
No Sublogarithmic-time Approximation Scheme
for Bipartite Vertex Cover

Mika Göös and Jukka Suomela

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki, Finland
mika.goos@cs.helsinki.fi, jukka.suomela@cs.helsinki.fi

Abstract. König’s theorem states that on bipartite graphs the size of
a maximum matching equals the size of a minimum vertex cover. It is
known from prior work that for every ε > 0 there exists a constant-
time distributed algorithm that finds a (1 + ε)-approximation of a maxi-
mum matching on 2-coloured graphs of bounded degree. In this work, we
show—somewhat surprisingly—that no sublogarithmic-time approxima-
tion scheme exists for the dual problem: there is a constant δ > 0 so that
no randomised distributed algorithm with running time o(logn) can find
a (1+δ)-approximation of a minimum vertex cover on 2-coloured graphs
of maximum degree 3. In fact, a simple application of the Linial–Saks
(1993) decomposition demonstrates that this lower bound is tight.

Our lower-bound construction is simple and, to some extent, indepen-
dent of previous techniques. Along the way we prove that a certain cut
minimisation problem, which might be of independent interest, is hard
to approximate locally on expander graphs.

1 Introduction

Many graph optimisation problems do not admit an exact solution by a fast dis-
tributed algorithm. This is true not only for most NP-hard optimisation prob-
lems, but also for problems that can be solved using sequential polynomial-time
algorithms. This work is a contribution to the distributed approximability of such
a problem: the minimum vertex cover problem on bipartite graphs—we call it
2-VC, for short.

Our focus is on negative results: We prove an optimal (up to constants) time
lower bound Ω(log n) for a randomised distributed algorithm to find a close-to-
optimal vertex cover on bipartite 2-coloured graphs of maximum degree ∆ = 3.
In particular, this rules out the existence of a sublogarithmic-time approximation
scheme for 2-VC on sparse graphs.

Our lower bound result exhibits the following features:

– The proof is relatively simple as compared to the strength of the result; this
is achieved through an application of expander graphs in the lower-bound
construction.

– To explain the source of hardness for 2-VC we introduce a certain distributed
cut minimisation problem, which might have applications elsewhere.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14926155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

– Many previous distributed inapproximability results are based on the hard-
ness of local symmetry breaking. This is not the case here: the difficulty we
pinpoint for 2-VC is in the semi-global task of gluing together two different
types of local solutions.

– Our result states that König’s theorem is non-local—see Sect. 1.3.

1.1 The LOCAL Model

We work in the standard LOCAL model of distributed computing [10,17]. As
input we are given an undirected graph G = (V,E). We interpret G as defin-
ing a communication network: the nodes V host processors, and two proces-
sors can communicate directly if they are connected by an edge. All nodes
run the same distributed algorithm A. The computation of A on G starts out
with every node v ∈ V knowing an upper bound on n = |V | and possessing
a globally unique O(log n)-bit identifier ID(v); for simplicity, we assume that
V ⊆ {1, 2, . . . ,poly(n)} and ID(v) = v. Also, we assume that the processors
have access to independent (and unlimited) sources of randomness. The compu-
tation proceeds in synchronous communication rounds. In each round, all nodes
first perform some local computations and then exchange (unbounded) messages
with their neighbours. After some r communication rounds the nodes stop and
produce local outputs. Here r is the running time of A and the output of v is
denoted A(G, v).

The fundamental limitation of a distributed algorithm with running time r
is that the output A(G, v) can only depend on the information available in the
subgraph G[v, r] ⊆ G induced on the vertices in the radius-r neighbourhood ball

BG(v, r) = {u ∈ V : distG(v, u) ≤ r}.

Conversely, it is well known that an algorithm A can essentially discover the
structure of G[v, r] in time r. Thus, A can be thought of as a function mapping
r-neighbourhoods G[v, r] (together with the additional input labels and random
bits on BG(v, r)) to outputs.

