75 research outputs found

    Non-Local Probes Do Not Help with Graph Problems

    Full text link
    This work bridges the gap between distributed and centralised models of computing in the context of sublinear-time graph algorithms. A priori, typical centralised models of computing (e.g., parallel decision trees or centralised local algorithms) seem to be much more powerful than distributed message-passing algorithms: centralised algorithms can directly probe any part of the input, while in distributed algorithms nodes can only communicate with their immediate neighbours. We show that for a large class of graph problems, this extra freedom does not help centralised algorithms at all: for example, efficient stateless deterministic centralised local algorithms can be simulated with efficient distributed message-passing algorithms. In particular, this enables us to transfer existing lower bound results from distributed algorithms to centralised local algorithms

    Approximating Subdense Instances of Covering Problems

    Full text link
    We study approximability of subdense instances of various covering problems on graphs, defined as instances in which the minimum or average degree is Omega(n/psi(n)) for some function psi(n)=omega(1) of the instance size. We design new approximation algorithms as well as new polynomial time approximation schemes (PTASs) for those problems and establish first approximation hardness results for them. Interestingly, in some cases we were able to prove optimality of the underlying approximation ratios, under usual complexity-theoretic assumptions. Our results for the Vertex Cover problem depend on an improved recursive sampling method which could be of independent interest

    On the Complexity of Local Distributed Graph Problems

    Full text link
    This paper is centered on the complexity of graph problems in the well-studied LOCAL model of distributed computing, introduced by Linial [FOCS '87]. It is widely known that for many of the classic distributed graph problems (including maximal independent set (MIS) and (Δ+1)(\Delta+1)-vertex coloring), the randomized complexity is at most polylogarithmic in the size nn of the network, while the best deterministic complexity is typically 2O(logn)2^{O(\sqrt{\log n})}. Understanding and narrowing down this exponential gap is considered to be one of the central long-standing open questions in the area of distributed graph algorithms. We investigate the problem by introducing a complexity-theoretic framework that allows us to shed some light on the role of randomness in the LOCAL model. We define the SLOCAL model as a sequential version of the LOCAL model. Our framework allows us to prove completeness results with respect to the class of problems which can be solved efficiently in the SLOCAL model, implying that if any of the complete problems can be solved deterministically in logO(1)n\log^{O(1)} n rounds in the LOCAL model, we can deterministically solve all efficient SLOCAL-problems (including MIS and (Δ+1)(\Delta+1)-coloring) in logO(1)n\log^{O(1)} n rounds in the LOCAL model. We show that a rather rudimentary looking graph coloring problem is complete in the above sense: Color the nodes of a graph with colors red and blue such that each node of sufficiently large polylogarithmic degree has at least one neighbor of each color. The problem admits a trivial zero-round randomized solution. The result can be viewed as showing that the only obstacle to getting efficient determinstic algorithms in the LOCAL model is an efficient algorithm to approximately round fractional values into integer values

    Monotone properties of random geometric graphs have sharp thresholds

    Full text link
    Random geometric graphs result from taking nn uniformly distributed points in the unit cube, [0,1]d[0,1]^d, and connecting two points if their Euclidean distance is at most rr, for some prescribed rr. We show that monotone properties for this class of graphs have sharp thresholds by reducing the problem to bounding the bottleneck matching on two sets of nn points distributed uniformly in [0,1]d[0,1]^d. We present upper bounds on the threshold width, and show that our bound is sharp for d=1d=1 and at most a sublogarithmic factor away for d2d\ge2. Interestingly, the threshold width is much sharper for random geometric graphs than for Bernoulli random graphs. Further, a random geometric graph is shown to be a subgraph, with high probability, of another independently drawn random geometric graph with a slightly larger radius; this property is shown to have no analogue for Bernoulli random graphs.Comment: Published at http://dx.doi.org/10.1214/105051605000000575 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Approximating Bipartite Minimum Vertex Cover in the CONGEST Model

    Get PDF

    Distributed CONGEST Approximation of Weighted Vertex Covers and Matchings

    Get PDF
    We provide CONGEST model algorithms for approximating minimum weighted vertex cover and the maximum weighted matching. For bipartite graphs, we show that a (1+ε)(1+\varepsilon)-approximate weighted vertex cover can be computed deterministically in polylogarithmic time. This generalizes a corresponding result for the unweighted vertex cover problem shown in [Faour, Kuhn; OPODIS '20]. Moreover, we show that in general weighted graph families that are closed under taking subgraphs and in which we can compute an independent set of weight at least a λ\lambda-fraction of the total weight, one can compute a (22λ+ε)(2-2\lambda +\varepsilon)-approximate weighted vertex cover in polylogarithmic time in the CONGEST model. Our result in particular implies that in graphs of arboricity aa, one can compute a (21/a+ε)(2-1/a+\varepsilon)-approximate weighted vertex cover. For maximum weighted matchings, we show that a (1ε)(1-\varepsilon)-approximate solution can be computed deterministically in polylogarithmic CONGEST rounds (for constant ε\varepsilon). We also provide a more efficient randomized algorithm. Our algorithm generalizes results of [Lotker, Patt-Shamir, Pettie; SPAA '08] and [Bar-Yehuda, Hillel, Ghaffari, Schwartzman; PODC '17] for the unweighted case. Finally, we show that even in the LOCAL model and in bipartite graphs of degree 3\leq 3, if ε<ε0\varepsilon<\varepsilon_0 for some constant ε0>0\varepsilon_0>0, then computing a (1+ε)(1+\varepsilon)-approximation for the unweighted minimum vertex cover problem requires Ω(lognε)\Omega\big(\frac{\log n}{\varepsilon}\big) rounds. This generalizes aresult of [G\"o\"os, Suomela; DISC '12], who showed that computing a (1+ε0)(1+\varepsilon_0)-approximation in such graphs requires Ω(logn)\Omega(\log n) rounds

    Distributed Dominating Set Approximations beyond Planar Graphs

    Full text link
    The Minimum Dominating Set (MDS) problem is one of the most fundamental and challenging problems in distributed computing. While it is well-known that minimum dominating sets cannot be approximated locally on general graphs, over the last years, there has been much progress on computing local approximations on sparse graphs, and in particular planar graphs. In this paper we study distributed and deterministic MDS approximation algorithms for graph classes beyond planar graphs. In particular, we show that existing approximation bounds for planar graphs can be lifted to bounded genus graphs, and present (1) a local constant-time, constant-factor MDS approximation algorithm and (2) a local O(logn)\mathcal{O}(\log^*{n})-time approximation scheme. Our main technical contribution is a new analysis of a slightly modified variant of an existing algorithm by Lenzen et al. Interestingly, unlike existing proofs for planar graphs, our analysis does not rely on direct topological arguments.Comment: arXiv admin note: substantial text overlap with arXiv:1602.0299
    corecore