98 research outputs found

    Devenlopment of Compact Small Signal Quasi Static Models for Multiple Gate Mosfets

    Get PDF
    En esta tesis hemos desarrollado los modelos compactos explícitos de carga y de capacitancia adaptados para los dispositivos dopados y no dopados de canal largo (DG MOSFETs dopados, DG MOSFETs no dopados, UTB MOSFETs no dopados y SGT no dopados) de un modelo unificado del control de carga derivado de la ecuación de Poisson. El esquema de modelado es similar en todos estos dispositivos y se adapta a cada geometría. Los modelos de la C.C. y de la carga son completamente compatibles. Las expresiones de la capacitancia se derivan del modelo de la carga. La corriente, la carga total y las capacitancias se escriben en términos de las densidades móviles de la carga en los extremos de fuente y drenador del canal. Las expresiones explícitas e infinitamente continuas se utilizan para las densidades móviles de la carga en la fuente y drenador. Las capacitancias modeladas demuestran el acuerdo excelente con las simulaciones numéricas 2D y 3D (SGT), en todos los regímenes de funcionamiento. Por lo tanto, el modelo es muy prometedor para ser utilizado en simuladores del circuito. Desafortunadamente, no mucho trabajo se ha dedicado a este dominio de modelado. Las cargas analíticas y las capacitancias, asociadas a cada terminal se prefieren en la simulación de circuito. Con respecto al SGT MOSFET, nuestro grupo fue el primero en desarrollar y publicar un modelo de las cargas y de las capacitancias intrínsecas, que es también analítico y explícito. La tesis es organizada como sigue: el capítulo (1) presenta el estado del arte, capítulo (2) el modelado compacto de los cuatro dispositivos: DG MOSFETs dopados, DG MOSFETs no dopados, UTB MOSFETs no dopados y SGT no dopados; en el capítulo (3) estudiamos las capacitancias de fricción en MuGFETs. Finalmente el capítulo (4) resuma el trabajo hecho y los futuros objetivos que necesitan ser estudiados. Debido a la limitación de los dispositivos optimizados disponibles para el análisis, la simulación numérica fue utilizada como la herramienta principal del análisis. Sin embargo, cuando estaban disponibles, medidas experimentales fueron utilizadas para validar nuestros resultados. Por ejemplo, en la sección 2A, en el caso de DG MOSFETs altamente dopados podríamos comparar nuestros resultados con datos experimentales de FinFETs modelados como DG MOSFETs. La ventaja principal de este trabajo es el carácter analítico y explícito del modelo de la carga y de la capacitancia que las hace fácil de implementar en simuladores de circuitos. El modelo presenta los resultados casi perfectos para diversos casos del dopaje y para diversas estructuras no clásicas del MOSFET (los DG MOSFETs, los UTB MOSFETs y los SGTs). La variedad de las estructuras del MOSFET en las cuales se ha incluido nuestro esquema de modelado y los resultados obtenidos, demuestran su validez absoluta. En el capítulo 3, investigamos la influencia de los parámetros geométricos en el funcionamiento en RF de los MuGFETs. Demostramos el impacto de parámetros geométricos importantes tales como el grosor de la fuente y del drenador o, el espaciamiento de las fins, la anchura del espaciador, etc. en el componente parásito de la capacitancia de fricción de los transistores de la múltiple-puerta (MuGFET). Los resultados destacan la ventaja de disminuir el espaciamiento entre las fins para MuGFETs y la compensación entre la reducción de las resistencias parásitas de fuente y drenador y el aumento de capacitancias de fricción cuando se introduce la tecnología del crecimiento selectivo epitaxial (SEG). La meta de nuestro estudio y trabajo es el uso de nuestros modelos en simuladores de circuitos. El grupo de profesor Aranda, de la Universidad de Granada ha puesto el modelo