THE ASTRONOMICAIL ASPECT OF THE THEORY OF
RELATIVITY *

BY

W. pE SiTTER

I
1. INTRODUCTION. (GRAVITATION AND INERTIA

The old Greek philosophy, which in Europe in the later middle ages was synony-
mous with the works of Aristotle, considered motion as a thing for which a cause
must be found: a velocity required a force to produce and to maintain it. The great
discovery of Galileo was that not velocity, but acceleration requires a force. This is
the law of inertia of which the real content is: the natural phenomena are described by
differential equations of the second order. The science of mechanies as based on this
law of inertia was made into a consistent system by Newton. Newton also dis-
covered the law of gravitation, that force which causes bodies on earth to fall, the
moon to move in its orbit around the earth, and the planets around the sun. Both
the law of inertia and the law of gravitation contain a numerieal factor or a constant
belonging to matter, which is called mass. We have thus two definitions of mass; one
by the law of inertia: mass is the ratio between force and acceleration. We may call
the mass thus defined the inertial or passive mass, as it is a measure of the resistance
offered by matter to a force acting on it. The second is defined by the law of gravita-
tion, and might be called the gravitational or acfive mass, being a measure of the
force exerted by one material body on another. The fact that these two constants
or coefficients are the same is, in Newton’s system, to be considered as a most
remarkable accidental coincidence and was decidedly felt as such by Newton himseli.
He made experiments to determine the equality of the two masses by swinging a
pendulum, of which the bob was hollow and could he filled up with different ma-~
terials. The force acting on the pendulum is proportional to its active mass, its
inertia is proportional to its passive mass, so that the period will depend on the ratio
of the passive and the active mass. Consequently the fact that the period of all these
different pendulums was the same, proves that this ratio is a constant, and can be
made equal to unity by a suitable choice of units, i.e.,the inertial and the gravitational
mass are the same. These experiments have been repeated in the nineteenth cen-
tury by Bessel, and in our own times by Eotvos and Zeeman, and the identity of
the inertial and the gravitational mass is one of the best ascertained empirical facts
in physics—perhaps the best. It follows that the so-called fictitious forces intro-
duced by a motion of the body of reference, such as a rotation, are indistinguishable
from real forces. Thus, for example, the force acting on Newton’s famous apple is
the difference of the gravitational attraction between the earth and the apple,

* Consisting, in part, of the lectures delivered on the Hitcheock Foundation, 1932.
[143]
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which is a “real” force, and the eentrifugal force, due to the rotation of the earth,
which in the classical system of mechanics is a “fictitious’” force, since it arises from
the inertia of the apple. This distinction between real and fictitious forces, however,
1s an artificial or formal one, introduced by the theory; there is no essential difference
between the two. In Kinstein’s general theory of relativity there is also no formal
theoretical difference, as there was in Newton’'s system. Inertia and gravitation are
identical, the equality of inertial and gravitational mass is no longer an accidental
coincidence, but a necessity.

2. Tur ResTRICTED PRINCIPLE OF RELATIVITY

The physical world has three spacial dimensions and one time dimension. Why
this is so, and what is the meaning of it, is a difficult metaphysical or psychological
problem. TFor our present purpose it may be simply accepted as an empirical fact.
The position of a material particle m at a certain time ¢ is thus defined by three
space coordinates x, ¥, 2. The complex of these five data, m, z, ¥, 2, {, may be called
an eveni. The different events are located in a four-dimensional continuity which is
characterized by the “interval,” of which the expression, in the simplest case, can
be taken to be:

ds? = —dx?— dy? — dz2+di2.

In this four-dimensional continuum, transformations of coordinates can be per-
formed bringing the interval into the general form:

ds? = Z s ap dz. diﬂa,

where a« and 8 take the values from 1 to 4.

The laws of classical, or Newtonian, mechaniecs are invariant for orthogonal trans-
formations of the three space coordinates =z, v, 2z, and for linear transformations
defining a velocity, together with a change of units, i.e., for transformations of the
form

' =ax--bi+t-c.

The equations of the electromagnetic theory are invariant for these same trans-
formations, but also for the so-called Lorentz-iransformation, which is an orthogonal
transformation of the four coordinates z, ¥, 2z, and 7. In the system of classieal
mechanics the continuum is not really a four-dimensional continuum but a linear
series of three-dimensional continua; the time has a different character from the
three space coordinates. In the electromagnetic theory the four coordinates z, ¥, 2,
and 7 are, as Einstein has shown, formally entirely equivalent. Thus, from about
1904 to about 1914, physicists were in a dilemma; as Sir William Bragg said: on
Mondays, Wednesdays, and Fridays they believed in one system of physies and on
Tuesdays, Thursdays, and Saturdays in a quite different one. In classical Newtonian
mechanics space and time are absolute, have a real existence apart from the ma-
terial phenomena. The independent existence of absolute space and absolute time
has been specially postulated by Newton at the beginning of his great work. About
twenty years ago this Newtonian system was still accepted by many physicists
when they were discussing mechanical phenomena on Menday. On Tuesday,
however, when they were thinking about electromagnetic phenomena, light, etc.,
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they had the choice between three different systems. Lorentz still believed in the
absolute space, which he called “eether,” and the absclute time of Newton, and in
his theory the motion of material systems and electrons through the ®ther affected
the dimensions and other physical properties of these bodies, e.g. by the well-known
Lorentz-contraction. The veloeity of propagation of light, having nothing to do
with matter, but being purely relative to the sther, was a constant. Einstein had
some years previously shown that Lorentz’s theory could be presented in a different
form, abolishing the absoluteness of space and time, and putting the constancy of
the velocity of light at the beginning of the theory as a postulate or axiom. This is
the so-called restricted theory of relativity in which the postulate of ahsolute space
and time is replaced by the constancy of the velocity of light. There was still a third
theory, that of Ritz, who denied both the absoluteness of space and time, and the
constancy of the velocity of light, returning thus, in a way, to Newton’s emission
theory of light.

This was the position about the end of the year 1812, The theories of Lorentz and
Finstein are only two different interpretations of the same set of formulae and are
conseqguently really the same theory. There is no experimenium crucis which can
digtinguish between the two; whether we accept the one or the other is a question
of taste. On the other hand, between these two and the theory of Ritz an experi-
mentum crucis is quite possible, and it was pointed out earlyin 1913 that the experi-

- ment had already been made hundreds of times. The existence of spectroscopic

binaries and the possibility of representing the observed relative radial velocities
by the ordinary Keplerian laws, provide a conclusive proof of the constancy of the
velocity of light. We were thus left (on Tuesdays) with only one theory, the re-
stricted theory of relativity, either in the form of Lorentz or of Einstein. In this
theory the laws of nature are invariant for Lorentz-transformations, as has been
pointed out. Several physicists—Lorentz, Poincaré, and others, have tried to fit
the mechanical laws—the Monday theory—into the new Tuesday scheme, but of
course this could not be done without some adjustment. Gravitation in the new
system was still a force, like any other force, requiring its own particular law.
Newton’s law of gravitation, not being invariant for a general Lorentz-transforma-
tion, but only for the transformations of classical mechanics, required a slight
emendation to fit it into the system of the restricted theory of relativity, which
seriously impaired its beautiful simplicity and elegance, and the identity of gravita-
tional and inertial mass remained an accidental coincidence or a miracle, as before.

3. Ture GENERAL THEORY OoF RELATIVITY. FIELD EQUATIONS
AND EqQuaTioNs oF THE (GEODESIC

In January, 1914, Binstein published the first draft of his general theory of
relativity, not completed until November, 1915. In this theory the laws of nature
are invariant, not only for Lorentz-transformations but for any arbitrary transfor-
mation of the four coordinates z, y, 2, ¢, within certain restrictions of continuity,
ete. If we make the assumption—which in the light of the modern developments
of quantum theory, wave mechanics, and the like, might, however, appear somewhat

1 de Sitter, Proceedings, R. Acad. Sci. Amsterdam, 15: 1297.
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dangerous—that a material particle or electron has individuality, so that it makes
sense to speak of different positions at different timmes of the same particle—if we
make that assumption, the sequence of different positions of the same particle at
different times forms a one-dimensional continuum in the four-dimensional space-
time, which is called the world-line of the particle. All that physical experiments
or observations can teach us refers to intersections of world-lines of different ma-
terial particles, light-pulsations, ete., and how the course of the world-line is between
these points of intersection is entirely irrelevant and outside the domain of physics.
The system of intersecting world-lines can thus be bent and twisted about at will,
so long as no points of intersection are destroyed or created and their order is not
changed. This is the meaning of the invariancy for arbitrary transformations. The
metrical properties of the four-dimensional continuum are described by the ten
coefficients g.g appearing in the expression for the interval ds in terms of dx, dy, dz,
dt. The law of inertia requires that these potentials, as they are often called, g.s
shall be determined by differential equations of the second order. This naturally
leads to the introduction of a certain tensor of the second order of which the com-
ponents (.p are made up of the g.s and their first and second derivatives, and which
has the identical property that:

A (Gap —égm &) =0.

The physical state of matter and energy can be described by the so-called
material energy tensor, of which the components are:

Twg=pp ., Gouds» d;” C?;
The laws of conservation of energy and matter are expressed by the equation:
div Tz =0.
Also div gos =0

is an identity.

The vanishing of the divergence means inherent permanency. It is thus natural
to adopt for the relation connecting the metrical properties of the four-dimensional
continuum with the physical properties of matter and energy, which forms the
contents of this continuum, the identity of the two inherently permanent tensors,
viz.: the metrical and the material tensor. The fundamental equation of the general
theory of relativity is thus:

1
(I) . G&ﬁ—égaﬁ G_}'}\gaﬁ_‘_foxﬁ:G,

A and « being two numerical constants. Calling the left member of this equation
K.z, we have, of course, identically div K.z =0, which is equivalent to four eonditions
corresponding to the four laws of the conservation of energy (matter) and of
monentum.

There are ten coefficients g.p and ten equations (I} but there are four identities,
so that the determination of the g.s by (I) is not complete; there remains a four-
fold indeterminacy. This is essential, because otherwise transformations of coordi-
nates would no longer be possible.
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The world-lines of material particles and light quanta are the geodesics in the

four-dimensional continuum defined by the solutions g.s of the field equations (I).
The equations of the geodesic:

d¥c, a3 %dzxa dxg
IT il S
(1D ds? +Emﬁ§ vV ) ds ds

thus are equivalent to the equations of motion of mechanics. When we come to
solve the field equations (I) and substitute the solutions in the equations of motion
(I1), we find that, in the first approximation, that is for small material velocities
(small as compared with the velocity of light), these equations of motion are the
same as those resulting from Newton’s theory of gravitation. Thus the distinction
between gravitation and inertia has disappeared ; gravitation is an intrinsic property
of the four-dimensional continuum. A body, when not subjected to an extraneous
force, describes a geodesic in the continuum, just as it described a geodesic in the
absolute space of Newton under the influence of inertia alone.

Of the two constants » and « in the field equations, x, which appears as a factor
multiplying the material tensor, corresponds to the constant of gravitation in
Newton’s law and may thus be made equal to unity (or to 8 as is often done)
by a suitable choice of the unit of mass; A appears as a multiplier of the g.s defining
the metric, and consequently A=1 may be taken to be equivalent to a choice of the
unit of length.

It should be noted, however, that the equation (I) also makes sense if the term
Ag.p is omitted altogether, 1.e. X can be taken equal to zero. It can also be negative.
The interpretation of A as defining a material unit of length (which is favored by
Eddington) is thus not imperative. The unit of length may be left free, and A inter-
preted as meaning something else. We will return to the part played by X later.

The unit of time has already been fixed by making the velocity of light, ¢, equal
to one.

4. GENERAL CHARACTER OF THE THEORY OF RELATIVITY

Two points should be specially emphasized in connection with the general theory
of relativity.

First, it is a purely physical theory, invented to explain empirieal physical facts,
especially the identity of gravitational and inertial mass, and to coordinate and
harmonize different chapters of physical theory, especially mechanics and electro-
magnetic theory. It has nothing metaphysical about it. Its importance from a
metaphysical or philosophical point of view is that it aids us to distinguish in the
observed phenomena what is absolute, or due to the reality behind the phenomena,
from what is relative, i.e. due to the observer.

Second, it is a pure generalization, or abstraction, like Newton’s system of me-
chanics and law of gravitation. It contains no hypothesis, as contrasted with the
atomic theory or the theory of quanta, which are based on hypothesis. It may be
considered as the logical sequence and completion of Newton’s Principia. The
science of mechanics was founded by Archimedes, who had a clear conception of the
relativity of motion, and may be called the first relativist. Galileo, who was inspired
by the reading of the works of Archimedes, took the subject up where his great
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predecessor had left it. Fis fundamental discovery is the law of inertia, which is
the backbone of Newton’s classical system of mechanics, and retains the same
central position in Einstein’s relativistic system. Thus one continuous line of thought
can be traced through the development of our insight into the mechanical processes
of nature, of which the different stages may be characterized by the sequence of
these four great names: Archimedes, Galileo, Newton, Einstein.

It may be helpful to a good understanding of the conception of the physical
universe implied by the general theory of relativity, to consider the different defini-
tions of a straight line.

What are the possible physical realizations of a straight line? In the old mechanics
there are four of these, viz.:

(1) a ray of light,

(2) the track of a material particle not subject to any forces,

(3) a stretched cord,

(4) an axis of rotation.

The fourth definition is the one favored by the great mathematician Henri Poincaré.

In classieal mechanics these four physical representations of a straight line are
identical. Are they still identical in the theory of relativity? -

The definitions 1 and 2 define the straight line as the projection on the three-
dimensional space z, ¥, 2 of a geodesic in the four-dimensional space-time continuum.
This projection will be a geodesic in three-dimensional space only under very gpecial
conditions. In the general case the two projections will differ from each other, and
neither of them will be a geodesic. Also the projection may be a geodesic in one sys-
tem of coordinates but not in another. :

The stretched cord is by definition a geodesic in the three-dimensional space. As
a, rule, this will not be a geodesic in the four-dimensional continuum. The rotation
axis is also by definition a line in three-dimensional space, The definition, however,
presupposes the possibility of the rotation of a rigid body, which would be possible
only in a homogeneous, isofropic, and statical field, i.e., in a world without any
material bodies (rotating or otherwise) in i, which by their gravitational field
would upset the isotropy. The definition is thus meaningless in the general theory
of relativity.