While the LOCAL model abstracts away issues of network congestion and
asynchrony, this only makes our lower-bound result stronger.

1.2 Our Result

Below, we concentrate on bipartite 2-coloured graphs G. That is, G is not only
bipartite (which is a global property), but every node v is informed of the bipar-
tition by an additional input label c(v), where c : V → {white, black} is a proper
2-colouring of G.

Definition 1. In the 2-VC problem we are given a 2-coloured graph G = (G, c)
and the objective is to output a minimum-size vertex cover of G.

A distributed algorithm A computes a vertex cover by outputting a single
bit A(G, v) ∈ {0, 1} on a node v indicating whether v is included in the solution.

This way, A computes the set A(G) := {v ∈ V : A(G, v) = 1}. Moreover, we
say that A computes an α-approximation of 2-VC if A(G) is a vertex cover of
G and

|A(G)| ≤ α · OPTG,

where OPTG denotes the size of a minimum vertex cover of G.
Our main result is the following.

Theorem 1. There exists a δ > 0 such that no randomised distributed algorithm
with running time o(log n) can find a (1 + δ)-approximation of 2-VC on graphs
of maximum degree ∆ = 3.

A matching time upper bound follows directly from the well-known network
decomposition algorithm due to Linial and Saks [11].

Theorem 2. For every ε > 0 a (1+ ε)-approximation of 2-VC can be computed
with high probability in time O(ε−1 log n) on graphs of maximum degree ∆ =
O(1).

Proof. The subroutine Construct Block in the algorithm of Linial and Saks [11]
computes, in time r = O(ε−1 log n), a set S ⊆ V with the following properties.
Each component in the subgraph G[S] induced by S has weak diameter at most
r, i.e., distG(u, v) ≤ r for each pair u, v ∈ S belonging to the same component
of G[S]. Moreover, they prove that, w.h.p.,

|S| ≥ (1− ε)n.

Let C be a component of G[S]. Every node of C can discover the structure
of C in time O(r) by exploiting its weak diameter. Thus, every node of C can
internally compute the same optimal solution of 2-VC on C. We can then output
as a vertex cover for G the union of the optimal solutions at the components
together with the vertices V r S. This results in a solution of size at most

OPTG[S] + εn ≤ OPTG + εn.

But since OPTG ≥ |E|/∆ = Ω(n) for connected G, this is a (1 +O(ε))-approxi-
mation of 2-VC. ut

1.3 König Duality

The classic theorem of König (see, e.g., Diestel [3, §2.1]) states that, on bipartite
graphs, the size of a maximum matching equals the size of a minimum vertex
cover. A modern perspective is to view this result through the lens of linear pro-
gramming (LP) duality. The LP relaxations of these problems are the fractional
matching problem (primal) and the fractional vertex cover problem (dual):

maximise
∑
e∈E

xe minimise
∑
v∈V

yv

subject to
∑
e: v∈e

xe ≤ 1, ∀v ∈ V subject to
∑
v: v∈e

yv ≥ 1, ∀e ∈ E

x ≥ 0 y ≥ 0

It is known from general LP theory (see, e.g., Papadimitriou and Steiglitz [15,
§13.2]) that on bipartite graphs the above LPs do not have an integrality gap:
among the optimal feasible solutions are integral vectors x ∈ {0, 1}E and y ∈
{0, 1}V that correspond to maximum matchings and minimum vertex covers.

In the context of distributed algorithms, the following is known on (bipartite)
bounded degree graphs:

1. Primal LP and dual LP admit local approximation schemes. As part of their
general result, Kuhn et al. [7] give a strictly local (1 + ε)-approximation
scheme for the above LPs. Their algorithms run in constant time independent
of the number of nodes.

2. Integral primal admits a local approximation scheme. Åstrand et al. [1] de-
scribe a strictly local (1+ε)-approximation scheme for the maximum match-
ing problem on 2-coloured graphs. Again, the running time is a constant
independent of the number of nodes.

