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Abstract
We give efficient distributed algorithms for the minimum vertex cover problem in bipartite graphs in
the CONGEST model. From Kőnig’s theorem, it is well known that in bipartite graphs the size of a
minimum vertex cover is equal to the size of a maximum matching. We first show that together
with an existing O(n logn)-round algorithm for computing a maximum matching, the constructive
proof of Kőnig’s theorem directly leads to a deterministic O(n logn)-round CONGEST algorithm
for computing a minimum vertex cover. We then show that by adapting the construction, we can
also convert an approximate maximum matching into an approximate minimum vertex cover. Given
a (1 − δ)-approximate matching for some δ > 1, we show that a (1 + O(δ))-approximate vertex
cover can be computed in time O

(
D + poly

( logn
δ

))
, where D is the diameter of the graph. When

combining with known graph clustering techniques, for any ε ∈ (0, 1], this leads to a poly
( logn

ε

)
-

time deterministic and also to a slightly faster and simpler randomized O
( logn
ε3

)
-round CONGEST

algorithm for computing a (1 + ε)-approximate vertex cover in bipartite graphs. For constant
ε, the randomized time complexity matches the Ω(logn) lower bound for computing a (1 + ε)-
approximate vertex cover in bipartite graphs even in the LOCAL model. Our results are also in
contrast to the situation in general graphs, where it is known that computing an optimal vertex
cover requires Ω̃(n2) rounds in the CONGEST model and where it is not even known how to compute
any (2− ε)-approximation in time o(n2).
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1 Introduction & Related Work

In the minimum vertex cover (MVC) problem, we are given an n-node graph G = (V,E)
and we are asked to find a vertex cover of smallest possible size, that is, a minimum
cardinality subset of V that contains at least one node of every edge in E. In the distributed
MVC problem, the graph G is the network graph and the nodes of G have to compute a
vertex cover by communicating over the edges of G. At the end of a distributed vertex
cover algorithm, every node v ∈ V must know if it is contained in the vertex cover or not.
Different variants of the MVC problem have been studied extensively in the distributed
setting, see e.g., [3, 4, 6, 7, 9, 11,16,18–20,25,26]. Classically, when studying the distributed
MVC problem and also related distributed optimization problems on graphs, the focus has
been on understanding the locality of the problem. The focus therefore has mostly been
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29:2 Approximating Bipartite Minimum Vertex Cover in the CONGEST Model

on establishing how many synchronous communication rounds are necessary to solve or
approximate the problem in the LOCAL model, that is, if in each round, each node of G can
send an arbitrarily large message to each of its neighbors.

MVC in the LOCAL model. The minimum vertex cover problem is closely related to the
maximum matching problem, i.e., to the problem of finding a maximum cardinality set of
pairwise non-adjacent (i.e., disjoint) edges. Since for every matching M , any vertex cover
has to contain at least one node from each of the edges {u, v} ∈M , the size of a minimum
vertex cover is lower bounded by the size of a maximum matching. We therefore obtain a
simple 2-approximation S for the MVC problem by first computing a maximal matching
and by defining the vertex cover S as S :=

⋃
{u,v}∈M {u, v}. It has been known since the

1980s that a maximal matching can be computed in O(logn) rounds by using a simple
randomized algorithm [2,22,29]. The fastest known randomized distributed algorithm for
computing a maximal matching has a round complexity of O(log ∆ + log3 logn), where ∆ is
the maximum degree of the graph G [8, 15], and the fastest known deterministic algorithm
has a round complexity of O(log2 ∆ · logn) [15]. A slightly worse approximation ratio of
2 + ε can even be achieved in time O

( log ∆
log log ∆

)
for any constant ε > 0. This matches the

Ω
(

min
{

log ∆
log log ∆ ,

√
logn

log logn

})
lower bound of [25], which even holds for any polylogarithmic

approximation ratio. In [18], it was further shown that there exists a constant ε > 0 such that
computing a (1+ε)-approximate solution for MVC requires Ω(logn) rounds even for bipartite
graphs of maximum degree 3. By using known randomized distributed graph clustering
techniques [27, 30], this bound can be matched: For any ε ∈ (0, 1], a (1 + ε)-approximate
MVC solution can be computed in time O

( logn
ε

)
in the LOCAL model. It was shown in [17]

that in fact all distributed covering and packing problems can be (1 + ε)-approximated in
time poly

( logn
ε

)
in the LOCAL model. By combining with the recent deterministic network

decomposition algorithm of [32], the same result can even be achieved deterministially. We
note that all the distributed (1 + ε)-approximations for MVC and related problems quite
heavily exploit the power of the LOCAL model. They use very large messages and also the
fact that the nodes can do arbitrary (even exponential-time) computations for free.

MVC in the CONGEST model. As the complexity of the distributed minimum vertex
cover and related problems in the LOCAL model is now understood quite well, there has
recently been increased interest in also understanding the complexity of these problems in the
more restrictive CONGEST model, that is, when assuming that in each round, every node can
only send an O(logn)-bit message to each of its neighbors. Some of the algorithms that have
been developed for the LOCAL model do not make use of large messages and they therefore
directly also work in the CONGEST model. This is in particular true for all the maximal
matching algorithms and also for the (2 + ε)-approximate MVC algorithm mentioned above.
Also in the CONGEST model, it is therefore possible to compute a 2-approximation for MVC
in O(log ∆ + log3 logn) rounds and a (2 + ε)-approximation in O

