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ABSTRACT  

The downscaling of MOSFET devices leads to well-studied short channel 

effects and more complex quantum mechanical effects. Both quantum and short 

channel effects not only alter the performance but they also affect the reliability. This 

continued scaling of the MOS device gate length puts a demand on the reduction of the 

gate oxide thickness and the substrate doping density. Quantum mechanical effects give 

rise to the quantization of energy in the conduction band, which consequently creates a 

larger effective bandgap and brings a displacement of the inversion layer charge out of 

the Si/SiO2 interface. Such a displacement of charge is equivalent to an increase in the 

effective oxide layer thickness, a growth in the threshold voltage, and a decrease in the 

current level. Therefore, using the classical analysis approach without including the 

quantum effects may lead to perceptible errors in the prognosis of the performance of 

modern deep submicron devices. 

 

In this work, compact Verilog-A compatible 2D models including quantum 

short channel effects and confinement for the potential, threshold voltage, and the 

carrier charge sheet density for symmetrical lightly doped double-gate MOSFETs are 

developed. The proposed models are not only applicable to ultra-scaled devices but they 

have also been derived from analytical 2D Poisson and 1D Schrödinger equations 

including 2D electrostatics, in order to incorporate quantum mechanical effects. 

Electron and hole quasi-Fermi potential effects were considered.  The models were 

further enhanced to include negative bias temperature instability (NBTI) in order to 

assess the reliability of the device. NBTI effects incorporated into the models constitute 

interface state generation and hole-trapping. The models are continuous and have been 

verified by comparison with COMSOL and BALMOS numerical simulations for 

channel lengths down to 7nm; very good agreement within ±5% has been observed for 

silicon thicknesses ranging from 3nm to 20nm at 1 GHz operation after 10 years.    
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CHAPTER 1 

INTRODUCTION 

 

1.1 SEMICONDUCTOR HISTORY BRIEF 

Gordon Moore published his renowned paper in1965, in which he anticipated 

that the quantity of transistors per chip would increase fourfold in at regular intervals 

[1]. This forecast has subsequently been known as Moore's law and been strikingly 

followed by the semiconductor industry throughout the past four decades as shown in 

Figure 1. 

The initiative taken by semiconductor organizations and the academic 

community since the early 90's to foresee precisely the future of the industry brought 

forth the International Technology Roadmap for Semiconductors (ITRS) organization 

[2]. 

The ITRS issues a yearly report that portrays the sort of technology, outline 

devices, hardware and metrology devices that should be produced to keep pace with the 

exponential advancement of semiconductor devices anticipated by Moore's law. The 

semiconductor industry’s pillar technology is silicon CMOS, and the CMOS building 

block is the MOS field-effect transistor (MOSFET).  

 

Figure 1.1 Figure 1 ITRS Product Technology Trends: Product Functions/Chip and Industry 

Average “Moore’s Law” Trends. [3] 



2 

 

To keep up with the frantic pace predicted by Moore's law, every three years 

transistor dimensions were decreased by half. The sub-micron dimension limitation was 

overcome in the 1980's, and by 2010 manufacturers created transistors with a gate 

length of 32 nm. Despite the fact that the first integrated circuit transistors were 

manufactured on "bulk" silicon wafers, by the end of the 1990’s it became evident that 

notable performance enhancement could be achieved by using a new substrate, called 

Silicon-On-Insulator(SOI) with which transistors are made in a thin silicon layer 

layered on top of a silicon dioxide layer.  

 

SOI improves not only circuit speed, but also power utilization. In the 2000's, 

real semiconductor organizations, including IBM and AMD, started fabricating chips 

utilizing SOI substrates on a large industrial scale. SOI devices have a decreased 

parasitic capacitance and an improved current drive. 

 

 

1.2 MOSFET TECHNOLOGY OVERVIEW 

There are major challenges affecting the achievement of the goals of the 

semiconductor industry, which are increasing the clock speed, the number of transistors 

per chip, and the memory storage density, as well as reducing the power dissipation to 

increase the chip yield.  