3. Integral dual does not admit a local approximation scheme. The present work
shows—in contrast to the above positive results—that there is no local ap-
proximation scheme for 2-VC even when ∆ = 3.

1.4 Related Lower Bounds

There are relatively few independent methods for obtaining negative results for
distributed approximation in the LOCAL model. We list three main sources.

Local Algorithms. Linial’s [10] lower bound Ω(log∗ n) for 3-colouring a cycle
together with the Ramsey technique of Naor and Stockmeyer [13] establish ba-
sic limitations on finding exact solutions strictly locally in constant time. These
impossibility results were later extended to finding approximate solutions on
cycle-like graphs by Lenzen and Wattenhofer [9] and Czygrinow et al. [2]. A
recent work [4] generalises these techniques even further and proves that deter-
ministic local algorithms in the LOCAL model are often no more powerful than
algorithms running on anonymous port numbered networks. For more informa-
tion on this line of research, see the survey of local algorithms [18].

Here, the inapproximability results typically exploit the inability of a local
algorithm to break local symmetries. By contrast, in this work, we consider the
case where the local symmetry is already broken by a 2-colouring.

KMW Bounds. Kuhn, Moscibroda and Wattenhofer [6,7,8] prove that any ran-
domised algorithm for computing a constant-factor approximation of minimum
vertex cover on general graphs requires time Ω(

√
log n) and Ω(log∆). Roughly

speaking, their technique consists of showing that a fast algorithm cannot tell
apart two adjacent nodes v and u, even though it is globally more profitable to
include v in the vertex cover and exclude u than conversely.

The lower-bound graphs of Kuhn et al. are necessarily of unbounded degree:
on bounded degree graphs the set of all non-isolated nodes is a constant factor
approximation of a minimum vertex cover. By contrast, our lower-bound graphs
are of bounded degree and they forbid close-to-optimal approximation of 2-VC.

Sublinear-Time Centralised Algorithms. Parnas and Ron [16] discuss how
a fast distributed algorithm can be used as solution oracle to a centralised al-
gorithm that approximates parameters of a sparse graph G in sublinear time
given a randomised query access to G. Thus, lower bounds in this model of
computation also imply lower bounds for distributed algorithms. In particular,
an argument of Trevisan (presented in [16]) implies that computing a (2 − ε)-
approximation of a minimum vertex cover requires Ω(log n) time on d-regular
graphs, where d = d(ε) is sufficiently large.

We note that 2-VC is easy to approximate in this model: Nguyen and
Onak [14] give a centralised constant-time algorithm to approximate the size
of a maximum matching on a graph G. If we are promised that G is bipartite,
a small adaptation of this algorithm approximates the size of 2-VC by König
duality.

2 Deterministic Lower Bound

To best explain the basic idea of our lower bound result, we first prove Theorem 1
for a toy model that we define in Sect. 2.1; in this model, we only consider a
certain class of deterministic distributed algorithms in anonymous networks.
Later in Sect. 3 we will show how to implement the same proof technique in a
much more general setting: randomised distributed algorithms in networks with
unique identifiers.

In the present section, we find a source of hardness for 2-VC as follows. First,
we argue that any approximation algorithm for the 2-VC problem also solves
a certain cut minimisation problem called Recut. We then show that Recut
is hard to approximate locally, which implies that 2-VC must also be hard to
approximate locally.

2.1 Toy Model of Deterministic Algorithms

Throughout this section we consider deterministic algorithms A running in time
r = o(log n) that operate on input-labelled anonymous networks (G, `), where
G = (V,E) and ` is a labelling of V . More precisely, we impose the following
additional restrictions in the LOCAL model:

– The nodes of G are not given random bits as input.
– The output of A is invariant under reassigning node identifiers. That is, if
G′ = (V ′, E′) is isomorphic to G via a mapping f : V ′ → V , then the output
of a node v ∈ V agrees with the output of f−1(v) ∈ V ′:

A(G, `, v) = A(G′, ` ◦ f, f−1(v)),

where ` ◦ f denotes the composition of functions ` and f .