( log ∆
log log ∆

)
rounds. However,

there is no non-trivial (i.e., o(n2)-round) CONGEST MVC algorithm known for obtaining an
approximation ratio below 2. For computing an optimal vertex cover on general graphs, it is
even known that Ω̃(n2) rounds are necessary in the CONGEST model [11]. It is therefore an
interesting open question to investigate if it is possible to approximate MVC within a factor
smaller than 2 in the CONGEST model or to understand for which families of graphs, this is
possible. The only result in this direction that we are aware of is a recent paper that gives
(1 + ε)-approximation for MVC in the square graph G2 in O(n/ε) CONGEST rounds on the
underlying graph G [6].
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MVC in bipartite graphs. In the present paper, we study the distributed complexity of
MVC in the CONGEST model for bipartite graphs. Unlike for general graphs, where MVC is
APX-hard (and even hard to approximate within a factor 2− ε when assuming the unique
games conjecture [24]), for bipartite graphs, MVC can be solved optimally in polynomial
time. While in general graphs, we only know that a minimum vertex cover is at least as large
as a maximum matching and at most twice as large as a maximum matching, for bipartite
graphs, Kőnig’s well-known theorem [12, 23] states that in bipartite graphs, the size of a
maximum matching is always equal to the size of a minimum vertex cover. In fact, if one
is given a maximum matching of a bipartite graph G = (U ∪ V,E), a vertex cover of the
same size can be computed in the following simple manner. Assume that we are given the
bipartition of the nodes of G into sets U and V and assume that we are given a maximum
matching M of G. Now, let L0 ⊆ U be the set of unmatched nodes in U and let L ⊆ U ∪ V
be the set of nodes that are reachable from L0 over an alternating path (i.e, over a path that
alternates between edges in E \M and edges in M). It is not hard to show that the set
S := (U \ L) ∪ (V ∩ L) is a vertex cover that contains exactly one node of every edge in M .
We note that this construction also directly leads to a distributed algorithm for computing an
optimal vertex cover in bipartite graphs G. The bipartition of G can clearly be computed in
time O(D), where D is the diameter of G and given a maximum matching M , the set L can
then be computed in O(n) rounds by doing a parallel BFS exploration on alternating paths
starting at all nodes in L0. Together with the O(n logn)-round CONGEST algorithm of [1]
for computing a maximum matching, this directly leads to a deterministic O(n logn)-round
CONGEST algorithm for computing an optimal vertex cover in bipartite graphs. As our main
contribution, we show that it is not only possible to efficiently convert an optimal matching
into an optimal vertex cover, but we can also efficiently turn an approximate solution of
the maximum matching problem in a bipartite graph into an approximate solution of the
MVC problem on the same graph. Unlike for MVC, where no arbitrarily good approximation
algorithms are known for the CONGEST model, such algorithms are known for the maximum
matching problem [1, 5, 28]. We use this to develop polylogarithmic-time approximation
schemes for the bipartite MVC problem in the CONGEST model. We next discuss our main
contributions in more detail.

1.1 Contributions
Our first contribution is a simple linear-time algorithm to solve the exact minimum vertex
cover problem.

I Theorem 1. There is a deterministic CONGEST algorithm to (exactly) solve the minimum
vertex cover problem in bipartite graphs in time O(OPT · log OPT), where OPT is the size of
a minimum vertex cover.

Proof. As mentioned, the algorithm is a straightforward CONGEST implementation of
Kőnig’s constructive proof. Given a bipartite graph G = (U ∪ V,E), one first computes a
maximum matching M of G in time O(OPT · log OPT) by using the CONGEST algorithm
of [1]. One elects a leader node ` and computes a BFS tree of G rooted at ` in time O(D),
where D is the diameter of G. Let U be the set of nodes at even distance from ` and let V be
the set of nodes at odd distance from `. Let L0 be the set of nodes in U that are not contained
in any edge of M . Starting at L0, we do a parallel BFS traversal on alternating paths. Let
L be the set of nodes that are reached in this way. The set L can clearly be computed in
time O(|M |) = O(OPT). As shown in the constructive proof of Kőnig’s theorem [12, 23], the
minimum vertex cover S is now defined as S := (U \ L) ∪ (V ∩ L). J
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29:4 Approximating Bipartite Minimum Vertex Cover in the CONGEST Model

Our main results are two distributed algorithms to efficiently compute (1+ε)-approximate
solutions to the minimum vertex cover problem. We first give a slightly more efficient (and
also somewhat simpler) randomized algorithm.

I Theorem 2. For every ε ∈ (0, 1], there is a randomized CONGEST algorithm that for any
bipartite n-node graph G computes a vertex cover of expected size at most (1 + ε) · OPT in
time O

( logn
ε3

)
, w.h.p., where OPT is the size of a minimum vertex cover of G.

We remark that for constant ε, the above result matches the lower bound of [18] for the
LOCAL model. More precisely, in [18], it is shown that there exists a constant ε > 0 for
which computing a (1 + ε)-approximation of minimum vertex cover requires Ω(logn) rounds
even on bounded-degree bipartite graphs. The second main result shows that similar bounds
can also be achieved deterministically.

I Theorem 3. For every ε ∈ (0, 1], there is a deterministic CONGEST algorithm that for
any bipartite n-node graph G computes a vertex cover of size at most (1 + ε) · OPT in time
poly

( logn
ε

)
, where OPT is the size of a minimum vertex cover of G.

1.2 Our Techniques in a Nutshell
We next describe the key ideas that leads to the results in Theorems 2 and 3. The core
of our algorithms is a method to efficiently transform an approximate solution M for the
maximum matching problem into an approximate solution of MVC. More concretely, assume
that we are given a matching M ⊆ E of a bipartite graph G = (U ∪ V,E) such that M is a
(1− ε)-approximate maximum matching of G (for a sufficiently small ε > 0). In Section 3, we
then first show that we can compute a vertex cover S ⊆ U∪V of size (1+O(ε poly logn)) · |M |
(and therefore a (1 +O(ε poly logn))-approximation for MVC) in time O

(
D + poly

( logn
ε

))
,

where D is the diameter of G. If the matching M has the additional property that there
are no augmenting paths of length at most 2k − 1 for some k = O(1/ε), we show that such
a vertex cover S can be obtained by adapting the constructive proof of Kőnig’s theorem.
Clearly, the bipartition of the nodes of G into sets U and V can be computed in time O(D).
Now, we again define L0 as the set of unmatched nodes in U and more generally for any
integer i ∈ {1, . . . , 2k}, we define Li to be the set of nodes in U ∪ V that can be reached
over an alternating path of length i from L0 and for which no shorter such alternating path
exists. Note that all nodes in set L2j−1 for j ∈ {1, . . . , k} are matched nodes as otherwise,
we would have an augmenting path of length at most 2k − 1. Note that any alternating
path starting at L0 starts with a non-matching edge from U to V and it alternates between
non-matching edges from U to V and matching edges from V to U . For every j ≥ 1, the set
L2j therefore exactly contains the matching neighbors of the nodes in L2j−1 and we therefore
have |L2j | = |L2j−1|. We will show that for every j ∈ {1, . . . , k} the set

Sj :=
⋃

j′∈{1,...,j}

L2j′−1 ∪

U \ ⋃
j′∈{0,...,j−1}

L2j′


is a vertex cover of size |M |+ |L2j | = |M |+ |L2j−1|. Because the sets Li are disjoint, clearly
one of these vertex covers must have size at most

(
1 + 1

k

)
· |M | = (1 +O(ε)) · |M |.

