣∣
‖x‖→∞

= 0. See, for example, [152, 62] for the derivation of

these expressions.

In the present chapter, we study the discrete inverse source problems for such phenomena.

In particular, given access only to spatiotemporal samples of such fields (obtained using

an appropriate sensor network1), we will present a universal framework for recovering the

unknown sources inducing the field, therefore solving the corresponding discrete ISP.

Recall that for a d-dimensional homogeneous and isotropic region Ω ⊂ Rd, we can write

1For instance using a suitable microphone array for audio fields.
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the following expression for linear PDEs with constant coefficients:

u(x, t) = (g ∗ f)(x, t), (6.8)

where g(x, t) is the Green’s function of the PDE model for the underlying phenomena such

as, but not limited to, those stated above.

We can now precisely state the (inverse source) problem considered here:

Problem 6.1. Let S = {xn}Nn=1 denote a network of N sensors, so that the n-th sensor

situated at xn collects samples ϕn(tl) = u(xn, tl) of the field u, at times tl for l = 0, 1, . . . , L.

Given these spatiotemporal samples, and knowledge of the Green’s function of the field, we

intend to estimate the unknown source distribution f(x, t).

6.3. Choosing the sensing functions: source estimation from

generalized measurements

Consider now the following scenario.

Example 6.1. We wish to estimate a point source in 3-D, such that x = (x1, x2, x3) ∈ R3

and ξm = (ξ1,m, ξ2,m, ξ3,m) ∈ R3 with the usual parametrization, using the inner prod-

uct 〈f(x, t),Γr(t)Ψk(x)〉. We immediately realize that this might be problematic, since

〈f(x, t),Γr(t)Ψk(x)〉 =
∑

m cme
−jrτm/T e−k(ξ1,m+jξ2,m) does not contain ξ3,m; hence we stand

no chance of recovering it from {Q(k, r)}k. To resolve this we may simply replace Ψk(x)

with Ψk1,k2(x) = e−k1(x1+jx2)−jk2x3, so the inner product becomes 〈f(x, t),Γr(t)Ψk1,k2(x)〉 =∑
m cme

−jrτm/T e−k1(ξ1,m+jξ2,m)−jk2ξ3,m, thus for each value of r we obtain the 2-D sequence

{Q(k1, k2, r)}k1,k2. This new sequence is governed by a multidimensional Prony-like system

and can be solved to find all the unknown parameters.2

Thus the problem of inferring the unknown source parameters from the generalized mea-

surements can be ill-posed if we do not select the (spatial) sensing functions properly.

Consequently, we anticipate that our particular choice(s) will be two-dimensional with re-

spect to its index, i.e. it will be indexed by the 2-D vector k = (k1, k2) ∈ N2 just like we

did in the example.

We therefore end up with the following multidimensional sequence of generalized mea-

surements,

Q(k, r) = 〈f(x, t),Ψk(x)Γr(t)〉x,t , (6.9)

where {Ψk(x)}k∈N2 and {Γr(t)}r∈N, are families of properly chosen spatial and temporal

sensing functions respectively. In what follows, we first discuss how to choose the sensing

functions and then we show that the family of integrals discussed in Chapter 3 are no longer

2For example, we can set k2 = 0 and solve the resulting system using Prony’s method to obtain
{cm, τm, ξ1,m, ξ2,m}m and then repeat with k1 = 0 to get {cm, τm, ξ3,m}m. Moreover, we may also
use the ACMP method described in Section 2.2.3.
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valid, for computing the generalized measurements, under these new choices of sensing

functions.

Herein, the focus will predominantly be on fields induced by localized and instantaneous

sources. For the reader’s convenience, we restate the model describing M such sources, i.e.:

f(x, t) =

M∑
m=1

cmδ(x− ξm, t− τm), (6.10)

where cm, τm ∈ R are the intensity and activation time of the m-th source respectively,

situated at ξm = (ξi,m)di=1 ∈ Rd. The extension to non-instantaneous point sources, (3.8),

is reasonably straightforward by using Q(k, 0) as described in Section 3.4.2. Although the

case of non-localized sources, defined in Section 3.3.2, is not fully explored and is deferred

to future works in the area.

The problem of recovering such sources now becomes one of estimating all M triples

{cm, τm, ξm}Mm=1. We first observe that for this source distribution, the inner product (6.9)

reduces to:

Q(k, r) =
M∑
m=1

cmΨk(ξm)Γr(τm). (6.11)

Hence, our current task is to select Ψk(x) and Γr(t) so that we can recover {cm, τm, ξm}Mm=1

from {Q(k, r)}k,r. As usual we propose the use of exponentials as this choice promotes

stability and also results in an algebraically coupled power-sum series, which can be solved

efficiently using multidimensional variations of Prony’s method as discussed in Section 2.2.3

(see also [140, 104]). We examine explicitly the d = 2 and d = 3 cases below:

1. Sensing in time and 2-D space: In this case t ∈ R+ and x = (x1, x2) ∈ R2. A

valid temporal sensing function is Γr(t) = ejrt/T , where T = tL i.e. the instant at

which the sensors measure the last sample of the field. Whereas for k
def
= (k1, k2) ∈ Z2,

we choose the spatial sensing function Ψk(x) = ejk1x1+jk2x2 . This choice turns (6.11)

into:

Q(k, r) =
M∑
m=1

cme
jrτm/T ejk1ξ1,m+jk2ξ2,m . (6.12)

Notice that if we allow k1 to be imaginary and impose, k1 = −jk2 = jk we obtain the

usual Q(k, r), so this new sensing function is a generalization.

In fact, when we use this particular sensing function in 2-D, then the results obtained

for restoring the sum of exponentials structure of Q(k, r) for our non-localized source

models (see Section 3.4.3) still hold in this new framework. This is not true however,

for general 2-D sensing function choices.

2. Sensing in time and 3-D space: In this case x = (x1, x2, x3) ∈ R3, Γr(t) = ejrt/T

132



6.4. Multidimensional generalized measurements from sensor data

as before, but Ψk(x) = ek1(x1+jx2)+jk2x3 . Given this choice,

Q(k, r) =
M∑
m=1

cme
jrτm/T ek1(ξ1,m+jξ2,m)+jk2ξ3,m . (6.13)

We remark that the following: Ψk(x)=ejk1x1+k2(x3+jx2),Ψk(x)=ek1(ξ1,m+jξ3,m)+jk2ξ2,m

and Ψk(x)=ek1(x1+jx2)+k2x3 would also be valid choices.

Notice now that, for some fixed r 6= 0, in particular r = 1, (6.12) and (6.13) are of the

form:

Q(k, 1)
def
= Q(k1, k2, 1) =

M∑
m=1

bmu
k1
mv

k2
m ,

where in the case of (6.12) bm = cme
jτm/T , um = ejξ1,m and vm = ejξ2,m , whilst for (6.13)

bm = cme
jτm/T , but now um = e(ξ1,m+jξ2,m) and vm = ejξ3,m . Both systems are therefore

coupled (multi-dimensional) Prony-like systems, which can be solved using Algebraically

Coupled Matrix Pencil (ACMP) method (see Section 2.2.2 or the references [104, 149])

to find jointly {cm, τm, ξm}Mm=1 from {Q(k, 1)}k with k1 =, 1, . . . ,K1 and k2 =, 1, . . . ,K2,

when K1,K2 ≥ 2M .

Having seen how we may estimate the unknown point source parameters from the gen-

eralized measurements, we can now focus on computing these generalized measurements

from the sensor data. In Chapter 3, it was shown that these sequence of generalized mea-

surements are governed by a corresponding family of definite integrals (3.17) (see Propo-

sition 3.1). Therein, the proof of the proposition relied on the analyticity of the spatial

sensing function, specifically we required that ∇2Ψk(x) = 0. Unfortunately for these new

and more general choice of spatial sensing functions the above analyticity property is no

longer valid, i.e.

∇2Ψk(x) 6= 0.

Therefore we cannot compute Q(k, r) from (3.17) by simply replacing the old sensing

function with the new ones. Consequently we present a new approach for computing these

generalized measurements from the sensor data in the next section.

6.4. Multidimensional generalized measurements from

sensor data

Although the family of definite integrals (derived in Chapter 3) and their quadrature-based

approximations (in Chapter 4) no longer yield the correct generalized measurements, in this

new multidimensional setting, they still highlight a very useful and important considera-

tion. Specifically, the integrals themselves and their approximations, are linear in the field

measurements; and so evaluating them can be seen simply as computing a proper linear

combination of the field measurements. Therefore we may take advantage of this result to
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write the following summation,

N∑
n=1

L∑
l=0

wn,l(k, r)ϕn(tl) = Q(k, r), (6.14)

where the goal is now to find the correct weights {wn,l(k, r)}n,l, such that our inner product

structure (6.9) is still preserved, for each k ∈ N2 and r ∈ N. The following results from

this consideration.

Proposition 6.1. Computing the multidimensional sequence of generalized measurements

{Q(k, r)}k, in (6.9) for each r ∈ N, using weighted linear combinations (6.14) of the

sensor data ϕn(tl) is equivalent to reproducing the function Ψk(x)Γr(t) from space- and

time-reversed translates of the Green’s function g(x, t) of the underlying field. Furthermore

when Ψk(x) and Γr(t) are chosen to be exponentials, this results in a multidimensional

exponential reproduction problem.

