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Abstract: 
Nowadays with the dispersion of wireless networks, smartphones and diverse related services, different 

localization techniques have been developed. Global Positioning System (GPS) has a high rate of accuracy for 

outdoor localization but the signal is not available inside of buildings. Also other existing methods for indoor 

localization have low accuracy. In addition, they use fixed infrastructure support. In this paper, we present a 

novel system for indoor localization, which also works well outside. We have developed a mathematical model 

for estimating location (distance and direction) of a mobile device using wireless technology. Our experimental 

results on Smartphones (Android and iOS) show good accuracy (an error less than 2.5 meters). We have also 

used our developed system in asset tracking and complex activity recognition. 

 

SECTION I. Introduction 
Man invented several methods and tools to identify their location a long time ago. Nowadays localization plays a 

very important role. Various location based services (LBS) has been developed using global positioning system 

(GPS) for outdoor environment. There are lots of applications where localization is used extensively such as 

navigation, map generation, complex activity recognition, patient identification, location and tracking in 

hospitals, child tracking, disaster management, monitoring firefighters, indoor and outdoor navigation for 

humans or mobile robots, inventory control in factories, anomaly detection, customer interest observation in 

supermarkets, visitors interest observation in exhibitions, and smart houses [1] [2] [3] [4] [5]. These applications 

of localization help to solve and improve a variety of real-life problems. 

GPS has a high rate of accuracy for outdoor localization. But it is not viable to use GPS indoors or to use wireless 

sensor networks (WSNs) because it is expensive in terms of energy and cost. Also the signal is not available 

inside the building. Besides GPS, most of the other existing methods use infrastructure to estimate location both 

indoors and outdoors, so these methods require additional cost for the infrastructure. As infrastructure is 

stationary in terms of long range user mobility, it is not possible to identify the location of the user accurately 

and sometimes they leave the service region. Some methods are adaptive and others need training each time 

there is a change in environment. Some of the approaches require additional setup time to start working. So to 

improve accuracy it takes time to recalibrate the system every time there is a change in environment. 

Nowadays there is a huge growth in the number of Smartphone users. Total shipments of Smartphones in 2011 

were 491.4 million with annual growth 61.3% percent from 2010 [6]. Every Smartphone is equipped with various 

wireless adapters and offers a variety of useful sensors such as Accelerometer, Gyroscope, Orientation sensor, 

Magnetometer, Barometer, GPS, Wi-Fi, and NFC. Use of a Smartphone based system eliminates cost of 

additional devices and sensors. 

In order to solve existing problems such as improving accuracy, eliminating infrastructure, reducing cost and 

setup time, and adding mobility we worked on developing a system for localization. We developed a 

mathematical model for estimating location (distance and direction) of a mobile device indoors and outdoors 

using Wi-Fi. We used our developed model to build a localization system for Smartphones (Android/iPhone). We 

also implemented another approach called the fingerprint approach, to identify Smartphone location using 

multiple mobile and fixed wireless routers. 

In this paper, we present a novel approach to determine the location of a mobile node using mobile and fixed 

wireless routers. Our proposed approach has the following contributions: 

• Established a new system to model the localization with RSSI 

• Smartphone based system which is cost effective and easy to use. 



• Improved localization accuracy in a ubiquitous fashion 

• System is able to protect user privacy 

• Comparison of system accuracy with mobile and fixed wireless node (router) 

 

The rest of the paper is organized as follows. Section II states the existing approaches and techniques of 

localization. We describe the details of our approach in Section III. Evaluation, limitations, and possible 

improvements are discussed in Section IV. Finally we conclude the paper with future work in section V. 

SECTION II. Related Works 
There has been a lot of research works on indoor and outdoor localization using wireless technology such as Wi-

Fi (Wireless Fidelity, IEEE 802.11), ZigBee (IEEE 802.15.4), and RFID (Radio Frequency Identification) [2]–

[3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28]. Currently, there 

are several methods for estimating positioning. The three types of measurements mainly used a) Angle of Arrival 

(AOA) b) Time of Arrival (TOA) and Time Difference of Arrival (TDOA) and c) Received Signal Strength Indicators 

(RSSI). Each of these parameters has some advantages and disadvantages. In contrast with AOA, TOA/TDOA 

measuring the RSSI value is very simple and also available in all of the existing wireless systems. That is why RSSI 

based methods are preferable and easy to implement. 