II

5. INTEGRATION OF THE FIELD EqQUaTIioNs TO THE FIRsT ORDER

We must now consider more closely the two fundamental equations (I) and (II).
It 1s, of course, not possible to do this without a certain amount of actual mathe-
matical handling of the formulae. 1 do not intend, however, in these lectures to go
into the detail of all the computations. I will, on the contrary, assume a general
knowledge of the theory and the notations, and only call attention to those relations
and formulae which are of special astronomical interest.?

2 The best presentation of the general theory is still Eddington’s book of 1923, The Mathe-~
matical Theory of Relativity. For the planetary motion and the motion of the moon, see: de Sitter,
“On Einstein’s theory of gravitation and its astronomical consequences,” Monikiy Nolices,
R. Astr. Boc, London, 76:699; 77:155. The mathematical foundation, the calculus of tensors,
is given very completely in Eddington’s book. For an exhaustive treatment see: Levi-Clvita,
The Absolute Differeniial Caleulus, translated by Dr. B, Persico (1527).
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The line element ds is determined by the potentials g.s, which must be found from
the integration of the field equations (I). These contain the material energy tensor
T.s which depends on the velocities dz./ds. These latter are determined by the
equations of motion; i.e. the equations of the geodesic (II). These contain the
Christoffel symbols { af3, ,u,} , which are functions of the g.g and their first differential
quotients. Thus, rigorously, the treatment of the equations (I) and (II) must be
simultaneous, and the problem is of a complication which surpasses our mathe-
matical powers. We must proceed by successive approximations, and we will as a

first approximation suppose the g.s to differ only by small quantities from their
so-called galilean values:

—1 a 0 0
0o -1 0 o
0 e —1 0
o 0 0 ++1

corresponding to the special theory of relativity.
We will provisionally consider statical fields only so that the gy and the gy; are

zero and the others are independent of the fourth variable t. The line element can
then be written:

(D ds?= — ado®+fc*di?
do being the three-dimensional line element, which we will suppose to have spherical
symmetry:
(2} da? =da? - dyt - dz? = dr2+r2(dy?-+Hsin® § d67).
As we are considering only small deviations from the galilean values we put:
a=1l4a, [f=14«v

o and v being small quantities of the first order. The equations of motion (II) then
become to the first order:

dﬂfﬂi_ 1 8"‘{

3 = .
(3) c2di? 2 8%;

Comparing with the ordinary Newtonian equations of motion:

&*x; aVv

dgﬁ 8x1-

we see that in first approximation v is equivalent to the potential:

2V

@ Ha

In the classical theory the potential V is determined by Poisson’s equation:




150 University of California Publications in Mathematics [Vor.2

The equations replacing this in the new theory are the field equations (I) which,
when developed to the first order, are found to be:

' 92a
L o ko)
(1 Z# dx? e
(8) “
A%y
2 —s =gp—2A.
(2) zy 5z Kp

I have written down the formulae ineluding A. The numerical value of A is entirely
unknown, but it is certainly a small quantity of at least the second order of magni-
tude and can in the present approximation be neglected.

According to equation (3) the value of a is not required in the present approxi-
mation. Comparing (5, 2) with Poisson’s equation we find that

x=§f§=1‘860 . 10%gr—icm,
c
A being neglected. _

To the first approximation we can thus take for + the ordinary Newtonian
potential (4).

The first equation {5) gives, neglecting A:

a==-—ry,
The line element thus becomes:

) dst= — (1= 7)da®+ (1+7)edee,

6. Ture “CruciarL PueNoMmENA.” RED SHIFT

Consider & fixed point in three-dimensional space so that de=0 and consequently
dt 1
ds oV 14+~
is different at different places in the gravitational field; therefore the frequency of a
periodiec phenomenon, which is constant when expressed in the natural measure, or
“‘proper time”’ ds, is variable when expressed in coordinate time ¢.

Consequently the spectral lines originating in a strong gravitational field will, to
an observer placed in a weaker field, appear to be displaced toward the red, and
inversely. The ratio of the observed and emitted wave lengths will be 1/ \/1—!—7, or,
with sufficient approximation, 1—3+. For a point in the gravitational field of the
sun the potential is V= —alM/r, M being the sun’s mass; therefore, for r=F the
radius of the sun, by (4):

. The measure of time thus depends on the gravitational potential and

1 kM
1—2y =14+ _ 1-00000212.
=it R

The displacement toward the red of lines in the solar spectrum will thus be the same
as would, according to Doppler's principle, correspond to a radial velocity of
.00000212¢ or 0'634 km/sec. It has taken the solar physicists a long time to dis-
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entangle this small displacement (corresponding to 07013 A for A5000) from the
many other anomalies observed in the solar spectrum, but there seems to be no
doubt at present regarding its reality in the sun.

For a star with mass M and radius R expressed in those of the sun as units, the
displacement will be:

0'634_%- km/sec.
- R
For the different spectral types we can expect the values given in the following

short table. For the giants the absolute magnitude has been taken equal to —1
throughout.

Spectra Main series Giants
B 09 12
A o7 s
r 06 o4
G 08 02
K 04 01
M 02 606

It is well known that the B-stars have a systematic displacement toward the red,
the so-called K-term, and & part of this may be due to this cause. For a white dwarf,
of course, the effect becomes very large, and we all remember the sensational
announcement of the successful measuring of the displacement corresponding to 20
km/sec by Adams in the spectrum of the companion of Sirius.

In this computation only the gravitational field of the star itself is taken into
account, and the general field of the galactic system is neglected. It is eertain that
the effect of this is entirely negligible. :

7. Benping orF Bavys oF LicHT

For a ray of light ds =0. The ray of light is the projection on the three-dimensional
space of a geodesic in the four-dimensional continuum and can be determined from
the ordinary condition for a geodesic, i.e. the equation (II). This contains the
coefficients g.p. It is evident, therefore, that the ray will, in general, be curved and
its curvature will depend on the gravitational field. Thus a ray of light passing near
the sun will be bent round it. Computation shows that the displacement is inversely
proportional to the minimum distance of the ray of light from the center of the sun,
and equal to 4cM /c*a, a being this minimum distance. This would give 1”75 at the
sun’s limb. As is well known, this displacement was observed by the English eclipse
expeditions of 1919 (29th of May) to Brazil and Principe and again on the oecasion
of the eclipse of 21 September 1922 at Wallal, by the expedition of the Lick Observa-

tory.?

# Dy, Freundliel’s criticisms of the results derived from the observations of the Lick Observa-
tory appear to me to be unfounded. Dr. Freundlich’s own results from his observations in
Sumatra, giving a much larger deflection (of 2'72) must probably be explained as the effect of
the insufficient accuracy of the determination of the plate constants, especially the scale value
and the position of the optical center. The field of stars was very unsymmetrieal, and the deter-
mination 18 necessarily weak. '
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8. MoTioN orF PERIHELIA

So far it has not been necessary to go beyond the first approximation. As regards
the planetary motions we have seen that, to the first approximation, the equations
of motion are the same as those of the classical theory. In the second approximation
we require second order terms in v. It is found that we can retain the expression (6)
for the line clement, if we take v=y1+%v? retaining the value (4) of v.. Also the
equations of the geodesic must be developed to the second order. I will not go into
the details of this development but will only state the results.

For the equation of the orbit we find, instead of the ordinary equation of the

ellipse

1 14ecos (8—&)
(7) "_,= 3
? P

the similar equation
1 _1-+4ecos (y6—a&)
- *

(7"
v P
the value of g being g= I—S?ﬁf .
c?p
The difference between (7) and (7) is thus a motion of the perihelion amounting
to e _3eM _do
di  ¢p di

This secular motion of the perihelia is the only observable effect in the planetary
theory. For the casc of Mercury, it is nearly equal to the well-known discrepancy
between theory and observation, first discovered by Leverrier, which has baffled all
attempts at explanation for over half a century. It is well known that the observed
secular vanations of the elements of the four inner planets could not be represented
by theoretical values depending on a system of masses consistent with the observed
periodic perturbations. The principal discordance is now removed by Einstein’s
correction of the motion of the perihelion of Mercury. The remaining discrepancies
are not very disquieting. They are:

edi 11i%e) de ds

dt di di : di
Mercury —{ "784-0" "43% 40" "794-0" 47 -0 900" "80 40" 7394-0" 80
Venus — 0" "184-0r "25 40" "F62-0"¥15 ~+0"%11=0"7"33 -0 4440 34
Barth —0°"080""13 0" "00==0""09 — 0" #0340 "16
Mars +Q 74840735 40 "145-0""12 40 2000 727 — 0094020

* [Adopting Dr. Jackson’s new determination of the motion of the perihelion of Mercury from
Hornsby's observations (M. N. 83: 126, Dec. 1932) we find for the residual 0741].

The theoretical motions have been taken from Newcomb, but they have heen
reduced to improved values of the masses. The probable errors contain those of the
theoretical values, corresponding to the uncertainty of the masses. TFor the earth
di/dt is the secular variation of the inclination of the ecliptic, for which the adopted
observed value 1s a weighted mean of that derived by Spencer Jones in his Revision
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of Newcomb’s Occultation Memoir and by Newcomb from the sun, Mercury, Venus,
and Mars. The other observed values are Newcomb’s, but reduced to the value
50" 2486 (1850) of the precession. The node of Venus presents the only serious
discrepancy, which may or may not be real. The others are not larger than would
be expected from the accidental errors. Out of 15 residuals, 8 are smaller than their
probable error, and only one (the node of Venus) exceeds twice the probable error.

8. Motrox or THE MooN

The motion of the moon must be referred to a system of coordinates attached to
and moving with the earth through the gravitational field of the sun, moon, and
planets. Through the influence of this gravitational field a precession is imparted
to these coordinate axes, the so-called geodesic precession,® amounting to 17917
per century. This appears in the motion of the moon as observed from the earth as
a positive motion of the perigee and node. With reference to these moving axes, the
motion of the moon is governed by the same equations as the motion of the planets
around the sun, the only addition to Newtonian theory being thus a motion of the
perigee, amounting to 077060 per century. The uncertainty of the observed motions
~ of the lunar perigee and node is of the order of 1” per century, and thai of the
theoretical motions as computed by Brown from the ordinary Newtonian theory is
of the order of 3" or 4” per century. The differences between the ohserved and theo-
retical values (the latter including the new term) are +2%4-4" and —87+£4"
(probable errors) respectively. The added terms are thus too small to be verified
by observation.

10, Prucression

We can thus say that all effects of the relativity theory of gravitation have either
been verified by observation or are too small for such verification to be possible.
It is not, probable that any effects have been overlooked—except possibly as regards
the precession. It has so far been assumed that the motion of the earth around its
center of gravity, as referred to the inertial frame attached to the earth (and thus
affected by the geodesic precession with reference to a system attached to the sun),
is adequately described by the usual formulae. It seems certain that this is true
for the gravitational field. In the theory of relativity, however, a rigid body cannot
exist, and a special definition is required to define what is meant by the axis of
rotation and its motion in space. It might be that the equations for the motion of
the axis of rotation thus defined in aecordance with the new theory might differ
from those for a rigid body according to the Newtonian theory. This has, so faras L
know, not yet been investigated. The point is worth a careful scrutiny especially
since, as was recently pointed out by Dr. Jackson,® the observed constants of
precession and nutation cannot be reconciled with the adopted mass of the moon
by the existing theoretical formulae. It does not seem probable, however, that
appreciable differences in the motion of the axis of rotation (or what corresponds to
it in the complete relativistic mechanics) will be found.

s 8ee A. D. Fokker, Proceedings R. Acad. Sci. Amsterdam, 23: 729 (1921).
5 Monthly Notices 90: 742 (June 1930).
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TII _
11. INERTIAL FI1ELD OF THE UNIVERSE

In the general theory of relativity the difference between gravitation and inertia
has disappeared, and only the general field described by the g.g remains, which eom-
prises both gravitation and inertia. It is, however, convenient to continue to make
a difference and to call that part of the field which is produced by the presence of
material bodies, i.e., by the deviations from homogeneity of the distribution of
matter, gravitation, and the rest inertia. The question then arises: What is the
inertial field of the universe? Or, in other words, what would be the field of the gug
if all matter were either absent or distributed homogeneously and isotropically over
space? We know that in our immediate neighborhood, say within the galactic sys-
tem, the g.p corresponding to this ideal condition are with great approximation the
galilean values:

—1 0 0 0
o —1 0 0
0 o -1 0
0 0 o 41

But can we go beyond that and get any knowledge of the field of g.ps for the “uni-
verse'’? :

We know by actual observation only a comparatively small part of the whole
universe. I will call this “our neighborhood.” Iiven within the confines of this
province our knowledge decreases very rapidly as we get away from our own par-
ticular position in space and time. It is only within the solar system that our
empirical knowledge extends to the second order of small quantities (and that only
for gi4 and not for the other g.g), the first order corresponding to about 105 How
the g.s outside our neighborhood are, we do not know, and how they are at infinity
of space or time we shall never know. Infinity is not a physical but a mathematieal
concept, introduced to make our equations more symmetrical and elegant. From
the physical point of view everything that is outside our neighborhood is pure
extrapolation, and we are entirely free to make this extrapolation as we please to
suit our philosophical or aesthetical predilections—or prejudiees. It is true that
some of these prejudices are so deeply rooted that we can hardly avoid believing
them to be above any possible sugpicion of doubt, but this belief is not founded.on
any physical basis. One of these convictions, on which extrapolation is naturally
based, is that the particular part of the universe where we happen to be, is in no
way exceptional or privileged; in other words, that the universe, when considered
on & large enough scale, is isotropic and homogeneous.