actual de SGT en ejecución en el simulador Agilent ADS y buenos resultados fueron obtenidos.In this thesis we have developed explicit compact charge and capacitance models adapted for doped and undoped long-channel devices (doped Double-Gate (DG) MOSFETs, undoped DG MOSFETs, undoped Ultra-Thin-Body (UTB) MOSFETs and undoped Surrounding Gate Transistor (SGT)) from a unified charge control model derived from Poisson's equation. The modelling scheme is similar in all these devices and is adapted to each geometry. The dc and charge models are fully compatible. The capacitance expressions are derived from the charge model. The current, total charges and capacitances are written in terms of the mobile charge sheet densities at the source and drain ends of the channel. Explicit and infinitely continuous expressions are used for the mobile charge sheet densities at source and drain. As a result, all small signal parameters will have an infinite order of continuity. The modeled capacitances show excellent agreement with the 2D and 3D (SGT) numerical simulations, in all operating regimes. Therefore, the model is very promising for being used in circuit simulators. Unfortunately, not so much work has been dedicated to this modelling domain. Analytical charges and capacitances, associated with each terminal are preferred in circuit simulation. Regarding the surrounding-gate MOSFET, our group was the first to develop and publish a model of the charges and intrinsic capacitances, which is also analytic and explicit. The thesis is organized as follows: Chapter (1) presents the state of the art, Chapter (2) the compact modeling of the four devices: doped DG MOSFETs, undoped DG MOSFETs, undoped UTB MOSFETs and undoped SGT; in Chapter (3) we study the fringing capacitances in MuGFETs. Finally Chapter (4) summarizes the work done and the future points that need to be studied. Due to the limitation of available optimized devices for analysis, numerical simulation was used as the main analysis tool. However, when available, measurements were used to validate our results. The experimental part was realised at the Microelectronics Laboratory, Université Catholique de Louvain, Louvain-la Neuve, Belgium. For example, in section 2A, in the case of highly-doped DG MOSFETs we could compare our results with experimental data from FinFETs modeled as DG MOSFETs. The main advantage of this work is the analytical and explicit character of the charge and capacitance model that makes it easy to implement in circuit simulators. The model presents almost perfect results for different cases of doping (doped/undoped devices) and for different non classical MOSFET structures (DG MOSFET, UTB MOSFETs and SGT). The variety of the MOSFET structures in which our modeling scheme has been included and the obtained results, demonstrate its absolute validity. In chapter 3, we investigate the influence of geometrical parameters on the RF performance in MuGFETs. We show the impact of important geometrical parameters such as source and drain thickness, fin spacing, spacer width, etc. on the parasitic fringing capacitance component of multiple-gate field-effect transistors (MuGFET). Results highlight the advantage of diminishing the spacing between fins for MuGFETs and the trade-off between the reduction of parasitic source and drain resistances and the increase of fringing capacitances when Selective Epitaxial Growth (SEG) technology is introduced. The goal of our study and work is the usage of our models in circuit simulators. This part, of implementing and testing our models of these multi gate MOSFET devices in circuit simulators has already begun. The group of Professor Aranda, from the University of Granada has implemented the SGT current model in the circuit simulator Agilent ADS and good results were obtained

