147 research outputs found

    Screen-Printed Soft-Nitrided Carbon Electrodes for Detection of Hydrogen Peroxide

    Get PDF
    Nitrogen-doped carbon materials have garnered much interest due to their electrocatalytic activity towards important reactions such as the reduction of hydrogen peroxide. N-doped carbon materials are typically prepared and deposited on solid conductive supports, which can sometimes involve time-consuming, complex, and/or costly procedures. Here, nitrogen-doped screen-printed carbon electrodes (N-SPCEs) were fabricated directly from a lab-formulated ink composed of graphite that was modified with surface nitrogen groups by a simple soft nitriding technique. N-SPCEs prepared from inexpensive starting materials (graphite powder and urea) demonstrated good electrocatalytic activity towards hydrogen peroxide reduction. Amperometric detection of H2O2 using N-SPCEs with an applied potential of −0.4 V (vs. Ag/AgCl) exhibited good reproducibility and stability as well as a reasonable limit of detection (2.5 µM) and wide linear range (0.020 to 5.3 mM)

    Distinct Roles of Tensile and Compressive Stresses in Graphitizing and Properties of Carbon Nanofibers

    Get PDF
    It is generally accepted that inducing molecular alignment in a polymer precursor via mechanical stresses influences its graphitization during pyrolysis. However, our understanding of how variations of the imposed mechanics can influence pyrolytic carbon microstructure and functionality is inadequate. Developing such insight is consequential for different aspects of carbon MEMS manufacturing and applicability, as pyrolytic carbons are the main building blocks of MEMS devices. Herein, we study the outcomes of contrasting routes of stress-induced graphitization by providing a comparative analysis of the effects of compressive stress versus standard tensile treatment of PAN-based carbon precursors. The results of different materials characterizations (including scanning electron microscopy, Raman and X-ray photoelectron spectroscopies, as well as high-resolution transmission electron microscopy) reveal that while subjecting precursor molecules to both types of mechanical stresses will induce graphitization in the resulting pyrolytic carbon, this effect is more pronounced in the case of compressive stress. We also evaluated the mechanical behavior of three carbon types, namely compression-induced (CIPC), tension-induced (TIPC), and untreated pyrolytic carbon (PC) by Dynamic Mechanical Analysis (DMA) of carbon samples in their as-synthesized mat format. Using DMA, the elastic modulus, ultimate tensile strength, and ductility of CIPC and TIPC films are determined and compared with untreated pyrolytic carbon. Both stress-induced carbons exhibit enhanced stiffness and strength properties over untreated carbons. The compression-induced films reveal remarkably larger mechanical enhancement with the elastic modulus 26 times higher and tensile strength 2.85 times higher for CIPC compared to untreated pyrolytic carbon. However, these improvements come at the expense of lowered ductility for compression-treated carbon, while tension-treated carbon does not show any loss of ductility. The results provided by this report point to the ways that the carbon MEMS industry can improve and revise the current standard strategies for manufacturing and implementing carbon-based micro-devices

    Porous Carbon Based Solid Adsorbents for Carbon Dioxide Capture

    Get PDF
    The aim of this project is the design, synthesis and characterisation of porous carbon structures capable of the selective capture of carbon dioxide (CO2) from the exhaust gases of coal and gas post-combustion power stations. In such systems, the fossil fuel is burnt in an air environment producing CO2 as just one of a multi-component flue gas. This flue gas is expected to contain nitrogen and water among other constituents. It is at ambient pressures and temperatures of ≥323 K. Successful capture materials should have highly microporous structures, rapid sorption kinetics and be capable of repeated sorption/desorption cycles. To develop highly microporous carbon sorbents a range of porous materials have been synthesised using chemical and physical activation of precursors obtained through top down and bottom up approaches. Porosity has also been achieved in precursors through the controlled use of graphene exfoliation, melamine-formaldehyde resin aerogel formation, soft templates, controlled carbonisation and synthesis of microporous organic polymers. The role of nitrogen dopants (N-dopants) within the CO2 sorbent materials has also been investigated. To increase understanding and tune the sorbents performance, porous carbon structures have been synthesized containing: pyridine, pyrrole, quaternary and triazine nitrogen groups. Characterisation was achieved using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, nuclear magnetic resonance spectroscopy, transmission electron microscopy X-ray diffraction, thermogravimetric analysis and nitrogen (N2) isotherms at 77 K. CO2 sorption analysis was carried out using volumetric and gravimetric analysis. The influence of N-dopants on the adsorbate-adsorbent interaction is characterised using CO2 volumetric isotherms, isosteric heats of adsorption and CO2/N2 selectivity analysis