12. OBsERvVED DENSITY AND EXPANSION OF THE UNIVERSE

During the last few years the limits of our “neighborhood’”’ have been enormously
extended by the observations of extragalactic nebulae, made chiefly with the
100-inch telescope at Mount Wilson. These wonderful observations have enabled
us to make more or less reliable estimates of the distances of these objects, and
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hence of their distribution over space. By assuming a plausible value for their
average mass, we can make a rough guess at the density of matter in space. Itis,
at the present moment, hardly more than a guess, but the enormous increase in our
knowledge during the last four or five years entitles us to the hope that in the near
future we may be able to arrive at a real determination.

One of the most remarkable observational results of the last years is the systematic
positive radial velocity of the extragalactic nebulae. This is found to be, within the
errors of the determination, proportional to the distance:

This means that the whole universe is expanding, while remaining similar to itself
(apart from the peculiar motions of the individual nebulae, which are small, and
can be neglected, compared with the systematic motion of vecession). We can thus
represent the line element of three-dimensional space by Rde, R being a factor
increasing with the time, and do remaining the same. The four-dimensional line
element consequently can be taken to be

() ds?= — R2do?~+fdi?

: 1]
with {E§2=2p;q You dE?J dgq

If the radius vector in the three-dimensional space of which do is the line element
be denoted by x, then the radius vector in natural measure is

=R

and, the value of x being subject only to small random motions different for each

‘individual object, we have systematically

The coefficient of expansion h is very large. Its actual value is still subject to
considerable uncertainty, owing to the uncertainty of the scale of distances, but we
can as a good estimate take about 460 km/sec per million parsecs,

It follows that, if the expansion goes on at the same rate, the universe doubles
its size in about fifteen hundred million years.

The possibility has been suggested that the observed shift of the spectral i‘ines
toward the red might not indicate a receding motion of the spiral nebulae, but might
be accounted for in some other way. In fact, all that the observations tell us is that
light coming from great distances—and which therefore has been a long ?ime on the
way—is redder when it arrives than when it left ifs source. Light is reddened
by age: traveling through space, it loses its energy as it gets older.‘ Or, exp}‘essed
mathematically: the wave length of light is proportional to a certain guantity R,
which inereases with the passing of time. By the general equations qf the t}_leory of
relativity, the naturally measured distances in a homogeneous and isotropic world

8 Throughout this cf)&per the convention is made that Roman indices take the values 1, 2, 3
only, while Greek indices run from 1 to 4. :
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are then necessarily proportional to the same quantity f2, unless some extraneous
cause for the increase in wave length, or the loss of energy, were present. By extrane-
ous, I mean foreign to the theory of relativity and the conception of the nature of
light consistent with that theory. Morcover, this hypothetical cause should have no
other observable consequences; in particular, it should produce loss of energy with-
out any concomitant dispersion, which would blur the images and make the faint
nebulae unobservable. It would require an hypothesis ad hoc, and a very carefully
framed one, too, so as not to overshoot the mark. No such hypothesis deserving
serious consideration has yet been forthcoming.

13. GENERAL FForMm oF Tk LaiNeE ELEMENT

We will thus have to investigate the possibility of constructing a universe with
the line element (8), in which R is a function increasing with the time .

For the material energy tensor T.s we can, on account of the homogeneity and
isotropy, take: :

(9) Tog=—0pa P=R%vp P, T4=Tp=0, Tu=gup=gs (po+3p),

pe being the material, or “invariant’’ density and p the ‘relative” density. The
pressure p consists of the material pressure 9., representing the random motions of
the particles of matter, i.e. of the galactic systems, and the pressure of radiation p;.

If we form the field equations {I) corresponding to the line element (8) and the
energy tensor {(9) it is found that the equation for 14 becomes:

Rf dt ax
x being the radius vector in the three-dimensional space with the line element ds.
Therefore either dR/di or 8f/3x must be zero. In the second case fis a pure fune-
tion of the time, and can be taken equal to unity without loss of generality. Conse-
quently there are only two possible kinds of solutions, viz.: static solutzons in which
It 1s a constant and f is a function of the space coordinates, i.e., on account of the
spherical symmetry, of the radius vector, independent of the time, and non-statze
solutions in which f is a constant while K is s function of the time.

14. STATIC SOLUTIONS

We know now, because of the observed expansion, that the actual universe must
correspond to one of the non-static solutions. Historically, however, the static
solutions were discovered first. In 1917 Einstein introduced into the field equations
the term with A and two solutions were found, which I have been in the habit of
calling the solutions A and B. They are generally referred to in current literature as
“Rinstein’s universe’’ and ““de Sitter’s universe’ respectively. The line elements in
the two cases are: ‘

(10A) ds? = — R? [dx?+sinx (dy?~-sin? ¥ d62) |+de,
(10B) ds?= — R? [dx®+sin®x{(dy?+ sin®yd?) |+cos? x diz.
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Thus in both cases the curvature of three-dimensional space is positive, and equal
to 1/R? and it depends-on the value of A by the conditions

(11A) Atrp=8/R?,  x(p+p)=2/R?,
(11B) Mrep=3/R%,  &(p+p)=0.

Consequently in both cases X\ is positive. The density has a finite value in the
case A and is zero in the case B.

Of course we also had the solution without ), i.e. the line element of the restricted
theory of relativity:

(10N ds?= — R®[dx2+ x2(dy2+ sin? wde?) |+-de,
where R is an arbitrary eonstant, and
(11N) Akp=0, k(p+p)=0.

The universe A is truly static: material particles in it ean have no systematic
motion, but only random motions, corresponding to the pressure p. In the universe
B there are no material particles, but if we put in one particle and one observer,
the latter will see the particle moving away from him with a velocity which, if ran-
dom motions are neglected, is given by?

The universe B is thus not really static. It can only be made to appear so in conse-

guence of its emptiness.
The universe A has density but no expansion: the universe B has expansion but

no density.
It is convenient to express both the coeflicient of expansion and the density by

quantities of the dimension of a length. Thus

1dr 1 2
}_2 }_-:..— —_— e =
(12) ' r cdt Rg ‘P R
and we may add
3
12/ A= =,
(12) | M=

The observed values are rather uncertain, but we can adopt the following upper
and lower limits® (expressed in cm):

10?7 < Rp <4107

(13) 3.10% < R4 < 10%.

The value of Ry cannot be determined from astronomical observations. The two
quantities R4 and Rp are thus in the actual universe of the same order of magnitude,

7 Bee Appendix. r o ‘
8 Proceedings R. Acad. Sci. Amsterdam, 35: 602, 608 (1932), (The lower limit of the density
p i8 1073, which is two-thirds of the lower limit given by Hubble; the upper limit 1072 is derived

by Menzel from the absence of appreciable absorption).
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while Re¢ is entirely unknown. The two universes A and B require, however, if we
neglect the pressure p,

(A): R,=Rc/~/3=R, Rp= e,

(B): Rg= R¢ =R, RBy= oo, g
In the case N we have, of course,

(N): Ryi=Rg=Rgo= .

Consequently neither A nor B can be a good approximation to the actual universe.
N (Newton’s absolute space and time) might be a good approximation so long as we
only wish to consider small distances and times, compared with which 10%" and
are practically equivalent.

15. RELATIVITY OF INERTIA

In 1917 this difficulty was not realized. The value of the density was still entirely
unknown, and the expansion had not yet been discovered. The reason why there was
felt a need to displace (10 N) by (10 A) or (10 B) was to achieve what at that time
used to be called the ‘“‘relativity of inertia’’—a somewhat vague phrase to which
various meanings were attached.

We set out to find a grand-scale model of the universe, which shall be homogeneous
and isotropic. We know only a limited part of the universe, viz., “our neighborhood.”
In that neighborhood the distribution of matter is neither homogeneous nor isotropie:
it consists almost entirely of emptiness, the matter being conglomerated into stars
and galactic systems at large mutual distances; but if considered on a large enough
scale 1t has a certain finite average density. In our large-scale model, which takes
account of inertia only and leaves gravitation out of consideration, the condensa-
tions are neglected. We can thus either take as our approximation a homogeneous
universe in which the density is the average density of the actual universe, into which
we must then later, as a second approximation, introduce the effect of the condensa-
tions of matter into galactic systems; or we can take an empty universe and put in
the galactic systems later. What we may call the “material postulate of relativity
of inertia’’ is the assertion that inertia cannot exist without matter; therefore we
must choose the first-mentioned method of approximation, i.e. the solution A or
any other solution having a finite value of Bs. But no other solution satisfying this
condition was then known.

The potentials g.p defining the line element are given by differential equations.
Consequently, they are only determined apart from constants of integration, or
boundary conditions at infinity. Of course we know nothing about infinity as has
already been pointed out. The real condition determining the constants of integra-
tion is that they shall represent the observed phenomena in “‘our neighborhood.”
They are only put into the form of boundary conditions at infinity for reasons of
mathematical convenience. It follows that the values of the g.s at infinity will be
different in different (but equivalent) systems of coordinates. This leads to what
may be called the “mathematical postulate of relativity of inertia,” which requires
the g.p at infinity to be zero, so as to be the same in all systems of coordinates.
Solution A satisfies this postulate for the g,, of three-dimensional space, and solution
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B for all g.s. The vanishing of g,, at infinity is equivalent to the finiteness of space,.
i.e. to & positive curvature. The boundary conditions at infinity are abolished by
abolishing infinity.

It can be proved that the solutions A and B are the only possible static, homogene-
ous, and isotropic solutions with positive curvature.® Since the discovery of the ex-
pansion of the universe we know that we must choose our grand-scale model among
the non-static solutions, and the solutions A and B are only of historic interest. We
will therefore now concentrate our sttention on the non-static case.’®

16. NoN-8TATIC SOLUTIONS

The non-static solutions were discovered by Friedmann' in 1922, and indepen-
dently in 1927 by Lemaitre,”® who worked out the astronomical consequences in
considerable detail. The papers in which these authors communicated their dis-
coveries, however, were discovered by the astronomical world at large only in the
spring of 1930, and since then the theory of these expanding universes has been the
object of constant interest and much discussion. Friedmann discusses the solutions
of the field equations for different values of A. Lemaltre considers only a positive A,
Both authors consider a positive curvature of space only. The fact that both A and
the curvature may as well be negative or zero was only pointed out by Dr. Heck-
mann'® in July 1931, .

We take the line element

(8) ds?= — R¥do?-+d(ct)?
with do®=Zip,q VYpg Qp gy Gpa= —E'v¥pe
R is a function of ¢ only, and the v,, are independent of i.
We have then N ]
Gpe =(3)qu'_ (RR+2R2) Yoa

R
G514=G4p=0, G44=3§;

dots denoting differential quotients d/cdt, and 3Gy, being the contracted Riemann
tensor corresponding to the three-dimensional line element do. )
For the material tensor we take

(9) Tpe=—0pa®» Tps=Tsp=0, Tas=p=pot3p, T = p.
The field equations

m | Gua— e bu(Tes— op T)=0

then become

(14) (@G pat2kvpe=0

® de Sitter, Proceedings R. Acad. Sci. Amsterdam, 20: 1311 (1918) also Tolman, Proceedings
Nat. Acad. Sci. Wa,shilfgton, 15: 297 (1929) and Robertson, ¢bid.: 892 (1929).

10 See, however, the Appendix.

11 Zeitschr. fiir Physik, 10: 377. .

12 Ann. Soec. Scient. de Bruxelles, 47 A, : 49; also translated in . N. 91: 483 (1931).
13 Qittinger Nachrichien, 1931: 127.
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with
(15) 2}g232(>\+,{p+éxpg) —RE—2R
and
. )
(16) 3 g—a—a-fe(?ap—z-;:pc) —o0.

17. THREE-DIMENSIONAL SPACE OF CONSTANT CURVATURE

The equation (14) means that the three-dimensional space with the line element
de¢ has the constant curvature k. The value of k is given by (15). It is independent
of the space coordinates, since R, p and p, are independent of the space coordinates,
and independent of the time on account of (14), in which the time does not enter.
It is no loss of generality if we restrict the possible values of & to 41, 0, and —1.
The line element de, then, is that of a space of unit curvature, and it has one of the
three standard forms

k=-+1: det=dx*+sin?x{dy?+sin® ¢ do?)
k= 0: de?*=dx*+ x*(dy?+sin? ¢ d?)
k=—1: de?=dx*+sinh?x(dy?+sin? ¢ do?).
The curvature of the actual three-dimensional space (line element Rds) is then
Ly

R?.

In each of the two cases k= o=1 the curved space can be projected on an euclidean
space; thus, if we put for brevity

de? = dy?+sin? ¢ do?
k=+41: Rdo’= R*(dx-+sin? xde?)

2 2 2
= —dr—_tf—% r=21 tan é—x
(1"3":;*1‘?
2 2
— di‘ - 2_}_ I‘Qd(f-’z 1-=R tan x:-——-—%—z—;
T r 7
(17) (1‘*‘&5% ™ i
k=—1: R¥o®= RBdx®}sinh® x de?)
2 2 2
= ﬁ% r=2F tanh é X
-
(z‘z B
2
_ dr . ! r=R sinhx = v .
14+ 11 .
R - 4 R?
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By the first transformation, the so-called “stereographic projection,” transform-
ing x to r the curved space is in both cases projected on the inside of the sphere
r=2R in euclidean space. In the second case, the transformation to r, the projection
fills the whole of euclidean space.

In the case k= -+-1 we must of the two possible cases choose the “elliptical” space,
in which x can take only the values from zero to % =, and not the ““spherical” space in
which the maximum value of x is . The elliptical space is the one of which our ordi-
nary euclidean geometry is the limiting case for R= «. In our common geometry
a plane has a line (and not a point) at infinity; two straight lines have one point of
Intersection (and not two); if we go to infinity along one branch of a hyperbola,
we return along the other, on the other (and not on the same) side of the asymptote.
All these are properties of the elliptical, as contrasted with the spherieal space. The
spherical space is, in fact, an entirely unnecessary, and therefore physically mean-
ingless, reduplication of the elliptical space.’* Moreover, the spherical space gives
rise to discontinuities without physical meaning at the antipodal points of material
particles.