 

The ITRS is responsible for highlighting these requirements on a periodical 

basis. So far, the device dimensions have been consistently scaled as explained in the 

previous section, until reaching the current 14nm channel length. The nanoscale 

dimensions of the current technology node cause a decrease in the gate’s potential 

distribution and channel current flow control. This is chiefly a result of the nearness of 

the source and drain in nanoscale devices. Thus, the electrostatics of devices in the 

nanoscale regime are affected by unwanted short channel effects (SCE). The most 

notable short channel effects are [4]:- 

- Charge sharing (causes a threshold voltage roll-off) 

- Punch-through (causes a degradation in the subthreshold slope) 

- Drain-induced barrier lowering (DIBL) (the injection of electrons from 

source to channel is affected by the closeness of the source and drain 
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terminals, thus affecting the electron injection barrier between source and 

channel.)  

These short channel effects are the reason behind the modelling and fabrication 

of multiple gate devices, which are shown in Figure 1.2. These devices include: Double 

Gate, Triple Gate, and Quadruple Gate MOSFETs. These multi-gate structures have an 

improved gate control that is much stronger than standard and planar bulk MOSFETs. 

The robust gate control stems from the increase in the electric field of multi-gate 

structures, thereby enhancing their electrostatics. Most of the time, the word double 

gate refers to the presence of one gate electrode on two opposite sides of the device. 

Likewise, the term triple gate is used when the gate electrode is folded over three sides 

of the device. [4] 

 

Moving into the deca-nanometer regime has brought the effects of quantization 

to the industry’s attention, seeing as quantization is inevitable if the device channel 

thickness has the same order of magnitude as the de Broglie wavelength [5]. This adds 

to the complication of nanoscale modelling as complex mathematical and physical 

modelling is required to correctly predict the device behavior. Furthermore, deca-

nanometer device fabrication is another added issue, since the doping fluctuates at these 

dimensions. [6] 

 

Partially Depleted (PD) SOI single gate MOSFETs were used in high 

temperature applications before becoming the conventional device for microprocessors 

with high performance. In order to improve the subthreshold slope and current drive, a 

contact between the body and gate is created which improves the body effect factor. 

However, this contact causes the device to not operate effectively if the supply voltage 

is below 1 volt. Fully Depleted SOI MOSFETs already have an improved subthreshold 

slope, drive current, and body effect factor due to superior coupling between the gate 

and the channel. Hence, they are mostly used in low voltage and power applications. 

[7], [8] 
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Figure 1.2 Multi-Gate Transistors [4] 
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Double-gate MOSFETs were first introduced as XMOS transistors in the work 

published in 1984 [9]. The transistor was named an XMOS transistor because its cross 

section resembled the Greek letter Xi (Ξ). The research’s findings are summarized in 

the fact that short channel effects can be reduced by placing a Fully Depleted SOI 

MOSFET between two gate electrodes that are interconnected. Thus, the channel 

depletion region is better controlled through the reduction of the drain’s electric field 

on the channel. Three years later, a research group published the paper in [10] which 

highlighted the volume inversion property in DG devices.  

 

Classical device physical modelling predicted confinement at the Si/SiO2 

interface; however, it was later discovered that carriers in multi-gate MOSFETs are 

confined at the center of the silicon film rather than the Silicon/Oxide interface. In 1990, 

volume inversion was observed for Gate-All-Around (GAA) structures. The structure 

of the GAA at that time included a polySi gate electrode surrounding the channel 

region’s entirety. The width of the device was larger than that of the silicon thickness, 

hence, the device was actually a DG MOSFET; particularly due to the lack of 

contribution of the side gates to the electrostatic channel control. This is shown in 

Figures 1.3 and 1.4 [11] 

 

The first double-gate MOSFET to be fabricated was the DELTA MOSFET in 

1989 [12]. DELTA stands for “fully DEpleted Lean channel TrAnsistor”. This 

transistor was made as a vertical ultra-thin MOSFET with selective field oxide for SOI 

isolation. This vertical tall thin silicon was called a “fin”. The cross section of the 