    Glassy Carbon: A Promising Material for Micro- and Nanomanufacturing

    Get PDF
    When certain polymers are heat-treated beyond their degradation temperature in the absence of oxygen, they pass through a semi-solid phase, followed by the loss of heteroatoms and the formation of a solid carbon material composed of a three-dimensional graphenic network, known as glassy (or glass-like) carbon. The thermochemical decomposition of polymers, or generally of any organic material, is defined as pyrolysis. Glassy carbon is used in various large-scale industrial applications and has proven its versatility in miniaturized devices. In this article, micro and nano-scale glassy carbon devices manufactured by (i) pyrolysis of specialized pre-patterned polymers and (ii) direct machining or etching of glassy carbon, with their respective applications, are reviewed. The prospects of the use of glassy carbon in the next-generation devices based on the material’s history and development, distinct features compared to other elemental carbon forms, and some large-scale processes that paved the way to the state-of-the-art, are evaluated. Selected support techniques such as the methods used for surface modification, and major characterization tools are briefly discussed. Barring historical aspects, this review mainly covers the advances in glassy carbon device research from the last five years (2013–2018). The goal is to provide a common platform to carbon material scientists, micro/nanomanufacturing experts, and microsystem engineers to stimulate glassy carbon device research

    Graphite and Graphene-Oxide based PGM-free model catalysts for the Oxygen Reduction Reaction

    Get PDF
    The world currently relies heavily on fossil fuels such as coal, oil, and natural gas for its energy. Fossil fuels are non-renewable, that is, they draw on finite resources that will eventually dwindle, becoming too expensive or too environmentally damaging to retrieve. One alternative source of energy are fuel cells, electrochemical devices that convert chemical energy to cleanly and efficiently produce electricity. They can be used in a wide range of applications, including transportation, stationary, portable and emergency power sources. Their development has been slowed by the high cost of PGM electrocatalysts needed at both electrodes as well as sluggish oxygen reduction reaction (ORR) occurring at the cathode. To replace the costly PGM-based materials, a new generation of PGM-free ORR catalysts has emerged, composed by earth abundant elements such as carbon, nitrogen and transition metals. Current heterogeneous PGM-free catalysts are exceedingly difficult to study using standard analytical techniques. In the following studies, we use well- defined model systems based on graphitic systems such as graphite and graphene oxide. These extensively characterized materials are relatively simple to model, making them ideal platforms for understanding catalytic active sites. In the first study, we investigate a green, solvent-free and sustainable synthesis route to synthesize large amounts of active ORR electrocatalysts based on graphite. We show that the simple ball milling of expanded graphite in presence of metal and nitrogen precursors followed by a pyrolysis step can create active and selective catalysts towards the ORR. We report an improved activity of graphitebased electrocatalysts in alkaline medium with an onset potential (Eonset) up to ~0.89 V and a half-wave potential (E1/2) up to 0.72 V. In the second study, we demonstrate that removal of intercalated water using simple solvent treatments causes significant structural reorganization substantially impacting the ORR activity and stability of nitrogen-doped graphitic systems (NrGO). Contrasting reports describing ORR activity of NrGO-based catalysts in alkaline electrolytes, we demonstrate superior activity in acidic electrolyte with Eonset of ~0.9 V, E½ of 0.71 V, and selectivity for four-electron reduction \u3e95%. Further, durability testing showed E½ retention \u3e95% in N2- and O2-saturated solutions after 2000 cycles demonstrating highest ORR activity and stability reported to date for NrGO-based electrocatalysts in acidic media. In the third study, we report that the activity and selectivity (4e-) of NrGO catalysts for ORR is enhanced using simple solvent and electrochemical treatments. The solvents, which were chosen based on Hansen’s solubility parameters, drive a substantial change in the morphology of the functionalized graphene materials either by i) forming microporous holes in the graphitic sheets that lead to edge defects as well as enhanced oxygen transport, or ii) inducing 3D structure in the graphitic sheets that promote ORR. Additionally, the cycling of these catalysts has highlighted the multiplicity of the active sites, with different durability, leading to a more selective catalyst over time with little to no loss in performance. We demonstrate excellent ORR activity in an alkaline electrolyte with an Eonset up to ~1.08 V and a E1/2 up to 0.84 V. Further, durability testing showed E1/2 loss 2- and O2-saturated solutions after 10,000 cycles, demonstrating a high ORR activity and stability while improving the selectivity towards the 4-electron reduction. The results described in this study will allow for the synthesis of better performing graphitic ORR electrocatalyst with controlled activity and could lead to a better understanding of the active site formation in PGM-free electrocatalysts