18. FUNDAMENTAL FQUATIONS OF THE EXPANDING UNIVERSE

From the equations (15) and (16) we find easily the fundamental equations of the
expanding universe: '

R R, k.
i 2+ —=—d—=A—kp,
(18) R+R2+R2 Kp
' 2 0k 1

Since B/R=rh, the equations (18) and (19) can be brought to the form

Ak p=3(e+h?)
(20) k(p+p)=2(e—h),

which can be compared with (11A) and (11N) for the static universes (10A) and
(10N).18

Sinece , is entirely unknown these equations arc insufficient to determine X and e
from the observational data, even supposing that not only & but also p and p were
accurately known. Even the signs of X and of ¢ remain indeterminate.

The equation of energy divl.z=0 gives

(21) §+s§- (p+p)=0.

The equation (21) can also be derived from (18) and (19). The three equations
(18), (19), and (21) therefore give only two conditions for the three unknowns,

14 See algo Eddington, The Mathematical Theory of Relatwity, pp.{ill‘5?—lf';9. e with £

15 The quasi-static universe (10B) has gu=cos?y, and is thus not directly comparabie wi e
nan—staii% universes like (10A) and (10N) which have gu=1, since h is not mvanazzt:. ﬁIf d(l%E)
is transformed to a line element with g.=1, the equations (20) are found to be sabisfied, See

. Appendix.
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R, p, and p. They must be supplemented by an “equation of state” giving a relation
between p and p, or between py, and p. The pressure p is the sun of the material
pressure p» and the pressure of radiation p,. The invariant mass of radiation is zero.
Therefore:

(22) Pm= pﬁ+3pm, DPa =3p3; p= pa+3pm+3pg.

The material pressure represents the random motions of material particles, i.e.
in our case of the galactic systems. It is easily found?!® that

. ) 2 2
(23) 3Pm Rz(.(%f =F ,
Po das R?

where ¢q® is a measure of the average random velocities. The galactic systems are
continually sending out energy of radiation, by which their mass is diminished. We
can measure this rate of transformation of matter into energy against the rate of
expansion of the universe, putting

M VR

_— ™ —_—7

M R
where M =R3py. In the case b=-+1, 7*M is thus the total mass of the universe. In
the cases k=0 and k= —1, M is just another variable replacing po and is introduced

in order to separate the change of density due to the transformation of matter from
that due to the expansion. The total change of pois, of course, given by
po _ ﬂ._’*f _3:§ .

Po M R

From the known magnitudes and masses of the spiral nebulae we can estimate the
rate of conversion M /M, which comes out about the same as that of a dwarf star of
somewhat later type than the sun. We find in this way that « is of the order of
magnitude of 1078 The change of p from this cause is thus negligible compared with
the change of density by the expansion given by (21), and we can with sufficient
approximation neglect the interaction between matter and radiation. Our “equation
of state” then consists of two equations, viz.: the second of (22) for radiation and
(23) for matter, while the equation of energy (21) is also split up into two equations:

po_, 3R*+200 R

f . —=0
R2 2 R

(24) po e

Bey 4B,

ps R
from which we find at once
(25) Kpg:‘-__....:g_;_‘_Ri_,m y K'Om=3R1VR2+@92 ,

Rﬁng"i“fPoe R
_5

(26) KPe=o

Ry and B being constants of integration.

‘8 Lemaitre, B. 4. N. V, 200: 273 (1930), and Heockmann, Gétiinger Nachrichien 1931:130. See
algo de Sitter, B. 4. N. V, 193: 217 (1930), and art. 83 of the present paper.
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Introducing this into equation (19) we have the equation for the expanding
universe:

(27) Rﬁm—-Z—R-Z--ichR“’RL“"ﬂz‘i“ B,

R (k) Z=+1: 0} —1)
s

Both & and [ can have the values +1, 0, or —1, and they determine the sign of the
curvature and of A respectively. R;and B: are necessarily positive.

19. DI1scUSSION OF THE PRESSURE OF RADIATION

The energy of radiation consists of the ordinary radiation of the stars and the
cOSInic rays:

Ds =Dy Do
As to the first, Eddington!? estimates the energy-density as
3p, =767 . 107 ergs/cm?=85 . 10~ gr. ecm—3.

This is inside the galactic system, in the neighborhood of the sun, where the
material density is of the order of 10-2%, We can thus take approximately

3D,
£a

(28) =10-19,

and the same ratio may be taken to hold over the whole universe. As to the cosmic

radiation, Millikan and Cameron!® give for the total energy received by a square
centitmeter outside the earth’s atmosphere 3'07 . 10— ergs. This gives for the density
. —4
(29) 3pc=w ergs/em®=3'6 . 10—% gr emn—3,
T

This density is probably the same all over space. With a view to the great uncer-
tainty of the average material density of the universe, of which the adopted limiting
values are 10728 and 107%, the ratio 3 p./ ps remains very uncertain, but it is cer-
tainly small, and we can safely assume that the ratio 3 p./ po is of the order of magni-
tude of 1078, or 107% at the utmost. We can thus with sufficient approximation
neglect the radiation pressure altogether and take B:=0 in (27).*

* [A. H. Compton (Phys. Rev. 41:681, 1932) and J. Clay (Proceedings R. Acad. Sei, Amst. 35:
1282, Dec. 1932) have recently published observations from which it seems to follow that the
cosmie radiation is corpuscular, instead of electromagnetic. It is easily verified that this makes
no difference in the formulae, the ‘‘invariant’”’ density corresponding to the observed p; being
practically zero on account of the enormous velocity, so that we have still pe=3pe as for electro-
magnetic radiation.]

20. TRANSFORMATION OF MATTER INTO RADIATION

In deriving the equation (27) we neglected the interaction between matter and
radiation. This is certainly sufficiently exact for all practical purposes. I will, how-
ever, in connection with the transformation of matter into energy by the radiation

Y Phe Internal Constitution of the Stars, p. 371.
18 Phys. Rewview 31: 930 (1928). [Regener recently found 5:2.107% ergs, see Nature, 1933, Jan, 28]
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of the stars, draw attention to a remarkable result which can be derived from the
energy equation (21). If we put
ﬂi{-:Rsp(), E=3R3p, 'pm':G,

the equation (21) becomes

(30) R(M+E)+ER=0.
M R
If we take as before == —~y= | M =M, R~
we take as beiore 7 "}’-R 0 3

we find at once from (30)
E=0ER™

with Eg¢=~M /(1 — ). This shows that, notwithstanding the conversion of matter
into energy, the total amount of energy in the universe is decreasing. In fact, the
loss of energy corresponding to the red shift that results from the receding motion,
exceeds the gain by the conversion of matter into energy. The old guestion what
becomes of the energy that is continually being poured out into space by the radia-
tion of the stars, thus finds an unexpected solution. It is used up, and more than
used up, by the work done in the expansion of the universe. Nevertheless, it would
be wrong to say that the expansion is caused by the pressure of radiation. The
universe would expand just the same if there were no radiation at all. It expands
simply because it cannot remain of the same size throughout, a static universe being
unstable.

We have here neglected the material pressure p., but the result remains the same
if it is duly taken into account.'®

21. Rayvs or LiguT

The path of a ray of light is the geodesic given by ds=0, or
do = edt,

Therefore if two successive light pulses leave a source at a time interval &, they
will be observed at a time interval §t;, and we have, the distance o between the source
and the observer remaining the same,

Consequently

—_——— —

The observed and the emitted wave lengths are in the same ratio as the values of
B at the times of observation and emission. Bince E increases with the time, the
wave length also increases, and the energy decreases, as the light travels through
space. This is observed as the red shift of the lines in the spectra of the extragalactic
nebulae.

19 See de Sitter, B, 4. N. V, 193: 216, 217 and 200: 274, 275 (1930).
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22. BALANCE 0F GRAVITATION AND ExXpANSIVE FORCE

The equations that we have discussed show that in the grand-seale model of the
universe, in which the effect of the local deviations from homogeneity is disregarded,
1.e. the inertial field alone is considered, neglecting gravitation, there is an inherent
tendency for the universe to change its scale, which at the present moment results in
an expansion, but may perhaps at other times have been or may become a contrac-
tion. If we come to put in the details, the stars and the galactic systems, or, mathe-
matically expressed, the singularities of the field, we find that there is also a ten-
dency, called gravitation, to diminish the mutual distances between these singulari-
ties. We know that for small distances, within the solar system, the second tendency
is by far the strongest, and the effect of the expansion is entirely negligible. On the
other hand, for very large distances, such as those from one galactic system to the
next, the expansive force is stronger than the gravitational attraction. There must
be a limiting value of the mutual distances, i.e. of the density, for which the two
forces balance. :

Consider the motion of a test-body in the gravitational field inside a homogeneous
sphere of material density p. The acceleration by the ordinary gravitation of this

field is given by :
1 ( d?r ) G Kp
o _ — —p e T sund B.
r \e?di*/1 c? 8r

The acceleration by the expansive force, on the other hand, is, with sufficient

approximation )
1/ d*r 1 d&R R 1, 1
= = —.=—=N—Zkpg=A,
A2t/ R c*diz B 3 6

by (18) and (19), po being the general average density of the universe (the pressure
being neglected). Therefore the total acceleration is

dr
=—(B—A)r.
cZdtr ( )

So long as B— A is positive the path of the body will be a closed curve, in fact an
ellipse, it will not leave the system to which it belongs, and the system will not ex-
pand. We find easily

B—a=(3 211} L .

47 po Ry?

The condition that gravitation shall be stronger than the expansive force thus 1s

(31) 3 2 oReN-1
dr po
Now R, is very imperfectly known, and X not at all. If X were negative or zero,
there would be no lower limit to the density; systems of even the smallest density
would have sufficient gravitational force to keep their members together, provided,
of course, that the velocities did not exceed the velocity of escape. If ) is positive
there is a definite lower limit for the density. Taking A=-4-10"%, R,=10% (cor-
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responding to po=10"%), which are not implausible values, the condition becomes
roughly

£ < 400.
Lo

In our galactic system, and presumably in all other galaxies as well, this eondition
is, of course, amply fulfilled, the ratio p/po near the sun being, with the adopted
value of po, about 108, For the Coma cluster of nebulae, Hubble finds p/ po =250,
which is below the hmit. The mutual gravitation of the nebulae belonging to this
cluster thus apparently is not sufficient to keep the cluster together. The observed
range of velocities in the Coma cluster is about 1100 km/sec, of which certainly 700
or 800 km/sec must be real. The velocities of the separate members of the cluster
relative to the center of gravity consequently are so large that they certainly exceed
the velocity of escape, even if the gravitational field of the cluster were strong
enough to keep its slow-moving members in control. It would appear that the
existing clusters of nebulae are not real clusters, bound together by the gravitational
attraction of their members, but just aceidental and temporary irregularities in the
homogeneous distribution of the galaxies over space.

Both R4 and pg in (31) change with the time. We can write (31) in the form

3!6 3R1
32 3¢ s o 2B

(32) 4;?1"0 R? ’
where the only variable quantity is E. Thus for very small values of R even the
smallest density is sufficient fo keep a system together against the expansive ten-
dency of the universe, but as R increases the limit of the density needed to withstand
the disintegration by expansion increases, and for very large values of R it approaches
the limit

p >§—75?\ =45 , 109\,

3x

‘With all plausible values of A this limit is so low that the continued existence of
our own and all the other galaxies as individual finite systems of practically constant
size 1n the expanding universe appears quite certain,

IV

23. TRANSFORMATION OF THE FUNDAMENTAL HEQUATION. IDHFFERENT
TvyrES oF SOLUTION

We will now consider more in detail the different solutions of the fundamental
equation (27). If we put
R ct B2 1

=, =2, 4=12—"Ran,

RI Rl ch 3

the equation becomes

d 4 2 2
(33) ; (f—) =‘6+\;§’ L L Y (k=+1,0, —1)
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with
(33*) — 481 2 _ qﬁnﬁ

R 7 —_—y

- while v can take all values, positive, negative or zero.

Except for very small values of v, we can in (33} safely neglect 8 and 542 It then
becomes

(34) (fgg =E o hyr=L,
dr Y Y
where
(35) - P=1—ky+vyib
The quantity P varies during the expansion. Since
1, B 1wy 2 3R
Rp R Ry dr Ry ' RY
its value at any time is ‘
(a6 p_d B _3
2 Bg® «kpo

Taking the limits given by (13) we find that at the present moment it must be
enclosed within the rather wide limits:

(837) ‘ 001 < P<<15,000.
If we took no account of the uncertainty of %, we would have
(36%) P _4£03. 19“237
Po

and with the limits sometimes adopted for pe, viz.: 10728> py>10-% we would have

(37%) 4< P<400.
I think, however, that (37) represents the present state of our knowledge better
than (37%). '

Since y is necessarily positive, real solutions of (34) are possible only for positive
values of P. In the figure 1, in which the coordinates are y and +, the curves P=0
have been represented by full lines. The curves approach asymptotically to the nega-~
tive axis of v for y =0, and to the positive axisof y fory= . Fork=0and k= —1
the curves do not intersect the axis of . The curve for k= 41 intersects the axis of ¥
at y=1 and has s maximum for y=15, y=v1=-4/27. P is positive above the
curves and negative below them; the real solutions thus correspond to the part of
the semi-plane above these curves. It is seen by inspection of the diagram that
there are three possible types of solution, which may be called the oscillating uni-
verses, and the expanding universes of the first and of the second kind.

In the osgcillating solutions the value of y oscillates between zero and a maximum
value y1. In the expanding solutions of the first kind it increases from zero to infinity,
and in those of the second kind it increases from a certain minimum value ¥, to
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Figure 1
The full lines are the curves P=0, the dotted lines are P=1. The broken line is the curve
on which the points of inflexion lie.