Put otherwise, the only symmetry breaking information we supply A with is the
radius-r neighbourhood topology together with the input labelling—the nodes
are anonymous and do not have unique identifiers.

We will also consider graphs G that are directed. In this case, the directions
of the edges are merely additional symmetry-breaking information; they do not
restrict communication.

2.2 Recut Problem

In the following, we consider partitions of V into red and blue colour classes as
determined by a labelling ` : V → {red, blue}. We write ∂` for the fraction of
edges crossing the red/blue cut, i.e.,

∂` :=
e(`−1(red), `−1(blue))

|E|
.

Definition 2. In the Recut problem we are given a labelled graph (G, `) as
input and the objective is to compute an output labelling (a recut) `out that
minimises ∂`out subject to the following constraints: (a) If `(V) = {red}, then
`out(V) = {red}. (b) If `(V) = {blue}, then `out(V) = {blue}.

In words, if we have an all-red input, we have to produce an all-red output, and
if we have an all-blue input, we have to produce an all-blue output. Otherwise
the output can be arbitrary. See Fig. 1 for an illustration.

Needless to say, the global optimum for an algorithm A would be to produce a
constant output labelling `A (either all red or all blue) having ∂`A = 0. However,
a distributed algorithm A can only access the values of the input labelling ` in its
local radius-r neighbourhood: when encountering a neighbourhood v ∈ U ⊆ V
with `(U) = {red}, the algorithm is forced to output red at v to guarantee
satisfying the global constraint (a), and when encountering a neighbourhood
v ∈ U ⊆ V with `(U) = {blue}, the algorithm is forced to output blue at v
to satisfy (b). Thus, if a connected graph G has two disjoint r-neighbourhoods
U,U ′ ⊆ V with `(U) = {red} and `(U ′) = {blue} the algorithm A cannot avoid
producing at least some red/blue edge boundary. Indeed, the best we can hope
A to achieve is a recut `A of size ∂`A ≤ ε for some small constant ε > 0.

Discussion. The Recut problem models the following abstract high-level chal-
lenge in designing distributed algorithms: Each node in a local neighbourhood
U ⊆ V can, in principle, internally compute a completely locally optimal solution
for (the subgraph induced by) U , but difficulties arise when deciding which of
these proposed solution are to be used in the final distributed output. In par-
ticular, when the type of the produced solution changes from one (e.g., red) to
another (e.g., blue) across a graph G one might have to introduce suboptimal-
ities to the solution at the (red/blue) boundary in order to glue together the
different types of local solutions.

In fact, the Recut problem captures the first non-trivial case of this phe-
nomenon with only two solution types present. One can think of the input la-
belling ` as recording the initial preferences of the nodes whereas the output
labelling `A records how an algorithm A decides to combine these preferences

�

RECUT input RECUT output

simple algorithm

optimum�

Fig. 1. The Recut problem. In this example, we have used a simple distributed algo-
rithm A to find a recut `out with a small boundary ∂`out: a node outputs red iff there
is a red node within distance r = 3 in the input. While the solution is not optimal, in
a grid graph the boundary will be relatively small. However, our lower bound shows
that any fast distributed algorithm—including algorithm A—fails to produce a small
boundary in some graph.

into the final unified output. In the end, our lower-bound strategy will be to
argue that any A can be forced into producing too large an edge boundary ∂`A
resulting in too many suboptimalities in the produced output.

Next, we show how the above discussion is made concrete in the case of the
2-VC problem.

2.3 Reduction

We call a graph G tree-like if all the r-neighbourhoods in G are trees, i.e., G
has girth larger than 2r + 1. Furthermore, if G is directed, we say it is balanced
if in-degree(v) = out-degree(v) for all vertices v. We note that a deterministic
algorithm A produces the same output on every node of a balanced regular
tree-like digraph G, because such a graph is locally homogeneous: all the r-
neighbourhoods of G are pairwise isomorphic.

Using this terminology we give the following reduction.