DELTA MOSFET is shown in Figure 1.5. It is also interesting to note that the FinFET 

structure is similar to that of the DELTA device, with the exception of a hard mask on 

the silicon fin. This hard mask is comprised of a dielectric layer and is used to eliminate 

parasitics at the top corners. [13] There are other implementations of double-gate 

MOSFETs; those include [11]: 

- FinFET 

- SON (Silicon-on-Nothing) MOSFET 

- MFXMOS (Multi-Fin XMOS) 

- Triangular-wire SOI MOSFET 

- ∆-channel SOI MOSFET 



6 

 

 

Figure 1.3 Original GAA structure [11] 

 

 

Figure 1.4 TEM Cross Section of the Original GAA device [11] 

 

 

 

Figure 1. 5 DELTA DG MOSFET [12] 
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1.3 DEVICE MODELLING FOR CIRCUIT DESIGN 

The production cost and time consumed in design and manufacture are one of 

the major challenges in today’s field of circuit design. EDA (Electronic Design 

Automation) tools are the pillar of cost and time reduction for design, synthesis for 

masks, and simulation of discrete devices. EDA tools enable the designer to analyze the 

entirety of a semiconductor chip to guarantee proper functionality. The majority of the 

environment variables can be controlled through the EDA tools; such as temperature, 

power supply variations, dopant fluctuation, and statistical variations resulting from 

line/edge roughness. [14] 

 

There are two major discrete device simulators used extensively by circuit 

designers; Silvaco’s ATLAS, and TCAD Sentaurus. These tools provide 2D and 3D 

device simulations with the capability of including highly complex physical models and 

numerical simulation methods. This is carried out through a volume grid based on the 

dimensionality of the system (2D or 3D) and each grid point is solved through a PDE 

(Partial Differential Equation) iterative solver. The downside is that if a 3D structure is 

being simulated, then the simulation time could take one to several days depending on 

the required result accuracy settings. [14] 

 

This is why these iterative methods are not used in circuit simulators; instead, 

compact approximate models are used to emulate the device’s actual characteristics 

with enough accuracy. The most commonly used circuit simulators are SPICE and 

ELDO. There are different models that exist for these tools which take into account 

different physical effects. These models can be divided into three groups as shown in 

Figure 1.6. 

 

The first group of model types, Surface-potential-based models, solve the 

surface potential for the input equation at the two terminals of the channel of the device. 

The charges for the terminals as well as the current, and other characteristics are 

calculated from the surface potential solution. Examples for these models include: MOS 

Model 11, PSP and the SP Model as shown in Figure 1.6.  
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Figure 1.6 Classification of models for Circuit Simulators [15]–[20] 

 

The second group of models for circuit simulators are Threshold voltage based 

models. These models approximate the surface potential as a function of the input gate-

source voltage, VGS, in the following manner:  

- Constant, if VGS > VTH 

- Linear, if VGS < VTH 

The result is divided into separate solutions for each region of operation, and thus, 

smoothing functions are applied for the regions to be connected. Examples for this 

group of models are the BSIM3, BSIM 4 and the MOS Model 9.  
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The third and final group of models are Charge-based models. These models 

calculate the inversion charge density at the two ends of the channel of the device. 

These charge densities are used in the expression of the output of the model. The 

capacitances and conductance are derived from these densities as well. As shown in 

Figure 1.6, some examples are BSIM5, BSIM6, ACM and EKV models.  

 

Compact models suitable for circuit simulators are required to emulate the 

behavior of the transistors in all regions of operation as accurately as possible. These 

models are classified into three groups: physics-based, numerical fit, and empirical 

based models.  

  

 Physics-based models encompass the use of solely physics-based formulas to 

describe device behavior. This gives the advantage of modelling the devices that have 

been downscaled. Published physics-based models are frequently developed to define 

the behavior of either single electrical device characteristics (such as threshold voltage 

and subthreshold slope) or long channel devices.  

 

 The second class of models are numerical fit models. These models are 

mathematical formulas which have no relation to the actual device physics. Simulations 

are performed and fitted with several fitting parameters in order to obtain a model result 

that is suitable for device behavior emulation. However, this makes the model’s validity 

unknown outside the simulated data range. Furthermore, these models do not offer any 

insight into the physical device behavior.  