4

infinity. It is clear from the diagram that the occurrence of the different solutions
depends on the values of & and v as indicated in the following table, where also the
values of P have been given.

(38) OCCURRENCE OF TYPES OF SOLUTIONS
k=41 k=0 h=—1
¥> 71 Exp. I, P>I—§ym
71=y>0 { Exp.1I, P>0 Exp. I, P>1 Exp. I, P>1
] Ose., P<1
=0 Osec., P<l Exp. I, P=1 Exp. I, P>1
v <0 Ose., P<1 Osc., P<1 Ose., P<1+3yn
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In the expanding universes of the second kind P increases continually with y from
P.-—:D for y=y, ?o P=o for y= ., In the expanding universes of the first kind.
with the exception of those for k=41, ¥>v, P increases from P=1 for y=d
to P = for y=w. In the case k=1, v > 1, P begins by decreasing to a mini-
mum Pain=1—2yn/3 for y=9,=(3v)"* and from there inereases to P= o a3
in the other cases. In the oscillating universes, with the exception of those for

Radius

Time >—s

Figure 2
The different types of non-static universes.

= —1, P decreases from P=1for y=0t0o P=0for y=y:. Inthecasek=—1,v <0,
P begins by inereasing to a maximum P, = 14-2y./3, for y =4ym=(—3%)"% In the
case k=0, v==0, P has the constant value P=1.
The curves P =1 have also been entered in the diagram in dotted lines. The axis
of v(y=0) belongs to this curve for all values of k.
The general type of the variation of ¥ with 7 in the different cases is represented

in the figure 2. For y=0 we have P =1 and therefore 3’—?{- = w; all solufions leave
T
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the axis of y perpendicularly: the expansion in the case of the oscillating universes
and the expanding universes of the first kind begins with an explosion. The actual
value y=0 18, of course, impossible in nature, and if ¥ becomes very small, i.e. the
density extremely large, the equations cease to be applicable. Presumably in the
actual universe, if it is one of these two types, there will be a minimum value of y
as shown by the dotted lines in figure 2. In the expanding universes of the second
kind there is a minimum value y:. These solutions exist only for the limited range of
values of v between zero and v, = +44/27.

The expanding solutions of the first kind have a point of inflection (except in the
case v=0), for a value of y=y; given by

30 @y

(39) PR L by = 0,
from which = (2L

This curve is also given in the diagram of figure 1, as a broken line. It is, in fact,
the curve P=3/2 for k=0.

24. INTEGRABLE CASES

The cases y=m, bk=-1 and v=0, k=41, 0, or —1 are the only ones in which
the equation (34) can be integrated by elementary functions. For k=--1, y=+v

the solutions are
(v1=4/27, 1 =1"5)

(© (r— 70}V y,=cosh y+us 1__ cosh—1 24 TY: 2y +?}1
(40) 4 \/3 Y—1
(¥) (r—70)/y1=—cosh™ Cnnt . 1 cosh—1 Zy—!—yl’
Y1 ‘\/§ Y1—Y

and, of course, also
(40%) (A) y = constant = ;.

The solution (C) is “Lemattre’s universe’’ in which r— ro becomes — « (logarith-
mic infinity) for ¥ =y, while for r— 7= -~ =, y becomes infinite of the order of ¢".
(F) is the limiting member of the family of oscillating universes for k= -1 in which
y approaches asymptotically to the limiting value y=w, for r= ., (A) is our old
iriend “Einstein’s universe.” This latter, however, is unstable, since if we give ¢y a
small increment 4y, the corresponding increment of the acceleration is

The acceleration thus has the same sign as sy, and the small mcrement goes on
increasing,
It should be noted that (A) is the only possible case where dy/dr and d?% /d+? can

be zero at the same time. From (34) and (39) we find from the condition g— —3—3; =0
T T

-
2k’
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which gives a finite positive value for y only if k=+1. In fact, the two solutions (C)
and (F) form two branches of one and the same curve having a point of inflection
at infinity, while (A) is the tangent at that point.

The curves (C), (I') and (A) are represented in figure 3, which will be explained
later.

The solutions for the case v=0 are:

(H) k=41, y=1 P<1: y=sin?y, T—T{,=¢—§sin 2,
(41) @ k=0,  P=1 T-Ta=§yz
L)  h=—1, P>1:y=sinh? ¢, T—Tg=%sinh W—y.

The solutions (Q) and (L) are expanding universes of the first kind, but without a
point of inflection. (Q) is of a parabolical nature, the limiting value of dy/dr for
y= o being zero; (L) is of hyperbolical character (without an asymptote, however)
the limiting value being dy/dr =1 for y =« ; (H) is an oscillating universe, the curve
being similar fo a half ellipse. The curves (H), (Q), and (1) are also given in figure 3.

In all other cases the integration of {34) leads to elliptic functions. The curves
given in figure 3 for these cases have been computed by numerical integration, as
will be explained later.

25. EMpry UNIVERSES

By the introduction of y and r instead of R and t we have, of course, excluded
from consideration the case R;=0, l.e. pp=0, or universes containing no matter.
In order to treat these we put

The equation (27) then becomes

(42) ( ) 5 +CL y +7?9 —k--1 yfgj (k; l:“:_i_l: 0, —1)
with
(42%) 1B e

7o
Re? R

while « can take all positive values or zero.
If we neglect again 8’ and 40" the equation becomes

N2
(43) (d’y —k+1 g

The solutions of (43) with « different from zero are the same as those of (34), the
correspondence being given by v=la? 3 =ay, 7' = ar.
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For o =0 the solutions of (43) give the different “empty universes.” The integra-
tion can be carried out in all cases. We find

I=+1: k=-4+1:(By) : ¥ =cosh (+'—x)
E= 0:(Bgy : ¥ =—éef’”f°’
E=—1:(B.) : ¢ =sinh (+"—1'y)
I= 0 : k=-+1:no real solution
(44) k= 0:(Ny : ¢ =constant
k=—1:(N1: y'=77—v

l=~—1: k=-1 :no real solution
k= 0 : no real solution
k=-—1 (8): y' =sin(r — "),
The solutions (B,) and (B,) are of the expanding type of the second kind, (B;)
having aminimum g = 1, while (B,) approaches asymptotically toy' =0for 7' = — =,

(B_) and (N_) are expanding universes of the first kind, while (8) is oscillating. The
solution (Ny), IZ=constant, is Newton’s absolute euclidean space, independent of
the time. All these solutions, with the exception of (IN,), are shown in figure 3.

All these empty universes can be transformed into (quasi-) static ones, ag will be
shown in the appendix. (B,), (B_), and (B, are equivalent to the static solution B.

26. INTRODUCTION OF THE PRESSURE

So far we have neglected the pressure, i.e. in (33) we have neglected 8 and no?,
and in (42) 8" and 5% The solutions of (42) with «=0 but g’ different from zero
have been investigated by Dr. Heckmann®® and diagrams are given by him for these
solutions for all nine combinations: k=-41,0, —1, and I=+1, 0, — 1, and for differ-
ent values of #’. The curves are of the same character as those for the case g/ =0,
a5=(, i.e. the solutions of (43) or (34), which have been treated above. Since in the
actual universe the value of 8’ is extremely small, these solutions do not correspond
to any physical reality, and it has not been thought necessary to reproduce Dr.
Heckmann’s figures.

If we do not neglect B and 5,? in (33) the equation can be simplified by putting

(45) . 22 =yt 4nd.

‘The equation then becomes

2
(46) (.@. _——_—g, Q=8-42— A2+ vzt
dr 22
with
' : A= k4+2vyned
(47) 7o (;‘5“—: +1: 0: - 1)

8 = B-+kno®+vno'.
2 Gdtlinger Nachrichien, February 1932; 181.
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Real solutions, again, are possible only if @ is positive. The curves Q=0 are, for
small values of 8 and %% ie. if A is nearly equal to %k and § is small, very similar
to the curves P =0 given in figure 1. There is added a branch

(48) Zo=— o6+ A —24A%% L |

which does not, however, correspond to a real value of y. Since 8 and #¢? are of the
same order of magnitude, 2, is also of the same order, and 2¢® is of a smaller order
of magnitude. Consequently 2 —%o® is negative, and to z=z, corresponds an
imaginary value of y.

The ordinary roots of @=0 dlﬂer very little from those of P=0. The small cor-
rections can easily be found numerically, when required, or can be computed by the
following developments in series. If y0 is the root of P =0 for a given value of v,
then the root 2, of @ =0 for the same ~ is found from

21 '—"’,ljm‘l‘g'
(49) ¢ =f-lay
. & o

e =8—2v y102 ?702, C{»=3—'2A’y1(}, b=A—'6"}’ ymg,
and the value ¥, of ¥ for which @ =0 is then found from (45):
Yi® ﬁz}g—%z .

In the case k=1 the curve P =0 has a maximum for w=y=-+4/27 and y =y, =1'5.
The corresponding values for @ =0 are found to be

4 4. 64
= A1 T A4 A L),
T =g ANl mgA oy )
(50)
39
= ———— 5—"‘—"14.5 =====
21 + o7 +

The value of v must be found by successive approximations, since 4 depends
on v, but the approximations converge extremely rapidly. The corresponding value
of 41 is again found from ¥ =2 —n¢"

27. InNTEGRABLE CASES

The solutions for the case v=+v1 now become

Z+31

: 1
r— 10}V v, =cosh™! I
@ (rmmv/y=oos ( V:{———) V3+-—

(51)

)
nosh—l 22tz -+ —;g‘

}
d

8
cosh-t [ Z#tat_3

_ B 2421 A
(B) (r=7o)V/ys=—cosh ( V1~--) \’3+—- - V1i-2)
214
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where v, and 2z; are now taken from (50) and y is derived from 2 by 4*=2*—n».% and
(51%) (A) z2=2i,

and consequently ¥ = as before.
For the case v =0 we introduce the auxiliary variable x by

x—b

2= b=8—3k0*}10K%28%— ... ..
1—2kb
Then we find instead of (41) in 20
(52) Q) T— 170 =§x%—sz%,
. sinh 2y
L =sinh? ¢, 71— o= " i,
(1} x=sInh*y, r—1p S(1-12b) ¥

If 8 and 5, are neglected the oscillating solution (H), as given by (41), starts at
¢ =0 and its period is =. If g and », are taken into account we must use (52), but
the initial value now is not ¢ =0, but ¥ =¢,, corresponding to ¥ =0, and the period
consequently is #—2¢¢ For y=0 we have z2=n0 and ¢, is thus determined by

sin® o= (1 —2b)ne+0b.

Similarly the solution (L) does not start with ¢ =0 but with ¥ =y, given by

sinh? g = (1+2b)n,-}+5.

In the solution (Q), k=0, we have b=58=3, x=2-+8, so the starting value of
2 18 Zo=no+B. If we wish to have r=0 for y=0, account must be taken of these
values of Yo and z, in determining the constant of integration 7.

The maximum value of z in solution (H) is z; =1, from which

Zl=1+5—52+ .

instead of #1=1. The same value of z, is found from (50).

28. NUMERICAL VALUE oF THE PRESSURE TERMS

From (33*), (25), and (26) we have (neglecting «o?)

3Ps
p="Ly
Pa
where ps=p,+p.. In (28) we found 3p,/pe= 1071% consequently the ordinary

radiation is entirely negligible. For the cosmic radiation we found in (29) 3p.=

3'6 . 107% gr, em~® and from (36*) we have 1—-——-2’5 . 10 P, consequently
Po
8=2P:y_09 . 10~ Py.
po
This is also probably negligible, although it might be appreciable if P were near
the upper limit given by (37). I have, however, neglected it, and I have taken
throughout 8=0.




19337

de Sitter: Astromomical Aspect of the Theory of Relativity

175

For the random radial velocities of the extragalactic nebulae we can take
Vo=750 km/sec=¢/400. Assuming that these random velacities have no preference

for any dirvection, we have

oot = 3REV92/ﬂ2

and consequently by (33%)

7 02 — 3f£j 2 V(}2
{32
or roughly oot &y

I have adopted the following values:
Expanding universes except (L):
(L):
Oscillating universes for k=1 :
Oscillating universes for k=0,—1:

(53)

no="02
70="04
no="004
no="01

29. NUMERICAL INTEGRATION AND DEVELOPMENTS IN SERIES

The curves for the cases (C), (F), (H), (Q), (L), given in figure 3, were computed
by the formulae (51) and (52), using the values (53) of 44, and 8=0. For the other
cases numerical integration was used, by the formula

dr=4/44
r= YLy

neglecting f and n¢2. At the beginning of the curves, near y=0, for the expanding
universes of the first kind and for the oscillating universes, a development in series,
however, was used. The series employed, of which the derivation may be omitted, 1s:

u = 22—
F— g = (Bu}*(zzﬁzpapuﬂ)
B = (1—2Az¢+4~zf)™?
2 1
= Z4_ ABz
[£53 3—!‘3 D
1 3 1
= ZAB4+-2 A2B2,—= Byzd
@ = gABTg, TEUT™
3 5 5 6
= —A2B2+ = ASRB%z;— ~ Byzy— — AB%®
(64) a3 5% +56 0 = Y=o - g
5 i 35 5
= 2 AR 2By 1+ 22 AtBiz— = AByz
71 =9 9 T+576 o 6 e
35 3 683 75
= 22 p1ps_Z AR? A®Bi2,— — A*BSyz
%= 01 R T ’
63 15
= 2 ASBS— 2 A2R
YY) 104" 7
ay = L ASBS—:?—ASB‘}‘Y

2560 48
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where z,° has been neglected throughout, zo® for as and beyond, and 2 for as and
ar. A is given by (47), zo by (48), and 2, as always, by (45). If the pressure is
neglected we have u=z2=y,2,=0, A =k, B=1, and the formulae are much simplified.