We can consider RSSI as a function of distance from the source even though it changes for various reasons such 

as propagation losses, complex indoor layout, depending on the orientation of the source and receiver, line of 

sight (LOS) requirement and environmental changes. The key complexity is that wireless signals in an indoor 

environment suffer from interference and attenuation from multi-path fading, reflection, channel fading, 

deflection, and diffraction. Due to the unpredictable behavior of signal, finding location with a low error rate is a 

great challenge. 

In the last few years, researchers proposed, simulated and implemented several algorithms and techniques on 

localization using RSSI values and propagation time of wireless devices. Some of these are a) Log distance path 

loss model, b) Trilateration, c) Multilateration, d) Fingerprint method, e) Centroid algorithm, f) Weighted 

Centroid algorithm, g) Maximum likelihood estimation (MLE), h) K-nearest neighbor method, i) Kalman filter, j) 

Particle filtering algorithm and k) Gaussian model. Almost all of the method used the RSSI value, a number of 

reference or anchor nodes (Access Point or APs), and a fingerprint map or RSSI database for estimating location. 

We tabulated summary of different localization approaches in Table I. 



TABLE I: Comparison Of Different Approaches Of Location 

Work Area Location Algorithm Parameters Application Error Experiment 

Fink et 
al. [1] 

WSN Indoor Path loss model 
Kalman Filter 

RSSI Beacon node Indoor positioning 4.85m Real time 

Blumrose n 
et al. [2] 

WSN Indoor MAP criterion RSSI Anchor node 
Close proximity Line 
of Sight (LOS) 

Tracking moving object 
in close proximity for 
medical application 

Mean 0.7cm 
Std Dev 4cm 

Real time 

Zhang et 
al. [3] 

Zig Bee Not 
specified 

Gaussian model Log 
path loss model 
Optimization algorithm 

RSSI Reference Node Tracking multiple 
mobile robot 

3.38m to 5.1m Simulation in 
Mat lab 

Huang et 
al. [4] 

Zig Bee Not 
specified 

Log path loss model 
Antenna polarization 

RSSI Reference Node 
Accelerometer 

Location identification 1.5m Real time 

Zhang et 
al. [5] 

Zig Bee Outdoor Gaussian model 
Trilateration 

RSSI Beacon node Localization 1 to 5 m Real time 

Ibrahim et 
al. [7] 

GSM Not 
specified 

Probabilistic fingerprint 
localization technique 

RSSI Cell information 
database 

GSM positioning system Improved 
accuracy 
23.8% and 
86.4% 

Real time 

Ching et 
al. [8] 

WLAN Indoor Radio Map RSSI Reference Node Position detection Accuracy: 32%-
47% to find 
exact room 

Real time 

Heredia et 
al. [9] 

WLAN Indoor Hidden Markov Model 
(HMM) Viterbi 
algorithm 

RSSI Reference APs People location system 50% Real time 

Lee et 
al. [10] 

WiMAX Outdoor Matrix Pencil for AOA AOA RSSI 2D multi-user location 
system 

<10m in 1Km 
range 

Simulation in 
WiBro 

Feng et 
al. [11] 

WSN Indoor 
Line of 
sight 

Adaptive Neural-Fuzzy 
Inference System 

RSSI 3 Beacons Distance measure 2m mean Real time 

Teo et 
al. [12] 

WSN Indoor Hop count based 
localization 

RSSI Distance measure NA Real time 

Graefenst 
emn et 
al. [13] 

Zig Bee Outdoor Probability torus 
Sequence based 
localization 

RSSI N Beacon node Path driven by a robot 
in a map 

0.95m to 
2.17m 

Real time 

Rolfe et 
al. [14] 

RFID Indoor K-Nearest Neighbors 
ANN (MLP) 

RSSI Beacon Node Indoor localization 83% Real time 



Zhong et 
al. [15] 

Zig Bee Indoor Min-Max RSSI Anchor Node Monitoring firefighters 5m mean Real time 

Salama et 
al.[16] 

RFID Outdoor Trilateral Path loss 
model 

RSSI Beacons Track and monitor 
object in university area 

6.7m Simulation in 
Mat lab 

Wong et 
al. [17] 