If we do not have the guarantee that M does not have short augmenting paths, we show
that one can first delete O(ε · |M | · poly logn) nodes from U ∪ V such that in the induced
subgraph of the remaining nodes, there are no short augmenting paths w.r.t. M . We also
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show that we can find such a set of nodes to delete in time poly
( logn

ε

)
. We can therefore

then first compute a good vertex cover approximation for the remaining graph and we then
obtain a vertex cover of G by also adding all the removed nodes to the vertex cover.

Given our algorithm to compute a good MVC approximation in time O(D + poly logn)
in Section 4, we show how that in combination with known graph clustering techniques, we
can obtain MVC approximation algorithms with polylogarithmic time complexities and thus
prove Theorems 2 and 3. Given a maximal matching M , we show that we can compute
disjoint low-diameter clusters such that all the edges between clusters can be covered by
O(ε · |M |) nodes. With randomization, such a clustering can be computed by using the
random shifts approach of [10,30] and deterministically such a clustering can be computed
by a simple adaptation of the recent network decomposition algorithm of [32]. Since the
clusters have a small diameter, we can then use the algorithm of Section 3 described above
inside the clusters to efficiently compute a good MVC approximation.

2 Model and Definitions

Communication Model. We work with the standard CONGEST model [31]. The network
is modelled as an n-node undirected graph G = (V,E) with maximum degree at most ∆ and
each node has a unique O(logn)-bit identifier. The computation proceeds in synchronous
communication rounds. Per round, each node can perform some local computations and
send one O(logn)-bit message to each of its neighbors. At the end, each node should know
its own part of the output, e.g., whether it belongs to a vertex cover or not.

Low-Diameter Clustering. In order to reduce the problem of approximating MVC on
general (bipartite) graphs to approximating MVC on low-diameter (bipartite) graphs, we
need a slightly generalized form of a standard type of graph clustering. Let G = (V,E,w) be
a weighted graph with non-negative edge weights w(e) and assume that W :=

∑
w∈E w(e)

is the total weight of all edges in G. A subset S ⊆ V of the nodes of G is called λ-dense
for λ ∈ [0, 1] if the total weight of the edges of the induced subgraph G[S] is at least λ ·W .
A clustering of G is a collection {S1, . . . , Sk} of disjoint subsets Si ⊆ V of the nodes. A
clustering {S1, . . . , Sk} is called λ-dense if the set S := S1 ∪ · · · ∪ Sk is λ-dense. The strong
diameter of a cluster Si ⊆ V is the (unweighted) diameter of the induced subgraph G[Si]
and the weak diameter of a cluster Si ⊆ V is the maximum (unweighted) distance in G

between any two nodes in Si. The strong/weak diameter of a clustering {S1, . . . , Sk} is
the maximum strong/weak diameter of any cluster Si. A clustering {S1, . . . , Sk} is called
h-hop separated for some integer h ≥ 1 if for any two clusters Si and Sj (i 6= j), we have
min(u,v)∈Si×Sj

dG(u, v) ≥ h, where dG(u, v) denotes the hop-distance between u and v in G.
A clustering {S1, . . . , Sk} is called (c, d)-routable if we are in addition given a collection of
trees T1, . . . , Tk in G such that for every i ∈ {1, . . . , k}, the node set of Ti contains the nodes
in Si, the height of Ti is at most d and every edge e ∈ E of G is contained in at most c trees
T1, . . . , Tk. Note that a (c, d)-routable clustering clearly has weak diameter at most 2d. Note
also that any clustering with strong diameter d can easily be extended to a (1, d)-routable
clustering by computing a BFS tree Ti for the induced subgraph G[Si] of each cluster Si.

3 Approximating MVC in Time Linear in the Diameter

In this section, we show how to compute a minimum vertex cover approximation in time
O(D + poly logn) in the CONGEST model, where D is the diameter of the graph. Before
discussing a distributed algorithm, we first describe a generic high-level algorithm to compute
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29:6 Approximating Bipartite Minimum Vertex Cover in the CONGEST Model

a (1 − ε)-approximate vertex cover from an appropriate approximate matching M of a
bipartite graph G. Given a matching M of any graph G, a path is said to be augmenting
w.r.t. M in G if it is a path that starts and ends with unmatched vertices and alternates
between matched and unmatched edges. Inspired by the standard constructive proof of
Kőnig’s theorem, we first describe an algorithm that gives an approximate minimum vertex
cover in bipartite graphs from an approximate maximum matching with the guarantee that
no short augmenting paths exist in the graph. We remark that a similar construction has also
been used by Feige, Mansour, and Schapire for approximating the bipartite MVC problem in
the local computation algorithms model [14].

In the following, assume that G = (V,E) is a bipartite graph, where the bipartition of V
is given by V = A∪B. Let k ≥ 1 be an integer parameter and assume that M is a matching
of G with no augmenting paths of length 2k − 1 or shorter. We further define a directed
version ~G of the graph G, where every edge e 6∈M is directed from set A to set B and every
edge e ∈M is directed from B to A (note that by definition of A and B, every edge of G is
between a node in A and a node in B). We then apply the following algorithm to compute a
set S, which we will show is a (1− 1/k)-approximate vertex cover of G.

Basic Approximate Vertex Cover Algorithm
1. Let A0 ⊆ A be the set of unmatched nodes in A.
2. For every i ∈ {1, . . . , k}, let Ai ⊆ A be the set of nodes in A for which the shortest

directed path in ~G from a node in A0 is of length 2i.
3. For every i ∈ {1, . . . , k}, let Bi ⊆ B be the set of nodes in ~G from a nodes in A0 is

of length 2i− 1.
4. Define i∗ := arg mini∈{1,...,k} |Bi|.
5. Output S :=

⋃i∗
i=1Bi ∪

(
A \

⋃i∗−1
i=0 Ai

)
.

I Lemma 4. If the given matching M has no augmenting paths of length at most 2k − 1,
the above algorithm computes a vertex cover S of G of size at most (1 + 1/k) · OPT, where
OPT is the size of a minimum vertex cover of G.