Near the maximum of the oscillating universes and the minimum of the expanding
universes of the first kind the numerical integration breaks down, and recourse must

again be had to development in series. We put

=z (14, 7" =1"23
221
2; being given by (49) and we find:
v = Cr2(1+Zb,7P)
= ZA#_?L_'&_@
Z1 21
1 2 0
by = —~A+4= >
! 3 +3 312
2 1
(55) bz = gblz‘f‘gcﬁ
by = 3513"‘ Gblfl+ 02-‘-2
35
by = i‘% 14+i—7—5552€1+—6{€12+“05162‘i"“C?’éz

a=(—1| L+ra+a |
21 22

If the pressure is neglected the formulae are again much simplified. We have then
2=y, &:1=MY, A =k; 8 =Or €= (— }-)%/yl*

30. ExamrLES

The solutions that have been computed and are represented in figure 3 are the
following:

Value of + Empty universes
+0'20 “r1 +0'10 ) —0°10 =41 I=0 I=-—1
C D
k=+1 { E. F G J B,
k=0 i o Q R Bo [N}
k=—1 K L M B_ N_ S




A LA L

1933} de Sttter: Astronomical Aspect of the Theory of Relativity 177

Further “Einstein’s universe” (A), y=1'5, is also shown. The sclution (Ny),

B =constant, is omitted in the diagram. The computations for the solutions (C)

and {I) were made by the formulae (51), and for (H), (Q), and (L) by (52): for the
parts of the curves near =0 and near the maxima and minima of y the f;rmulae
(54) and (55) were used. These all include the pressure terms, using the values (53).
The influence of the pressure terms is, however, entively negligible in all cases on the
scale of the diagram. The empty universes were computed by the formulae (44),

7 ‘ B; K/ P/ L,
s

— k=+1
Y it K= 0
!

—-——— k_,__
.

...............

Empiy WFIVETSES

Figure 3

Expanding universes for different values of & and -, and empty universes. The horizontal
coordinate i8 +— o, the vertical coordinate is ¥ {(+'— =o' and ' for the empty universes).

The resulting computed numbers are given in the tables A and B.



TABLE A

VALUES OF ¥ AND v—7p FOR DirrERENT UNIVERSES

) (D) (B) F) (G) (H) ) (P) @) (R) (K) (L) (M)
T Ty T=T0 TTe T=T0g 7T T—To T=T0 T=TH T~Th T=~T0 T=T* T=To TTa
0°0 0°0000 | 00000 | 0°0000 | 0°0000 | 00000 0°0000 | 070000 | 070000 | 070000 | O°0000 | © 0000
1 0204 0216 ‘0216 0216 0216 0198 “0198 0206 "0193 0178 "0200
‘2 0621 0632 "0635 '0635 0635 0582 (1582 "0591 " 0550 *0530 " 0559
"3 "1106 ‘1211 1212 1212 ‘1213 *1081 1081 1090 0096 "0074 "1005
¢4 '1925 '1042 "1946 1046 . | “1949 1669 | 1671 1682 1508 " 1482 “1514
5 "9814 '9835 "2841 ' 2852 9863 " 2336 9341 ‘2356 9058 "2039 073
‘6 " 3882 '3012 ' 3028 ' 3060 " 3002 " 3071 " 3082 ‘3104 " 9650 "9632 "9671
Wi ‘5152 " 5204 " 5243 ‘5327 ‘5419 " 3866 " 3888 "3921 "3272 " 3259 "3303
‘8 " 8650 "6756 " 6850 7070 "7344 "4714 "4753 " 4805 '3018 "3013 " 3066
g "8419 " 8641 " 8864 0488 | 1°0699 "5609 "5675 " 5757 " 4584 " 4586 " 4655
10 1049 1007 1°154 "655 665 678 527 "529 537
1°2 1562 1785 "851 "875 003 "667 674 636
14 2°168 37861 1058 17103 1°162 "811 "824 "845
1'6 |—0"209 2°751 1'269 1°348 1464 "G56 "979 1011
1'8 |+1°414 3242 1°483 1°608 1831 17102 1°138 17187
2'0 |42°939 3 644 1'695 1884 2°334 17947 1°299 17372
22 | 2°800 3'979 1'904 9174 17302 1464 1°569
24 | 3230 4' 264 2°107 2°477 17534 1'631 1779
26 | 8581 1475 | 4513 2'305 2°793 1'675 1'795 2°006
2'8 | 3830 | 27122 | 4733 9’ 496 3122 1'813 1971 2°256
30 | 4141 2°5% | 4930 2'679 3'462 1°048 2'144 2530
32 | 4373 27966 | 5110 2" 856 3'814 2°081 2'319 2°873
3'4 | 4’582 3286 ! 5274 3°025 4178 2210 9 499 3'313
36 | 4774 3566 | 5496 37188 4'552 2336 2°669
3'8 | 4040 3816 5567 3 344 4'937 27459 27846
40 | 5112 | 40431 5699 37494 5332 2°579 3024
4'4 | 5406 | 4444 | 5940 87T 8151 27810 37384
4'8 | 5667 | 4791 6155 4°039 7°009 3029 3746
52 | 5903 | 5098 | 6°354 4983 7°008 37237 471192
56 | 6116 5314 | 6520 4’510 8 833 3'435 4" 480
60 | 6313 5625 6604 4'792 0'796 37623 4848
80 | 7111 | 6631 | 7868 5618 | 1508 4'439 6720
1000 | 77141 7°380 | 7882 6'318 | 21°08 57100 8616

SOLFDWAYIDIY UL SUOUDIYONT DIULOJyv)) Jo Asaaaii)] QLT

g "TIO0A ]



TABLE B

VsLuEs oF y AND 7 NEAR Maxima AND MINIMA OF y

©) (D) ) @ (H) ) R) (M)

Y r—70 | 71—70 Y Yy T—70 | TLTT Y ¥ T—T0 | T1—7 ¥ T T Y 1T y
151 | —3'501 |00 | 274236 |10 | 1097 | 00 | 1°1535 {0°00 | 0°0488 | 00 | 09217 | 0°0 | 271544 | 00 | 36771
152 —2748 + "1 | 24244 {1'1 | 17392 ‘1| 11822 | C92 [ 170012 1 9183 1 271528 ‘1 | 35751
153 | —2°133 | ‘2 | 274267 (12 | 1785 9 | 11482 | 94 ) 170784 2 9080 2 | 271480 ‘2 | 35602
1'54 | —1°697 | '3 | 274307 | 1'3 | 2°356 '3 | 171417 | "96 | 1'1608 '3 8008 "3 | 271399 '3 | 35503
1’551 —1°357 | "4 | 24362 | 14 | 3361 ‘4 | 171324 ) ‘08 | 172875 4 "8664 4 | 271286 4| 35454
1'56 { —1°080 | "5 | 274433 | 1'42 | 37688 '5 | 171204 | (99 4 13707 5 "8344 5 | 21140 ‘5 | 8526
UBT| — 845 | "6 | 24520 | 144 47114 6 | 171085 | 1700 | 175704 6 "7944 ‘6 | 270963 6 | 35058
158 | — ‘64l | "7 | 24624 | 1745 | 47385 7 | 170878 7 7458 7| 20753 7| 374802
159 | — "461 | "8 | 24744 | 146 4716 '8 | 1'0666 g: 6872 ‘2 | 20510 '8 | 374507
160 | — 200 | "9 | 274880 | 147 5'144 9 | 170422 9 6178 .| "9 | 20235 ‘9 | 34172
17 |+ 74 |10 | 25033 | 148 5745 10 | 170143 10 533 | 170 | 179928 | 10 | 373800
1'8 | +1°414 |[1°1 | 25204 | 1749} 6784 1'1 | 19588 | 11 | 3'3389
19 | 41874 [1°2 | 25301 [1°5016°78 12 | 19216 | 12 | 372040
20 | 42239 1°8 | 1'8810 | 1'3 | 82454

i T=7Tq
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ya=1"500123 | 2°60 | 1°4754 | yi=1"500009 r1=2"2003 T1=1"57063 mn=1"3215 r=3"3110 r1=4"2606

2°65 | 16648 $1=17000008

2770 | 1°8824
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There is no observational datum which would enable us to choose between these
different solutions. The data of observation are the coefficient of expansion, or Rg,
for which we can provisionally adopt Ep=2 . 10¥ cm, and the density, which is
still very uncertain. Instead of the density we can take 4, or, in connection with
Rg, P=3R %/2Rp*=3h%rpo. If once we have determined our choice of k and «, the
table (38) shows the values of P that are admissible.

When we have fixed our choice on a value of P, y is dertved from

(35) P=1—ky—+~y>
Then R,, which gives the seale, is found from
(56) Ry =§R32=R32<“¥"‘§2+;—3 .

It should be noticed that unless ¢ is very small, the value of B, depends practically
on Rg and v alone. ‘

In the solution (Q), £=0, v=0 we have P=1 and consequently F.%®=Rpz? but
R; and y are indeterminate. Three-dimensional space is in this case euclidean. The
fact that R, and y, and therefore R=R,y, are indeterminate does not therefore
represent any indeterminateness of the instantaneous three-dimensional spgce. On
the other hand, we have r— o= 2y%/3 and therefore R2(r— 70)2=4Rp%/9, or

(57) e(t—1o) =-§RB.

Adopting Rp=2 . 10¥ cm this would give {—1,=1'41 . 10% years. This solution (Q)
is the one of which the compatibility with our present day observational data was
recently pointed out by Einstein and de Sitter?. The coeflicient of expansion in
this system is given by 9
R32 = ngys =;Cg(t— t{))g,

and the density by -
3 4

58 = ==
(58) T RE T 3 (i—toy?

or

0717 . 10¥
587 =,
(58") Po =1 |

The value of vy is -+ 4/27 = 148148 if the pressure is neglected. Taking the valucs
(563) for the pressure terms we find from (50):

(C) 5o="02 vi= 148016 *
(FY ne="004 ~1=="148148.

In the expanding universes of the second kind P increases continually with the
time from zero to infinity, in those of the first kind from unity to infinity, except in
the case (B} where it passes through a minimum:

(E} Pmin =O‘ 139, ym€n=1'291; (T"— 70)min=1.833;

# Proceedings Nat. Acad. Sci, Washington, 18: 51 (1932).

22 This value was used for the computation by (51) of the data given in the tables A and B
above, The d:_a,g;ram, however, was drawn from s eomputation based on v;='151563. The dif-
ference is negligible on the scale of figure 8.
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In the oscillating solutions P decreases from unity to zero, except in the case (M)
where it passes through a maximum:

(1\’"[) Pma.rz 2‘21?; 'ymaa: = 1’ 826) (T“ Tﬂ) mazx = 1'210,
EXPANDING UNIVERSES OF THE SECOND KIND
t—1
k v 3 P - Ry107 —————
v Y T ' 10° years
(®)) 4-1 71 15 10 45 o 0683 w
(D) 41 410 2° 4236 10 5220 5126 0530 2:99
EXPANDING UNIVERSES OF THE FIRST KIND
k v P Yy r—7 Ru10m —
¢ . 10° years
(E) +1 +20 10 4023 5713 0784 4'82
(P) 0 410 10 47481 3831 2/3 270
Q) 0 0 i See formulae (57), (58), (58").
(X) -1 410 10 3746 2496 0'872 224
(L) —1 0 ) 10 9 7°663 0234 1'89
OSCILLATING UNIVERSES
* t“‘ta
k v "1 Period P Y T—7To R 10727 ————
10° years
) o1 17004 1371 0553 0°80
F 1 . 15 -
) . 7 0’5 0°521 0304 3762 121
X . . 01 1 1154 0632 077
1 401
(& +1 4710 1188 440 0’5 0'514 0298 2'842 121
01 0'g 0'049 0740 074
(H) +1 o 1 T 0’5 0’5 0"285 4 121
, ) , 01 0841 0'824 0'820 072
@) +1 —'10 0922 2643 0'5 0488 (274 £149 121
, _ ) 01 2080 2632 0211 056
01 3541 3834 0095 0’38
o5 3388 3281 0227 0'78
(M) —1 =10 8577 8521 1 3162 2:800 0°358 106

>

2'424 1°805 0750 1°43
1153 0°651 2'284 1'58

The above table gives the data for the different solutions given in figure 3.
T have taken P =10 for all expanding universes with the exception of (Q), of course,
which has P =1, and for the oscillating universes I have made the computations for
two values of P viz.: P=0"1 and P=0'5. In the solution (M) I have also added
P=1 and P=2. The latter gives, of course, two values of y with corresponding
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values of r— 7o and By, on both sides of the maximum. The corresponding densities
are given by ’

36+ pg=—— gr. cm™8,

(36%) = _

In order to get R=R,y and ¢f=F,r in centimeters, we must multiply y and =
by R,. It may be mentioned that 10¥ em=1"058 . 10° light years = 3'244 . 108

parsecs.
31. INDETERMINACY OF SOLUTION

It has already been pointed out that there is no observational evidence available
which would enable us to decide which of the several possible solutions represents
the actual universe, This is not because the data are not sufficiently accurate, but
because they are deficient in number. In order to define any particular solution we
require three things: the curve on which it lies, which is determined by k and «, the
position on the curve, given by y (or 7— 70), and the scale, which is determined by
R,. Astronomical observations give us only two data: the coefficient of expansion
and the density, Bz and B4 or Rp and P =31k4%/2Rzg% If P were known accurately, in-
stead of being indeterminate within the wide limits (37), some restrietion would be
placed on the choice of the solution, as is evident from the table (38). Thus if it were
certain that P exceeded unity, i.e. if the density were small, all oscillating universes
would be excluded, except those for negative curvature and negative «, and if P
were smaller than 1, the expanding solutions of the first kind would be impossible,
except for positive curvature and v > ~;. But the choice of the signs of the curvature
and of A, i.e. k and I, would still be free, and also the numerical value of v or A
would be undeterminable.