Proof. We commence this proof by noting that the sensor measurements, u(xn, tl), can be

re-written, using (6.8), as follows:

u(x, t) = f(x, t) ∗ g(x, t)

=

∫
x′∈Rd

∫
t′∈R

g(x′, t′)f(x− x′, t− t′) dt′dx′

= 〈f(x′, t′), g(x− x′, t− t′)〉x′,t′ .

where x′ = (x′1, x
′
2, . . . , x

′
d) ∈ Rd and dx′ =

∏d
i=1 dx′i. Consequently, the discrete measure-

ment obtained by the n-th sensor (situated at xn) at some time instant tl ≥ 0 is

ϕn(tl) = u(xn, tl) = 〈f(x, t), g(xn − x, tl − t)〉x,t. (6.15)

Substituting the expression (6.15) into the weighted sum (6.14) of the spatiotemporal

sensor measurements, {ϕn(tl)}n,l, produces the expression:

∑
n∈N

L∑
l=0

wn,l(k, r)ϕn(tl) =
∑
n∈N

L∑
l=0

wn,l(k, r)u(xn, tl)

=
∑
n∈N

L∑
l=0

wn,l(k, r) 〈f(x, t), g(xn − x, tl − t)〉x,t

=

〈
f(x, t),

∑
n∈N

L∑
l=0

wn,l(k, r)g(xn − x, tl − t)

〉
x,t

, (6.16)

where {wn,l(k, r)}n,l ∈ C are the specific sequence of weights we wish to compute3. In

3In the last equality, we are able to pass the summation inside the inner product because it is finite. If
it were infinite then we would require that the sum converges absolutely; which is ensured if g and its
translates form a Riesz basis.
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particular if we require this weighted sum of the sensor data to yield the exact multidi-

mensional measurements,
∑

n∈N
∑L

l=0wn,l(k, r)ϕn(tl) = Q(k, r) = 〈f(x, t),Ψk(x)Γr(t)〉x,t,
then by comparing the inner products in (6.9) and (6.16), we realize that we must choose

the sequence of weights {wn,l(k, r)}n,l such that, for each k and r, the identity

∑
n∈N

L∑
l=0

wn,l(k, r)g(xn − x, tl − t) ≡ Ψk(x)Γr(t) (6.17)

is satisfied. This proves the first claim of the proposition.

The second statement follows immediately. If we impose the choice of sensing functions

of Section 6.3, where: for d = 2, Ψk(x) = ejk1x1+jk2x2 and Γr(t) = ejrt/T , (6.17) reduces to

∑
n∈N

L∑
l=0

wn,l(k, r)g(xn − x, tl − t) = ejk1x1+jk2x2ejrt/T ; (6.18)

whilst, for d = 3, Ψk(x) = ek1(x1+jx2)+jk2x3 and Γr(t) = ejrt/T , (6.17) reduces to

∑
n∈N

L∑
l=0

wn,l(k, r)g(xn − x, tl − t) = ek1(x1+jx2)+jk2x3ejrt/T . (6.19)

A closer inspection of (6.18) and (6.19) above, allows us to rewrite the 2-D and 3-D

problems in a more compact vector form as follows:∑
n,l

wn,l(k, r)g(xn − x, tl − t) = eκ·x+ρt, (6.20)

where κ = jk or κ = (k1, jk1, jk2) respectively and ρ = jr/T . In both cases, therefore,

we observe that the required coefficients are those that reproduce the (d+ 1)-dimensional

(space and time varying) exponentials by summing translates of g(−x,−t) – the Green’s

function of the underlying field u(x, t). This completes the proof.

Thus if we had access to the precise coefficients {wn,l(k, r)}n,l, capable of reproducing

exponentials from the translates of g(x, t), all we would need to do is evaluate the sequence

{Q(k, r)}k for a fixed r 6= 0 using (6.14) and from it extract the unknown source parameters

as described in Section 6.3. Therefore the missing piece in our framework is how to obtain

the exponential reproducing coefficients. For this missing piece, it is important to under-

stand if the approximation is possible and how accurate it is, before deriving algorithms to

find it. We devote the remainder of this section to these three points.

First, we will leverage from results on generalized sampling and approximation theory

to outline the conditions for which an exact or an approximate reproduction is achievable.

Second, for both (exact and approximate) scenarios, we derive closed-form formulae for

computing the “best” weights wn,l(k, r) when the translates of the approximant are assumed

to be on a regular lattice. In the sensor network setup this is equivalent to having uniform

135



Chapter 6. Universal framework for physics-driven inverse source problems

spatiotemporal sampling with positive sampling intervals ∆x = (∆x1 ,∆x2 , . . . ,∆xd) and

∆t. Finally in the nonuniform sampling case, where it is generally not possible to obtain

simple closed expressions for the desired exponential reproducing coefficients wn,l(k, r), we

propose two approaches:

1. Formulating and solving the linear system that comes from discretizing (6.20).

2. Interpolating and then resampling the sensor data uniformly, so as to permit the use

of the formulae derived in the case of uniform shifts.

6.4.1. Function spaces, generalized sampling and function approximation

Recall that, in the generalized (uniform) sampling paradigm—see Section 2.2 or [138, 9,

8, 143, 151] and references therein— the primary goal is to reconstruct some function of a

continuous variable from a discrete set of measurements collected on a (uniform) set of grid

points. Often, this reconstruction will be an approximation of the original signal in some

signal/function spaces. Furthermore a desirable property of this approximation is such

that, in the limit, as the “density” of the sampling grid points increases the approximation

error should vanish, at least for a well-behaved function.

Precisely if a d-dimensional generating function s whose uniform translates yields the

vector space V∆x(s) = spann∈Zd {s (x/∆x − n)}, then any function ĥ(x) necessarily in the

space V∆x(s) ⊂ L2 is characterized by the sequence of coefficients an, such that:

ĥ(x) =
∑
n∈Zd

ans (x/∆x − n) . (6.21)

In fact for this series to make sense, that is if we want to have this continuous-discrete

representation4, then:

(i) For convergence, {an}n must be square-summable.

(ii) For uniqueness and stability of this discrete representation, so that V∆x is a well

defined subspace of L2, {s(x− n)}n must form a Riesz basis of, V1(g), the space

formed from integer shifts (i.e. ∆xi = 1 for any i = 1, . . . , d).

(iii) Finally, s(x) must satisfy the partition of unity condition∑
n∈Z

s(x + n) = 1, (6.22)

for all x ∈ Rd; which guarantees that by choosing ∆x in (6.21) sufficiently small, we

can approximate any function ĥ(x) as closely as we want. A detailed proof of this

fact can be found in [143, Appendix B].

4A representation that gives a useful correspondence, for the purposes of signal processing, between s(x)
a function over the continuous variable x and an defined over a discrete set n.
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If we instead want to reconstruct some signal h(x) ∈ L2 \V∆x , then the reconstruction ĥ(x)

as in (6.21) should give the best approximation of h(x) in the space V∆x . In that, it is the

approximation that minimizes the approximation error in the least-squares sense. Then we

must pick the coefficients an = 〈h(x), s̃ (x/∆x − n)〉, where s̃ is the dual of s given by [25],

ˆ̃s(ω) =
ŝ(ω)∑

n |ŝ(ω + 2πn)|2
,

and ŝ(ω) = Fx{s} =
∫
x s(x)e−jω·xdx denotes the multidimensional Fourier transform of s.

Please also note that in the rest of this thesis, we assume that all transforms are taken in

the sense of distributions.

In the sensor network setting we are seeking the specific coefficients {wn,l(k, r)}n,l that

reproduce the exponential function using shifted versions of the Green’s function of the

underlying physical field. Hence this is a special case of the above, where: (i) the signal we

want to reconstruct is a specific (d+ 1)-dimensional exponential (i.e. eκ·x+ρt), and (ii) the

sampling kernel/acquisition device is fixed and dictated by the underlying PDE. In fact as

we have shown in Proposition 6.1, it is precisely the Green’s function of the PDE. Under

these conditions we want to find the best discrete representation, of the exponentials, in

the space spanned by the translates of the Green’s functions. This scenario shares some

similarities with problems which have been previously studied in approximation theory.

Therefore we can borrow from tools found therein, at least in the case of uniform shifts.

6.4.2. Exact and approximate Strang-Fix theory for exponential

reproduction from uniform translates

We summarize the specific results from Strang-Fix theory that will be of interest to us in

the lemma stated after these definitions.

Definition 6.1 (HpC space). We denote by HpC , the space of compactly supported functions

whose derivatives up to (and including) the order p ≥ 0 are in L2 (i.e. square-integrable).

Definition 6.2 (Bilateral Laplace transform). The multidimensional bilateral Laplace trans-

form G(sx, st) of a signal g(x, t) is given by,

G(sx, st) =

∫
t∈R

∫
x∈Rd

g(x, t)e−(x,t)·(sx,st)dxdt. (6.23)

Lemma 6.1 (Generalized Strang-Fix conditions [83]). If a function s(x) ∈ HpC then the

following conditions are equivalent:

1. For any |α| ≤ p,

S(κ) 6= 0, whilst S(κ+ j2πn) = 0, (6.24)

if n ∈ Zd \{0}, where 0 = (0, 0, . . . , 0) is the zero d-vector..
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2. Exponential reproducing: for some coefficients an ∈ C,∑
n∈Zd

ans(x− n), (6.25)

is an exponential in x, i.e.
∑
n∈Zd ans(x− n) = Ceκ·x, for some C 6= 0.

Proof. See Section B.1 for a proof which is a modification of that given in [141] by extending

the argument of [145] to multiple dimensions.

