6,009 research outputs found

    Numerical integration of asymptotic solutions of ordinary differential equations

    Get PDF
    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration

    Nonintegrability, Chaos, and Complexity

    Full text link
    Two-dimensional driven dissipative flows are generally integrable via a conservation law that is singular at equilibria. Nonintegrable dynamical systems are confined to n*3 dimensions. Even driven-dissipative deterministic dynamical systems that are critical, chaotic or complex have n-1 local time-independent conservation laws that can be used to simplify the geometric picture of the flow over as many consecutive time intervals as one likes. Those conserevation laws generally have either branch cuts, phase singularities, or both. The consequence of the existence of singular conservation laws for experimental data analysis, and also for the search for scale-invariant critical states via uncontrolled approximations in deterministic dynamical systems, is discussed. Finally, the expectation of ubiquity of scaling laws and universality classes in dynamics is contrasted with the possibility that the most interesting dynamics in nature may be nonscaling, nonuniversal, and to some degree computationally complex

    Solution and sensitivity analysis of a complex transcendental eigenproblem with pairs of real eigenvalues

    Get PDF
    This paper considers complex transcendental eigenvalue problems where one is interested in pairs of eigenvalues that are restricted to take real values only. Such eigenvalue problems arise in dynamic stability analysis of nonconservative physical systems, i.e., flutter analysis of aeroelastic systems. Some available solution methods are discussed and a new method is presented. Two computational approaches are described for analytical evaluation of the sensitivities of these eigenvalues when they are dependent on other parameters. The algorithms presented are illustrated through examples

    NEWSUMT: A FORTRAN program for inequality constrained function minimization, users guide

    Get PDF
    A computer program written in FORTRAN subroutine form for the solution of linear and nonlinear constrained and unconstrained function minimization problems is presented. The algorithm is the sequence of unconstrained minimizations using the Newton's method for unconstrained function minimizations. The use of NEWSUMT and the definition of all parameters are described

    Identification of Systems

    Get PDF
    Quasilinearization for system identification and programming strategie

    Methods of applied dynamics

    Get PDF
    The monograph was prepared to give the practicing engineer a clear understanding of dynamics with special consideration given to the dynamic analysis of aerospace systems. It is conceived to be both a desk-top reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject. Beginning with the basic concepts of kinematics and dynamics, the discussion proceeds to treat the dynamics of a system of particles. Both classical and modern formulations of the Lagrange equations, including constraints, are discussed and applied to the dynamic modeling of aerospace structures using the modal synthesis technique
    corecore