GPS 
Bluetooth 

Outdoor Approximation of 
distance from RSSI [Y = 
−13.3 ln(x) — 47] 

GPS RSSI Child tracking Not specified Real time 

Chen et 
al. [18] 

WSN Not 
specified 

Weighted Centroid 
algorithm 

RSSI Beacon node Target localization and 
tracking 

RMSE less than 
3m 

Simulation 

Chang et 
al. [19] 

WLAN Indoor Dominant AP's 
algorithm 

RSSI Reference Node Location Based Services Mean 3m Real time 

Tang et 
al. [20] 

WSN Not 
specified 

Log distance path loss 
model Lateration 
estimation 

RSSI Reference Node Anomaly Detection for 
WSN 

Not specified Simulation 

Widyawa n 
et al. [21] 

WLAN Indoor K-nearest neighbor 
Particle filter Map 
filtering 

RSSI Anchor Node WLAN Mean 1.98m 
Std. Dev. 
1.39m 

Real time 

Ahn et 
al. [22] 

WSN Indoor Log distance path loss 
model Weighted 
Centroid 

RSSI Anchor Node ZigBee Not specified Real time 

Fink et 
al. [23] 

WSN Indoor Antenna Diversity and 
Plausibility Filter 

RSSI Reference Node WSN Safety application 
in Industrial 
Automation 

1 to 2.56m Real time 

Lee et 
al. [24] 

RFID Not 
specified 

Unscented Kalman and 
Particle Filter 

RSSI Reference Node Tracking object 2.2m for PF 
and 7.19m for 
UKF 

Real time 

Jinpeng et 
al.[25] 

wsN Under 
ground 

Weighted minimum 
variance Centroid MLE 

RSSI Reference Node ZigBee Locate 
underground miners, 
vehicles and detect 
temperature 

Location 20.5% 
distance 33.8% 

Real time 

Chen et 
al. [26] 

Zig Bee Outdoor Piecewise linear path 
loss model Min-Max 

RSSI Static Node Park lighting control 
Child tracking 

RMS 3.5228 Real time 

Komatsu et 
al.[27] 

WSN Not 
specified 

RSSI formation control RSSI Beacon node Control mobile robot Not specified Simulation 

Lau et 
al. [28] 

RFID Indoor 
Outdoor 

Enhancement 
algorithm 

RSSI Reference Node Tracking user location Mean 2.8m Real time 



SECTION III. Our Approach 

A. Localization of Mobile Wi-Fi Node with Smartphone 
In this approach we used the RSSI value of a wireless network as the parameter to estimate location (distance 

and direction) of a mobile wireless node using a Smartphone (Fig. 1). At first we collected RSSI values for both 

indoor and outdoor environments. Then we used a low pass filtering method to eliminate noise in RS SI which is 

caused by various environmental factors. This filtering enhances the usability and acceptability of the RSSI value 

as a parameter to estimate distance and direction of a mobile node from a Smartphone. In our experiment we 

used Roving Networks WiFly RN-131GSX as a mobile Wi-Fi router. 

 
Figure 1. Localization of mobile Wi-Fi node (router) with Smartphone. 
 

We collected RSSI values for both indoor and outdoor environments using Android and iPhone. These 

measurements were taken for distances of 10 feet to 80 feet between the Smartphone and mobile Wi-Fi node. 

We stored the pair (distance, RSSI) for all the distinct locations with 2 feet intervals. We also computed 

direction, θ which is direction from the true north for each collected RSSI value. We used the accelerometer and 

magnetometer sensors of the Smartphone to compute direction from true north. Then we used the following 

mathematical model for predicting distance and direction of the mobile Wi-Fi node. 

1) Mathematical Model 
We used result from a separate experiment (RSSI value and orientation of smartphone and wireless node) to 

build the mathematical model. From the experimental result, we found that RSSI value varies with the 

orientation of mobile device and Wi-Fi node. To normalize the orientation effect we collected RSSI value with 

the rotation of smartphone by 360 degree on the horizontal plane. Then we used mean value of the collected 

RSSI to compute the distance. We found that rotation of the smartphone reduces the orientation effect on the 

RSSI value. We also found RSSI value is strongest, when the smartphone orientation point towards the Wi-Fi 

node (Line of Sight). Based on this result, we computed direction as the angle from true north for which we get 

the strongest RSSI signal. The mathematical model to predict distance and direction i.e. location of mobile node 

is shown in Fig. 2. The overall approach is shown in Fig. 3. 