Theorem 3. Suppose A (with run-time r) computes a (1 + ε)-approximation
of 2-VC on graphs of maximum degree ∆ = 3. Then, there is an algorithm
(with run-time r) that finds a recut `A of size ∂`A = O(ε) on balanced 4-regular
tree-like digraphs.

The proof of Theorem 3 follows the usual route: We give a local reduction
(i.e., one that can be computed by a local algorithm) that transforms an instance
(G, `) of Recut into a white/black-coloured instance Π(G, `) of 2-VC. Then we
simulate A on the resulting instance and map the output of A back to a solution
of the Recut instance (G, `).

Let G = (V,E) be a balanced 4-regular tree-like digraph and let ` : V →
{red, blue} be a labelling of G. The instance Π(G, `) is obtained by replacing
each vertex v ∈ V by one of two local gadgets depending on the label `(v). We
first describe and analyse simple gadgets yielding instances of 2-VC with ∆ = 4;
the gadgets yielding instances with ∆ = 3 are described later.

Red Gadgets. The red gadget replaces a vertex v ∈ V by two new vertices wv

(white) and bv (black) that share a new edge ev := {wv, bv}. The incoming edges
of v are reconnected to wv, whereas the outgoing edges of v are reconnected to bv.
See Fig. 2.

The Case of All-Red Input. Note that the 2-VC instance Π(G, red) (where
we denote by red the constant labelling v 7→ red) contains {ev : v ∈ V } as a per-
fect matching. Since (G, red) is locally homogeneous, in Π(G, red) the solutions
output by A on the endpoints of ev are isomorphic across all v. Assuming ε < 1
it follows that the algorithm A must output either the set of all white nodes or
the set of all black nodes on Π(G, red). Our reduction branches at this point: we
choose the structure of the blue gadget to counteract this white/black decision
made by A on the red gadgets. We describe the case that A outputs all white
nodes on Π(G, red); the case of black nodes is symmetric.

v
wv

bv
�

red node red gadget

v
wv

bv
w’v

�

blue node blue gadget

RECUT input 2-VC input RECUT input 2-VC input

Fig. 2. Gadgets for ∆ = 4 (assuming an all-red input produces an all-white output).

Blue Gadgets. The blue gadget replacing v ∈ V is identical to the red gadget
with the exception that a third new vertex w′v (white) is added and connected
to bv. See Fig. 2.

Similarly as above, we can argue that A outputs exactly the set of all black
nodes on the instance Π(G, blue). This completes the description of Π.

Simulation. Next, we simulate A on Π(G, `). The output of A is then trans-
formed back to a labelling `A : V → {red, blue} by setting

`A(v) = blue ⇐⇒ the output of A contains only the black node bv
at the gadget at v.

See Fig. 3. Note that `A satisfies both feasibility constraints (a) and (b) of
Recut. It remains to bound the size ∂`A of this recut.

Recut Analysis. Call a red vertex v in (G, `A) bad if v has a blue out-neighbour
u; see Fig. 4. By the definition of “`A(u) = blue”, the vertex cover produced
by algorithm A does not contain the white node wu. Thus to cover the edge
(bv, wu), the vertex cover has to contain the black node bv. But by the definition
of “`A(v) = red”, we must have wv or w′v in the solution as well. Hence, at least
two nodes are used to cover the gadget at v, which is suboptimal as compared
to the minimum vertex cover {bv : v ∈ V }, which uses only one node per gadget.
This implies that we must have at most ε|V | bad vertices as A produces a (1+ε)-
approximation of 2-VC on Π(G, `).

On the other hand, exactly half of the edges crossing the cut `A are oriented
from red to blue since G is balanced. Each bad vertex gives rise to at most two
of these edges, so we have that ∂`A · |E|/2 ≤ 2ε|V | which gives ∂`A ≤ 2ε, as
required. This proves Theorem 3 for ∆ = 4.