 

The final class of models are empirical based models, which are a combination 

of the aforementioned types. They are comprised of less complex physics-based 

equations in addition to numerical fitting parameters. The advantage is that the models 

produced are considerably simpler than physics-based models and provide an enhanced 

performance when compared to numerical fit models. However, the downside lies in 

the use of fitting parameters, which hinder the model’s ability to describe the device 

behavior if the device physics are modified. 
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There are certain requirements to be met if a compact model is to be used in a 

circuit simulator. These requirements are: 

- In order to effectively model the electrical behavior of the device, the 

modelling must be derived with a high enough accuracy so as to cover all 

regions of transistor operation.  

- The models must not only be accurate, but also simple (accuracy/simplicity 

trade off). 

- A single model should be valid for all device dimensions used in the current 

technology node.  

- Convergence problems should be taken into account while modelling the 

drain current, as they must be continuous in the first order derivatives or 

higher derivatives depending on the application type. 

 

1.4 LITERATURE REVIEW 

Since quantum models are considerably more complex than semi-classical ones, 

in order to simplify calculations it is convenient to start with a relatively simple classical 

model that can qualitatively describe the semiconductor and then create a quantum 

version of it (quantum correction).  

 

The simplest class of semi-classical models of semiconductor devices are drift 

diffusion models, first introduced by Van Roosbroeck in 1950 [21]. They were obtained 

by rescaling the Boltzmann transport equation and using the distribution function 

expansion of Chapman-Enskog.  

 

Given that semi-classical drift-diffusion models have been researched in depth 

[22], their results are used extensively in the industry. Nonetheless, they are only 

applicable when the dimensions are within the micrometer range, i.e. when the 

electrical fields are not rapidly changing. Since there are two types of carriers in 

semiconductors, bipolar drift diffusion equations were introduced. Rigorous derivation 

of semi-classical drift-diffusion equations for various cases were done by Poupaud, Ben 

Abdallah/Tayeb, and Masmoudi/Tayeb over the past 25 years. Solution analysis came 
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into existence in the 70's and 80's by Mock and Gajewski/Groeger. Numerical solutions 

were obtained as early as 1964 by Scharfetter/Gummel. 

 

Thus far, a large amount of work has been published regarding the incorporation 

of quantum effects in devices. The prominent 1993 work by M. Shur [23] incorporated 

drain induced barrier lowering (DIBL) effects in short channel MOSFETs and explored 

the subthreshold regime of operation. Nonetheless, countless quantum effects have 

been exposed in nanoscale devices since this publication. The work published by Li & 

Yu [24] presented a DG model derived from hydrodynamic transport; however, it is a 

simulation based model that relies on iterations. While Wagner et al [25] produced a 

DG model based on diffusive transport, it is also a computational based model. Both 

[24] and [25] do not provide explicit models for the potential or the threshold voltage. 

Additionally, the 2D DG threshold voltage roll off model developed by Chen et al [26] 

did not include DIBL effects. Baccarani and Reggiani [27] developed a DG model 

accounting for quantum effects including confinement, Fermi statistics, and non-static 

transport effects; however, the confinement’s field dependency is not included.  

 

The research completed in [28], [29] modelled the carrier confinement based on 

the effective oxide thickness definition and did not introduce a threshold voltage 

compact model. However, the lowest energy band was considered to account for the 

threshold voltage, while ignoring the short channel effects. A new analytical model 

incorporating both symmetric and asymmetric DG in a single structure on SON rather 

than SOI is proposed in more recent work [30]–[32], through solving 2D Poisson’s 

equation with 1D Schrödinger under the dual material front gate to obtain the potential 

distribution. However, the fabrication of this structure requires additional masking 

procedures due to its asymmetric design. 