    Understanding and Tuning the Electrical Conductivity of Activated Carbon: A State-of-the-Art Review

    Get PDF
    [EN] During the last decades, there has been a growing interest and research activity in the use of activated carbon (AC) and related materials as electrodes in electrochemical energy conversion and storage devices, like fuel cells, supercapacitors, and lithium-ion batteries. Among other factors, electrical properties, and especially conductivity, are well-known to play a pivotal role on the performance of ACs in these devices. Furthermore, other novel applications of AC-based materials, such as in electroadsorption, electrocatalysis, sensors and actuators, and so on, also rely heavily on their unique electrical properties. Therefore, the knowledge, understanding, and rationalization of these properties are essential with a view to assessing many of the current and future technological applications of ACs. The present paper critically reviews the available literature, including the latest published reports, on the electrical conductivity of AC. The accurate measurement of this property for ACs is rather difficult and requires the application of low to moderate compression to ensure the electrical contact. Estimated conductivity values are the result of a complex combination between a number of factors, among which the intrinsic conductivity of the single particles, their degree of contact and packing should be highlighted. Intrinsic conductivity is mainly determined by the texture, surface chemistry, and graphitization degree of AC, which strongly depend on the feedstock and the preparation method. Thus, the influence of these factors on the electrical conductivity of the resulting ACs is examined. Moreover, the influence of different adsorbed chemical species, mainly oxygen and water, is also dealt with. On the other hand, special emphasis is paid to the temperature dependence of conductivity, as its analysis is a powerful tool to gain insight into the electronic band structure and electron conduction process in carbon materials. In this regard, the different proposed mechanisms for electrical conduction in AC are exposed and compared

    Laser Patterned N-doped Carbon: Preparation, Functionalization and Selective Chemical Sensors

    Get PDF
    Die kürzliche globale COVID-19-Pandemie hat deutlich gezeigt, dass hohe medizinische Kosten eine große Herausforderung für unser Gesundheitssystem darstellen. Daher besteht eine wachsende Nachfrage nach personalisierten tragbaren Geräten zur kontinuierlichen Überwachung des Gesundheitszustands von Menschen durch nicht-invasive Erfassung physiologischer Signale. Diese Dissertation fasst die Forschung zur Laserkarbonisierung als Werkzeug für die Synthese flexibler Gassensoren zusammen und präsentiert die Arbeit in vier Teilen. Der erste Teil stellt ein integriertes zweistufiges Verfahren zur Herstellung von laserstrukturiertem (Stickstoff-dotiertem) Kohlenstoff (LP-NC) ausgehend von molekularen Vorstufen vor. Der zweite Teil demonstriert die Herstellung eines flexiblen Sensors für die Kohlendioxid Erfassung basierend auf der Laserumwandlung einer Adenin-basierten Primärtinte. Die unidirektionale Energieeinwirkung kombiniert mit der tiefenabhängigen Abschwächung des Laserstrahls ergibt eine neuartige geschichtete Sensorheterostruktur mit porösen Transducer- und aktiven Sensorschichten. Dieser auf molekularen Vorläufern basierende Laserkarbonisierungsprozess ermöglicht eine selektive Modifikation der Eigenschaften von gedruckten Kohlenstoffmaterialien. Im dritten Teil wird gezeigt, dass die Imprägnierung von LP-NC mit Molybdäncarbid Nanopartikeln die Ladungsträgerdichte verändert, was wiederum die Empfindlichkeit von LP-NC gegenüber gasförmigen Analyten erhöht. Der letzte Teil erläutert, dass die Leitfähigkeit und die Oberflächeneigenschaften von LP-NC verändert werden können, indem der Originaltinte unterschiedliche Konzentrationen von Zinknitrat zugesetzt werden, um die selektiven Elemente des Sensormaterials zu verändern. Basierend auf diesen Faktoren zeigte die hergestellte LP-NC-basierte Sensorplattform in dieser Studie eine hohe Empfindlichkeit und Selektivität für verschiedene flüchtige organische Verbindungen.The recent global COVID-19 pandemic clearly displayed that the high costs of medical care on top of an aging population bring great challenges to our health systems. As a result, the demand for personalized wearable devices to continuously monitor the health status of individuals by non-invasive detection of physiological signals, thereby providing sufficient information for health monitoring and even preliminary medical diagnosis, is growing. This dissertation summarizes my research on laser-carbonization as a tool for the synthesis of functional materials for flexible gas sensors. The whole work is divided into four parts. The first part presents an integrated two-step approach starting from molecular precursor to prepare laser-patterned (nitrogen-doped) carbon (LP-NC). The second part shows the fabrication of a flexible LP-NC sensor architecture for room-temperature sensing of carbon dioxide via laser conversion of an adenine-based primary ink. By the unidirectional energy impact in conjunction with depth-dependent attenuation of the laser beam, a novel layered sensor heterostructure with a porous transducer and an active sensor layer is formed. This molecular precursor-based laser carbonization method enables the modification of printed carbon materials. In the third part, it is shown that impregnation of LP-NC with molybdenum carbide nanoparticle alters the charge carrier density, which, in turn, increases the sensitivity of LP-NC towards gaseous analytes. The last part explains that the electrical conductivity and surface properties of LP-NC can be modified by adding different concentrations of zinc nitrate into the primary ink to add selectivity elements to the sensor materials. Based on these factors, the LP-NC-based sensor platforms prepared in this study exhibited high sensitivity and selectivity for different volatile organic compounds