Gadgets for ∆ = 3. The maximum degree used in the gadgets can be reduced
to 3 by the following modification. The red gadget replaces a vertex v ∈ V by a
path of length 3; see Figure 5.

Again, to achieve a 1.499-approximation of 2-VC on Π(G, red) the algorithm
A has to make a choice: either leave out the middle black vertex or the middle

�

�

red output

blue outputonly black node

anything else

RECUT output2-VC output

Fig. 3. Mapping the output of A back to a solution of the Recut problem.

v u

wv
bv

wu
bu �

RECUT output2-VC output

node v is bad

Fig. 4. A bad node: v is red and its out-neighbour u is blue.

v
wv

bv

v
wv

w’v

�

� bv

red node red gadget

blue node blue gadget

RECUT input 2-VC input

Fig. 5. Gadgets for ∆ = 3.

white vertex from the vertex cover. Supposing A leaves out the middle black,
the blue gadget is defined to be identical to the red gadget with an additional
white vertex connected to the middle black one.

After simulating A on an instance Π(G, `) we define `A(v) = blue iff A
outputs only black nodes at the gadget at v. The recut analysis will then give
∂`A ≤ 4ε.

2.4 Recut Is Hard on Expanders

Intuitively, the difficulty in computing a small red/blue cut in the Recut prob-
lem stems from the inability of an algorithm A to overcome the neighbourhood
expansion of an input graph in r = o(log n) steps—an algorithm cannot hide the
red/blue boundary as the radius-r neighbourhoods themselves might have large
boundaries.

To formalise this intuition, we use as a basis for our lower-bound construction
an infinite family F of 4-regular δ-expander graphs, where each G = (V,E) ∈ F
satisfies the edge expansion condition

e(S, V r S) ≥ δ · |S| for all S ⊆ V, |S| ≤ n/2. (1)

Here, e(S, V r S) is the number of edges leaving S and δ > 0 is an absolute
constant independent of n = |V |.

To fool an algorithm A into producing a large recut on expanders it is enough
for us to force A to output a nearly balanced recut `A where both colour classes
have size n/2± o(n). This is because if the number of, say, the red nodes is

|`−1A (red)| = n/2− o(n),

then the expansion property (1) implies that

∂`A ≥ δ/4− o(1).

That is, A computes a recut of size Ω(δ).
Indeed, the following simple fooling trick makes up the very core of our

argument.

Lemma 1. Suppose A produces a feasible solution for the Recut problem in
time r = o(log n). Then for each 4-regular graph G there exists an input labelling
for which A computes a nearly balanced recut.

Proof. Fix an arbitrary ordering v1, v2, . . . , vn for the vertices of G and define a
sequence of labellings `0, `1, . . . , `n by setting `i(vj) = blue iff j ≤ i. That is,
in `0 all nodes are red, in `n all nodes are blue, and `i is obtained from `i−1 by
changing the colour of vi from red to blue.

When we switch from the instance (G, `i−1) to (G, `i) the change of vi’s
colour is only registered by nodes in the radius-r neighbourhood of vi. This
neighbourhood has size |BG(vi, r)| ≤ 5r = o(n), and so the number of red nodes
in the outputs `i−1A and `iA of A can only differ by o(n). As, by assumption,
we have that A computes the labelling `0A = red on (G, `0) and the labelling
`nA = blue on (G, `n), it follows by continuity that some labelling in our sequence
must force A to output n/2− o(n) red nodes. ut

We now have all the ingredients for the lower-bound proof: We can take
δ = 2 −

√
3 if we choose F to be the family of 4-regular Ramanujan graphs

due to Morgenstern [12]. These graphs are tree-like, as they have girth Θ(log n).
They can be made into balanced digraphs since a suitable orientation can always
be derived from an Euler tour. Thus, F consists of balanced 4-regular tree-
like digraphs. Lemma 1 together with the discussion above imply that every
algorithm for Recut produces a recut of size Ω(δ) on some labelled graph in F .
Hence, the contrapositive of Theorem 3 proves Theorem 1 for our deterministic
toy algorithms.