 

The vast majority of the models in literature neglect high channel doping effects 

and resort to lightly doped and undoped devices. This is due to the fact that the absence 

of depletion charges in undoped devices boost the mobility of carriers. Depletion 

charges generally cause degradation in the drain current as a result of their effect on the 

electric field. Furthermore, lightly doped devices do not suffer from any dopant 

fluctuations, thereby avoiding threshold voltage fluctuations. [33], [34] 
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The work done in [35] by Taur included the mobile charge term in Poisson’s 

equation to present an analytical one dimensional model for undoped DG MOSFETs as 

well as a capacitance model. The work was further developed in [36] by deriving an 

analytical drain current model from the current continuity and Poisson’s equations 

solutions in closed form. In [37], a continuous subthreshold model for the long 

channeled version of the device was proposed.  

 

In [38], a charge-based model that is oriented towards design was presented. 

The device is an undoped symmetrical DG device. In the paper, the authors linked their 

methodology to the EKV bulk MOSFET modelling, thereby leading to a distinctive 

gm/Id design technique for DG structures.  

 

 The first explicit expressions for the potential distribution as a function of 

biasing and geometrical dimensions was proposed in the 2010 work in [39]. The 

compact quantum modelling involved the electrostatic potential and electric charge for 

thin film symmetric undoped DG MOSGFETs. The validity of the model was 

confirmed through comparisons with self-consistent Schrodinger-Poisson solvers.   

 

 Most of the aforementioned models were validated through comparisons versus 

numerical data resulting from Silvaco (ATLAS) and Sentaurus (TCAD). The proposed 

models were well matched; however, it must be noted that most of the models are 

effective in long channel regions. Thus, they cannot be used for electrostatics prediction 

in the new nanometer structures. Furthermore, the nanoscale fabrication constraints 

require the presence of doping in the channel region, thereby influencing the 

electrostatic performance. The channel doping causes a shift in the threshold voltage as 

well as a degradation in the carrier mobility and subthreshold slope. This adds to the 

urgency of short-channel device compact model development which correctly predict 

the electrostatic behavior.  

 

 

1.5 RESEARCH MOTIVATION AND THESIS STRUCTURE 

The double-gate MOSFET geometry gives the device numerous prominent 

features that deem it suitable to meet the deca-nanometer roadmap requirements as 
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opposed to the standard bulk MOSFET [40]. The DG device permits shorter channel 

lengths, as well as a 60mV/dec subthreshold slope, compared to 80mV/dec for the bulk 

MOSFET which leads to a higher overdrive voltage for the same off current [41] [27]. 

One main advantage of DG devices is improved carrier transport, as the device can 

essentially be undoped. Its dual-gate structure allows for the lowered channel doping 

which not only controls short channel effects, but also provides a solution to one of the 

key limitations in device scaling, which is tunneling leakage current. [42][43].  

 

Although the DG MOSFET is more scalable than the standard FET, migrating 

into the nanometer regime leads to quantum effects in addition to short channel effects. 

Thus, device models based on classical and semi classical theories are not applicable 

for devices below 20 nm. Quantum effects, particularly quantum confinement, must be 

accounted for in order to obtain more precise models. [44]  Additionally, DG MOSFETs 

operating in the deca-nanometer regime face reliability apprehensions as a result of 

degradations, most notably hot carrier injection (HCI) and negative bias temperature 

instability effects (NBTI) [45][46]. These two particular degradation mechanisms cause 

permanent interface traps which are irrecoverable after some time of operation. HCI is 

less significant in PMOS, because the mean free path and mobility for holes are less 

than that for electrons[47][48]. NBTI not only causes a decrease in transconductance 

and channel carrier mobility, but also causes an increase in the off current and in the 

absolute threshold voltage value [49].  

 

In spite of these contributions, there is still a need for a relatively simple 

Verilog-A compatible model of the DG device to study its influence on various aspects 

of circuit performance in order to aid in forthcoming design procedures. In this thesis, 

a quantum-corrected model based on the quantum-free work of [50] is proposed. The 

proposed model is based on solving 2D Poisson’s equation with 1D Schrödinger as 

done in [30]–[32]. An explicit compact expression modelling the threshold voltage and 

inversion charge is proposed including short channel effects, DIBL, and quantum 

effects including quantum confinement. Furthermore, this thesis presents, for the first 

time, two dimensional simple compact models incorporating quantum confinement, 

NBTI and short channel effects (SCE). The device considered in the modelling is a 

symmetrical lightly doped DG device, while its source and drain are highly doped. A 
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lightly doped DG provides better carrier transport along with a reduction in scattering 

[42], [43].  