The assumption of compactness here ensures that the bilateral Laplace transform exists,

and so the conditions (6.24) are well-defined. It also ensures that (6.25) converges. However,

it has been demonstrated that this assumption is sufficient, but not necessary for the

equivalence in Lemma 6.1 to hold. Significant efforts have been made to extend the Strang-

Fix results for noncompactly supported functions, for example, the authors of [93] replace

this restriction with one that endows s(x) with a suitable polynomial decay, whilst this was

further relaxed in [53, 24] favouring even milder restrictions on the approximant so that the

Strang-Fix result still holds. In fact current restrictions on the decay of the approximant

are such that most functions are admissible, and for these the desired coefficients can be

computed exactly. To treat our multidimensional problem, we now extend formally the one-

dimensional formulae obtained in [145] to the multidimensional case, which is still valid even

when the approximant is not separable with respect to its variables – i.e we do not require

s(x) =
∏d
i=1 si(xi). The absence of this separability property is of paramount importance

for us, especially because the spatial and temporal dimensions for most non-static fields

encountered, in reality, are neither separable nor homogeneous. We begin our derivation by

recalling that we are after the coefficients {an}n that minimizes the approximation error

in the least squares sense, such that∑
n∈Zd

ans(x− n) = eκ·x. (6.26)

According to generalized sampling theory, the sequence of weights that minimizes the

approximation error in the least-squares sense is exactly that generated through,

an = 〈eκ·x, s̃(x− n)〉x =

∫
x∈Rd

eκ·xs̃(x− n)dx

=

∫
x′∈Rd

eκ·(x
′+n)s̃(x′)dx′ = eκ·n

∫
x′∈Rd

eκ·x
′
s̃(x′)dx′

= eκ·na0, (6.27)

where the second line follows from the change of variable x′ = x − n. Thus finding a0

allows us to compute an for all n ∈ Zd using (6.27). To find a0 substitute (6.27) into (6.26)

to get

a0

∑
n∈Zd

eκ·ns(x− n) = eκ·x ⇔ a0

∑
n∈Zd

e−κ·(x−n)s(x− n) = 1.
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We apply Poisson summation formula on the lattice to the l.h.s. of this expression, which

if s(x) is well-behaved reduces to

a0

∑
n∈Zd

S(κ+ j2πn)ej2πn·x = 1.

Finally from the Strang-Fix condition (6.24) we get a0 = 1/S(κ), since all terms in the

summation vanish for n 6= 0. Thus for any n ∈ Zd,

an =
eκ·n

S(κ)
. (6.28)

Approximate Strang-Fix in multidimensions and the approximation error

Note that in the derivation of (6.28) one needs to impose some regularity conditions on

s(x), especially for the l.h.s of the Poisson summation formula to make sense the function

must decay sufficiently quickly. However the strongest constraint on s(x) is due to (6.24),

in particular the requirement that S(κ+ j2πn) = 0 when n ∈ Zd \{0}.
For general physical fields of interest to us, the approximant s will be replaced by the

corresponding Green’s function g of the field. Whilst these will generally not satisfy the

Strang-Fix condition (6.24), we still wish to approximately reproduce exponentials with

them. Fortunately, however we can apply the so called approximate Strang-Fix method

introduced in [145], which relaxes the assumptions on the generators (for the 1-D exponen-

tial case), such that we are now after the best set of coefficients that leads to approximate

exponential reproduction, given any kernel s. Mathematically this means that we desire∑
n∈Zd

ans(x− n) ≈ eκ·x, (6.29)

where s does not necessarily satisfy the generalized Strang-Fix conditions (6.24). There

are a few possible choices one may make for the “best” approximation coefficients. For

example, we may opt for the least-squares coefficients which ensures that the approximation

error is orthogonal to the space V1, or the interpolation coefficients which interpolates the

exponential at the exact locations x = κ (see [145] for more details). However, in this work

we will focus on the constant least squares coefficients of the form:

an(κ) =
eκ·n

S(κ)
, (6.30)

for their simplicity and accuracy, in particular they provide a good approximation when

the Fourier transform of the generator S decays quickly. Notice also that these coefficients

also coincide with (6.28), since the error ε(x) = eκ·x
(
1− a0

∑
n S(κ+ j2πn)ej2πn·x) is

minimized by this set of coefficients by requiring that: (i) the error ε(x) be zero, meaning

the term 1− a0
∑
n S(κ+ j2πn)ej2πn·x = 0; and, (ii) that S(κ+ j2πn) decays quickly with

n.
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Therefore for this choice of coefficients the approximation error is:

ε(x) = eκ·x

(
1− 1

S(κ)

∑
n

S(κ+ j2πn)ej2πn·x

)
, (6.31)

which will be small if S(κ+ j2πn) decays quickly to zero as |n| increases.

6.4.3. The coefficients for the space-time fields

Uniform sampling

In this uniform sampling setup, we will denote our field samples as ϕn(tl) = u(n∆x, l∆t),

where n∆x = (n1∆x1 , n2∆x2 , . . . , nd∆xd) and ni = 0, 1, . . . , Ni − 1 for i = 1, . . . , d. Notice

that we can reconcile the vector index sensor measurement ϕn(tl) with the scalar indexed

one, ϕn(tl), by simply taking the lexicographic ordering of the elements of {n∆x}n∈Nd to

give {xn}Nn=1, where N =
∏d
i=1Ni.

Moreover, for our physical fields with linear and constant coefficients we can see from

(6.20) that the generator is the space- and time-reversed Green’s function s = g(−x,−t)
which has the bilateral Laplace transform G(−sx,−st). Therefore it follows that the desired

coefficients (under integer translates i.e. ∆x = 1 and ∆t = 1) are given by

wn,l(k, r) =
e(κ,ρ)·(n,l)

G(−κ,−ρ)
, (6.32)

where ρ = jr/T , whilst for d = 2 and d = 3, κ = j(k1, k2) and κ = (k1, jk1, jk2), respectively.

The expression in (6.32) follows since G(−sx,−st)|(sx,st)=(κ,ρ) = G(−κ,−ρ), written in this

way to highlight the dependence on k and r. Using these coefficients, we can obtain the

desired multidimensional generalized measurements by substituting (6.32) into (6.14) for

integer translates.

Furthermore when the translates take on non-integer values, i.e. if (n∆x,∆t) 6= 1, so that

the exponential reproduction problem is
∑
n

∑
l wn,l(k, r)g(n∆x−x, l∆t− t) ≈ e(κ,ρ)·(x,t),

then this problem is exactly the same as:∑
n

∑
l

wn,l(k, r)ḡ(n− x

∆x
, l − t

∆t
) ≈ e(κ̄,ρ̄)·( x

∆x
, t
∆t

)
, (6.33)

where (κ̄, ρ̄) = (∆xκ,∆tρ) and ḡ(x, t) = g(∆xx,∆tt). Consequently the problem (6.33)

has the corresponding exponential reproducing coefficients,

w̄n,l(k, r) =
e(κ̄,ρ̄)·(n,l)

Ḡ(−κ̄,−ρ̄)
. (6.34)

From this we can obtain the proper coefficients for any Green’s function g, and corre-

spondingly any physics-driven phenomenon. In particular, using the fact that ḡ(x, t) =

g(∆xx,∆tt) ⇔ Ḡ(sx, st) = 1
∆t
∏d
i=1 ∆xi

G( sx
∆x
, st∆t

), we can conclude that for any ∆x ∈
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6.4. Multidimensional generalized measurements from sensor data

Rd>0,∆t ∈ R>0 then

wn,l(k, r) = ∆t

d∏
i=1

∆xi

e(∆xκ,∆tρ)·(n,l)

G(−κ,−ρ)
, (6.35)

by substituting Ḡ(−κ̄,−ρ̄) into (6.34). We show, in Figure 6.1, the approximation of

our 2-D spatial exponentials, i.e. ejk1x1+jk2x2 , using the 2-D Green’s function of Poisson’s

equation (6.2) and the coefficients (6.35), for r = 0, k1 = 2, and k2 = 0, 1, 2.

Nonuniform sampling: linear systems

For non-uniformly placed sensors, it is generally not possible to find similar closed-form

expressions for the desired coefficients {wn,l(k, r)}n,l. However we may resort to formulating

a linear system of equations to find {wn,l(k, r)}n,l, since we know both the approximating

function g, as well as, the exponential function Γr(t)Ψk(x) we wish to approximate. Our

suggested approach is to discretize (6.17) as follows. First, for each l we can formulate the

following linear system for some fixed time snapshot tj > 0,


g(x1−x′1, tl−tj) · · · g(xN−x′1, tl−tj)
g(x1−x′2, tl−tj) · · · g(xN−x′2, tl−tj)

...
. . .

...

g(x1−x′I , tl−tj) · · · g(xN−x′I , tl−tj)




w1,l(k, r)

w2,l(k, r)
...

wN,l(k, r)

=


Ψk(x′1)Γr(tj)

Ψk(x′2)Γr(tj)
...

Ψk(x′I)Γr(tj)



⇒ Gl,jwl(k, r) = pj(k, r). (6.36)

Solving this system gives the coefficients {wn,l(k, r)}n for a fixed l. We can however proceed

by stacking (6.36) for each l and taking several tj ’s, j = 1, . . . , J to get
G0,1 G1,1 · · ·GL,1

G0,2 G1,2 · · ·GL,2

...
...

G0,JG1,J · · ·GL,J




w0(k, r)

w1(k, r)
...

wL(k, r)

 =


p1(k, r)

p2(k, r)
...

pJ(k, r)


Gw(k, r) = p(k, r), (6.37)

where G ∈ RIJ×N(L+1) is a discretization of g(x, t), p(k, r) ∈ RIJ are discretizations of the

spatiotemporal sensing functions, whilst w(k, r) ∈ RN(L+1) are the desired weights for each

k ∈ R2 and r ∈ R. Consequently, in order to recover the desired field analysis coefficients,

we would need to solve the system (6.37). In general, this system admits a least-squares

solution if IJ ≥ N(L + 1), where the observation matrix G can be constructed from the

Green’s function of the problem at hand (i.e. (6.2), (6.3), (6.4), (6.6) and so on).

Although formulating this type of system to find the desired weights is rather straight-

forward and intuitive, it can sometimes lead to problems, in that, the conditioning of the
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Chapter 6. Universal framework for physics-driven inverse source problems

system can be rather poor. Specifically, the conditioning depends directly on the sensor

locations xn, the sampling instants tl and the Green’s function g(x, t), of the underlying

phenomena. Indeed for a Gaussian kernel, it is well known that the condition number of

G, i.e. Cond(G), can be very large and indeed this metric can be used as an indication for

the estimation performance [125].