 
Figure 2. Mathematical Model. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6605717/6649781/6649805/6649805-fig-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6605717/6649781/6649805/6649805-fig-2-source-large.gif


 
Figure 3. Overall Approach. 
 

Here we used filtered accelerometer sensor and magnetometer sensor data to compute the heading. In the 

same time we collected RSSI from mobile node for each degree rotation. Then we used mathematical model to 

predict distance and direction of the mobile node from smartphone. 

We used exponential regression using Nelder-Mead Simplex Search method [29] [30]. As RSSI values vary with 

vendors we collected 4 different sets of data and used 4 different regressions for indoor and outdoor 

environment with Android and iPhone. We show the regression for outdoor environment using Android in Fig. 4. 

 
Figure 4. Exponential regression for outdoor on Android. 
 

2) Result 
The regression function is then used to estimate location. We developed a working prototype on the 

Smartphone (both Android and iPhone) using this model. Then we computed the accuracy of both the Android 

and iPhone systems for indoor and outdoor environments. The result is tabulated in Table II. We also developed 

a different tool for collecting data and computing location. 

TABLE II: Accuracy Of The Developed System 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6605717/6649781/6649805/6649805-fig-3-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6605717/6649781/6649805/6649805-fig-4-source-large.gif


System Environment Accuracy Percentage 

Android Indoor < 2.0 meters 85%  
Outdoor . < 1.5 meters 90% 

iPhone Indoor < 2.5 meters 80%  
Outdoor < 1.8 meters 90% 

 

B. Localization of Smartphone with Wi-Fi Routers 
In this approach we tried to localize the user with a Smartphone within a single, open spaced room using the 

previously observed RSSI. We did the experiment in the UbiComp Lab, Marquette University. Here we imposed 6 

points (12 grids) inside the room. Then we placed 3 WiFly RN-131GSX in different places. We also used the 

publicly available 3 MU Wireless routers for our experiment. The details of the experiment setup are shown 

in Fig. 5. The dimension of the UbiComp lab is 31.6 feet by 24.8 feet. We used 12 equally spaced grids in the 

experiment. 

We collected RSSI vectors (1×3) for each of the six points for both WiFly routers and MU Wireless routers. We 

developed a tool in Android to collect data. Data collection frequency was 9–10 Hz. We collected 1000 samples 

for approximately 1.7 minutes. Then we generated histogram cumulative means for some of the points are 

shown in Fig. 8, Fig. 9 and Fig. 10. We can see in almost all of the cases (Fig. 8, Fig. 9 and Fig. 10) RSSI converges 

to the mean value around 300 samples. So we decided to collect around 300 samples during test phase. We 

created RSSI signature using mean value of collected RSSI samples. 

 
Figure 5. Floor Map of test bed at UbiComp Lab, Marquette University. 

 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6605717/6649781/6649805/6649805-fig-5-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6605717/6649781/6649805/6649805-fig-6-source-large.gif


Figure 6. Observed RSSI signature of 6 points using 3 mobile (WiFly) routers for two different datasets. 

 
Figure 7. Observed RSSI signature of 6 points using 3 fixed (MU Wireless) routers for two different datasets. 
 

We did the same experiment using 3 publicly available MU Wireless routers and generated the cumulative mean 

and a histogram. Also using the mean RSSI of collected samples, we created an RSSI signature. This signature will 

be compared to the observed RSSI vector during the test phase. The signature of 6 different points for both 

routers is shown in the Fig. 6 and Fig. 7. From the figures, we can see the difference (distance) between the 

signatures for different points. This property has been used for the prediction. 

 
Figure 8. Histogram and Cumulative Mean of collected Samples at WiFly 3 of Point 2. 

 
Figure 9. Histogram and Cumulative Mean of collected Samples at WiFly 1 of Point 3. 

 
Figure 10. Histogram and Cumulative Mean of collected Samples at WiFly 3 of Point 6. 
 