    From Fenton and ORR 2e−-Type Catalysts to Bifunctional Electrodes for Environmental Remediation Using the Electro-Fenton Process

    Get PDF
    Currently, the presence of emerging contaminants in water sources has raised concerns worldwide due to low rates of mineralization, and in some cases, zero levels of degradation through conventional treatment methods. For these reasons, researchers in the field are focused on the use of advanced oxidation processes (AOPs) as a powerful tool for the degradation of persistent pollutants. These AOPs are based mainly on the in-situ production of hydroxyl radicals (OH center dot) generated from an oxidizing agent (H2O2 or O-2) in the presence of a catalyst. Among the most studied AOPs, the Fenton reaction stands out due to its operational simplicity and good levels of degradation for a wide range of emerging contaminants. However, it has some limitations such as the storage and handling of H2O2. Therefore, the use of the electro-Fenton (EF) process has been proposed in which H2O2 is generated in situ by the action of the oxygen reduction reaction (ORR). However, it is important to mention that the ORR is given by two routes, by two or four electrons, which results in the products of H2O2 and H2O, respectively. For this reason, current efforts seek to increase the selectivity of ORR catalysts toward the 2e(-) route and thus improve the performance of the EF process. This work reviews catalysts for the Fenton reaction, ORR 2e(-) catalysts, and presents a short review of some proposed catalysts with bifunctional activity for ORR 2e(-) and Fenton processes. Finally, the most important factors for electro-Fenton dual catalysts to obtain high catalytic activity in both Fenton and ORR 2e(-) processes are summarized.Ministry of Science and Innovation, Spain (MICINN) Spanish Government PID2021-127803OB-I00Junta de Andalucia B.RNM.566.UGR2