Nonuniform sampling: interpolation

To enable us perform some meaningful estimation in situations where the Green’s function

and the sensor locations produce a badly conditioned matrix G, we propose a second ap-

proach for the nonuniform spatial sampling setup that can still exploit the new universal

framework proposed in this chapter. Essentially we want to return to a situation where

the translates of the Green’s function are on a uniform lattice. To do this, we assume that

the spatial field samples are interpolated, on a uniform grid, using the interpolator γ(x),

such that û(x, tl) =
∑N

n=1 ϕn(tl)γ(x−xn). Then this new approximation of the underlying

field is resampled uniformly at the new locations {xn̄ = (n̄1∆x1 , n̄2∆x2 , . . . , n̄d∆xd)}n̄∈Nd
to obtain the corresponding data samples ϕ̂n̄(tl) = û(xn̄, tl). Hence the corresponding

exponential reproducing coefficients can be recovered, using translates of the Green’s func-

tions at these new locations. Weighting the interpolated measurements by the obtained

coefficients will produce an estimate for the desired sequence of generalized measurements.

Besides avoiding the inversion of badly conditioned matrices, this new approach is also less

intensive computationally, particularly when the matrix G is rather large.
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6.4. Multidimensional generalized measurements from sensor data
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Figure 6.1.: Exponential reproduction. Reproduction of the 2-D sensing function
Ψk(x) = ejk1x1+jk2x2 , assuming N = 45 uniformly placed sensors for the
2-D Green’s function of Poisson’s equation.
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Chapter 6. Universal framework for physics-driven inverse source problems

6.5. Source estimation using sensor networks

Based on the framework outlined in the chapter thus far, we now develop practical sensor

network algorithms for estimating the sources of a physical field from its sensor measure-

ments, and therefore solve the class of discrete ISPs driven by linear PDEs with constant

coefficients. First, we propose a centralized estimation algorithm, which follows straight-

forwardly from Proposition 6.1, then we treat the distributed case by showing that, under

the same SN assumptions outlined in Chapter 4 each sensor can compute the correct local

measure. So that when the sensor nodes exchange and update their local measures, using

a gossiping algorithm, they converge to the desired multidimensional generalized measure-

ments Q(k, r). As usual, from these generalized measurements they can each recover the

unknown source parameters. In addition, we also briefly discuss how to deal with the usual

SN nuisances, such as sensor noise and communication constraints.

6.5.1. Centralized source estimation

Assuming the source measurements have been made available at the fusion centre and that

the PDE model—and Green’s function—of the monitored phenomena are known, then the

point and instantaneous source estimation scheme can be summarized as in Algorithm 6.1,

for an arbitrary physical phenomena having PDEs with constant and linear coefficients.

Algorithm 6.1 Simultaneous Estimation of M point sources from field samples

Require: {ϕn(tl)}N,Ln=1,l=0, sensor locations {xn}n, number of sources M , sampling interval
∆t, diffusivity µ, spatial dimension d.

1: From {xn = (x1,n, x2,n, . . . , xd,n)}n compute the sensor spacing ∆x.
2: Compute the Laplace transform G(ωx, ωt) of the Green’s function using (6.23).
3: Initialize K1,K2 ≥ 2M − 1 and r = 1.

4: Compute coefficients {wn,l(k, 1)}(K1,K2)
k=(0,0) using (6.35).

5: Compute the sequence {Q(k, 1) =
∑
n,l wn,l(k, 1)ϕn(tl)}k.

6: Denoise {Q(k, 1)}k using Cadzow’s algorithm.
7: Apply ACMP method to {Q(k, 1)}k to obtain M pairs of (cme

−jτm/T , ξm).
8: For each m, cm =

∣∣cme−jτm/T
∣∣ and τm = T arg

(
cme

−jτm/T
)
.

9: return M intensities, activation times and locations {cm, τm, ξm}Mm=1.

6.5.2. Distributed source estimation

In the distributed set up we would like, as usual, for each node to estimate Q(k, r) through

localized interactions with its neighbours. We assume the same sensor network as described

in Section 4.4, comprising of “smart” sensor nodes. In addition to knowing the Green’s

function of the monitored phenomena5, these nodes are able to perform mathematical

5This comes for free since the SNs are designed to sense a particular phenomena: i.e. if we are sensing
acoustic fields then we use the wave equation, for temperature and leakages we use the diffusion equation,
and so on.
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6.5. Source estimation using sensor networks

computations and also learn the network topology upon deployment (see assumption (A)

in Section 4.4). Knowing the network topology and the Green’s function of the underlying

phenomena means that, each sensor n can compute independently its set of exponential

reproducing coefficients {wn,l}l using (6.32), if they are on a uniform grid. Otherwise, they

can each solve the system (6.37). Then we propose the use of gossip, which involve message

exchanges and updating, as outlined in Section 4.5. Specifically, gossiping is initiated when

the n-th sensor contacts and exchanges its (complex) measure, given by

yn(k, r) = N
L∑
l=0

wn,l(k, r)ϕn(tl), (6.38)

with a neighbour, for example. Upon convergence, after several rounds of gossip, each

sensor will have

1

N

∑
n

yn(k, r) =
1

N

∑
n

N

L∑
l=0

wn,l(k, r)ϕn(tl) = Q(k, r),

as desired. An appropriate (multidimensional) Prony-like method, such as ACMP, can now

be applied independently by each sensor to estimate the unknown source parameters.

6.5.3. Filtering in the time-domain

Using the framework summarized by Proposition 6.1, we have been able to devise practical

sensor network algorithms to solve our discrete ISP. During the sensing phase, although

spatial prefiltering is generally not achievable we are still able to perform prefiltering in

time. Under this fact the prefiltered samples, using a time-domain filter h(t), obtained by

the n-th sensor is: φn(tl) = u(xn, t) ? h(t)|t=tl = f(x, t) ∗ g(x, t) ? h(t)|x=xn,t=tl
, where ? is

the time-convolution operator. Hence it may be helpful to pick a filter, that can improve

our ability to reproduce exponentials. In light of this new formulation, the generator that

will be used to reproduce exponentials from its space-time translates is

gf (x, t) =

∫
t′
g(−x,−t− t′)h(t′)dt′, (6.39)

which has the bilateral Laplace transform

Gf (sx, st) = G(−sx,−st)H(st). (6.40)

We now have the freedom of designing H(st) such that Gf (sx, st) has some desirable

properties; in our framework it is favourable to choose H(st) such that it Gf (sx, st) decays

quickly enough, at least in the st-domain, in order to reduce approximation error when

using the constant least-squares coefficients, as mentioned in (6.30).
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Chapter 6. Universal framework for physics-driven inverse source problems

6.5.4. A brief note on tackling sensor noise, and model mismatch and

communication constraints

The presence of measurement noise in practical sensing devices is generally inevitable, as

such the sensors measure a noisy version of the physical field, which we model here (using

the multi-index notation n) as: ϕεn(tl) = ϕn(tl)+εn,l (cf. (4.2)) where εn,l is again AGWN.

Consequently the FC (in the centralized SN) or the nodes themselves (in the distributed

SN) will, in the process of computing Q(k, r), end up with a noisy version Qε(k, r) of

the true generalized measurements. As previously discussed, in Section 4.6.2 the noise in

this sequence will now be coloured, however Prony-like methods perform better when the

noise in Qε(k, r) is white. Consequently it is desirable to first prewhiten the sequence

Qε(k, r). Certain multidimensional Prony-like methods (such as ACMP) are based on the

construction of an enhanced matrix, of several stacked and cascaded Toeplitz matrices.

Each Toeplitz matrix is formed using the terms in {Qε(k, r)}k for a fixed r. Consequently,

we can prewhiten the noise in each block independently by designing and pre-multiplying by

its corresponding filter, prior to recovering the unknown parameters. This can be achieved

as described in Section 4.6.1, whilst paying close attention to the indices. For example,

assuming we fix k2 and r (say k2 = r = 0 without loss of generality) and then utilize

the resulting 1-D sequence, {Qε(k, 0)}K1,0
k=(0,0), to construct a Toeplitz matrix. The correct

prewhitening filter is Fpw = (Cε)
†
2 , where Cε has been constructed using (4.37) with the

corresponding weights {wn,l(k, 0)}(K1,0)
k=(0,0).

Furthermore, when the communication links in the network are noisy, the (local) inter-

sensor messages can be quantized, to suppress the effects of noise. In this setting, we have

seen in Section 4.5.1 that, these quantized communications must be performed correctly,

so as to guarantee convergence to the true estimate of the generalized measurements. We

propose adopting the same quantized gossip strategy in the case of communication over

quantized links. Specifically, for our gossip-based algorithms over noisy channels, we utilize

the quantized pairwise gossip scheme summarized by (4.23) during the gossip stage.

6.6. Applications and numerical results

In this section, we present some numerical results to validate the proposed framework for

solving our linear PDE-driven inverse (source) problems. To examine several sampling

setups, and applications, we present results for cases where the measured phenomena has

been generated by:

(i) Diffusion equation – we assume a multiple source setting in 2-D with nonuniform

sensor placement and then investigate the proposed approach based on field interpo-

lation, as outlined in the latter part of Section 6.4.3. The results obtained are shown

in Figure 6.2. Next we study the effects of, the sensor density (i.e. the uniform spatial

sampling interval ∆x) and the source separation (i.e. the distance between two point

sources) on the localization accuracy of the proposed framework. The results for this
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simulation are shown in Figure 6.3

(ii) Poisson’s equation – we consider a single source case in 3-D using nonuniform

spatial samples, here we examine the linear systems approach of finding the desired

coefficients. Presented in Figure 6.4.

(iii) Wave equation – we simulate a source field in 3-D with uniform sensor placement

and we consider a situation where each sensor performs filtering in time using a cubic

spline. Shown in Figure 6.5.

For the scenarios described above, i.e. the results presented in Figures 6.2, 6.4 and 6.5, the

sensor measurements are simulated numerically using Matlab with the sensors distributed

over a square region in 2-D (and equivalently a cubic region in 3-D). The measurements

are then corrupted by AWGN, such that the SNR = 15dB as defined in (5.2), prior to

applying our source estimation schemes. Furthermore for statistical significance, multiple

independent trials are performed within each setup. As usual, each trial uses a new noise

realization, and a new arbitrary sensor placement for the nonuniform sampling experi-

ments. In Figures 6.2, 6.4 and 6.5, we denote with green ‘•’ the sensor locations, whilst

the estimated source location are shown as a red ‘×’ and the true values by blue ‘+’.

