66,107 research outputs found

    Assessment of Wireless Technologies for deployment in Intelligent Transportation System based on Internet of Things

    Get PDF
    Use of Internet of Things (IoT) with modern wireless network is a trend of the emerging technologies for different systems which can be deployed in various kinds of environment to monitor, communicate with or control the associated elements in the system. The activities e.g., monitoring and communication by IoT can play an important role to design an Intelligent Transportation System (ITS). In this paper, we assess the suitability of IoT enabled wireless technology to be used for ITS. We performed some comparative study to find the best wireless technology that provides reliability, low cost, less power consumption and less data latency for next generation ITS.This technology will reduce energy consumption of the deployed IoT devices as well as ensure safety, efficiency and convenient for transportation systems

    Radio over fiber: An alternative broadband network technology for Iot

    Get PDF
    Wireless broadband access networks have been positioning themselves as a good solution for manufacturers and users of IoT (internet of things) devices, due mainly to the high data transfer rate required over terminal devices without restriction of information format. In this work, a review of two Radio over Fiber strategies is presented. Both have excellent performance and even offer the possibility to extend wireless area coverage where mobile networks do not reach or the 802.11 network presents issues. Radio Frequency over Fiber (RFoF) and intermediate Frequency over Fiber (IFoF) are two transmission strategies compatible with the required new broadband services and both play a key role in the design of the next generation integrated optical–wireless networks, such as 5G and Satcom networks, including on RAU (Remote Antenna Unit) new functionalities to improve their physical dimensions, employing a microelectronic layout over nanometric technologies

    Sustainable Radio Frequency Wireless Energy Transfer for Massive Internet of Things

    Full text link
    Reliable energy supply remains a crucial challenge in the Internet of Things (IoT). Although relying on batteries is cost-effective for a few devices, it is neither a scalable nor a sustainable charging solution as the network grows massive. Besides, current energy-saving technologies alone cannot cope, for instance, with the vision of zero-energy devices and the deploy-and-forget paradigm which can unlock a myriad of new use cases. In this context, sustainable radio frequency wireless energy transfer emerges as an attractive solution for efficiently charging the next generation of ultra low power IoT devices. Herein, we highlight that sustainable charging is broader than conventional green charging, as it focuses on balancing economy prosperity and social equity in addition to environmental health. Moreover, we overview the key enablers for realizing this vision and associated challenges. We discuss the economic implications of powering energy transmitters with ambient energy sources, and reveal insights on their optimal deployment. We highlight relevant research challenges and candidate solutions.Comment: 12 pages, 6 figures, 2 tables, submitted to IEEE Internet of Things Journa

    IEEE Access Special Section Editorial: Wearable and Implantable Devices and Systems

    Get PDF
    © 2013 IEEE. Circuit techniques, sensors, antennas and communications systems are envisioned to help build new technologies over the next several years. Advances in the development and implementation of such technologies have already shown us their unique potential in realizing next-generation sensing systems. Applications include wearable consumer electronics, healthcare monitoring systems, and soft robotics, as well as wireless implants. There have been some interesting developments in the areas of circuits and systems, involving studies related to low-power electronics, wireless sensor networks, wearable circuit behaviour, security, real-time monitoring, connectivity of sensors, and Internet of Things (IoT). The direction for the current technology is electronics systems on large area electronics, integrated implantable systems and wearable sensors. So far, the research in the field has focused on materials, new processing techniques and one-off devices, such as diodes and transistors. However, current technology is not sufficient for future electronics to be useful in new applications; a great demand exists to scale up the research towards circuits and systems. Recent developments indicate that, in addition to fabrication technology, special attention should also be given to design, simulation and modeling of electronics, while keeping sensing system integration, power management, and sensors network under consideration

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research

    Security Frameworks for Machine-to-Machine Devices and Networks

    Get PDF
    Attacks against mobile systems have escalated over the past decade. There have been increases of fraud, platform attacks, and malware. The Internet of Things (IoT) offers a new attack vector for Cybercriminals. M2M contributes to the growing number of devices that use wireless systems for Internet connection. As new applications and platforms are created, old vulnerabilities are transferred to next-generation systems. There is a research gap that exists between the current approaches for security framework development and the understanding of how these new technologies are different and how they are similar. This gap exists because system designers, security architects, and users are not fully aware of security risks and how next-generation devices can jeopardize safety and personal privacy. Current techniques, for developing security requirements, do not adequately consider the use of new technologies, and this weakens countermeasure implementations. These techniques rely on security frameworks for requirements development. These frameworks lack a method for identifying next generation security concerns and processes for comparing, contrasting and evaluating non-human device security protections. This research presents a solution for this problem by offering a novel security framework that is focused on the study of the “functions and capabilities” of M2M devices and improves the systems development life cycle for the overall IoT ecosystem

    Teaching Communication Technologies and Standards for the Industrial IoT? Use 6TiSCH!

    Get PDF
    International audienceThe IETF 6TiSCH stack encompasses IEEE802.15.4 TSCH, IETF 6LoWPAN, RPL, and CoAP. It is one of the key standards-based technologies to enable industrial process monitoring and control, and unleash the Industrial Internet of Things (IIoT). The 6TiSCH stack is also a valuable asset for educational purposes, as it integrates an Internet-enabled IPv6-based upper stack with stateof- the-art low-power wireless mesh communication technologies. Teaching with 6TiSCH empowers students with a valuable set of competencies, including topics related to computer networking (medium access control operation, IPv6 networking), embedded systems (process scheduling, concurrency), and wireless communications (multipath propagation, interference effects), as well as application requirements for the IIoT. This article discusses how the 6TiSCH stack can be incorporated into existing and new curricula to teach the next generation of electrical engineering and computer science professionals about designing and deploying such networks. It also gives a comprehensive overview of the 6TiSCH stack and the tools that exist to support a course based on it

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions
    • …
    corecore