99 research outputs found

    A Study of Reconfigurable Accelerators for Cloud Computing

    Get PDF
    Due to the exponential increase in network traffic in the data centers, thousands of servers interconnected with high bandwidth switches are required. Field Programmable Gate Arrays (FPGAs) with Cloud ecosystem offer high performance in efficiency and energy, making them active resources, easy to program and reconfigure. This paper looks at FPGAs as reconfigurable accelerators for the cloud computing presents the main hardware accelerators that have been presented in various widely used cloud computing applications such as: MapReduce, Spark, Memcached, Databases

    Revisiting the high-performance reconfigurable computing for future datacenters

    Get PDF
    Modern datacenters are reinforcing the computational power and energy efficiency by assimilating field programmable gate arrays (FPGAs). The sustainability of this large-scale integration depends on enabling multi-tenant FPGAs. This requisite amplifies the importance of communication architecture and virtualization method with the required features in order to meet the high-end objective. Consequently, in the last decade, academia and industry proposed several virtualization techniques and hardware architectures for addressing resource management, scheduling, adoptability, segregation, scalability, performance-overhead, availability, programmability, time-to-market, security, and mainly, multitenancy. This paper provides an extensive survey covering three important aspects-discussion on non-standard terms used in existing literature, network-on-chip evaluation choices as a mean to explore the communication architecture, and virtualization methods under latest classification. The purpose is to emphasize the importance of choosing appropriate communication architecture, virtualization technique and standard language to evolve the multi-tenant FPGAs in datacenters. None of the previous surveys encapsulated these aspects in one writing. Open problems are indicated for scientific community as well

    Towards an open cloud marketplace: vision and first steps

    Full text link
    As one of the most promising, emerging concepts in Information Technology (IT), cloud computing is transforming how IT is consumed and managed; yielding improved cost efficiencies, and delivering flexible, on-demand scalability by reducing computing infrastructures, platforms, and services to commodities acquired and paid-for on-demand through a set of cloud providers. Today, the transition of cloud computing from a subject of research and innovation to a critical infrastructure is proceeding at an incredibly fast pace. A potentially dangerous consequence of this speedy transition to practice is the premature adoption, and ossification, of the models, technologies, and standards underlying this critical infrastructure. This state of affairs is exacerbated by the fact that innovative research on production-scale platforms is becoming the purview of a small number of public cloud providers. Specifically, the academic research communities are effectively excluded from the opportunity to contribute meaningfully to the evolution not to mention innovation and healthy mutation of cloud computing technologies. As the dependence on our society and economy on cloud computing increases, so does the realization that the academic research community cannot be shut out from contributing to the design and evolution of this critical infrastructure. In this article we provide an alternative vision that of an Open Cloud eXchange (OCX) a public cloud marketplace, where many stakeholders, rather than just a single cloud provider, participate in implementing and operating the cloud, thus creating an ecosystem that will bring the innovation of a broader community to bear on a much healthier and more efficient cloud marketplace

    Multi-Tenant Cloud FPGA: A Survey on Security

    Full text link
    With the exponentially increasing demand for performance and scalability in cloud applications and systems, data center architectures evolved to integrate heterogeneous computing fabrics that leverage CPUs, GPUs, and FPGAs. FPGAs differ from traditional processing platforms such as CPUs and GPUs in that they are reconfigurable at run-time, providing increased and customized performance, flexibility, and acceleration. FPGAs can perform large-scale search optimization, acceleration, and signal processing tasks compared with power, latency, and processing speed. Many public cloud provider giants, including Amazon, Huawei, Microsoft, Alibaba, etc., have already started integrating FPGA-based cloud acceleration services. While FPGAs in cloud applications enable customized acceleration with low power consumption, it also incurs new security challenges that still need to be reviewed. Allowing cloud users to reconfigure the hardware design after deployment could open the backdoors for malicious attackers, potentially putting the cloud platform at risk. Considering security risks, public cloud providers still don't offer multi-tenant FPGA services. This paper analyzes the security concerns of multi-tenant cloud FPGAs, gives a thorough description of the security problems associated with them, and discusses upcoming future challenges in this field of study

    Reconfigurable Network Stream Processing on Virtualized FPGA Resources

    Get PDF
    The software defined network and network function virtualization are proposed to address the network ossification issue in current Internet infrastructure. Network functions and services are implemented as software applications to increase the programmability of network. However, involving general purpose processors in data plane restricts the bandwidth of network services. Therefore, to keep both the bandwidth and flexibility, a FPGA platform is suggested as a reconfigurable platform to deliver high bandwidth virtual network functions on data plane. In this paper, the FPGA resource has been virtualized by interconnecting partial reconfigurable regions to deliver high bandwidth reconfigurable processing on network streams. With the help of partial reconfiguration technology, network functions on our platform can be configured without affecting other functions on the same FPGA device. The on-chip interconnect system is further evaluated by comparing with existing network-on-chip system. A reconfiguration process is also proposed and demonstrated that it can be performed on our platform. The process can happen in the real time of network services and it is able to keep the original function working during the download of partial bitstream

    VCDC: The Virtualized Complicated Device Controller

    Get PDF
    I/O virtualization enables time and space multiplexing of I/O devices, by mapping multiple logical I/O devices upon a smaller number of physical devices. However, due to the existence of additional virtualization layers, requesting an I/O from a guest virtual machine requires complicated sequences of operations. This leads to I/O performance losses, and makes precise timing of I/O operations unpredictable. This paper proposes a hardware I/O virtualization system, termed the Virtualized Complicated Device Controller (VCDC). This I/O system allows user applications to access and operate I/O devices directly from guest VMs, and bypasses the guest OS, the Virtual Machine Monitor (VMM) and low layer I/O drivers. We show that the VCDC efficiently reduces the software overhead and enhances the I/O performance and timing predictability. Furthermore, VCDC also exhibits good scalability that can handle I/O requests from variable number of CPUs in a system
    • …
    corecore