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In the WSN- (wireless sensor network-) based surveillance system to detect undesired intrusion, all detected objects are not
intruders. In order to reduce false alarms, human detection mechanism needs to determine if the detected object is a human.
For human detection, physical characteristics of human are usually used. In this paper, we use the physical height to differentiate
an intruder from detected objects. Using the measured information from sensors, we estimate the height of the detected object.
Based on the height, if the detected object is decided as an intruder, an alarm is given to a control center. The experimental results

indicate that our mechanism correctly and fast estimates the height of the object without complex computation.

1. Introduction

Conventional surveillance systems address a detection prob-
lem of an abnormal event in monitored space by deploying
video systems. However, video systems are expensive in terms
of hardware, storage, and communications. In particular,
collecting multiple video streams imposes high demands on
storage, online monitoring, and video analysis. The WSN
(wireless sensor network) technology provides means to
develop such a system with low costs [1]. The WSN can run
standalone or it can be used to trigger external surveillance
system like a video system. For example, in a hybrid system,
when WSN detects and notifies an abnormal event, WSN
triggers a video surveillance system. Then, camera is activated
and zooms into the monitored space. The hybrid system
optimizes accuracy, while keeping costs low. WSN is ideal for
monitoring application because it is a fully automated system
which does not require any human intervention and easily
connected to external system so it can notify the user of the
undesired situation.

There are a lot of monitoring applications based on WSN
technology and they are interested in monitoring specific
events or objects [2-5]. Not only do they need to figure out

occurrence or existence of events or objects, but also they
need to find out where the events have occurred or the objects
are present. Examples of that kind of applications include
fire monitoring systems, surveillance systems, livestock mon-
itoring, and protection systems. The target application aimed
by this paper is surveillance systems for home, office, or
factory. In surveillance systems, it is very important to detect
undesired intrusion while nobody is present in office, home,
or factory. Typically, WSN-based surveillance systems start
with motion detecting. Once any motion in the monitored
space is detected, because all moving objects are not intrud-
ers, human detection mechanism needs to determine if the
detected object is a human in order to reduce false alarms to
video system. For human detection, physical characteristics
of human are usually used. Height, speed, and body heat are
one of these physical characteristics. When the height of a
detected object is within a reasonable range for normal adults,
for example, between 150 cm and 200 cm, we can consider
the object as a human. In the same manner, we can check
whether the mobility speed or the body heat of the object is
within a reasonable range. In this paper, we use the physical
height to differentiate an intruder from detected objects [6, 7].
Using the ranging information from sensors, we present a



height estimation mechanism for the detected object [8]. In
order to reduce the estimation error of the height of the
detected object, we extend the height estimation mechanism
with a compensation algorithm using interpolation method.
If the finally estimated height is in the height range for
normal adults, it is determined that the object is a human
and an alarm is given to activate video surveillance system.
Our mechanism makes WSN-based surveillance system self-
configuring because it can configure a range for normal adults
in a dynamic way.

The rest of the paper is organized as follows. In Section 2,
we introduce the related studies for 3D localization. In
Section 3, we propose a height estimation mechanism with
an error compensation algorithm for human detection. Then,
we show the performance of the proposed mechanism in
Section 4. Finally, the conclusion remarks are given in
Section 5.

2. Related Work

In a localization system, most algorithms work on 2D (2-
dimensional) plane, that is, x and y plane. In the 2D local-
ization algorithms, the process of estimation is less complex
and faster than the process of 3D (3-dimensional) localization
algorithms [9]. The 2D localization algorithms provide good
accuracy on flat terrains but they are difficult to estimate on
rough terrains. Thus, mapping these positions estimated by
the 2D algorithms to the real world can cause errors. By using
3D with one extra plane, that is, z plane, 3D localization algo-
rithms provide more accurate results on rough terrains. In
2D space, at least three anchor nodes determine a coordinate
system. In 3D space, four anchor nodes at least are required.