Proof. We first show that S is a vertex cover of G. A bit more generally, for any î ∈ {1, . . . , k},
we define Sî :=

⋃î
i=1Bi ∪

(
A \

⋃î−1
i=0 Ai

)
and show that Sî is a vertex cover of G. For Sî to

not be a vertex cover, there must be an a node u in a set Aj for j ∈
{

0, . . . , î− 1
}
and a

node v in B \
⋃î
j=1Bj . Note that the edge {u, v} cannot be a matching edge because either

u ∈ A0, in which case u is unmatched, or u ∈ Aj for j < î. In the second case, u is reached
over a path of length 2j in the directed graph ~G and thus u’s matching edge connects to
a node in Bj . However, if {u, v} is not a matching edge, it means that the edge {u, v} is
directed from u to v in graph ~G. Therefore, since the shortest directed path from A0 to u in
~G is of length 2j, there must be a directed path from A0 to v of length at most 2j + 1 in ~G.
This means that v must be in one of the sets B1, . . . , Bj+1. Since j < î, this contradicts the
assumption that v ∈ B \

⋃î
j=1Bj . We can therefore conclude that Sî is a vertex cover of G

for every î ∈ {1, . . . , k} and thus, in particular, the set Si∗ is a vertex cover of G.
It remains to show that the size of S is at most (1 + 1/k) · OPT. To prove this, we first

show that for all i ∈ {1, . . . , k}, the set of nodes in Bi are matched nodes. If there is a node
v ∈ Bi for i ≤ k that is unmatched, there is a directed path of length 2i− 1 ≤ 2k − 1 in ~G

from a node in A0 to v. Such a directed path would be an augmenting path of the same
length 2i− 1 ≤ 2k − 1 w.r.t. matching M in G. This cannot be because we assumed that
there are no augmenting paths of length at most 2k− 1 w.r.t. M in G. Further, by definition
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of the directed graph ~G, the reason that a node u is in a set Ai for i ∈ {1, . . . , k} is that the
matching edge of u connects u to a node in Bi. By induction on i, we can therefore conclude
that for all i ∈ {1, . . . , k}, the nodes in Ai are exactly the matching neighbors of the nodes
in Bi and therefore for all such i, we have |Ai| = |Bi|. For every î ∈ {1, . . . , k}, the size of
the set Sî can therefore be computed as

|Sî| =
î∑
i=1
|Bi|+ |A| − |A0|︸ ︷︷ ︸

=|M |

−
î−1∑
i=1
|Ai| = |M |+ |Bî|.

Because the sets Bi for i ∈ {1, . . . , k} are disjoint and they all contain matched nodes, their
total size is at most |M | and therefore, we have |Bi∗ | ≤ |M |/k. We can therefore conclude
that |S| = |M |+ |Bi∗ | ≤ (1 + 1/k) · |M | = (1 + 1/k) · OPT. J

We next discuss how the above algorithm can efficiently be implemented in time O(D +
poly logn) in the CONGEST model, where D is the diameter of the graph. A bit more
precisely, we will show the following. Let G = (V,E) be a bipartite graph with diameter
D and let G′ = (V ′, E′) be a subgraph of G. Assume that each node of G knows if it is
contained in the set V ′ and which of its edges are contained in the set E′. We then show
that for any k ≥ 1, one can run the above algorithm on graph G′ in O(D + k) rounds in the
CONGEST model on graph G. The implementation is relatively straightforward. In time
O(D), one can compute a BFS tree of the graph G, and one can compute the bipartition
of the nodes into sets A and B. Then, in O(k) rounds, one can do the BFS traversal on
the directed graph ~G, starting from nodes in A0 and computing the sets Ai and Bi for
i ∈ {1, . . . , k}. Finally, by using the BFS tree on graph G and a simple pipelining scheme,
one can compute the sizes of all the sets Bi and determine the index i∗ of the smallest such
set. A formal statement is given by the following lemma and a formal proof of the lemma
can be found in the full version of the paper [13].

I Lemma 5. Let G = (V,E) be a bipartite graph of diameter D, let G′ = (V ′, E′) be a
subgraph of G (i.e., V ′ ⊆ V and E′ ⊆ E), and let k ≥ 1 be an integer parameter. Assume
that M is a matching of G′ s.t. there exists no augmenting path of length at most 2k − 1
w.r.t. M in G′. Then, there exists a deterministic CONGEST model algorithm to compute a
(1 + 1/k)-approximate minimum vertex cover of G′ in O(D + k) rounds on graph G.

In combination with a distributed approximate maximum matching algorithm of Lotker,
Patt-Shamir, and Pettie [28], Lemma 5 directly leads to a randomized O(D+poly logn)-round
distributed approximation scheme for the MVC problem.

I Theorem 6. Let G = (V,E) be a bipartite graph of diameter D and G′ = (V ′, E′) be a
subgraph of G (i.e., V ′ ⊆ V and E′ ⊆ E). For ε ∈ (0, 1], there is a randomized algorithm
that gives a (1 + ε)-approximate minimum vertex cover of G′ w.h.p. in O(D + logn

ε3 ) rounds
in the CONGEST model on G.

Proof. The approximate maximum matching algorithm of [28] is based on the classic approach
of Hopcroft and Karp [21]. For a given graph and positive integer parameter k, the algorithm
computes a matchingM of the graph such that there is no augmenting path of length at most
2k − 1 w.r.t. M . When run on an n-node graph, the algorithm w.h.p. has a time complexity
of O(k3 · logn) in the CONGEST model. The theorem therefore directly follows by applying
the algorithm of [28] on G′ with k = d1/εe and by Lemma 5. J
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3.1 Deterministic MVC Approximation
The only part in the algorithm underlying Theorem 6 that is randomized is the approximate
maximum matching algorithm of [28]. In order to also obtain a deterministic distributed
MVC algorithm, we therefore have to replace the randomized distributed matching algorithm
by a deterministic distributed matching algorithm. The algorithm of [28] is based on the
framework of [21] and it therefore guarantees that the resulting matching has no short
augmenting paths. While the size of such a matching is guaranteed to be close to the size of
a maximum matching, the converse is not necessarily true.1 Unfortunately, we are not aware
of an efficient deterministic CONGEST model algorithm to compute a matching M with no
short augmenting paths. To resolve this issue, we therefore have to do some additional work.

For ε > 0, we define an augmenting path w.r.t. a matching in G′ to be short if it is of
length at most ` = 2k′− 1, where k′ = d2/εe. We define δ ≤ ε/(2α) where α = O

( log ∆
ε3

)
. We

first run a polylogarithmic-time deterministic CONGEST algorithm by Ahmadi et al. [1] to
obtain a (1− δ)-approximate maximum matching M in G′. This matching M can potentially
have short augmenting paths. In order to get rid of short augmenting paths, we then
find a subset of nodes S1 such that after deleting the nodes in S1, M is a matching with
no short augmenting paths in the remaining subgraph G′′ of G′. We show that we can
select S1 such that |S1| ≤ αδOPT, where OPT is the size of a minimum vertex cover in
G′. Now that we end up with a matching in G′′ with no short augmenting paths, we can
directly apply our subroutine from above on G′′ and obtain a set S2 which is a (1 + ε

2 )-
approximate vertex cover of G′′. Finally, we deduce that C = S1 ∪ S2 is a vertex cover of
G′. Moreover, since the size of the minimum vertex cover of G′′ is at most OPT, we get
|C| = |S1|+ |S2| ≤ αδOPT + (1 + ε

2 )OPT = (1 + ε)OPT.