    Two dimensional quantum and reliability modelling for lightly doped nanoscale devices

    Get PDF
    The downscaling of MOSFET devices leads to well-studied short channel effects and more complex quantum mechanical effects. Both quantum and short channel effects not only alter the performance but they also affect the reliability. This continued scaling of the MOS device gate length puts a demand on the reduction of the gate oxide thickness and the substrate doping density. Quantum mechanical effects give rise to the quantization of energy in the conduction band, which consequently creates a larger effective bandgap and brings a displacement of the inversion layer charge out of the Si/SiO2 interface. Such a displacement of charge is equivalent to an increase in the effective oxide layer thickness, a growth in the threshold voltage, and a decrease in the current level. Therefore, using the classical analysis approach without including the quantum effects may lead to perceptible errors in the prognosis of the performance of modern deep submicron devices. In this work, compact Verilog-A compatible 2D models including quantum short channel effects and confinement for the potential, threshold voltage, and the carrier charge sheet density for symmetrical lightly doped double-gate MOSFETs are developed. The proposed models are not only applicable to ultra-scaled devices but they have also been derived from analytical 2D Poisson and 1D Schrodinger equations including 2D electrostatics, in order to incorporate quantum mechanical effects. Electron and hole quasi-Fermi potential effects were considered. The models were further enhanced to include negative bias temperature instability (NBTI) in order to assess the reliability of the device. NBTI effects incorporated into the models constitute interface state generation and hole-trapping. The models are continuous and have been verified by comparison with COMSOL and BALMOS numerical simulations for channel lengths down to 7nm; very good agreement within ±5% has been observed for silicon thicknesses ranging from 3nm to 20nm at 1 GHz operation after 10 years

    Analytical predictive 2d modeling of pinch-off behavior in nanoscale multi-gate mosfets

    Get PDF
    In this thesis the pinch-off behavior in nanoscale Multi-Gate MOSFETs was reviewed and with compact models described. For this a 2D approach with Schwarz-Christoffel conformal mapping technique was used. A model to calculate the current in single gate MOSFETs was derived and compared to device simulations from TCAD Sentaurus down to 50nm. For the DoubleGate MOSFET a new way to define the saturation point was found. A fully 2D closed-form model to locate this point was created. It was also found that with quantum mechanics effects a pinch-off point can occur and can be described with the same model. Furthermore the model was extended to describe the coupled pinch-off points in an asymmetrical biased DoubleGate MOSET with an even an odd mode. Also the saturation point behavior in FinFETs was examinated

    Studies of short channel effects and Performance enhancement of nano-mosfet Based on multi-objective genetic algorithm Approach

    Get PDF
    The nano-scale devices face a major issue i.e Short Channel Effects, as a result of which the performance of the devices degrade. To enhance the performance of such devices, the SCEs should be reduced. This thesis contributes to enhance the performance of nano-scaled DG MOSFET by re-ducing the short channel effects. To approach towards the main objective of the thesis, a study has been done on analytical modeling of undoped symmetric DG MOSFET. Then, to get the picture of SCEs, the electrical parameters such as maximum Drain current(Ion),Leakage current(Ioff ), Sub threshold Swing (SS), Threshold voltage (Vth ), and Drain In-duced Barrier Lowering (DIBL) are analytically derived by solving 2-dimensional Poisson’s equation and the same are studied with the variation of design parameters such as L, tsi and tox. To validate such analytical models, SCEs are studied using ATLAS device simulator. Graded Cannel engineering techniques are used for reduction of SCEs. For further reduction or minimization of SCEs, a multi-objective optimization technique is used to enhance the accuracy with optimum design parameters. To validate the optimized structure, a simulated model is built with those optimized values of the design parameter and the performance of the device is compared with the existing result [32]

    Analitical modeling for square gate-all-around MOSFETs

    Get PDF
    Two analytical models for square Gate All Around (GAA) MOSFETs has been introduced. The first part of this report include a quantum viewpoint and this first work has been published, while the second part approach a classical developed. With the model developed in the first part, it is possible to provide an analytical description of the 2D inversion charge distribution function (ICDF) in square GAA MOSFETs of difeerent sizes and for all the operational regimes. The accuracy of the model is verified by comparing the data with that obtained by means of a 2D numerical simulator that self-consistently solves the Poisson and Schrödinger equations. The expressions presented here are useful to achieve a good description of the physics of these transistors; in particular, of the quantization effects on the inversion charge. The analytical ICDF obtained is used to calculate important parameters from the device compact modeling viewpoint, such as the inversion charge centroid and the gate-to-channel capacitance, which are modeled for different device geometries and biases. The model presented accurately reproduces the simulation results for the devices under study and for different operational regimes. Anyway the second part of this report is focus on square GAA MOSFETs with a classical view point, which have not been analytically described in depth due to their particular geometrical complexity. The analytical description of cylindrical GAA MOSFETs is simpler since the symmetry of the structure around the rotation angle allows a 1D description, accounting just for the radial component. In the case of square GAA MOSFETs other modeling strategies are necessary, as will be shown below. Firstly, a technique to obtain analytical functions which are solutions of the 2D Poisson equation where the charge density in the silicon channel has been calculated, and the total inversion charge is introduced. Among all these functions a simple one for the electric potential in the silicon core of the square GAA MOSFETs was proposed. Secondly, the model introduced has been used to calculate the total inversion charge making use of Gauss's Law. The models obtained are finally validated with simulations data obtained with a 2D simulator developed in our group for Multiple-gate MOSFETs.Universidad de Granada. Departamento de Electrónica y Tecnología de los Computadores. Máster Métodos y Técnicas Avanzadas en Física (MTAF)This work was partially carried out within the framework of Research Projects of Department of Electronic and Computer Technology from the Faculty of Sciences, University of Granada