3 Randomised Lower Bound

Model. Even though our model of deterministic algorithms in Sect. 2 is an
unusually weak one, we can quickly recover the standard LOCAL model from it
by equipping the nodes with independent sources of randomness. In particular,
as is well known, each node can choose an identifier uniformly at random from,
e.g., the set {1, 2, . . . , n3}, and this results in the identifiers being globally unique
with probability at least 1− 1/n.

For simplicity of analysis, we continue to assume

1. Deterministic run-time: each node runs for at most r = o(log n) steps.
2. Las Vegas algorithm: the algorithm always produces a feasible solution.

At a cost of only an additive o(1) term in the (expected) approximation ratio we
can easily modify a given algorithm that has expected running time r′ = o(log n)
and covers each edge with probability 1 − o(1) into an algorithm satisfying the
above properties:

1. Choose a slowly growing function t such that r := tr′ = o(log n). If a node
v runs longer than r steps, we stop v’s computation and output v into the
vertex cover. By Markov’s inequality, this modification interferes with the
computation of only o(n) nodes in expectation.

2. After r steps we finish by including both endpoints of each uncovered edge
in the output.

Overview. When discussing randomised algorithms many of the simplifying as-
sumptions made in Sect. 2 no longer apply. For example, a randomised algorithm
need not produce the same output on every node of a locally homogeneous graph.
Consequently, the homogeneous feasibility constraints in the Recut problem do
not strictly make sense for randomised algorithms.

However, we can still emulate the same proof strategy as in Sect. 2: we
force the randomised algorithm to output a nearly balanced recut with high
probability. Below, we describe this strategy in case of the easy-to-analyse “∆ =
4” gadgets with the understanding that the same analysis can be repeated for
the “∆ = 3” gadgets with little difficulty.

3.1 Repeating Sect. 2 for Randomised Algorithms

Fix a randomised algorithmA with running time r = o(log n) and letG = (V,E),
n = |V |, be a large 4-regular expander.

Again, we start out with the all-red instance. We denote by W and B the
number of black and white nodes output by A on Π(G, red). As each of the edges
ev must be covered, we have that

W +B ≥ n.

Hence, by linearity of expectation, at least one of E[W] ≥ n/2 or E[B] ≥ n/2
holds. We assume that E[W] ≥ n/2; the other case is symmetric.

In reaction to A preferring white nodes, the blue gadgets are now defined
exactly as in Sect. 2. Furthermore, for any input ` : V → {red, blue} we interpret
the output of A on Π(G, `) as defining an output labelling `A of V , where, again,
`A(v) = blue iff A outputs only the black node at the gadget at v. This definition
translates our assumption of E[W] ≥ n/2 into

E[R(red)] ≥ n/2, (2)

where R(`) := |`−1A (red)| counts the number of gadgets (i.e., vertices of G) rela-
belled red by A on Π(G, `).

If A relabels a blue gadget red, it must output at least two nodes at the
gadget. This means that the size of the solution output by A on Π(G, blue) is at

least n + R(blue). Thus, if A is to produce a 3/2-approximation on Π(G, blue)
in expectation, we must have that

E[R(blue)] ≤ n/2. (3)

The inequalities (2) and (3) provide the necessary boundary conditions (re-
placing the feasibility constraints of Recut) for the argument of Lemma 1: by
continuously changing the instance (G, red) into (G, blue) we may find an input
labelling `∗ achieving

E[R(`∗)] = n/2− o(n). (4)

It remains to argue that A outputs a nearly balanced recut not only “in
expectation” but also with high probability.

3.2 Local Concentration Bound

Focusing on the instance Π(G, `∗) we write R = R(`∗) and

R =
∑
v∈V

Xv, (5)

where Xv ∈ {0, 1} indicates whether A relabels the gadget at v red.
The variables Xv are not too dependent: the 2rth power of G, denoted G2r,

where u, v ∈ V are joined by an edge iff BG(v, r)∩BG(u, r) 6= ∅, is a dependency
graph for the variables Xv. Every independent set I ⊆ V in G2r corresponds to
a set {Xv}v∈I of mutually independent random variables. Since the maximum
degree of G2r is at most maxv |BG(v, 2r)| = o(n), this graph can always be
partitioned into χ(G2r) = o(n) independent sets.