 

This thesis is divided into five chapters. Chapter 1 is the introduction and 

comprises a brief background on the semiconductor MOSFET industry, as well as, a 

review of the current multi gate MOSFET technology. It also includes an in depth 

literature review covering prominent research involving DG MOSFET modelling, 

along with an insightful review of the relation between device modelling and circuit 

design.  

 

Chapters 2 and 3 are the fundamental chapters of the research. Chapter 2 starts 

by covering the underlying physics behind quantum confinement in semiconductors, 

particularly MOSFET devices. Types of quantum confinement are explained, as well 

as a brief mathematical overview of Poisson and Laplace equations which are vital to 

modelling the potential distribution. The details of the two dimensional modelling of 

symmetrical lightly doped double-gate MOSFETs are then delved into. The modelling 

procedure is presented thoroughly taking into consideration short channel effects and 

quantum confinement. Expressions for the potential distribution, threshold voltage, and 

the carrier charge sheet density are derived from analytical 2D Poisson and 1D 

Schrödinger equations including 2D electrostatics while taking into account electron and 

hole quasi-Fermi potential effects. Finally, the models are validated versus 2D numerical 

simulations carried out on COMSOL Multiphysics, as well as published BALMOS 

numerical simulations. 

 

Chapter 3 incorporates NBTI to the model to assess reliability. NBTI modelling 

work in [51] was used to incorporate effects of interface state generation and hole 

trapping due to NBTI. The result is compact 2D models for the potential distribution 

and threshold voltage for undoped symmetrical double-gate p-channel MOSFETs 

(PMOS), including quantum confinement effects and negative bias temperature 

instability. The models are then verified for accuracy by comparison with numerical 

COMSOL simulations. 
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Finally, Chapter 4 concludes the thesis with a summary of the research and the 

intended future work.  
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CHAPTER 2 

QUANTUM DEVICES 

 

2.1 QUANTUM CONFINEMENT IN MOSFETS 

In highly scaled MOSFETs, the carriers in the inversion layer suffer from 

quantum confinement which affects not only the threshold voltage but also the gate 

capacitance. The scaling of semiconductor devices into the deep submicron and deca-

nanometer scale entails high doping levels and thin oxides in order to minimize short 

channel effects. As a result, a sharp potential well is created due to the electric field 

increase at the Si/SiO2 interface. This potential well induces carrier quantization energy. 

In partially depleted (PD) MOSFETs, quantum confinement is in the potential well 

characterized by the silicon conduction band and the gate/oxide boundary. A quantum 

well is formed by the Silicon/Oxide conduction band offset and the silicon conduction 

band bending as shown in Figure 2.1. The carriers are confined in this quantum well, 

which causes energy level splitting into sub-bands, thereby forming a two dimensional 

density of states (DOS). Furthermore, the lowest electron energy level does not overlap 

with the conduction band bottom as illustrated in Figure 2.1. [52], [53]  

 

In a 2D system, the DOS for low energies is less than that in a classical system 

(3D). Thus, the total number of carriers is less in a 2D system than a 3D system for the 

same Fermi level. This affects the inversion layer’s net sheet charge, which results in 

the critical issue of a rise in the threshold voltage of the device. Carriers, which are 

compactly confined in the potential well, occupy the lowest energy levels, while those 

not as securely confined behave like classical particles. The confinement of the carriers 

in the well increases as the electric field increases, which results in an increase in the 

system quantization. The quantum mechanical confinement causes a modification in 

the distribution of carriers in the channel, seeing as the inversion charge’s maximum is 

pulled away from the interface into the Si film as shown in Figure 2.1. [52], [53] 

 

Quantum carrier confinement in nanoscale DG MOSFETS is manifested as a 

result of two possible occurrences: electric confinement and structural confinement 

(Figure 2.2). The first type, electric field induced confinement, results from the 

presence of a strong interface electric field, while the latter, silicon thickness induced 
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confinement, is an outcome of the thin silicon film potential well. Quantum 

mechanically confined carriers in nanoscale thin DG MOSFETs are both structurally 

and electrically confined, thus quantum mechanical effects on both the drain current 

and threshold voltage are significant.  