Finding S1. We next describe an algorithm to compute the set S1. We assume that we
are given an arbitrary (1− δ)-approximate matching M of G′ = (U ′ ∪ V ′, E′). As discussed
above, we need to find a node set S1 ⊆ U ′ ∪ V ′ that allows to get rid of augmenting paths
of length at most ` = 2k′ − 1. This will be done in (` + 1)/2 stages d = 1, 3, . . . , `. The
objective of stage d is to get rid of augmenting paths of length exactly d. Note that this
guarantees that when starting stage d, there are no augmenting paths of length less than d
and thus in stage d, all augmenting paths of length d are also shortest augmenting paths. In
the following, we focus on a single stage d. Formally, the subproblem that we need to solve
in stage d is the following.

We are given a bipartite graph H = (UH ∪ VH , EH) with at most n nodes and we are
given a matching MH of H. We assume that the bipartition of the graph into UH and VH
is given. Let d be a positive odd integer and assume that H has no augmenting paths of
length shorter than d w.r.t. MH . The goal is to find a set SH ⊆ UH ∪ VH that is as small as
possible such that when removing the set SH from the nodes of H and the resulting induced
subgraph H ′ := H[UH ∪ VH \ SH ] has no augmenting paths of length at most d w.r.t. the
matching M ′H := MH ∩ E(H ′), i.e., w.r.t. to the matching induced by MH in the induced
subgraph H ′ of the remaining nodes.

We therefore need to find a set SH of nodes of H such that SH contains at least one node
of every augmenting path of length d w.r.t. MH in graph H. Further, we want to make sure
that after removing SH , in the remaining induced subgraph H ′ w.r.t. the remaining matching

1 One can for example obtain an almost-maximum matching M for some graph G by taking a maximum
matching of G and flipping an arbitrary matched edge to unmatched. While the matchingM is obviously
a very good approximate matching, it has a short augmenting path of length 1.
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M ′H , there are no augmenting paths that were not present in graph H w.r.t. matching MH .
To guarantee this, we make sure that whenever we add a matched node in UH ∪ VH to SH ,
we also add its matched neighbor to SH . In this way, every node that is unmatched in H ′
was also unmatched in H and therefore any augmenting path in H ′ is also an augmenting
path in H.

Getting Rid of Short Augmenting Paths by Solving Set Cover. The problem of finding
a minimal such collection of matching edges and unmatched nodes can be phrased as a
minimum set cover problem. The ground set P is the set of all augmenting paths of length
d w.r.t. MH in H. For each unmatched node v ∈ UH ∪ VH , we define Pv as the set of
augmenting paths of length d that contain v. Similarly, for each matching edge e ∈MH , we
define Pe as the set of augmenting paths of length d that contain e. The goal is to find a
smallest set C consisting of unmatched nodes v in UH ∪ VH and matching edges e ∈ MH

such that the union of the corresponding sets Pv and Pe of paths covers all paths in P . The
set SH then consists of all nodes in C and both nodes of each edge in C. Let us first have a
look at the structure of augmenting paths of length d in H. Let L0 be the set of unmatched
nodes in UH and more generally let Li ⊆ UH ∪VH for i ∈ {0, . . . , d} be the set of nodes of H
that can be reached over a shortest alternating path of length i from a node in L0. Since the
bipartition into UH and VH is given, the sets L0, . . . , Ld can be computed in d CONGEST
rounds by a simple parallel BFS exploration. Since we assume that H has no augmenting
paths of length shorter than d, every augmenting path of length d contains exactly one node
from every set Li such that the node in Ld is an unmatched node in VH .

We use a variant of the greedy set cover algorithm to find the set C covering all the
shortest augmenting paths in H. In order to apply the greedy set cover algorithm, we need to
know the sizes of the sets Pv, i.e., for every node v, we need to know in how many augmenting
paths of length d the node v is contained. To compute this number, we apply an algorithm
that was first developed in [28] and later refined in [5]. The following lemma summarizes the
result of [5, 28], for a proof see also the full version of this paper [13].

I Lemma 7. [5,28] Let H = (UH ∪VH , EH) be a bipartite graph of maximum degree at most
∆ and MH be a matching of H. There is a deterministic O(d2)-round CONGEST algorithm
to compute the number of shortest augmenting paths of length d passing through every node
v ∈ UH ∪ VH .

We can now use this path counting method to find a small set S of nodes that covers all
augmenting paths of length d. We start with an empty set C. The algorithm then works in
O(d log ∆) phases i = 1, 2, 3, . . . , where in phase i, we add unmatched nodes v and matching
edges e to C such that are still contained in at least ∆d/2i remaining paths. In order to
obtain a polylogarithmic running time, we need to add nodes and edges to C in parallel.
In order to make sure that we do not cover the same path twice, when adding nodes and
edges in parallel, we essentially iterate through the d levels in each phase. The details of the
algorithm are given in the following.

OPODIS 2020
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Covering Paths of Length d: Phase i ≥ 1
Iterate over all odd levels ` = 1, 3, . . . , d:
1. Count the number of augmenting paths of length d passing through each of the

remaining nodes and edges.
2. If ` ∈ {1, d}, for all remaining nodes v ∈ L` that are in pv ≥ ∆d/2i different

augmenting paths of length d, add v to C and remove v and its incident edges from
GH for the remainder of the algorithm.

3. If ` ∈ {2, . . . , d− 1}, for all remaining matching edges e ∈MH connecting two nodes
u ∈ L`−1 and v ∈ L` that are in pe ≥ ∆d/2i different augmenting paths of length d,
add e to C and remove e and its incident edges from GH for the remainder of the
algorithm.

Define SH to contain every node in C and both nodes of every edge in C.

I Lemma 8. Let δ ∈ (0, 1) and assume that MH is a (1− δ)-approximate matching of the
bipartite graph H of maximum degree at most ∆ . Then, the set SH selected by the above
algorithm has size at most αdδ · OPTH , where αd = 2(d+ 3)(1 + d ln ∆) and OPTH is the
size of a maximum matching and thus of a minimum vertex cover of H. The time complexity
of the algorithm in the CONGEST model is O(d4 log ∆).

Proof. We first look at the time complexity of the algorithm in the CONGEST model. The
algorithm consists of O(d log ∆) phases, in each phase, we iterate over O(d) levels and in
each of these iterations, the most expensive step is to count the number of augmenting paths
passing through each node and edge. By Lemma 7, this can be done in time O(d2), resulting
in an overall time complexity of O(d4 log ∆).