    Controlling chemical and physical properties of ordered carbon nanosystems

    Get PDF
    Tesis (Doctorado en Nanociencias y Nanotecnología)"La nanociencia y nanotecnología se dedica a la creación de nuevos materiales con propiedades interesantes como dureza, conductividad, propiedades magnéticas. Ahora también, se está estudiando el uso de estos nanomateriales como bloques de construcción para crear nuevos materiales. En este trabajo se estudiaron arreglos ordenados y desordenados: 1) ópalo inverso de carbono y 2) bosques de nanotubos de carbono. Respecto al ópalo inverso de carbono, utilizamos un ópalo con nanopartículas de SiO2 (300 nm) ordenadas de manera FCC como molde para la fabricación de ópalo inverso de carbono. Este ópalo inverso de carbono fue sintetizado mediante la infiltración de una solución conteniendo sacarosa como fuente de carbono; además, en esta misma solución se agrego pirazina como fuente de nitrógeno para así obtener ópalo inverso de carbono dopado con nitrógeno. Por otro lado, utilizamos nanopartículas de SiO2 (10 y 100 nm) desordenadas como molde para sintetizar ópalo inverso de carbono dopado con nitrógeno. Estas muestras se caracterizaron mediante SEM, TEM, espectroscopía Raman, análisis termogravimétrico, adsorción de nitrógeno, difracción de rayos-X y espectroscopía de reflexión óptica. En los resultados obtenidos observamos ligeros cambios en la estructura de las muestras dependiendo de la concentración del dopaje, también observamos el corrimiento del pico de reflexión óptica dependiente a la concentración nitrógeno en la muestra; el corrimiento hacia el azul del pico de reflexión óptica dependiente a la concentración nitrógeno en la muestra. Posteriormente, realizamos el estudio de las propiedades físicas de ópalo inverso dopado con diferente contenido de nitrógeno y tamaño de poro. En general, variando la concentración de nitrógeno y el tamaño de poro se puede variar controladamente sus propiedades físicas como la resistencia, emisión de campo, magnetoresistencia y magnetización. La resistencia se variar desde 0.30 hasta 0.02 cm y dependiendo de su nivel de dopaje el mecanismo de transporte electrónico puede variar. En magnetoresistencia (MR) hay una transición de MR positivo a MR negativo, al variar de bajas hacia altas temperaturas. Así también, la magnetización de las muestras exhiben una transición de paramagnético a diamagnético al incrementar la temperatura; la temperatura de transición es más alta para poros más pequeños.""Nanoscience and nanotechnology are dedicated to the creation of new materials with interesting properties like hardness, conductivity, magnetic properties, among others. Now, there is also interest in the use of these materials as building blocks to create new materials. In this work ordered and disordered arrays were studied: 1) carbon inverse opal and 2) carbon nanotube forests. Regarding the carbon inverse opal, we used an opal with SiO2 nanoparticles (300 nm) ordered in a FCC manner as a template for the fabrication of carbon inverse opal. This carbon inverse opal was synthesized by the infiltration of a solution containing sucrose as a carbon source; also, in this same solution we added pyrazine as a nitrogen source to obtain nitrogen doped carbon inverse opal. On another hand, we used disordered SiO2 nanoparticles as a template to synthesize nitrogen doped carbon inverse opal. These samples were characterized by SEM, TEM, Raman spectroscopy, thermogravimetric analysis, nitrogen adsorption, X-ray diffraction and optical reflection spectroscopy. In the obtained results we observed slight changes in the structure depending on the doping concentration, also we observed the shift of the optical reflection peak depending upon the nitrogen concentration in the sample; observed a blue shift of the optical reflection peak dependent on the nitrogen concentration in the sample. Furthermore, we realized the study of the physical properties of the carbon inverse opal with different contents of nitrogen and pore size. In general, varying the nitrogen concentration and pore size it is possible to vary in a controlled manner the physical properties such as resistance, field emission, magnetoresistance and magnetization. The resistance was varied between 0.30 down to 0.02 cm and depending upon the degree of doping the transport mechanism of electrons may vary. In magnetoresistance (MR) there is a transition from positive MR to negative MR, when varying from low to high temperatures. Also, the magnetization of the samples exhibits a transition from paramagnetic to diamagnetic when increasing the temperature; the transition temperature is higher for smaller pore size. Finally, the carbon inverse opal doped with nitrogen was used as an acetone, ethanol and chloroform sensor, showing that doping with nitrogen effectively increases the sensing response signal.

    Obtaining N-Enriched Mesoporous Carbon-Based by Means of Gamma Radiation

    Get PDF
    In this paper, we present the results of the gamma irradiation method to obtain N-doped mesoporous activated carbons. Nitrogen-enriched mesoporous carbons were prepared from three chosen commercial activated carbons such as Carbon Black OMCARB C-140, KETJENBLACK EC-600JD and PK 1-3 Norit. HRTEM, SEM, Raman spectra, elemental analysis, XPS studies and widely approved N2 adsorption–desorption measurements allowed us to evaluate the effectiveness of N atom insertion and its influence on the BET surface area and the pore structure of modified carbons. The obtained materials have an exceptionally high N content of up to 3.2 wt.%. Additionally, selected N-doped activated carbons were fully characterized to evaluate their applicability as carbon electrode materials with particular emphasis on Oxygen Reduction Reaction (ORR). The proposed method is a relatively facile, efficient and universal option that can be added to the already known methods of introducing heteroatoms to different carbons.Innovation Incubator 4.0 NCU (Poland) 5/2021 MNISW/2020/331NCU competition Mobility 4 edition project 60/2021/Mobilit
    • …
    corecore