 

Figure 2.1 Conduction Band Bending of a PD MOSFET in inversion regime showing the 

different energy levels resulting from the quantization effects of the 2DEG confined in the 

surface potential well and the corresponding electron distributions in the direction perpendicular 

to the interface for the classical and quantum-mechanical case. 

 

 

Figure 2.2 DG NMOS vertical cross section energy band diagrams illustrating carrier 

confinement due to structural confinement and electrical confinement in the silicon film. 
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2.2 TWO DIMENSIONAL POTENTIAL IN DG MOSFETS 

A schematic for a symmetric DG MOSFET and its band diagrams in vertical 

and horizontal channel cross sections is shown in Figure 2.3, as drawn in the work in 

[54]. In the diagram, y is the silicon thickness direction, x is the channel length axis, tox 

is the oxide thickness, and VG is the gate bias voltage. The current flows in a direction 

along the channel length (x-axis) and the quasi-Fermi level, EFN, is assumed constant 

along the thickness. The quasi-Fermi electron level of the source, EFS, is the reference 

taken for the energy levels in the diagram. In the vertical cross-section, the potential 

distribution is presented through a parabolic dependency on the silicon film position. It 

should be noted that this occurs when the gate bias voltage is the same on both gates 

and in the strong inversion regime. 

 

 

Figure 2.3 (a) Schematic for a symmetric DG MOSFET and its band diagrams in a vertical (b) 

and horizontal (c) cross section in the channel [54] 

 

In order to model this 2D potential, two vital equations are utilized in physical 

and electrostatic modelling. These two equations are Poisson and Laplace equations. 

Poisson’s equation is a partial differential equation based on Maxwell. Electrostatics 

calculations are performed through relating the electrostatic potential to the charge 

density along a gradient. The electric field for the gradient is related to the charge 

density through a divergence operation. This is shown in equation (2.1). [55] 
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∇. 𝐸(𝑟)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ =
𝜌(𝑟)

𝜀
                          (2.1) 

 

where 𝜌 is the charge density, 𝑟 is the gradient, �⃑�  is the electric field, and 𝜀 is the 

material permittivity.  

The electric field of Poisson’s equation can then be incorporated as in (2.2) 

 

−∇.𝐸(𝑟)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ =
−𝜌(𝑟)

𝜀
= ∆𝜙(𝑟)               (2.2) 

 

where 𝜙 is the potential and if it is taken as three dimensional, the Laplace operator, Δ 

can be used as in (2.3). Then the Poisson potential can be expressed as in (2.4).  

 

Δ =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2             (2.3) 

 

∆𝜙(𝑥, 𝑦, 𝑧) =
−𝜌(𝑥,𝑦,𝑧)

𝜀
      (2.4) 

 

2.3 QUANTUM STATISTICAL ESTIMATION FOR 1D AND 2D 

CONFINEMENT 

One dimensional confinement occurs in devices with a small thicknesses Lz but with 

a large enough width Ly, and length Lx. For such device, the electron density is 

calculated by (2.5) and (2.6), which were calculated using Fermi-Dirac statistics. The 

two density equations describe the conducting electron density in the source and 

channel respectively.  

𝑛𝑠 ≈ 𝐾
𝑚𝑘𝑇

𝜋ℏ2𝐿𝑧
∑ 𝑙𝑛 [1 + 𝑒

−𝑄𝑗+𝜂+
𝑉𝑠
𝑉𝑇]𝑗                        (2.5) 

 

𝑛𝑐ℎ ≈ 𝐾
𝑚𝑘𝑇

𝜋ℏ2𝐿𝑧
∑ 𝑙𝑛 [1 + 𝑒

−𝑄𝑗+𝜂+
𝜙(𝑦)

𝑉𝑇 ]𝑗                       (2.6) 

 

𝜂 =
𝐸𝐹−𝐸𝐶

𝑉𝑇
                                                     (2.7) 
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where K describes the influence of doping in the same manner as the valence 

degeneracy factor, ℏ is the reduced Planck’s constant, Vs is the source voltage, k is the 

Boltzmann constant, T is the temperature in Kelvin, Qj is the ratio of quantum energy 

due to confinement along the z axis, 𝜙(𝑦) is the electrostatic potential, and VT is the 

thermal voltage.  