6.6.1. Inverse source problem for the diffusion equation

We study the IDSP in light of this new universal framework. Specifically, we present

some numerical results for the nonuniform sampling scenario, where the field is due to

multiple localized and instantaneous sources. The performance of this new framework,

which uses r = 1, k1 = k2 = 0, 1, . . . 15 for the 2-D test function family {Ψk(x)Γr(t) =

ejk1x1+jk2x2ejrt/T }k,r, on the diffusion data is presented in Figure 6.2. In this simulation,

we interpolate the field and then resample it on a regular grid, such that ∆x1 = ∆x2 = 1/30,

before applying Algorithm 6.1 on this new (interpolated) field samples.

Additionally we use (6.35) to compute the desired coefficients for the weighted sum (6.14).

Explicitly, since for the 2-D diffusion field, g(x, t) = 1
2πµte

− ‖x‖
2

4µt H(t) has the following

multidimensional bilateral Laplace transform (see Appendix Section B.2.1):

G(sx, st) =
1

st − µ‖sx‖2
, (6.41)

provided <
(
st − µ‖sx‖2

)
> 0, where <(z) is used to denote the real part of a complex

number z.

Remark 6.1. The requirement that <
(
st − µ‖sx‖2

)
> 0 is a necessary condition for the

transform integral to converge. This condition is almost always satisfied in reality. For

instance, in 2-D where we use st = ρ = jr/T and sx = −κ = −j(k1, k2)⇒ ‖sx‖2 = −(k2
1 +

k2
2). Given these choices, <

(
jr/T + µ(k2

1 + k2
2)
)
> 0⇒ (k2

1 + k2
2) > 0 which is satisfied for

all (k1, k2) ∈ Z \ {0}. Similarly for the 3-D ISP, where sx = −κ = −(k1, jk1, jk2), we end

up with the condition that k2
2 > 0 and is satisfied for any k2 ∈ Z \ {0}.
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Figure 6.2.: Centralized estimation of non-localized sources using noisy mea-
surements obtained by randomly placed sensors. The field is sam-
pled at 1Hz for T = 25s using 41 uniformly placed sensors, samples
assumed to have SNR = 15dB. (a) Location estimates (b) Estimated in-
tensities and (c) Activation times. We use Algorithm 6.1 with r = 1 and
K1 = K2 = 15.

Therefore, by substituting (6.41) into (6.35), with κ = jk = j(k1, k2) and ρ = jr/T , we

can write the desired coefficients as:

wn,l(k, r) = ∆x1∆x2∆t(µ(k2
1 + k2

2) + jr/T )ej∆x1k1n1+j∆x2k2n2+j∆trl/T . (6.42)

All the estimated parameters have been recovered reliably, specifically the estimated

locations (shown in Figure 6.2(a)) and activation times given in Figure 6.2(b) (usually the

two main parameters of interest) are seen therein to vary only marginally around their true

values, even when the measurement SNR is relatively low.

Effects of sensor and source separation on the location estimates

In this experiment, we consider the diffusion field induced by two point sources with c1 =

c2 = 1, τ1 = τ2 = 1 and fix the location of the first source ξ1 = (ξ1,1, ξ2,1) whilst the

location of the second source ξ2 = (ξ1,2, ξ2,2) is allowed to vary such that the separation

between them Ssource = ‖ξ2 − ξ1‖ ∈ {0.04 + 0.26i
11 }

11
i=0. Similarly, the sensor density also

varies, such that the uniform spatial sampling interval ∆x = (∆x1 ,∆x2) where ∆x1 = ∆x2 ∈
{0.05, 0.06, 0.075, 0.015, 0.3}.6 The field measurements, sampled at 1Hz for T = 20 seconds,

by the sensors network are assumed to be noisy with fixed SNR= 20dB. Consequently, for

6This yields uniform 2−D sensor arrays of size {8× 8, 7× 7, . . . , 3× 3} respectively.
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each fixed value of Ssource and ∆x, Algorithm 6.1 with K1 = K2 = 4 and r = 0 is used to

recover the estimates ξ̂1 and ξ̂2 of the true source locations ξ1 and ξ2 respectively. The

pairing (ξ̂m, ξm) of the true value and its estimate is chosen to minimize the overall error

(with respect to the Euclidean distance). The RMSE for each of the estimates, using 1000

independent trials of the experiment, is computed and provided in Figure 6.3.
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Figure 6.3.: Effects of sensor density and source separation on the perfor-
mance of the localization algorithm. The field induced by two sources
is sampled at 1Hz for T = 20s with varying sensor density and source
separation. For each value sensor separation and source separation the
obtained noisy measurements, with SNR= 20dB, are used to estimate the
locations of the unknown diffusion sources. We utilize K1 = K2 = 4 and
r = 0 with the estimation simultaneous recovery scheme summarized in
Algorithm 6.1. The RMSE of the estimates obtained over 1000 indepen-
dent trials are shown: i.e. in (a) RMSE of ξ̂1,1, in (b) RMSE of ξ̂2,1, in

(c) RMSE of ξ̂1,2 and in (d) RMSE of ξ̂2,2.

Observe in Figure 6.3 that, in line with our expectation, the performance of our esti-

mation algorithm improves as the sensor density and separation between the two sources

increases. In particular, the RMSE of the estimates for the first source—i.e. RMSE(ξ̂1)

as shown in Figure 6.3(a) and (b)—decreases when the sensor density increases. This is

a consequence of the reduction in the approximation error obtained in the exponential

reproduction step, as ∆x decreases. Furthermore, the effect of the source separation on

the localization performance becomes more noticeable as the sensor spacing decreases. For

instance, when ∆x = (0.05, 0.05) we notice a gradual but steady decrease in the RMSE of

ξ̂1 in Figure 6.3(a) and (b). This increase in estimation performance is even higher for the

estimates of the second source, ξ̂2, as seen in Figure 6.3(c) and (d).
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6.6.2. Inverse source problem for Poisson’s Equation

Herein we study the ISP in relation to Poisson’s equation under the assumption that the

source of the field is localized. There is no time dependence here, so we only focus on

recovering the source location and intensity. Specifically, since the field is stationary we

only use single time measurements for the estimation. Although when several temporal

measurements are available, we may simply average the estimates obtained at each snap-

shot.

We simulate the 3-D field modelled by Poisson’s equation using (6.1) by evaluating it

at the randomly chosen sensor locations. These measurements are then corrupted with

AWGN. For the estimation algorithm we use the linear system approach, discussed in

Section 6.4.3, for computing the proper weights of the summation (6.14). Specifically, we

use r = 0 and K1 = K2 = 7 to formulate the following linear system according to (6.36):


g(x1−x′1) · · · g(xN−x′1)

g(x1−x′2) · · · g(xN−x′2)
...

. . .
...

g(x1−x′I) · · · g(xN−x′I)




w1,l(k, 0)

w2,l(k, 0)
...

wN,l(k, 0)

=


Ψk(x′1)

Ψk(x′2)
...

Ψk(x′I)

 ,

where g(x) = − 1
4π‖x‖ , for I = 1000 such that x′i is obtained from a lexicographic ordering

of {(i1δx1 + ε, i2δx2 + ε, i3δx3 + ε)}9i1,i2,i3=0 and so δx1 = δx1 = δx1 = 0.03.7

The simulation results are shown in Figure 6.4, showing the source location and inten-

sity estimates for each of the 20 independent trials, the estimated 3-D locations (presented

in the scatterplot Figure 6.4(a)) and the scalar intensities (plotted in the scatterplot Fig-

ure 6.4(b)) show small variations around the ground truth parameters. Particularly for the

location estimates the overall variation is much smaller than the average sensor spacing.

Furthermore the condition number for the matrix G was in the range 15 – 38, which is

reasonably small for our purposes.

7The slight shift ε ≥ 0 is used here to avoid the singularity of g(x) ‖x‖ = 0.
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Figure 6.4.: Centralized estimation of single localized source for Poisson’s
equation using uniformly placed sensors. The field is sampled at
1Hz for T = 1s using 27 randomly placed sensors, samples assumed to
have SNR = 15dB. (a) Location estimates (b) Estimated intensities. Es-
timation is performed using Algorithm 6.1 with r = 0 and K1 = K2 = 7.
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Chapter 6. Universal framework for physics-driven inverse source problems

6.6.3. Acoustic source localization: inverse source problem for the wave

equation

We conclude this discussion of numerical results with a problem in acoustic source lo-

calization. Here the physical phenomena is assumed to be governed by the wave equa-

tion (6.5). The single instantaneous and localized source field is simulated numerically

in the 3-D case using N = 27 uniformly placed sensors. Each of these sensors are as-

sumed to acquire the field by filtering it (in time) at their precise location with the third

order B-spline before sampling and then corrupting their observations with AWGN. We

apply the proposed approach of Section 6.5.3 by first computing the desired coefficients

wn,l(k, r) from the filtered Green’s function gf (x, t), which has the bilateral Laplace trans-

form, Gf (sx, st) = G(sx, st)H(st), where

H(st) =

(
1− e−st

st

)4

, (6.43)

is the Laplace transform for the third order B-spline8, whereas

G(sx, st) =
1

‖sx‖2 − (st/c)2
. (6.44)

A derivation of this expression is provided in Section B.2.2. Combining these gives us the

desired coefficients,

wn,l(k, r) = ∆x1∆x2∆x3∆t

(r/T )4
(
k2

2 −
(
r
cT

)2)
1− e−jr/T

ek1n1∆x1+jk1n2∆x2+jk2n3∆x3+jrl∆t/T ,

(6.45)

where ∆x1 = ∆x2 = ∆x3 = 0.1 and ∆t = 1. When we chose K1,K2 = 9 and r = 1 for the

sensing function family {Ψk(x)Γr(t) = ek1x1+jk1x2+jk2x3ejrt/T }k,r. The estimation results

for this uniform sampling case is presented in Figure 6.5, where the estimates of the source

location, in (a), and activation time, in (b), are plotted over the ground truth values. We

notice that the estimates are reliable once more even when we have noisy measurements.