3D DV-Hop algorithm [10] expands the traditional range-
free DV-Hop algorithm into 3D space. In the algorithm, the
minimum hop counts between the detected object and the
anchor nodes are calculated by using mobile agents. Then,
the algorithm calculates the average per-hop distance of the
object by using the minimum hop counts and the average per-
hop distance of the anchor nodes. Based on the calculated
distance, the position of the object is estimated. 3D Centroid
algorithm [11] expands the traditional Centroid algorithm.
All anchor nodes send their position information within
their transmission range. An object collects the signals from
anchor nodes and it selects randomly four anchor nodes in
range to form a series of tetrahedrons. For each tetrahedron,
the algorithm calculates the barycenter. Finally, the average
coordinate of these barycenters is used as the estimated
position of the object.

In 3D-ADAL (3-dimensional azimuthally defined area
localization algorithm) [12], a mobile beacon moves in the
whole network and broadcasts beacon messages within its
transmission range. First, each sensor node estimates its
position in the local xy-plane. Then, each node focuses on
the local yz-plane of the mobile beacon and determines
its altitude by using the information of tilt in the beacon
message. In [13], the loss of wireless signal strength between
the object and an anchor node is converted to the dis-
tance first, and then the maximum-likelihood estimation
method is used to calculate the 3D coordinate of the object.
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In other words, RSSI (received signal strength indication)
value between the object and anchor node is converted
to the distance. For 3D positioning, the object needs to
communicate with four adjacent anchor nodes at least. When
obstacles are present, the attenuation of wireless signal does
not meet linear relationship with the distance any longer, so
the compensation algorithm like the maximum-likelihood
estimation method is used.

In 3D UMP (unitary matrix pencil) [14], it is based on
TOA (time-of-arrival) estimation of UWB (ultrawideband)
signal using UMP algorithm. The UMP algorithm is proposed
to measure the distance between two nodes. The algorithm
is extended to the applications of UWB-based WSN to
reduce computational load and improve time resolution.
The estimation results are used by multilateral localization
algorithm for 3D position computation. In SDI (space dis-
tance intersection) [15], each sensor node measures a set of
distances with the mobile beacon by using TOA techniques
of UWB signal.

In [16], a closed-form solution for 3D localization using
AOA (angle of arrival) is presented. It reduces the amount
of estimation bias that is caused by the measurement noise
and sensor position errors. Besides it achieves asymptotically
the CRLB (Cramer-Rao lower bound) performance and
maintains a bias level close to the maximum-likelihood
estimator. Reference [17] applies the WIV (weighted instru-
mental variable) technique for AOA positioning. The WIV
technique uses an IV matrix to reduce the noise correlation
between the regressor and regressand.

The conventional 3D localization techniques require at
least four anchor nodes to calculate the position of the
detected object. Besides, they have high processing overhead.
However, our surveillance system needs the only height
information of the detected object to determine if the object
is human, instead of the position of the object. Thus, we
propose a lightweight height estimation mechanism with low
processing overhead and our mechanism requires at least
three anchor nodes. Based on the height estimation of the
object, we can implement fast and accurate human detection
system.

3. Proposed Mechanism

In order to estimate the height of a target object, we firstly
estimate the distance from a ceiling to the target. Given the
distance, the height of the target is calculated by subtracting
the distance from the height of the monitored space where
the target locates. We assume that sensors are deployed on
a ceiling in the monitored space. The sensors measure the
distances from themselves to the target. In Figure 1, the base
of upside-down triangular pyramid indicates a ceiling of the
monitored space. Three sensors mounted on a ceiling are
vertices A, B, and C. The target is located at the apex (P,) of
the pyramid. The distances measured by sensors A, B, and C
are d, e, and f,. We propose an algorithm to estimate the
height of the pyramid, x. Given a, b, ¢, d,, e, and f,, our
algorithm estimates the height x.

The base area is the area of the triangular base in the
pyramid. Using Heron’s formula, we calculate the area of a
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FIGURE 1: Symbols used by our algorithm.

triangle, S(abc) when the lengths of all three sides, a, b, and ¢
are known [18]. The base area whose sides have lengths a, b,
and c is calculated using Heron’s formula, as below.
S (abc)
¢))

=(@a+b+c)(-a+b+c)(a-b+c)(a+b-c).

In other words, the base area with three vertices A, B, and C
is

4Areag, . = /S (abc)
= \/S (aeo fo) + \/S (bfodo) + \/S (cdey).