For each free node v ∈ UH ∪VH and for each matching edge e ∈MH , let pv and pe be the
number of (uncovered) augmenting paths of length d passing through v and e, respectively.
We will next show that our algorithm is simulating a version of the standard sequential
greedy set cover algorithm. When applying the sequential greedy algorithm, in each step,
we would need to choose a set Pv or Pe of paths that maximizes the number of uncovered
augmenting paths of length d the set covers. We will see that we essentially relax the greedy
step and we obtain an algorithm that is equivalent to a sequential algorithm that always picks
a set of paths that contains at least half as many uncovered paths as possible. To show this,
we first show that for each phase i, at the beginning of the phase, we have pv, pe ≤ ∆d/2i−1

for all unmatched nodes v and matching edges e. For the sake of contradiction, assume that
this is not the case and let i′ be the first phase, in which it is not true. Because every node
and edge can be contained in at most ∆d augmenting paths of length d, the statement is
definitely true for the first phase and we therefore have i′ > 1. We now consider phase i′ − 1.
In each phase, by iterating over all odd levels ` = 1, 3, . . . , d, we iterate over all unmatched
nodes v ∈ UH ∪ VH and all matching edges e ∈MH that are contained in some augmenting
path of length d. For each of them, we add the corresponding set Pv or Pe to the set cover
if we still have pv ≥ ∆/2i′−1 or pe ≥ ∆/2i′−1. At the end of phase i′ − 1, we therefore
definitely have pv, pe < ∆/2i′−1 for all nodes v and matching edges e, which contradicts the
assumption that at the beginning of phase i′, it is not true that pv, pe ≤ ∆/2i′−1 for all such
v and e. Because in each phase i, we only add set Pv and Pe that are contained in at least
∆/2i uncovered paths, we clearly always pick sets that cover at least half as many uncovered
paths as the best current set. Note also that because we iterate through the levels and only
add sets for nodes or edges on the same level in parallel, the set that we add in parallel cover
disjoint sets of paths. The algorithm is therefore equivalent to a sequential algorithm that
adds the sets in each parallel step in an arbitrary order.
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Now, we will show that we remove at most 2(d + 3)(1 + d ln ∆)δ · OPTH nodes from
graph H. Indeed, approximating the set cover problem using the standard greedy algorithm
gives a (1 + ln(s)) approximation to the solution, where s is the cardinality of the largest set.
If we relax the greedy step by at least a factor of two, as our algorithm does, a standard
analysis implies that we still get a 2(1 + ln s)-approximation of the corresponding minimum
set cover problem, where s is still defined as the cardinality of the largest set. In our case,
the largest set Pv or Pe is s ≤ ∆d. Now if the solution to the set cover problem using this
greedy version algorithm is SH and the optimal solution of the set cover problem is S∗, then
|S∗| ≤ |SH | ≤ 2(1 + d ln ∆)|S∗|. Recall that Pe corresponds to a matched edge and by step 3
in our algorithm, both of these matched nodes are removed from the graph H. Hence, we
remove up to 2|SH | ≤ 4(1 + d ln ∆)|S∗| nodes from H.

Next, we give an upper bound to |S∗|, which will finish up our proof. Recall that a
solution to our set cover problem is a set of matched edges Se and a set of unmatched nodes
Sv that cover all augmenting paths of length d in H, i.e., all paths in P. Luckily, there is
a simple solution to the given set cover problem that allows us to upper bound |S∗|. We
just select a maximal set P of vertex-disjoint augmenting paths of length d and we consider
all the unmatched nodes and matched edges on these paths to be our solution S′, where
|S′| = d+3

2 |P |. Clearly, S
′ is a set cover (and thus |S∗| ≤ |S′|), as otherwise there would be

an augmenting path of length d that is not covered by S′. This path has to be vertex-disjoint
from all the paths in P , which is a contradiction to the assumption that P is a maximal set of
vertex-disjoint augmenting paths of length d. Let |M∗H | denote the maximum cardinality of a
matching of graph H. Now, since MH is a (1− δ)-approximate matching, we can clearly have
at most δ|M∗H | vertex-disjoint augmenting paths of at most length d. Hence, the size of P
can never exceed δ|M∗H | i.e. |P | ≤ δ|M∗H |. Thus, |S∗| ≤ |S′| ≤ d+3

2 δ|M∗H |. Hence, we remove
at most 2|SH | ≤ 4(1 + d ln ∆)|S′| ≤ 4(1 + d ln ∆)d+3

2 δ|M∗H | ≤ 2(d+ 3)(1 + d ln ∆)δ|M∗H | =
2(d+ 3)(1 + d ln ∆)δ · OPTH nodes from graph H. J

By iterating over the lengths of shortest paths, we now directly get the following lemma.
For a formal proof of the lemma, we refer to the full version of this paper [13].

I Lemma 9. Let G = (U ∪ V,E) be a bipartite graph, let k ≥ 1 be an integer parameter,
and assume that M is a (1− δ)-approximate matching of G for some δ ∈ [0, 1]. Further, let
OPT be the size of a minimum vertex cover of G. If the bipartition of the nodes of G into U
and V is given, there is an O(k5 log ∆)-time algorithm to compute a node set S1 ⊆ U ∪ V of
size at most 4k(k + 1)(1 + 2k ln ∆)δ · OPT such that in the induced subgraph G[U ∪ V \ S],
there is no augmenting path of length at most 2k − 1 w.r.t. the matching M̄ , where M̄ ⊆M
consists of the edges of M that connect two nodes in U ∪ V \ S1.

We now have everything that we need to also get a deterministic O
(
D+poly

( logn
ε

))
-time

CONGEST algorithm for computing a (1 + ε)-approximate solution for the MVC problem in
bipartite graphs.

I Theorem 10. Let G = (V,E) be a bipartite graph of diameter D and maximum degree ∆
and let G′ = (V ′, E′) be a subgraph of G. For ε ∈ (0, 1], there is a deterministic algorithm
that gives a (1 + ε)-approximate minimum vertex cover of graph G′ in O(D + log4n

ε8 ) rounds
in the CONGEST model on G.