    Compact modeling of the rf and noise behavior of multiple-gate mosfets

    Get PDF
    La reducción de la tecnología MOSFET planar ha sido la opción tecnológica dominante en las últimas décadas. Sin embargo, hemos llegado a un punto en el que los materiales y problemas en los dispositivos surgen, abriendo la puerta para estructuras alternativas de los dispositivos. Entre estas estructuras se encuentran los dispositivos DG, SGT y Triple-Gate. Estas tres estructuras están estudiadas en esta tesis, en el contexto de rducir las dimensiones de los dispositivos a tamaños tales que los mecanismos cuánticos y efectos de calan coro deben tenerse n cuenta. Estos efectos vienen con una seria de desafíos desde el pun to de vista de modelación, unos de los más grandes siendo el tiempo y los recursos comprometidos para ejecutar las simulaciones. para resolver este problema, esta tesis propone modelos comlets analíticos y compactos para cada una de las geometrías, validos desde DC hasta el modo de operación en Rf para los nodos tecnológicos futuros. Dichos modelos se han extendido para analizar el ruido de alta frecuencia en estos diapositivos

    An analytical model for the inversion charge distribution in square GAA MOSFETs with rounded corners

    Get PDF
    In this work we introduce an analytical model for square Gate All Around (GAA) MOSFETs with rounded corners including quantum effects. With the model developed it is possible to provide an analytical description of the 2D inversion charge distribution function (ICDF) in devices of different sizes and for all the op erational regimes. The accuracy of the model is verified by comparing with data obtai ned by means of a 2D numerical simulator that self-consistently solves the Poi sson and Schr ̈odinger equations. The expressions presented here are useful to achieve a good d escription of the physics of these transistors; in particular, of the quantization effect s on the inversion charge. The analytical ICDF obtained is used to calculate important par ameters from the device compact modeling viewpoint, such as the inversion charge ce ntroid and the gate-to- channel capacitance, which are modeled for different device g eometries and biases.Universidad de Granada. Departamento de Electrónica y Tecnología de los Computadores. Máster Métodos y Técnicas Avanzadas en Física (MTAF)

    Simulation of FinFET Structures

    Get PDF
    The intensive downscaling of MOS transistors has been the major driving force behind the aggressive increases in transistor density and performance, leading to more chip functionality at higher speeds. While on the other side the reduction in MOSFET dimensions leads to the close proximity between source and drain, which in turn reduces the ability of the gate electrode to control the potential distribution and current flow in the channel region and also results in some undesirable effects called the short-channel effects. These limitations associated with downscaling of MOSFET device geometries have lead device designers and researchers to number of innovative techniques which include the use of different device structures, different channel materials, different gate-oxide materials, different processes such as shallow trench isolation, source/drain silicidation, lightly doped extensions etc. to enable controlled device scaling to smaller dimensions. A lot of research and development works have been done in these and related fields and more remains to be carried out in order to exploit these devices for the wider applications
    corecore