The lateral area is the sum of areas of the side faces, that is,
ABCP,, ACAP,, and AABP,, in the pyramid. The lateral area
is

4Area o = \S (ae, f,) + \[S (bfody) + S (cd,e,). ()

The height of the pyramid x meets the base at a point, called
P, (we can find P, by using triangulation). Using d,,, e,, and
foind? = di+x* e =e +x% and f2 = fi +x% (3)is
rewritten as follows:

4Area o = \/S (aey fo) + 4ax?
+1/S (bfyd,) + 4b*x? (4)
+ /S (cdyey) + 4c2x2.

By treating S(ae, f,,), S(bfyd,), and S(cd,e,) as constants, (4)
is rewritten as follows:

\/S (aey fo) + 4a>x> + \/S (bfod,) + 4b%x?

+ /S (cdgey) + 4c2x? > Vaa2x? + Vaprx2  (5)
+ V4c2x? =2(a+b+c)x.

2)

Using Va+b < va+ Vb (a,b > 0), we rewrite (5) as follows:

\/S (aey fo) +4a>x> + \/S (bfod,) + 4b*x?

+ \/S (cdyey) + 4c?x? < \/S (aey fo) + V4a?x?

(6)
+ 1S (bfody) + VA2 X2 + /S (cdyey) + VAc?x?
=2(a+b+c)x+ S (abc).
Thus, the lateral area is
% (a+b+c)x < Areapyepa
1 1 @)
< E(a+b+c)x+ Z\/S(abc).
We define the function f(x) as follows:
1
f@= <\/s (aey fo) + 4ax? + \[S (bfydy) + 4b2x2
(8)

+ /S (cdye,) + 4c2x2> :

Using (7), we define the function g(x) to estimate the lateral
area as follows:

g(x)=%(a+b+c)x. )

We can estimate x., when g(x.y) = f(x) as follows:

_2f(x)

a+b+c

VS (ae, f,) + S (bfid,) + S (cd,e,)

2(a+b+c)

Xest

(10)

The estimation error is the difference between f(x) and
g(x). By tracking limit as x to infinity, the estimation error
converges to 0 as follows:

Jim (f (x) - g (x)) = 0. (1

But, when x = 0, the error is maximized

f(0)-g(0) = ;11\/8 (abc). (12)

To reduce the estimation error, we improve (7) using

Va+b < +a+ Vb (a,b > 0) as follows:
%(a+b+c)x+ }L\/S(abc)

:i(\/m+\/4(a+b+c)2x2> (13)

> }L\/S(abc)+4(a+b+c)2x2.
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FIGURE 2: Test environments for evaluating performance.

Using (13), we improve the function g(x) to estimate the
lateral area as follows:

h(x) = 4—11 \/s (abc) +4(a+b+c)* x> (14)

Using (14), we can estimate Xqg e,y When (X new) = f(x)
as follows:

16 f (x)* = S (abe)

Festnew = T (@a+b+c)
- (15)
\j( \/S (ae.fy) + \/S (bfd,) + \/S (cdxex)) - S (abc)
- 2(a+b+c) ’
As (7), we can get the following relationship:
%(a+b+c)x <h(x)
. . (16)
< 3 (a+b+c)x+ Z\/S(abc).

Finally, when x increases on infinity or decreases on 0, the
estimation error converges to 0 as follows:

lim (f ()~ h(x) =0,

£(0)=h(0) =0.

17)

Asaresult, givena, b, ¢, d,, e, and f,, we estimate the height
of the target by using (15) while minimizing the estimation
error.

4. Performance Analysis

To evaluate the performance of our mechanism, we imple-
ment sensors on the mote modules [19] equipped with
DMS (distance measurement sensor) and communications

between them are based on IEEE 802.15.4 standard [20]. We
deploy three sensors on a ceiling in a laboratory in our college
building and we devise two test environments, as shown in
Figure 2. Firstly, Figure 2(a) shows the test environment I.
In the environment, we use an equilateral triangle which
is a triangle that has equal length (2m) on all three sides.
Figure 2(b) shows the test environment 2. We use a triangle
with 2m x 3m x 4 m. We have two test scenarios for each
test environment. In the first scenario, there is no obstacle
between sensors and the detected object. In the second
scenario, there is an obstacle, such as ceiling fixture, between
sensor A and the detected object. In both test environments,
we set the distance between the ceiling and a detected object
(x) to 0.5m or 1m, respectively. For each experiment, we
measure 1000 samples.