8The zero order B-spline is taken as the indicator function on [0,1], from this we define the n-th order
B-spline as the spline generated by convolving (n+ 1) zero order B-splines.
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Figure 6.5.: Centralized estimation of non-localized sources for the Wave
equation using uniformly placed sensors. The field is sampled at
1Hz for T = 20s using 27 randomly placed sensors, samples assumed to
have SNR = 15dB. (a) Location estimates and (b) Estimated activation
times. We use Algorithm 6.1 with r = 1 and K1 = K2 = 9.
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6.7. Summary and conclusions

A novel framework for solving the inverse source problem relating to fields driven by linear

PDEs with constant coefficients is discussed. This new framework was developed to extend

on the previous method of Chapter 4, in such a way that we are able to obtain the desired

sequence of generalized measurements—governed by Prony-like systems—not only for the

diffusion equation but also for a wider class of PDE models. Besides this difference, both

methods share certain subtle similarities, as well as differences which we highlight briefly

in Table 6.1. Furthermore, for the approach of Chapter 4, we can also derive explicitly the

desired coefficients, as shown in Section B.3.
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Table 6.1.: Comparing the frameworks of Chapters 4 and 6.

Framework of Chapter 4 Framework of Chapter 6

PDE models Suitable only for the 2-D dif-
fusion equation. A related ap-
proach has been outlined by the
authors of [57, 56] for the wave
equations for point sources local-
ization alone.

Theoretically suitable for any
ISP with arbitrary linear PDEs
provided the underlying Green’s
function is well-behaved ; ideally,
it should satisfy the Strang-Fix
conditions, or at least approx-
imately with a sufficient decay
for the Poisson summation for-
mula to converge.

Source models
admitted

Generalization to line and polyg-
onal sources is straightforward
and simulation results demon-
strate the effectiveness of this
approach in this setting.

Only point sources are consid-
ered presently for both instan-
taneous and non-instantaneous
models. Possible extension to
non-localized models is left as a
future research direction.

Source recov-
ery in rooms

Possible here and comes for free
due to Green’s second identity.
This is enabled by the fact that
the barriers can be modelled as
image sources which are outside
the monitored region.

This is possible in certain cases
– primarily when the sources
aren’t very close to the walls.
The reason here is due to leak-
age, i.e. the virtual source will
also be close to the wall and so
that when the Green’s function
is shifted to a sensor near the
wall, its effect will leak into the
generalized measurements. This
border effect is well-known in
the FRI literature for spike train
recovery, see [116] for example.

Spatial dimen-
sions

Presently a 2-D framework, al-
though it is possibly to ex-
tend the approach to 3-D using
the appropriate Green’s second
identity. The difficulty here is in
designing a 3-D sensing function
that satisfies the adjoint equa-
tion.

Can be easily generalized to
many dimensions, as the sens-
ing functions can assume very
general structures, as long as we
can solve the resulting Prony-
like system.

Distributed
Estimation

A distributed implementation of
this approach is possible al-
though non-trivial, as we saw in
Chapter 4.

Can be implemented in a dis-
tributed network, this extension
is relatively simple providing the
nodes know the network topol-
ogy.
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Chapter 7.

Conclusion

7.1. Summary

In this thesis we have considered the problem of sampling multidimensional physical fields

governed by linear and constant coefficient PDEs, using sensor networks. We argued that

these fields are spatially nonbandlimited and so a classical reconstruction approach will

not be effective, since it is generally impossible to realize a spatial antialiasing filter before

the field is sampled with a sensor network. To this end, we first developed a framework to

analyse the spatiotemporal sensor measurements of 2-D diffusion fields induced by a specific

class of source models. A closer look at our approach enabled us to establish a missing

bridge between the analysis of ISPs for PDE-driven fields with generalized sampling theory.

As a results, we developed a new sampling framework for analysing ISPs of 2-D and 3-D

fields governed by linear, constant coefficient PDEs.

We commenced Chapter 2 with an overview of classical sampling theory and highlighted

some of the issues with applying it to the multidimensional sampling problem at hand.

Next we discussed two generalizations of classical sampling theory, namely: sampling in

shift-invariant spaces and sampling signals with finite rate of innovation, highlighting also

their corresponding reconstruction algorithms for single and multiple dimensions. Arguing

qualitatively that, under certain conditions, the field reconstruction and source estimation

problems are equivalent, we therefore concluded the chapter with an account of state-of-

the-art methods for sampling diffusion, potential and wave fields in order to solve their

resulting field or source estimation problem.

We considered the continuous IDSP in Chapter 3. First, we formulated a well-posed IDSP

by assuming that the measured field was induced by sources with some known parametric

models. Subsequently, the application of Green’s second identity allowed us to show that the

unknown parameters for the localized (and temporally instantaneous or non-instantaneous)

source models can be found by estimating the amplitudes and frequencies of a sum of

sinusoids, from a set of generalized measurements. These generalized measurements, as

we showed, can be computed exactly from the continuous field measurements. For the

class of non-localized sources the sum of exponentials structure is lost, however we showed

how to restore it using tools from complex analysis. Finally the chapter concluded with

some extensions to solving the IDSP in bounded regions, as well as, solving the ISP in the
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presence of advection.

Using the insights gained from solving the continuous IDSP in Chapter 4, we developed

explicit noise robust SN algorithms for solving discrete IDSP, given arbitrary spatiotempo-

ral sensor measurements of the induced diffusion field. We achieved this by showing how

to compute the desired generalized measurements from the SN samples, in a centralized or

distributed fashion. For the centralized approach, we used numerical quadrature to obtain

the generalized measurements; whereas for the distributed SN, a physics-driven consensus

scheme is derived, such that the nodes of the network converge to the desired generalized

measurements through local unquantized and quantized communications with neighbour-

ing nodes. Hence given these generalized measurements, noise robust variations of Prony’s

method are proposed to estimate all unknown source parameters.

In Chapter 5 we gave extensive numerical simulations in order to study the proposed

centralized and distributed algorithms. In our results we studied the performance and

validity of our algorithms using both synthetic and real temperature field data. Notably, we

showed that it is possible to recover the unknown sources, as well as, faithfully reconstruct

the underlying diffusion field.

Finally we established a new result in Chapter 6, that connected the estimation approach

derived in Chapter 4 with certain results from generalized sampling theory. This connection

was based on computing the desired generalized measurements using properly weighted

linear combinations of the sensor measurements. In particular this formulation reduced

the ISP for the class of linear PDEs, with constant coefficients, to one of reproducing

exponentials using shifted versions of a certain prototype function, which can be solved

(approximately) using certain results from generalized sampling. We derived results and

proposed practical sensor network algorithms for both uniform and nonuniform sampling

setup. Finally, some numerical results were presented to demonstrate the validity of this

universal framework.

7.2. Comparisons

We summarize some of the main similarities and differences between both techniques devel-

oped in this thesis for solving ISPs. Both techniques rely on the knowledge of the constant

coefficient (e.g. the wave speed c or diffusivity µ for the wave and diffusion equations)

present in the linear PDE considered. The assumption that these are constant is sufficient

for many sensor network applications encountered in environmental monitoring, acoustic

source localization and so on, where the medium is usually homogeneous or at most varies

only marginally about a constant value. Another key assumption made is that the moni-

toring sensors are synchronized, this limitation is key for recovering the activation times;

although using the framework developed in Chapter 4, the sensors do not necessarily have

to sample the field at the same instant. What is important is that the time at which they

start sampling the field is synchronized and similarly for the time at which they obtain the

last temporal sample.
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Other important similarities and differences are stated in the Venn diagram shown in

Figure 7.1.

Mesh required for
computation

Requires analytic
spatial sensing functions

3-D IDSP (requires 2-D sensing function)

Bounded regions (exact)

Source recovery in bounded
regions (approximate)

Solve ISPs for linear PDEs
with constant coefficients

Analyticity of SSFs generally not required

Line source
Polygonal source

2-D IDSP
2-D IADSP

M Point sources

Centralized & Distributed

Line/Polygonal sources, but
analytic SSFs required (2-D)

Other PDEs and source models

Ch.4
Ch.6

Figure 7.1.: Comparing the source estimation frameworks. Similarities and dif-
ferences between the Green’s second identity-based framework (Ch.4) and
the universal sampling-based framework (Ch.6). Note that we abbrevi-
ated the phrase ‘spatial sensing function’ with SSF.

7.3. Outlook and future research

We conclude this thesis with some outlook on future research directions related to our work.

1. Arbitrary source shapes – We presented results for a specific class of spatially

localized and non-localized source distributions, in our work. For the non-localized

sources it was assumed that they are spatially well-modelled by a single straight line

or convex polygon. In certain applications where these models may not hold but

we still want to understand the precise shape of the sources, then a more tailored

approach is needed. In other words, a framework for estimating sources of arbitrary

shapes given samples of the induced field is still missing. One approach that may lead

to promising new theory is to establish a link between a recent theory for sampling

curves with FRI [117] and our results presented in Chapter 6 of this thesis.

2. Extension to non-linear PDEs – Despite the breadth of PDE models captured by
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our framework, many other physical phenomena may be more accurately modelled

using non-linear PDEs. Consider for example the Burgers equation (equivalently the

Kardar-Parisi-Zhang (KPZ) equation which models the erosion of material from a

solid surface) [20], it has been shown that this equation can be transformed into

the heat equation using the Hopf-Cole transformation [74]. Therefore, for non-linear

PDEs which can be transformed into linear ones, in this way, it is useful to understand

the possibility/limitations of solving the associated ISP by applying our framework

to the properly transformed sensor measurements.