TABLE III: Accuracy Of The Developed System 

Wireless Router Location Computed Location 

WiFly RN- 131 GSX Point 1 Point 1 (100%)  
Point 2 Point 1 (100%)  
Point 3 Point 1 (100%)  
Point 4 Point 4 (90%) 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6605717/6649781/6649805/6649805-fig-7-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6605717/6649781/6649805/6649805-fig-8-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6605717/6649781/6649805/6649805-fig-9-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6605717/6649781/6649805/6649805-fig-10-source-large.gif


  
Point 1 (10%)  

Point 5 Point 4 (70%)   
Point 6 (30%)  

Point 6 Point 6 (80%)   
Point 4 (20%) 

MU Wireless Point 1 Point 1 (70%)   
Point 5 (30%)  

Point 2 Point 3 (40%)   
Point 1 (30%)   
Point 5 (30%)  

Point 3 Point 3 (100%)  
Point 4 Point 4 (70%   

Point 6 (30%)  
Point 5 Point 5 (80%)   

Point 1 (20%)  
Point 6 Point 6 (80%)   

Point 5 (20%) 

 

We used this observed RSSI signature to predict location during the test phase. We developed a tool in Android 

to predict location using observed RSSI signature. We predicted 6 different points using both WiFly and MU 

Wireless routers. The result is tabulated in Table III. 

SECTION IV. Discussion 
The goal of this research is to design and develop an infrastructure-less intelligent ubiquitous system which is 

able to detect the location of the user both indoors and outdoors with a high accuracy using wireless 

technology. For localization of a mobile node with a Smartphone, we achieved less than 2 meters accuracy with 

an Android and less than 2.5 meters accuracy with an iPhone for both indoor and outdoor. We achieved a good 

accuracy without using infrastructure. From Table I, we see most of the approaches use infrastructure to achieve 

this accuracy. It reduces the cost. Also it can be used in both indoors and outdoors. We did the experiment in 

real time to test the performance of the system. We also applied our localization approach. We used the first 

approach to design and develop asset tracking system (Android/iPhone). We used the second approach in 

activity recognition system. To localize a Smartphone with a wireless router we achieved 80% accuracy for 5 out 

of 6 different locations with MU Wireless routers. We achieved low accuracy (30% to 40%) for mobile nodes or 

WiFly routers. 

We evaluated our designed system by implementation in two different scenarios. We built an asset tracking 

system for smartphones using the first approach. Here the mobile node (WiFly) is integrated with the asset to be 

tracked. Then we developed two separate applications in Android and iOS for the smartphone to track the 

distance and direction of the mobile node. The application can find the location of the mobile node, fire alarm in 

the mobile node. Also user can activate a leash function to keep track of the distance of the mobile node. Once 

the mobile node is out of preset perimeter, the application fires an alarm in the smartphone. We used the open-

source electronics prototyping platform “Arduino” in our developed system. 

We also used our localization technique for Complex Activity Recognition (sleeping, eating, watching TV, 

washing dish, taking shower etc.). We implemented our system in an apartment to find the location (bed room, 

kitchen, dining, living room, lawn etc.) of the user. Using a Smartphone we are able to detect the time, location 

and weather easily. We also considered other parameters that influence human activity to create a vector of 



attributes. Then we trained our system by collecting these parameters. Later we calculate distance between the 

trained parameterized vector and current vector to determine different kind of activities. 

Though we achieved good accuracy in the first experiment we got less accuracy in the second experiment. We 

achieved better accuracy with fixed a wireless router than mobile wireless router. We think that a battery 

powered mobile wireless router is more vulnerable to the environment which influences RSSI by a large factor. 

We also think that modeling RSSI with orientation and environmental changes will be helpful for better 

prediction. Also automatic map generation using Smartphones will be helpful for better navigation and take low 

setup time. 

SECTION V. Conclusion 
We achieved good accuracy for the first approach without using any kind of infrastructure. Also use of kinematic 

sensors of smartphone with the help of this approach can be used to develop indoor navigation system. We plan 

to work on the second approach to improve the accuracy. Inclusion of publicly available parameters (like cellular 

network information, wireless devices) in the system which is available within the range can accelerate accuracy 

of the future system. We plan to create an RSSI map database considering orientation and environmental 

changes which will be helpful for the second approach. 
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