Sir Arthur Eddington® has recently published a remarkable formula, linking up
the numerical data referring to the universe with those referring to the electron.
As published by Eddington the formula reads

(59) ﬂ-_—i”fusm . 102,
R e :

where N is the number of protons, 1.e. the number of hydrogen atoms, in the universe
(or the number of protons and electrons, i.e. twice this number, Sir Arthur is not
quite sure on this point), and B is the “radius of curvature of the empty space be-
tween the particles of matter.” For this latter he takes the radius of the “‘empty
universe,’”’ solution B, i.e. he takes R=R¢. As to N, it is taken equal to M/H or
to 2M /m, M being the total mass of the universe, and 2 the mass of the hydrogen
atom. By M =x?R?p=3n2FK;/x (the pressure being neglected) we have then

N — BWERl

KH

or twice this value if the protons and electrons must both be counted. Eddington’s
formula thus becomes

=0'578 . 10MR,,

(60) B 107 . 10
Re?
or one-half of this value.

% Proceedings Royal Society. A.133: 605 (1931); M. N. 92: 3 (1931). See also the Observatory,
55, : 206 (1932). ‘
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The derivation of Eddington’s formula supposes, of course, a finite universe, and
therefore k= +1. It is conceivable that only a finite number of electrons®* (pre-
sumably depending on the number of degrees of freedom of the equations defining
what an electron is) would be distinguishable one from another. If this were so
there would be a physical basis for the finiteness of the universe—though not an
observational basis, but one depending on the strueture of our theory of the electron.
Whether this theory will admit such a conclusion to be drawn from it 1 am unable
to judge, but until this has been shown to be so, the assertion that the universe is
finite is a pure a priori assumption, which can be based only on philosophical or
metaphysical grounds. '

It might also be that the formula (60), or a similar one, could be derived without
involving the hypothesis of the finiteness of three-dimensional space. In that case
k would remain indeterminate.

If the formula (60) were accepted, then the observed density and the coefficient
of expansion, or P and Rp, would be sufficient to determine ail required character-
isties of the universe, if the values of I and k, i.e. the signs of X and the curvature, were
given a priori. We would then have given Rp, P, and {, and from R?y¥=FPEp* we
find

tPRg?=1R;vyys.
The equation (35) then gives, if we put x=~/F/y,

61) P-1

23 4-ke—ItPRg =0, (k, 1=-+1,0, —1)

from which 2 could be determined, and hence y, after which R, would be found by
(56) and then v would be given by

IR

R

(62) = ZRig'.

The values of I and %k would remain indeterminate. The value I=0, however, is
excluded by (60), since it requires R&= .

Tt is easily verified that the equation (61) gives exactly the same variety of §01u-
tions as (35), according to the different values of P, I, and l. Since P can be derived
only from observational data within the very wide limits given b"ff (87), the value (?f
2 derived from (61), and hence that of y, are extremely uncertain, and the same is
true of R and . Even the relation (60) would thus, in the pre‘sent state of. our
knowledge, not enable us to make a definite choice between the different solutions.

If we make an arbitrary decision regarding v, then R; and E¢ can be determined
from (60) and (62). Then the coefficient of expansion is given by (19), or (34), or
(56), or

’ 2
(63) o 2 = R_{zhz = —— —+—

2t This was suggested by Sir Arthur Eddington in a recent conversation with the writer.
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Omitting the last two terms we have h., = %/Rl 1/Re= ;/ v?, and, except for
very small values of ¥, the actual value of & will not differ much from k.. If we take,
with Sir Arthur Eddington, v= +4/27, the value for Lemaitre’s universe} this gives:

Ri=1"133 . 102, Ry =2044 . 1026, h, =3140 km/sec/10¢ ps

for the value (60) of ¢, and
R, =2'266 . 10%, R;=5"888 . 10%, L, =1570 km/sec/10% ps

if one-half of this value must be taken. This would be the Limiting value of the
coefficient of expansion for y= « (or very large) in Lemaltre’s universe, if Edding-
ton’s equation (60) is adopted. For y=23, i.e. twice the minimum value in Lemaitre’s
universe, the value of I is about two-thirds of the limiting value. With other values
of v we would, of course, get different results. The observed value of A would require
a considerably smaller value of k.. (unless y were very small), i.e, a larger value of v, L.e.
an expanding universe of the first kind.

I have dwelt rather long on the consequences of Eddington’s formula (59),
because, although at first sight it might seem to make the problem determinate by
adding one more datum, on cloger investigation it appears that even if it be adopted,
we can decide which of the several possible solutions represents our actual universe
only by making an a priori hypothesis, which is practically equivalent to the choice
of a particular solution.

If Eddington’s equation is not used, we have nothing to guide us, so we assume
a certain v, our choice being determined merely by personal preference. Then, since
the observed density is extremely uncertain, we practically make a rough guess at
it, l.e. at P, and then find y from (35) and ;% from (56). The value of R;, if y is not
too small, is largely independent of the adopted value of P, and depends practically
on the observed expansion and the assumed v alone. If, on the other hand, we
believe in Eddington’s formula, we find that in order to be able to use it we must, on
account of the same uncertainty of P, again practically assume a value of v; R
then again depends on this assumed value of v and on ¢, and P and y are found after-
wards. The only thing that we have gained is that the determination of P and vy
now depends on Eddington’s equation, instead of on the observed density.

32. Tur TiME SCALE

It will be noticed that the values of r— 7 are in all cases, with the exception of
(C), of the same order as y. If we multiply r— 7o by 1°058 . 10~%" R, we get the
time elapsed sinee y had its minimum value (either y. or zero) expressed in units
of a thousand million years. This time is extremely short, being of the order of the
age of the oldest rocks of the earth. In the case (C) the interval r— 7 is infinite,
but the infinity is only logarithmic: the time elapsed since ¥ was exactly . is infinite
but the time elapsed since y was, say 1'1 3. or even 1'01 1, is again of the same order
as in the other eases. The whole past history of the universe since it passed through
the minimum of y is compressed into a very short compass. And not only the past;
the same is true of the future. In the case of the oscillating universes, this is at
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once evident from the shortness of the periods. But also in the expanding cases,
with the exception of (Q) and (L), for which y=0, r— 7, increases as log ¢ for very
large values of 9. Thus, e.g. for the solutions (C), (D), and (E) we find that the
values of ¢(f —{o) expressed in units of 10° years for y = 10, 100, and 1000 are as follows:

v (©) () (I)
10 541 4'14 6'53
100 9'60 823 10°83
1000 13'81 1233 15'11

This shortness of the time scale is rather startling at first sight. As soon as the
theory of the expanding universe became generally known, the beginning of the
expansion was identified with the “beginning of the world,” or, since that phrase
has no definite physical meaning, with the beginning of the evolution of the stars
and stellar systems. Now this identification is entirely gratuitous. Suppose the uni-
verse were one of the oscillating kind, say (M) with P =1 (but any other case will
do just as well for my argument). Then the beginning of the expansion happened
106 . 10° years ago, and the maximum value of i will be reached in 0°55 . 10¢ years.
At that epoch ¥ will be stationary, and after that it will begin to decrease again,
first slowly and then more rapidly. There is no reason to call this stationary point
the ““end of the world.”” Nor is there any reason to call the stationary point of the
expanding solutions of the second kind, when ¥ is & minimum, the “beginning of the
world,” It appears to me that there is, at least in these cases, no indication whatever
of a direct connection between the expansion of the universe and the evolution of stars
and stellar systems. The two processes are going on simultaneously, but mainly inde-
pendently of each other. The question becomes more complicated for the universes of
the oscillating type or of the expanding type of the first kind in the neighborhood of
y=0. The density and the pressure then become enormous; as y approaches zero all
material velocities approach the velocity of light, as will be shown in the next article,
and it is impossible to say what will happen, since evidently in the limit, for y=0,
the equations are no longer applicable.

We can, of course, easily relegate the catastrophe to the time minus infinity, by
introducing another time variable, e.g. cr =x log y which willmake y=0forr=— .
If for ¥ we take the present value of Bz we will have at the present moment dr/dt=1.
There is nothing in our experience of the physical world that would enable us to
distinguish between the times T and ¢{. We do not know which of these times it is
that we use as independent variable in the equations of celestial mechanics, or by
which we measure the rate of progress of radio active disintegration, or of t}}e
evolution of a star, or of any other physical process. But the infimity would again
be only logarithmic, and, if the universe were of the oscillating type, or of the ex-
panding type of the first kind, we would still have enormous densities, pressures,
and material velocities at times only a few thousand million years inthe past.
The only conclusion we can draw from these considerations is that we are z}ot able,
with the means at present at our disposal, either theoretical or observational, to
extrapolate with certainty farther back into the past (or forward into the future)

than a few hundred million years.
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33. MotTion or MATERIAL PARTICLES

The equations of motion of a particle are the differential equations of the geodesic
(ID). Taking the line element (&) or
ds? = R.2( —y¥de®+dr%)

- we find easily?
. d d,g 2 +4<da ®dy dr

—_— ——

dr ds

dt? dy dr
252_ =0,
d&( y ( dr dS

where 8 =sin x\/_ /x~/k, so that x?8%0/ds is the expression for the “area.”” These
equations can be integrated at once, and they give:
d A8 e
=1 3 x82— P
ds Ryt ds R Y
7 and w being constants of integration. (The denominators £, and R;? are introduced
for later convenience.) Eliminating ds from (64) we find the differential equation
of the orbit, which proves to be the equafion of a geodesic in the three-dimensional
space with the line element do. We have thus in the three cases,

k=41 :tan x=1tan x, sec 6, tan o=sin xg tan 4
(65) E= 0: X =xp Sec g, o=xo tan @

k=—1 :sinh x=sinh ¢ coseec # tanho=sinh x, tan 6,
where x¢ is the minimum radius vector.

The velocity in this path, however, is not constant, as it would be if y were
constant (i.e.,in a static universe), but is given by the first of (64), from which, since

dr\? (
ds
dcr
ar ?*/ T
Consequently do/dr becomes infinite for y=0. The space of which the line element
1s do is, however, only a mathematical abstraction, introduced to make the equations

tractable and to bring out clearly the expansion. The line element of the true
physical space is Rdo=R,ydo. Remembering that R,dr=cd{ we have

?

(64)

we find
(66)

(66%) Rl o
it /122
which for y =0 becomes
Rdo’)
6? - = »
(67) T A

If y approaches zero, all material velocities approach the velocity of light.

%% See de Sitter, B. 4. N. V, 193: 217 (1930), where only the case k=--1 is considered. For k=0
and k= —1 however the results are the game,
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1f we wish to investigate the actual track of a material particle, we must, however,

not use (66%) but (66), which has the disadvantage that de/dr becomes infinite for
y=0. Combining with (33) we find, however,

(68) do__n__ . 1,
4 Nyt VQ

where
Q=B+ 40— by vyt

remains finite for 4y =0. The pressure quantity 5¢? in @ is an average of the values
of #* for all material particles in the universe. For y=0 we have thus

(dc 1

—~ R

Ayl /B4 |
which, though large, is not infinite. It should be noticed that it is independent of
the individual s, and consequently the same for all particles, whether they are slow-
or quick-mnoving for ordinary values of . We can thus carry out the integration of
(68) which must in 21l cases be done numerically. Then, choosing an arbitrary value
for xo, and taking o=0 for x=x., we can construct the track by means of (65).

Projecting on euclidean space by means of the formulae (17), and introducing rec-
tangular coordinates, we have for the three cases

x=r cos =R, y tan x¢

=+1: y=rsin =I5, ysec xotan o

_ . x=rcos =Ry xo
(69) e 0: y=rsin §=R,yo

p—_1. ¥—Tcos 6=R; y sinh x, cosh ¢
- " y=rsin =R,y sinh o '

Some examples have been computed and are represented in ﬁgurg 4. T have taken
rather large values of xo and large peculiar velocities 4, so as to bring out the char-
acteristic features of the trajectories near 4=0. The adopted data are:

7]='02, smh x0=0.1

I: Universe (I), k= —1,no="04 o' y=0'10

p="02, tan xo=0'1

I1 : Universe (B), k=-+1, 9a="02 o=0 for y=001

ﬂz’ﬂg, Xo= —02

III : Universe (Q), k=0, no="02 c=0 for y=0

n="04, x=01

IV : Universe (Q), k=0, wn0="02  _,%." 010

n="02, tan xo=0005

V : Universe (D), ké +1, no="02 o =0 for y=2'50
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Pigure 4
Some typical trajectories of material points in expanding universes of the first kind:
Iin (L), I1in (B), III and IV in (Q), and of the second kind: Vin (D). The unit of length
and time is the value of R; for each universe. The time marks along the curves I to IV
are at a distance of 0°001 up to 0-010, then at 0'002 up to 0040, and from there at 0°01 up to
0°10. The time =70 is at the origin in each of these cases. In curve V the time marks are
at a distance of 0'20 throughout, and the point r=7¢ is marked by a ceross. The points
=0 (x= xo) are marked by small cireles

The trajectories have been drawn to scale, the value of B, being taken as unit in
each case, and the scale is marked on all four sides of the diagram. The orientation,
i.e. the zero of position angle #=0, was differently chosen for each curve. The zero
point of 7, i.e. the point where x = xo, is indicated on each curve by a small circle,
except in the case I11 where it was taken in the origin, i.e. coinciding with the moment
when y =0. The values of the time ¢f = Ry~ have also been indicated along the curves,
the points marked by short bars being, for the cases I to IV those for &=(r— 7o) =0,
001, "002, . .. 009, 010, ‘012, ‘014, . . . "038, 040, '05, 06 . . . "09 and "10. The
multiples of 4-"010 are distinguished by the bar extending to both sides of the curve.
The increase of the velocity as ¢ approaches zero is very well shown by these time
marks. Of course all trajectories are, so to say, sucked into the origin at the time
T= 1719 When y=0,
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In case V the times marked are —=(r— 7) =0, 02, 04 ... 40, 42. The time
T=70 18 marked by a eross instead of a bar. It will be seen that in this case the
increase of the velocity near the minimum value of 3 1s not noticeable,? and neither

the point 7= 7, nor the point ¢ =0, x =1x, is at all different from any other points
on the trajectory.