3. Complexity of algorithms – In the sensor network setting, specifically in dis-

tributed sensor networks where resources are on a budget, understanding the com-

plexity of the underlying estimation algorithms can be useful for projecting sensor

network lifetime. This is even more useful when monitoring hostile environments

which may be inaccessible to humans, since this information can assist with a better

scheduling of maintenance (battery replacement) tasks. Furthermore, it will also en-

able us to compare the Green’s second identity-based framework (of Chapter 4) with

the universal sampling-based approach proposed in Chapter 6.

4. Joint node localization and source estimation – In the development of our

source estimation framework, we assumed that the location of every monitoring node

in the sensor network is known. In some very harsh situations this assumption may

not hold. Hence the sensor locations, in addition to the field sources, must also be

estimated. Typically, current SN localization methods can be classified as either ac-

tive or passive localization. Active localization methods estimate the nodes using

artificially induced signals, whereas passive methods do not. Consequently, passive

localization methods are more attractive since they do not need additional infras-

tructure, therefore making them more cost effective. In light of this, a framework

that can simultaneously localize the sensor nodes and estimate the unknown sources

from the field measurements will have a significant positive impact in the area, by

minimizing the costs of maintenance tasks for example.

5. Atomic norm denoising for spectral estimation – Atomic norm minimization

[22] has emerged as a promising approach for solving line spectral estimation prob-

lems, such as the Prony-like system (2.7), motivated by recet work on atomic norms

[39]. This approach exploits the sparsity property of the signal as in compressed sens-

ing (sparse recovery) but, in contrast, operates directly on continuously parametrized

dictionaries. In so doing it eliminates the need for gridding or discretizing the dictio-

naries/atoms, and the drawbacks thereof.

Herein, the parsimonious signal model is given by:

r =

M∑
m=1

cma(θm), (7.1)
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where the r coincides with a vectorization of our 1-D generalized measurements when

we have a(θm) =
[
ej2πt0θm , ej2πt1θm , . . . , ej2πtKθm

]T
, and θm ∈ [0, 1). Furthermore, by

considering the dictionary or set of atoms A = {a(θ) : θ ∈ Θ}, and defining the

atomic norm ‖·‖A as follows:

‖r‖A = inf{‖c‖ : r =
M∑
m=1

cma(θm)} = inf{t > 0 : r ∈ tconv(±A)}, (7.2)

then one can formulate and solve convex optimization problems (see [22]) to recover

the unknowns θm and cm given measurements of the signal r, possibly with missing

or corrupt data. It may be useful to consider and investigate this new approach for

recovering the unknown source parameters from the sequence of generalized measure-

ments because it has been shown, under certain conditions, to compare favourably

against classical spectral estimation methods [22].

6. Space-time trade-off for the sampling density – In many sensor network appli-

cations the placement of sensors remains an art. Related to this, due to the cost of

sensors, the geometry of the monitored region or medium for example, practitioners

are often constrained in terms of the density of sensors that can be placed, as well

as where these sensors can be safely placed. Consequently, it may usually be more

convenient to sample more densely in time to compensate for reducing the number

of sensors (i.e. the spatial sampling density). In the context of our framework, the

problem of understanding this space-time sampling density trade off is interesting

but missing. Thus a thorough study of this trade off will serve to provide a more

complete treatment of physics-driven inverse source problems under the framework

provided in this thesis.
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Appendix A.

Chapter 4

A.1. The Cramer-Rao bound

Given noisy sensor measurements,

Rε(k) = R(k) +
1

N

∑
n,l

wn,l(k)εn,l (A.1)

=
1

N

∑
n,l

wn,l(k)ϕn(tl) +
1

N

∑
n,l

wn,l(k)εn,l, (A.2)

for k = 0, 1, . . . ,K. Let r = (Rε(0),Rε(1), . . . ,Rε(K))T and as defined in Section 4.6.2, let

W(k) ∈ CN×(L+1) be the matrix with entries [W(k)]n,l+1 = wn,l(k) and w(k) = vec(W(k)).

Furthermore, introducing the matrix W̃ = (w(0),w(1), . . . ,w(K))T allows us to obtain the

following matrix-vector expression for (A.2):

r = W̃(ϕ+ ε) (A.3)

where ϕ and ε are formed in the same way as w(k). It can then be shown that the Fisher

information matrix (FIM) is given by [108]:

I(θ) =
2

σ2
Re
{

GH(W̃W̃H)−1G
}
, (A.4)

where θ = (c1, τ1, ξ1,1, ξ2,1, c2, τ2, ξ1,2, ξ2,2, . . . , cM , τM , ξ1,M , ξ2,M )T, i.e. θ ∈ R4M , and

G =


∇θ(0)

∇θ(1)
...

∇θ(K)

. (A.5)
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A.1. The Cramer-Rao bound

For the single source estimation result shown in Figure 5.12, R(k) = c1e
−jτ1/T e−k(ξ1,1+jξ2,1)

with M = 1 and k = 0, 1, then

G =


e−jτ1/T e−jτ1/T−(ξ1,1+jξ2,1)

−j c1T e
−jτ1/T −j c1T e

−jτ1/T−(ξ1,1+jξ2,1)

0 −c1e
−jτ1/T−(ξ1,1+jξ2,1)

0 −jc1e
−jτ1/T−(ξ1,1+jξ2,1)


T

. (A.6)

The Cramer-Rao bound (CRB) is then obtained by inverting the FIM.
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Chapter 6

B.1. The Generalized Strang-Fix Conditions

We first state the classical Strang-Fix condition [141], for multidimensional polynomial

reproduction, in the following lemma.

Lemma B.1 (Strang-Fix condition). For any kernel ψ(x) ∈ HpC , the following statements

are equivalent:

1. ψ̂(0) 6= 0 and ∇αψ̂(2π`) = 0, where ψ̂(jω) is the Fourier transform of ψ and

` ∈ Zd \ {0}

2. xα =
∑
n∈Zd cα,n.

Proof. The proof of this lemma depends on the Poisson summation formula – which con-

nects the values of a function ψ on the lattice Zd with its Fourier transform ψ̂ on the lattice

2πZd. For which both sides of the summation converge (absolutely) when ψ and ψ̂ decay suf-

ficiently quickly. The proof is based on taking the Fourier transform of ψ(n) = nαϕ(x−n)

and applying the frequency differentiation property to it. The implication 1. ⇒ 2. follows

immediately from this expression, whereas the converse follows by induction. A complete

proof can be found in [141].

To demonstrate the multidimensional generalized Strang-Fix condition, we require that

the function ψ(x) = e−κ·xs(x) is able to reproduce the polynomial xα. Consequently, we

obtain

xα =
∑
n

cα,ne
−κ·(x−n)s(x) (B.1)

⇔ xαeκ·x =
∑
n

cα,ne
κ·ns(x), (B.2)

such that wn = cα,ne
κ·n|α=0. Moreover, it follows that (B.2) holds true provided ψ(x) =

nαϕ(x − n) satisfies the classical Strang-Fix condition with α = 0. This allows us to

obtain the conditions on s(x) as follows. First we relate the Fourier transform of ψ to the

Laplace transform of s(x), which is ψ̂(ω) = S(κ+ sx)|sx=jω. Therefore when α = 0 and
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ω = 2πn, we obtain the desired conditions:

S(κ) 6= 0, and S(κ+ j2πn) = 0, (B.3)

as required.

B.2. Bilateral Laplace transforms

B.2.1. Green’s function of the two-dimensional diffusion equation

We derive expression (6.41), i.e. the multidimensional bilateral Laplace transform (6.23) for

the Green’s function of the d-dimensional diffusion equation. Recall that in d-dimensions,

the diffusion has the following Green’s function:

g(x, t) =
1

(4πµt)d/2
e
− ‖x‖

2

4µt H(t), (B.4)

and so,

G(sx, st) =

∫
x∈R3

∫
t∈R

1

(4πµt)d/2
e
− ‖x‖

2

4µt H(t)e−(x,t)·(sx,st)dtdx. (B.5)

We first consider the spatial integral:∫
x∈R3

e
− ‖x‖

2

4µt e−x·sxdx =

∫
x∈R3

e
− ‖x‖

2+4µtx·sx
4µt dx

=

∫
x∈R3

e
− ‖x+2µtsx‖2−4µ2t2‖sx‖2

4µt dx

= eµt‖sx‖2
∫

x∈R3

e
− ‖x+2µtsx‖2

4µt dx

= eµt‖sx‖2(4πµt)d/2, (B.6)

where the second equality follows by completing the square, whilst (B.6) follows immediatly

from the fact that, ∫ ∞
x=−∞

e−
x2

a dx =
√
aπ,

and so, ∫
x
e−
‖x‖2
a dx =

d∏
i=1

∫ ∞
xi=−∞

e−
x2
i
a dxi = (

√
aπ)d,

with a = 4µt. We can now substitute (B.6) back into (B.5) and proceed as follows:

G(sx, st) =

∫
t∈R

eµt‖sx‖2H(t)e−sttdt

=

∫
t≥0

e−(st−µ‖sx‖2)tdt

=
1

st − µ‖sx‖2
, (B.7)
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provided <
(
st − µ‖sx‖2

)
> 0, as required.

Remark B.1. The requirement that <
(
st − µ‖sx‖2

)
> 0 is a necessary condition for the

integral (B.7) to converge. This condition is almost always satisfied in reality. Take for

example, st = ρ = jr/T and sx = −κ = −j(k1, k2)⇒ ‖sx‖2 = −(k2
1+k2

2). For these choices,

<
(
jr/T + µ(k2

1 + k2
2)
)
> 0 ⇒ (k2

1 + k2
2) > 0 which is satisfied for all (k1, k2) ∈ Z \ {0}.

Similarly for the 3-D ISP, where sx = −κ = −(k1, jk1, jk2), we end up with the condition

that k2
2 > 0 and is satisfied for any k2 ∈ Z \ {0}.