Proof. As a first step, we choose a sufficiently small parameter δ > 0 and we compute a (1−δ)-
approximate solutionM ′ to the maximum matching problem on G′ by using the deterministic
CONGEST algorithm of [1]. For computing such a matching, the algorithm of [1] has a time
complexity of O

( log2 ∆+log∗ n
δ + log ∆

δ2

)
= O

( log2 n
δ2

)
. Let k′ := d2/εe as discussed above. By
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Lemma 9, there is a value α = 4k′(k′ + 1)(1 + 2k′ ln ∆) = O(k′3 log ∆) such that we can find
a set S1 ⊆ V ′ of size |S1| = αδOPT, where OPT is the size of a minimum vertex cover of G′,
such that the following is true. The set S1 can be computed in time O(k′5 log ∆) = O

( logn
ε5

)
.

Let G′′ = G′[V ′ \ S1] be the induced subgraph of G′ after removing all the nodes in S1 and
let M ′′ be the subset of the edges in M ′ that connect two nodes in V ′ \ S1 (i.e., M ′′ is a
matching of G′′). Then, the graph G′′ has no augmenting paths of length at most 2k′ − 1.
By using Lemma 5, we can therefore compute a (1 + 1/k′)-approximate vertex cover S2 (and
thus a (1 + ε/2)-approximate vertex cover) of G′′ in time O(D + k′) = O(D + 1/ε). Because
a minimum vertex cover of G′′ is clearly not larger than a minimum vertex cover of G′, we
therefore have |S2| ≤ (1 + ε/2) · OPT. Note that S1 ∪ S2 is a vertex cover of G′. The size of
S1 ∪ S2 can be bounded as |S1 ∪ S2| ≤ δα · OPT + (1 + ε/2) · OPT. In order to make sure
that this is at most (1 + ε) · OPT, we have to choose δ ≤ ε/(2α). The time complexity to
compute the initial matching M ′ of G′ is therefore O

( log2 n
δ2

)
= O

( log4 n
ε8

)
. J

4 Polylogarithmic-Time Algorithms

We next show how we can use the algorithms of the previous section together with existing
low-diameter graph clustering techniques to obtain polylogarithmic-time approximation
schemes for the minimum vertex cover algorithm in the CONGEST model. First we describe a
general framework for achieving a (1+ε)-approximate minimum vertex cover C of unweighted
bipartite graphs via an efficient algorithm in the CONGEST model based on a given clustering
with some specific properties (cf. Section 2 for the corresponding definitions). We will do
so by proving the following lemma. Note that our general framework applies to both the
randomized and the deterministic case.

I Lemma 11. Let G = (V,E) be a bipartite graph and assume that we are given a maximal
matching M of G. We define edge weights w(e) ∈ {0, 1} such that w(e) = 1 if and only
if e ∈ M . Further, assume that w.r.t. those edge weights, we are given a (1 − η) dense,
3-hop separated, and (c, d)-routable clustering of G, for some η ∈ (0, 1] and some positive
integers c, d > 0. Then, for any ψ ∈ (0, 1], we can find a (1 + 2η + ψ)-approximate minimum
vertex cover by a deterministic CONGEST algorithm in O

(
c ·
(
d+ poly logn

ψ

))
rounds and by

a randomized CONGEST algorithm in O
(
c ·
(
d+ logn

ψ3

))
rounds, w.h.p.

Proof. Let {S1, S2, ..., St} be the collection of clusters of the given 3-hop separated, (1− η)-
dense clustering. Define E′ to be the set of edges for which both endpoints are located
outside clusters and let E′′ to be the set of edges where exactly one of the endpoints is
outside clusters. We also say that e is an edge outside clusters if it is in E′ ∪E′′. Further, let
X to be the set of all matched nodes (w.r.t. the given maximal matching M) that are outside
clusters. Note that since M is a maximal matching, any edge in E′ is necessarily incident to
at least one matched node of M . Therefore, when adding the set X to the vertex cover C,
we cover all edges in E′ and possibly some extra edges in E′′. Now since G is (1− η)-dense,
then at most η|M | matched edges are outside clusters, and when assuming that |M∗| is the
size of a maximum matching of G, we can deduce that |X| ≤ 2η|M | ≤ 2η|M∗| = 2ηOPT,
where OPT is the size of a minimum vertex cover of G. Next, we extend each cluster Si
by at most one hop in radius as follows. For every edge {u, v} ∈ E′′ such that u ∈ Si and
v 6∈ Si, we add the edge {u, v} and node v to the cluster. Let {S′1, S′2, ..., S′t} be the new
collection of extended clusters. All edges of G that are not already covered by X are now
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inside some cluster. In addition, we grow the height of each cluster tree Ti by at most one
hop so that they include the new cluster nodes. We denote the new extended trees by T ′i .
Note that clearly, each edge in E is still in at most c trees. Hence, the new collection of
extended clusters are now 2-hop separated and (c, d+ 1)-routable.

For each cluster S′i, let G′i be the graph consisting of the nodes and edges of the cluster.
We note that because the clusters are 1-hop separated, the graphs G′i are vertex and edge
disjoint. In addition, for each cluster S′i, we define the graph Gi as the union of G′i and the
tree T ′i . Because the clustering is (c, d+ 1)-routable, it follows that every edge of G is used
by at most c of the graph Gi and that the diameter of each graph Gi is at most d+ 1. To
obtain a vertex cover of all edges of G, we now compute a (1 + ψ)-approximate minimum
vertex cover Ci for each extended cluster graph G′i by running the algorithms described in
Theorems 6 and 10. We do this for all clusters in parallel. For each cluster S′i, we use Gi and
G′i as the graphs G and G′ in Theorems 6 and 10. Because each edge is contained in at most
c graphs Gi, we can in parallel run T -round algorithms in all graphs Gi in time c · T . The
time complexities therefore follow directly as claimed from the respective time complexities
in Theorems 6 and 10.

We define Y :=
⋃t
i=1 Ci. Because every edge of G that is not covered by the nodes in

X is inside one of the clusters S′i, clearly, the set X ∪ Y is a vertex cover of G. We already
showed that |X| ≤ 2ηOPT. To bound the size of X ∪ Y , it remains to bound the size of Y .
Let OPTi be the size of an optimal vertex cover of G′i. Because the cluster graphs G′i are
vertex-disjoint, all edges in G′i clearly have to be covered by some node of the cluster S′i and
thus edges in different clusters have to be covered by disjoint sets of nodes. If OPT is the
size of an optimal vertex cover of G, we thus clearly have

⋃t
i=1 OPTi ≤ OPT. Because Ci is

a (1 + ψ)-approximate vertex cover of G′i, we also have |Ci| ≤ (1 + ψ) · OPTi. Together, we
therefore directly get that |Y | ≤ (1+ψ) ·OPT and therefore |X ∪Y | ≤ (1+2η+ψ) ·OPT. J

In order to prove our two main results, Theorems 2 and 3, we will next show how to
efficiently compute the clusterings that are required for Lemma 11. Both clusterings can be
obtained by minor adaptations of existing clustering techniques.