Indeed, Janson [5] presents large deviation bounds for sums of type (5) by
applying Chernoff–Hoeffding bounds for each colour class in a χ(G2r)-colouring
of G2r. For any ε > 0, Theorem 2.1 in Janson [5], as applied to our setting, gives

Pr(R ≥ E[R] + εn) ≤ exp

(
−2

(εn)2

χ(G2r) · n

)
→ 0, as n→∞, (6)

and the same bound holds for Pr (R ≤ E[R]− εn). That is, R is concentrated
around its expectation.

In conclusion, the combination of (4) and (6) implies that, for large n, the
algorithm A outputs a nearly balanced recut on Π(G, `∗) with high probability.
By the discussion in Sect. 2, this proves Theorem 1.

4 Acknowledgements

Many thanks to Valentin Polishchuk for discussions, and to anonymous reviewers
for their helpful comments and suggestions. This work was supported in part by
the Academy of Finland, Grants 132380 and 252018.

References

1. Åstrand, M., Polishchuk, V., Rybicki, J., Suomela, J., Uitto, J.: Local algorithms
in (weakly) coloured graphs (2010), manuscript, arXiv:1002.0125 [cs.DC]

2. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distributed approximations
in planar graphs. In: Proc. 22nd Symposium on Distributed Computing (DISC
2008). LNCS, vol. 5218, pp. 78–92. Springer, Berlin (2008)

3. Diestel, R.: Graph Theory. Springer, Berlin, 3rd edn. (2005)
4. Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. In:

Proc. 31st Symposium on Principles of Distributed Computing (PODC 2012). pp.
175–184. ACM Press, New York (2012)

5. Janson, S.: Large deviations for sums of partly dependent random variables. Ran-
dom Structures & Algorithms 24(3), 234–248 (2004)

6. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In:
Proc. 23rd Symposium on Principles of Distributed Computing (PODC 2004). pp.
300–309. ACM Press, New York (2004)

7. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In:
Proc. 17th Symposium on Discrete Algorithms (SODA 2006). pp. 980–989. ACM
Press, New York (2006)

8. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: Lower and upper
bounds (2010), manuscript, arXiv:1011.5470 [cs.DC]

9. Lenzen, C., Wattenhofer, R.: Leveraging Linial’s locality limit. In: Proc. 22nd Sym-
posium on Distributed Computing (DISC 2008). LNCS, vol. 5218, pp. 394–407.
Springer, Berlin (2008)

10. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing
21(1), 193–201 (1992)

11. Linial, N., Saks, M.: Low diameter graph decompositions. Combinatorica 13, 441–
454 (1993)

12. Morgenstern, M.: Existence and explicit constructions of q+ 1 regular Ramanujan
graphs for every prime power q. Journal of Combinatorial Theory, Series B 62(1),
44–62 (1994)

13. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Com-
puting 24(6), 1259–1277 (1995)

14. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local im-
provements. In: Proc. 49th Symposium on Foundations of Computer Science
(FOCS 2008). pp. 327–336. IEEE Computer Society Press, Los Alamitos (2008)

15. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Dover Publications, Inc., Mineola, NY, USA (1998)

16. Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear
time and a connection to distributed algorithms. Theoretical Computer Science
381(1–3), 183–196 (2007)

17. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematics and Applications, SIAM, Philadelphia (2000)

18. Suomela, J.: Survey of local algorithms. ACM Computing Surveys (to appear),
http://www.cs.helsinki.fi/local-survey/

http://www.cs.helsinki.fi/local-survey/

	No Sublogarithmic-time Approximation Scheme for Bipartite Vertex Cover