B.2.2. Green’s function of the three-dimensional wave equation

We derive the multidimensional bilateral Laplace transform (6.23) of the Green’s function

for the wave equation (6.5). According to Definition 3.3, this Green’s function g(x, t) must

satisfy,

∇2g(x, t)− 1

c2

∂2

∂t2
g(x, t) = δ(x, t). (B.8)

We begin by taking the Laplace transform of the PDE above, as follows:∫
x∈R3

∫
t∈R

(
∇2g(x, t)− 1

c2

∂2

∂t2
g(x, t)

)
e−(x,t)·(sx,st)dtdx=

∫
x∈R3

∫
t∈R

δ(x, t)e−(x,t)·(sx,st)dtdx∫
x∈R3

(
∇2 − s2

t

c2

)
g1(x, st)e

−x·sxdx =

∫
x∈R3

δ(x)dx(
‖sx‖2 − (st/c)

2
)
G(sx, st) = 1.

From this we can rearrange to obtain the required multidimensional bilateral Laplace trans-

form of g,

G(sx, st) =
1

(‖sx‖2 − (st/c)2)
.

B.3. Approximate weights: using Green’s second identity

For the family of analytic spatial sensing functions, it can be shown using Green’s second

identity that (see (3.17)):

Q(k, 1) = 〈f(x, t),Γ(t)Ψk(x)〉x,t =

∫
Ω
(ΨkU̇)(x, T )dV − µ

∮
∂Ω

(Ψk∇U−U∇Ψk)·n̂∂ΩdS,

where Γ(t) = Γ1(t), and

U(x, T ) =

∫ T

0
Γ(t)u(x, t)dt, and (B.9a)

U̇(x, T ) = Γ(T )u(x, T )−
∫ T

0

∂Γ

∂t
u(x, t)dt. (B.9b)

Hence R(k) can be computed exactly if u(x, t), Ψk(x) and Γ(t) are known over Ω× [0, T ].

However, given real spatiotemporal sensor measurements of the field u(x, t), we can only
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compute approximations of the quantities U(x, T ) and U̇(x, T ) using quadrature schemes.

These approximations, of the integral (3.17), can in general be written as a weighted sum

of the field spatiotemporal measurements {ϕn(tl)}n,l, for n = 1, . . . , N and l = 0, . . . , L.

Thus,

R(k) =
N∑
n=1

L∑
l=0

wn,l(k)ϕn(tl). (B.10)

To derive the Green’s weights, we consider (3.17) and firstly consider approximating the

time integrals for the n-th sensor and then combining these over all N sensors in the

network.

To begin, let us denote the approximate values of the quantities (B.9a) and (B.9b)—to

be obtained from the from temporal samples {ϕn(tl)}Ll=0 of the n-th sensor—at the location

x = xn by Φn(tL) and Φ̇n(tL) respectively. Then for (B.9a):

U(xn, T )|T=tL
=

∫ tL

0
Γ(t)u(x, t)dt

≈ Φn(tL) =
∆tt

2

(
u(xn, t0)Γ(t0) + 2

L−1∑
l=1

u(xn, tl)Γ(tl) + u(xn, tL)Γ(tL)

)
(B.11)

=
∆tt

2

(
ϕn(t0) + 2

L−1∑
l=1

ϕn(tl)e
−jl/L + ϕn(tL)e−j

)
. (B.12)

Following similar lines for (B.9b), and noting that Γ(t)|T=tL
= e−jt/tL and ∂Γ(t)

∂t

∣∣∣
T=tL

=

1
jtL
e−jt/tL :

U̇(xn, T )
∣∣∣
T=tL

=Γ(tL)u(x, tL)−
∫ tL

0

∂Γ

∂t
u(x, t)dt

≈Φ̇n(tL)

=u(xn, tL)e−j−∆tt

j2tL

(
e−jt0/tLu(xn, t0)+2

L−1∑
l=1

e−jtl/tLu(xn, tl)+e
−ju(xn, tL)

)
(B.13)

=
j∆tt

2tL
ϕn(t0) +

j∆tt

tL

L∑
l=1

e−jl/Lϕn(tl) +

(
1 +

j∆tt

2tL

)
e−jϕn(tL). (B.14)

Moreover, considering both space and time integrals together, it is possible to show that,

Q(k, 1) ≈
∑
n∈S

An(k)Φ̇n(tL)− µBn(k)Φn(tL)

=
1

N

∑
n∈S

yn(k).

where {An(k)}n and {Bn(k)}n are constants, for each k ∈ Z, that depend on the topology
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of the sensor network. We can now substitute into the above, expressions (B.12) and (B.14)

for Φn(tL) and Φ̇n(tL) respectively to get,

yn(k) =NAn(k)

(
j∆tt

2tL
ϕn(t0) +

j∆tt

tL

L∑
l=1

e−jl/Lϕn(tl) +

(
1 +

j∆tt

2tL

)
e−jϕn(tL)

)

− µNBn(k)∆tt

2

(
ϕn(t0) + 2

L−1∑
l=1

ϕn(tl)e
−jl/L + ϕn(tL)e−j

)

=
∆tt

2tL
(jNAn(k)−µNBn(k)tL)ϕn(t0)+

∆tt

tL
(jNAn(k)−µNBn(k)tL)

L∑
l=1

e−jl/Lϕn(tl)

+

(
NAn(k)

(
1 +

j∆tt

2tL

)
− µNBn(k)∆tt

2

)
e−jϕn(tL).

(B.15)

Hence, the approximate weights using Green’s second identity, i.e. the “Green’s weights”,

are given by:

wn,l(k) =


jNAn(k)∆tt

2tL
− µNBn(k)∆tt

2 , if l = 0(
jNAn(k)∆tt

tL
− µNBn(k)∆tt

)
e−jl/L, if l ∈ {1, . . . , L− 1}(

NAn(k)
(

1 + j∆tt
2tL

)
− µNBn(k)∆tt

2

)
e−j, if l = L

(B.16)

for any n ∈ N .
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[8] A. Aldroubi and K. Gröchenig. Nonuniform sampling and reconstruction in shift-

invariant spaces. SIAM Review, 43(4):585–620, 2001.

[9] A. Aldroubi and M. Unser. Sampling procedures in function spaces and asymptotic

equivalence with Shannon’s sampling theory. Numerical Functional Analysis and

Optimization, 15(1-2):1–21, 1994.

[10] O. M. Alifanov. Inverse heat transfer problems. Springer Science & Business Media,

2012.

169



Bibliography

[11] S. Andrieux and A. B. Abda. Identification of planar cracks by complete overdeter-

mined data: inversion formulae. Inverse Problems, 12(5):553, 1996.

[12] N. Antonello, T. van Waterschoot, M. Moonen, and P. A. Naylor. Source localization

and signal reconstruction in a reverberant field using the FDTD method. In Proceed-

ings of the 22nd European on Signal Processing Conference (EUSIPCO‘14), pages

301–305, Sept 2014.

[13] F. Asano, M. Goto, K. Itou, and H. Asoh. Real-time sound source localization and

separation system and its application to automatic speech recognition. In INTER-

SPEECH, pages 1013–1016, 2001.

[14] N. Auffray, M. Bonnet, and S. Pagano. Identification of transient heat sources using

the reciprocity gap. Inverse Problems in Science and Engineering, 21(4):721–738,

2013.

[15] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione. Broadcast gossip al-

gorithms for consensus. IEEE Transactions on Signal Processing, 57(7):2748–2761,

2009.

[16] S. Baillet, J. C. Mosher, and R. M. Leahy. Electromagnetic brain mapping. IEEE

Signal Processing Magazine, 18(6):14–30, Nov 2001.

[17] T. Bannour, A. B. Abda, and M. Jaoua. A semi-explicit algorithm for the recon-

struction of 3D planar cracks. Inverse Problems, 13(4):899, 1997.

[18] H. Becker, L. Albera, P. Comon, R. Gribonval, F. Wendling, and I. Merlet. Brain-

source imaging: From sparse to tensor models. IEEE Signal Processing Magazine, 32

(6):100–112, Nov 2015.
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estimates using cortical orientation constraints. Human brain mapping, 27(1):1–13,

2006.

[96] C. G. Lopes and A. H. Sayed. Diffusion least-mean squares over adaptive networks:

Formulation and performance analysis. IEEE Transactions on Signal Processing, 56

(7):3122–3136, 2008.

[97] Y. M. Lu and M. Vetterli. Distributed spatio-temporal sampling of diffusion fields

from sparse instantaneous sources. In 3rd IEEE International Workshop on Computa-

tional Advances in Multi-Sensor Adaptive Processing (CAMSAP‘09), pages 205–208,

Aruba, Dutch Antilles, 2009. IEEE.

[98] Y. M. Lu and M. Vetterli. Spatial super-resolution of a diffusion field by temporal

oversampling in sensor networks. In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP‘09), pages 2249–2252. IEEE, 2009.

[99] Y. M. Lu, P. L. Dragotti, and M. Vetterli. Localizing point sources in diffusion fields

from spatiotemporal samples. In Proc. 9th International Conference on Sampling

Theory and Applications (SampTa‘11), Singapore, 2011.

[100] Y. M. Lu, P. L. Dragotti, and M. Vetterli. Localization of diffusive sources using

spatiotemporal measurements. In Proc. 9th IEEE Annual Allerton Conference on

Communication, Control, and Computing (Allerton‘11), pages 1072–1076, Illinois,

USA, 2011. IEEE.

176



Bibliography

[101] I. Malyshev. An inverse source problem for heat equation. Journal of Mathematical

Analysis and Applications, 142(1):206 – 218, 1989.

[102] S. Marano, V. Matta, and P. Willett. Distributed estimation in large wireless sensor

networks via a locally optimum approach. IEEE Transactions on Signal Processing,

56(2):748–756, 2008.

[103] S. Maranò, D. Fäh, and H.-A. Loeliger. A state-space approach for the analysis of

wave and diffusion fields. In Proc. 40th IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP‘15), Brisbane, Australia, apr 2015.
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