4.1 The Randomized Clustering
We start with describing the randomized clustering algorithm. By using the exponentially
shifted shortest paths approach of Miller, Peng, and Xu [30], we obtain the following lemma.

I Lemma 12. Let G = (V,E,w) be a weighted bipartite graph with non-negative edge weights
w(e). For λ ∈ (0, 1], there is a randomized algorithm that computes a 3-hop separated
clustering of G such that w.h.p., the clustering is (1, O( logn)

λ )-routable and can be computed
in O( logn

λ ) rounds in the CONGEST model and such that the clustering is (1− λ)-dense in
expectation.

The proof of Lemma 12 is a relatively simple adaptation of the clustering algorithm
of [30]. For a proof, see the full version of this paper [13].

We now have everything that we need to prove our first main result, our randomized
polylogarithmic-time approximation scheme for the MVC problem in bipartite graphs.

Proof of Theorem 2. Let G = (V,E) be the given bipartite graph for which we want to
approximate the MVC problem. We first compute a maximal matching M of G, which
we can for example do by using Luby’s algorithm [2, 29] in O(logn) rounds. By using M ,
we then apply Lemma 12 with λ = ε/4 to obtain a 3-hop separated

(
1, O

( logn
ε

))
-routable
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clustering that is (1− ε/4)-dense in expectation. The time for computing the clustering is
O
( logn

ε

)
, w.h.p. By applying Lemma 11 with η = ε/4 and ψ = ε/2, we then get a vertex

cover of G in O
( logn
ε3

)
CONGEST rounds such that the expected size of the vertex cover is at

most (1 + ε) · OPT, where OPT is the size of a minimum vertex cover of G. This concludes
the proof of the theorem. J

4.2 The Deterministic Clustering
We obtain the deterministic version of the necessary clustering by adapting the construction
of a single color class of the recent efficient deterministic network decomposition algorithm
of Rozhoň and Ghaffari [32].

I Lemma 13. Let G = (V,E,w) be a weighted bipartite graph with non-negative edge weights
w(e) ∈ {0, 1}. For λ ∈ (0, 1], there is a deterministic algorithm that computes an (1− λ)-
dense, 3-hop separated, and

(
O(logn), O

( log3 n
λ

))
-routable clustering of G in poly

( logn
λ

)
rounds in the CONGEST model.

Proof. We assume that W :=
∑
w∈E w(e) is the total weight of all edges in G. Let λ ∈ (0, 1].

We adapt the weak diameter network decomposition algorithm of Rozhoň and Ghaffari [32]
applied to the graph G2 in the CONGEST model. When applied to G2, Theorem 2.12 of [32]
shows that the algorithm of [32] computes a decomposition of the nodes V into clusters of
O(logn) colors such that any two nodes in different clusters of the same color are at distance
at least 3 from each other (in G). Each cluster is spanned by a Steiner tree of diameter
O(log3 n) such that each edge of G is used by at most O(logn) different Steiner trees for each
of the O(logn) color classes. For our purpose, we only need to construct the first color class
of this decomposition. For the first color class, the proof of Theorem 2.12 of [32] implies that
the clusters of the first color are 3-hop separated and that they contain a constant fraction
of all the nodes. We need to adapt the construction of the first color class of the algorithm
of [32] in two ways. In the following, we only sketch these changes.

First, we adapt the algorithm so that it can handle weights. In the following, we define
node weight ν(v) ≥ 0 as follows. For each node v, we define ν(v) as the sum of the weights
w(e) of the edges e that are incident to v. Note that this implies that the total weight
of all the nodes is 2W and that the total weight of all the nodes that are not clustered
is an upper bound on the total weight of all the edges outside clusters (i.e., all the edges,
where at most one endpoint is inside a cluster). In the algorithm of [32], the clustering is
computed in different steps. In each step, some nodes request to join a different cluster
and a cluster accepts these requests if the total number of nodes requesting to join the
cluster is large enough compared to the total number of nodes already inside the cluster. If
a cluster does not accept the requests, the requesting nodes are deactivated and will not
be clustered. The threshold on the number of requests required to accept the requests is
chosen such that in the end the weak diameter of the clusters is not too large and at the
same time, only a constant fraction of all nodes are deactivated and thus not clustered.
In our case, we do not care how many nodes are clustered and unclustered, but we care
about the total weight of nodes that are clustered and unclustered. The analysis of [32]
however directly also works if we instead compare the total weight of the nodes that request
to join a cluster with the total weight of the nodes that are already inside the cluster. If the
node weights are polynomially bounded non-negative integers (which they are in our case),
the asymptotic guarantees of the construction are exactly the same. In this way, we can
make sure to construct (O(logn), O(log3 n))-routable, 3-hop separated clusters such that a
constant fraction of the total weight of all the nodes is inside clusters.
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As a second change, in order to make sure that the clustering is also (1−λ)-dense, we need
to guarantee that the total weight of the nodes that are unclustered is at most a λ/2-fraction
of the total weight of all the nodes. We can guarantee this, by adapting the threshold for
accepting nodes to a cluster. We essentially have to multiply the threshold by a factor Θ(λ)
to make sure that this is the case. This increases the maximal possible cluster diameter by a
factor O(1/λ) and it increases the total running time by a factor poly(1/λ). J

Remark: In the above lemma, we assumed for simplicity that the edge weights are either
0 or 1. The construction however directly also works in the same way and with the same
asymptotic guarantees if the edge weights are polynomially bounded non-negative integers.
With some simple preprocessing, one can also obtain the same asymptotic result for arbitrary
non-negative edge weights.

In a similar way as we proved Theorem 2, we can now also prove our second main
result, our deterministic polylogarithmic-time approximation scheme for the MVC problem
in bipartite graphs.

Proof of Theorem 3. Let G = (V,E) be the given bipartite graph for which we want to
approximate the MVC problem. We first compute a maximal matching M of G, which we
can do by using the algorithm of Fischer [15] in O(log2 ∆ · logn) deterministic rounds in
the CONGEST model. By using M , we then apply Lemma 13 with λ = ε/4 to obtain a
(1− ε/4)-dense, 3-hop separated

(
O(logn),poly

( logn
ε

))
-routable clustering. By Lemma 13,

the time for computing the clustering in the CONGEST model is poly
( logn

ε

)
. By applying

Lemma 11 with η = ε/4 and ψ = ε/2, we then get a (1 + ε)-approximate vertex cover of G
in poly

( logn
ε

)
CONGEST rounds, which completes the proof of the theorem. J
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