We have throughout used the line element
(8) ds?= — Rda®}c2d?
with
da* =2}’1}Q Ypo A&y dEq,

because it is mathematically convenient for the description of the observed expan-
sion. But the coordinates in natural measure, corresponding to the galilean line
element that an observer naturally uses to describe the phenomena, in his neighbor-
hood, are not £; but z;=R&, or their projections on euclidean space x and y as
given by (69). We need only consider the radius vector, so we can take, for the sake
of argument, dy =da. The observed radial velocity is thus

(70) di. Eyd_o— "i“‘?'E =-—-m—«-—-—?} +?‘h.
edt dr R -\/yg—-}-ng

The second term is by far the preponderating term, and it represents the observed
recession of the spiral nebulae. The formula (70) is the most convenient for the pur-
pose of comparing the values of dr/dt of different objects at the same time, i.e. for
the same values of y and &, but different values of r and », but it is not convenient
for the integration. If we wish to determine the track of one particle, it is better to
perform the transformation to galilean coordinates after the integration, as has
been done in the present article. In the case of the expanding universes of the second
kind these trajectories are curves of a hyperbolic nature, such as V in the diagram,
very similar to the hyperbola described by a test body in the quasi-static solution
B.% It should be noted that the point of nearest approach to the origin in this case
is not necessarily the point corresponding to 7= 75, for which y has its minimum
value ¥z, but depends upon x, and 7, and will be reached at different times by dif-
ferent objects.

The statement that all material bodies, if abstraction is made of their mutual
interaction, deseribe trajectories of this nature, is equivalent to saying jcha,t the
universe expands in the manner required by the particular solution to which these
trajectories correspond. If this solution is an expanding solution of the 'se‘eond
kind, nothing very exceptional will happen at the time of Immmum y. If it is an
expanding solution of the first kind, or one of the oscillating universes, the parts
of the trajectories nearest the origin are of the nature of the curves I to IV of figure

. . o . . the
28 Tn fact there is a slight decrease of the veloeity in the projection on euclidean space, as
effect of the projection {gn magnifying the scale away from the origin exceeds the effect of the
change in the real velocity. ‘ ] e
27 Strictly speaking we should say dz;=Rdg;. Transformation to galilean coordinates Is
posgible only locally, and RdE; is not a complete differential.

2% See Appendix.
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4, all reaching the origin at the same time 7= r7¢. But evidently in this case the
mutual interactions cannot be neglected, and in actual nature the parts of the
orbits near the zero point must be very different from those represented in the
figure.

It should be noted, however, that, although in the idealized case—neglecting the
mutual interaction—all bodies reach the origin at the same epoch, they approach
it with very different velocities, and the perturbations of the orbits by the mutual
gravitation between them will begin to be appreciable at very different times for
different pairs of bodies. The simultaneity will thus be destroyed: the shortest
mutual distances between different pairs of bodies will not all be reached at the
same time, nor will the bodies pass exactly through the origin. It is of course impos-
sible to say exactly what will happen, or has happened, but evidently it cannot
have been entirely without influence on the development of the stars and galactic
systems. I think the effects of this influence can still be traced.

The spirals and our own galactic system are all rotating with periods of the order
of a few hundred million years. They are all very unhomogeneous in structure,
consisting of condensations, or star clouds, separated by regions of smaller density.
If the rotation had been going on undisturbed for a great many revolutions, this
unhomogeneity could not subsist. But if only a small number of revolutions (of
the order of ten) has been completed since a strong perturbation occurred, the unho-
mogeneity is of comparatively recent date, and has not yet had time to be smoothed
out. Also the spiral structure itself is most readily explained as an effect of tidal forces
resulting from a near approach. If, however, we compute the frequency of near
approaches of spiral nebulae on the basis of their average peculiar random motions,
and average distances apart at the present time, taking no account of the change
of size of the universe, we find that they should be very rare, the time between
encounters being more nearly of the order of 10 years, instead of 10°.

Also it is a significant coincidence that the minimum value of R occurred at
about the date of the birth of the planetary system. Modern theories ascribe the
origin of the planets to a near approach, or even a collision, of the sun and another
star. Evidently the chances that such a collision should occur were very much 1a,rger
at the epoch of minimum size of the universe than they are now.

It does not follow, however, that the minimum value of ¥ in our universe must
have been zero. Itis quite possible that the density at the minimum of an expanding
universe of the second kind will be large enough to increase the frequency of en--
counters sufliciently to produce these effects. There is no escape from the conclusion
that we do not know which of the possible solutions represents the actual universe.



APPENDIX
ON STATIC AND QUASI-STATIC (EMPTY) UNIVERSES

Although the static universes are, so to say, of only academic interest, it is perhaps
worth while briefly to consider their chief characteristic features.

34. ExisTENCE OF STATIC UNIVERSES AND TRANSFORMATION TO NON-STATIC ONES

We take again the line element
(8) ds*= — Rads*+vdi?

where now we suppose R to be a constant and v a function of the space coordinates
only. We suppose the three-dimensional line element de to have spherical symmetry

(71) do®=dx*+b(dy?+sin® ¢ dg%,

where b is a function of x only, and, on account of the spherical symmetry, » is
also a function of x only. Since we do not wish the origin of coordinates to be an
exceptional point, we have to add the further condition that the three-dimensional
space shall have the constant curvature k, and we can limit the values of k to +1,
0, and — 1. Then we have

/

k=-+41: b=sgin? x :———*2 cot x

?
(?2) : k"'—-‘ G M b=x2 .I?_:g
b x

14

k=—1": b=sinh? ¥ %=2 coth x.

In each case the invariant ¢ 6f the line element do is

2 12, 2b" ]
@0y ey

differential quotients d/dy being denoted by accents.
Further, we have

i

. 4 . , |
Gu = 3 Gu + y, G = 3G + 5 b’—:—: (F35 = Gaa 8In? ¢,
D

We take again the energy tensor
(9) Tpe= —GndP; Tpa=T4=0, Ti=gup, T=po=p—3p.
‘ [191]
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Then the field equations
1
(I) Gaﬁ_}\gaﬁ"'_K(Taﬁ_égaﬁT) =0

become o 1
@ Gut—+F e(p—p) | =0
| v

(73) 1.4 1 ,
@ G-t 5 b';‘l‘sz [7\"?‘5 k(p— 1) =0,

7 ¥ r 1
(74) ?——l-b— R n—k(p+3p) | =0.
v b v 2

Since the three-dimensional space do must have the constant curvature & we must
have ‘
v @ Goot 2675, =0,
from which we find, by comparison with (73) the conditions
@J! 1 bf ?)1

T

(75) Y

LR [>~+%x<p—p>]=zk,

g being a constant. Substituting in (74) we find

1 1
=—2 R*N—= 3p) 1,
7=—3 ] 2%(9—1- ]
and consequently we have
?\-—}—s{p=-§—’€]—z
(76) 2(k-+q)
(o)==

which can be compared with the equations (20) for the non-static universes, and of
which (11A) and (11N) are special cases.

The equations (75) determine ». In the different cases we have by (72)

L r

k=-+1: ﬁ—=g tan ¥, 2—xq«}—(gg—%—q) tan? x.
v ¢
Since also " /v=yg, we must have ¢*+¢=0. Consequently there are two
possibilities:
g= 0 :v=c (solution A} s{p~t+p)= E,

R2
g=—1:v=c cos x (solution B) «(p+p)=0.

Z 7

E=0: ~=gx, =g+
v Y
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"The only possibility is

g=0 : v=c(solution N) k(p+p)=0
o=—1: v v
T ;'T‘Q tanh x, ;—“—“q-i-(g?—-q) tanh®y.

We have again two possibilities, viz.:

g=1 :v=c¢ cosh x (solution 8) x(p+p)=0,
2
g=0:1v=c k(p+p)=—=.
R2
'This ia,gt solution thus gives a negative density. It can therefore be dismissed
as impossible in nature, and the solution (A) is the only possible static solution with
a finite positive density. The solutions (B), (N), and (8) have p+p=0, and are
thus “empty universes.”’ All of these are only quasi-statie, and can be transformed
to non-static golutions, in which E is g function of the time, while v=c is constant.
If we denote by doi the line element of a three-dimensional space of constant
curvature & (k=-41, 0, or — 1), the condition that a transformation shall be possible
such as

—do2rdft = —yrdop+d i,

» being a function of the radius vector x only, and ¥ a function of the time 7 only,
is easily found to be (a dot denoting differentiation with respect to 7)

(77) y*—ky>+1=0,
which gives for ¥ the values of the non-static solutions
(By), (Bo), (B, (No), (N, and (8),

For v we find then, independent of [,

k=-+1": V=C08 X

k= 0: v=1

k=1 z=cosh x,
agreeing with the static forms (B), (N}, and (S) of the solutions. Comparing (77)
with the equation for the non-static universe (in which we interchange l and k&)

(43) g;z—zcy%z-;--g—:o

we find that the transformation is possible for empty universes a=0 only. This is
equivalent to saying that the transformation of a static into a non-static solution
is possible only if the four-dimensional space-time has constant curvature. This
requires Gag+3 ¢'gos =0, from which by the equations given above we find

3¢ = — [x—;—éx(p—'p) =- [?k—él-fc(p—l-Sp) 1,
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giving «{p-+p) =0, i.e. an empty universe. The curvature of four-dimensional space-

time is found to be

.1 ok
€ m“‘g()\‘}'ﬁ}))”“ﬁa

The actual transformations are easily found. We put, for brevity,

de? =dpt-+sin?  dé*.
Then

(B): ds?= — (dx®+sin? x de*) +cos® x di?

is transformed as follows:
sin x =cosh r sin p, tanh ¢==tanh + sec p

(By) ds? = —cosh? 7(dp*+sin %p de?)+d-?,
sin x =1 %, t=wu-}lg sec x
(Bo) ds? = —e(dr2r? do?) +du?,
sin y =sinh » sinh , tanh {=tanh » cosh
(B_) ds? = —sinh? »(dw?--sinh?® w de¢*) +de’.
(N): ds? = — (dx-+x? de?) +dt?
gives
xX=7, l=1u
(No) ds?= — (dr?-r2de?) +-du?,
_ x=v» sinh w, {=7v cosh w
. (N ds?=— 2(det+sinh? o dg?)+dr
(S) + ds? = — (dx2+sinh? x de?) Fcosh? x di2

is transformed as follows:
sinh x=sin » sinh w, tan {=tan » cosh w
)] ds?= —sin? v {dw?+}sinh? w d?) +di

We find thus again all the empty universes of art. 25, and no others.

35. Momrtow oF MATERIAL PARTICLES

In order to investigate the motion of a material particle in the different static
universes A, B, N, and 8, we have to construct the equations of the geodesic. The
integration of the first three of these gives the equation of energy and the equation
of areas. Then the equation of the track is found by elimination of ds from these
two. The fourth equation of the geodesic, giving d2f/ds?, is in all cases easily inte-
grated, enabling us to replace ds by di in the equation for the velocity or for the
area, and, by integration of the resulting equation, to derive the expression for the
coordinates as functions of the time. '
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For-the cases A .a.nd B the results have been worked out long ago.?®* In A the
track is a geodesic in the space do which is described with uniform velocity.

In B it is best to use the projection on euclidean sp 7
Lr . pace by the formulae (17
taking r =R tan x. The line element is 4o,

(78) gt . ar*  rdyi+sin®y d 67 I di?
T2 \2 r2 re
1+4+— 14— —
( +Rz ) +R2 1 R?

The equation for the track is found to be

EZ_I:)Q _ et —a®) (0 +-b)
df b ’

which gives the hyperbola

and we have ,
x=qa cosh ¥, y=0sinh u, u=R({—1).

The coordinates x and y thus increase continually with the time: the universe is
expanding.
The radial velocity is given by

dr\z 12 a? b?
79 Py {12 v
(79) (dt ik (1 r2) (1_!_1*2)

The semi-axes of the hyperbola are a=r,, b=Rv,, r; being the minimum distance
from the origin, and vo=r.(d8/dt), the velocity at that point.

Since in the line element (78) g4 differs from unity, there will be a displacement
of all spectral lines toward the red amounting to |

: _ 5
(30) (}"1 )‘) =E I
A /1 2 R?

~ Superimposed on this will be the Doppler effect due to the velocity (79). In 1917,

when the solution B was first discovered, it was not realized that the velocity dr/di,
of which only the square is determined by (79), would always be positive, and it
was thought that this Doppler effect would not he systematic, the red shift (80)
being the only systematic effect. The velocities are, however, all positive; in other
words, all observable bodies are on the receding branches of their respective hyper-
bolas, having passed the apex long ago, so that none remain on the approaching
branches. The Doppler effect is a first-order effect, being proportional to r/E. Since
(80) is a second-order term, we must compute the Doppler effect by the rigorous
formula correct to the second order. We then find for a velocity g:

M—AY __:_L 5
( N )Q q 2?}

2 de Sitter, M. N. lxxviii: 14-19 (1917).
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and, taking g=dr/dt=r/R, we find that the red shift (80) is exactly cancelled, leav-
ing only the linear effect N—\ T

e TR s

» R

in exact agreement with the result from the theory of the expanding universe.

In the case N we have the ordinary Newtonian mechanics: the inertial track of a
particle is a geodesic in euclidean space described with constant velocity.

Finally, in the case 8, of which the line element, if we use again the projection on

euclidean space, 1s
ds? = ——~di3—~—r2(d¢2+sia2 ¥ d6?) +(1 4%2) di,
(5
we find the equation of the track

(dr>2 _ r¥{r?—a®) (b% —1r?) ’
7]

ah?

d

which is the differential equation of the ellipse

T2 yz _
a}‘;‘*‘?— 1:

and we have again a=r,, b= Rv,.
The equation of areas, rgdﬁ/ds=constant, is satisfied, as in all other cases. The
expression for the radial velocity becomes rather complicated. It is

2

(dr)z_ rz(l ae)(i)g 1) (l—f‘ﬁ
dat/ RN r/\p* o2 b
()

The orbit being an ellipse the universe is of the oscillating kind, which is verified
by the transformation to the non-static form given above.

2