Figure 3 shows the estimation accuracy of our mechanism
in the test environment 1. We plot a normal distribution with
mean y and standard deviation 0. Each dot indicates X ¢ pew
calculated by using (15) based on each measured sample.
Figures 3(a) and 3(b) indicate the estimation accuracy when
there is no obstacle between the sensors and the object. In
the subfigures, +20 shows a 95% confidence interval. When
x = 0.5m, 946 samples are correctly estimated as x =
Xestnews and the estimation accuracy is 94.6%. When x =
1 m, the accuracy is 95%. Besides, we are 99% confident that
the estimation accuracies are 99.6% and 99.5%, respectively.
Figures 3(c) and 3(d) indicate the estimation accuracy when
there is the obstacle. In the subfigures, the effect of an
obstacle on the estimation is analyzed. When x = 0.5m,
the estimation accuracy is 91.2% or 99% with a 95% or
99% level of confidence, respectively. When x = 1m,
the accuracy is 94.6% or 99.4%. The performance slightly
decreases due to the environmental impact such as obstacles.
To compensate the impact, more sensors could be deployed
or error compensation mechanism could be used.

Figure 4 shows the estimation accuracy of our mecha-
nism in the test environment 2. The figure shows the effect
of the deployment of sensors on the estimation. As shown
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F1GURE 3: Estimation accuracy in test environment 1.

in Figures 4(a) and 4(b), when there is no obstacle between
the sensors and the object, the accuracies are 95.6% and
94.8% with a 95% level of confidence. Besides, we are 99%
confident that the accuracies are 98.8% and 99.2%. When
x = 0.5m with the obstacle, as shown in Figure 4(c), the
estimation accuracy is 93.4% or 98.8% with a 95% or 99% level
of confidence, respectively. When x = 1 m with the obstacle,
as shown in Figure 4(d), the accuracy is 89.6% or 99.2%.
Figure 5 shows the estimation error of our mechanism
in the test environment 2 with the obstacle. In the figure,
the effect of the number of sensors on the estimation is
analyzed. Because our mechanism operates based on the
area of a triangle, we increase the number of sensors from
3 to 5 when x = 1m. In the figure, estimation error 0%
means that the height of the object is estimated exactly. We
measure 100 samples for the figure and the x-axis indicates
the number of the experimental samples. As shown in
the figure, the accuracy is about 99% when three sensors
are deployed. When four or five sensors are deployed, we
randomly select three sensors to form a series of triangles. For

each triangle, our mechanism estimates the distance. Then,
the average distance of the estimated distances is used as the
final estimated distance between the ceiling and the object.
The estimation accuracies are over 99% when four or five
sensors are deployed. As a result, the performance is more
affected by obstacle than the deployment of sensors or the
number of sensors. The experimental results indicate that our
mechanism correctly and fast estimates the distance from a
ceiling to an object without complex computation.

5. Conclusion

In the WSN-based surveillance systems, they need to figure
out the occurrence or existence of events or objects. To
estimate the position of the events or objects, 3D localization
techniques have been used. However, the conventional 3D
localization techniques require at least four anchor nodes to
calculate the position of the detected object. Besides, they
cause high processing overhead. However, our surveillance
system needs the only height information of the detected
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100

object to determine if the object is human, instead of the
position of the object. We propose a height estimation mech-
anism with low processing overhead. On the top of the mech-
anism, in this paper, we revise a compensation algorithm
using interpolation method to reduce the estimation error
of the height. Through implementation of our mechanism,
we verify the performance of the height estimation. The
experimental results indicate that our mechanism correctly
and fast estimates the height of the object without complex
computation. Through performance analysis, we show that
the estimation accuracy is more affected by obstacle than
the deployment of sensors or the number of sensors. For
the future work, we plan to perform experiments with a
practical scenario and to improve the estimation mechanism
to compensate the estimation error or the environmental
impact.
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