 

The classical analogue for these two density formulas would be that of the potential 

field being entered by a gas along the ordinate and redistributing its density. In the DG 

MOSFET, this would be because of the gate potential as explained in Section 2.2. 

 

To account for quantum confinement, a 2nm silicon thickness and a gate voltage up 

to 0.6V will allow the confinement energy to dominate the exponential in (2.5) and 

(2.6). This will cause j levels to give a steadily decreasing contribution, thus the 

logarithm can be approximated, and calculating with the first two levels is sufficient for 

a first quantum approximation. However, if a device is to be described with all three 

small dimensions, quantum confinement along the ordinate becomes important as well. 

Consequently, not only should Poisson’s equation be solved simultaneously along the 

infinite well with potential gradient, but Schrödinger’s equation should also be solved 

along the abscissa. Density equations for this problem are of the form shown in (2.8). 

 

𝑛 ~∑
𝐹−1

2⁄
(𝜃)

𝐿𝑦𝐿𝑧
        (2.8) 

 

where F is the Fermi-Dirac (FD) integral. 

 

2.4 POISSON AND SCHRÖDINGER’S EQUATION SOLUTION 

Utilizing the well-studied particle in the box problem, with a zero potential inside the 

box, the wave function solution is zero on the sides of the box and the energy is discrete, 

starting with zero point level energy. Given that the probability density is the square of 

the modulus of the wave function, it is expected to have a carrier density of zero near 

the gate terminal.  
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In this problem, the potential is not zero and its presence modifies the wave functions. 

Therefore, both the Schrödinger (2.9) and the Poisson (2.10) equations must be solved 

simultaneously. 

 

2𝑚[𝐸 + 𝑒𝜙]𝜓 = −ℏ2𝜓′′    (2.9) 

 

𝜙′′ =
𝑒𝑛

𝜀
          (2.10) 

 

𝑛 ~|𝜓|2            (2.11) 

 

where the derivatives are in the thickness direction.  

Since both imaginary and real components of the wave function ψ satisfy 

Schrödinger’s equation, as well as, the fact that the zero potential energy is purely real, 

the probability density in (2.11) can be modified as shown in (2.12).  

 

n=𝑛𝑠𝜓
2             (2.12) 

 

Substituting psi with n in Schrödinger’s equation, expressing potential in terms 

of n, along with its derivative, and taking double derivative leads to: 

 

𝜙′′ = −
ℏ2

2𝑚𝑒
[
(√𝑛)

′′

√𝑛
]
′′

= −3𝑄′′           (2.13) 

 

where Q is Bohm's quantum potential. So Poisson’s equation (2.10) could be 

solved for n instead of phi: 

 

−
ℏ2

2𝑚𝑒
[
(√𝑛)

′′

√𝑛
]
′′

=
𝑒𝑛

𝜀
            (2.14) 

 

[
(√𝑛)

′′

√𝑛
]
′′

= 𝛼𝑛, 𝛼 = −0.664 𝑛𝑚⁄            (2.15) 
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The result is a fourth order nonlinear differential equation. The numerical 

solution representing the wave functions derived from (2.15) is shown in Figure 2.4. 

Similar to the zero potential case, the probability density is largest in the center of the 

device, but has a number of local minima and maxima before it reaches the gate. 

 

Figure 2.4 Numerical Solution for the Fourth Order Differential Equation in (2.15) where the 

ordinate represents the density, and abscissa is the Silicon Thickness 

 

In the DG MOSFET, confinement exists in two directions and in one direction the 

electron moves freely in and out of the device. In the case where the source cross section 

is the same as the space inside the two gates, the carrier electron wave function does 

not change when it crosses the source-channel boundary. Schrödinger’s equation (2.9) 

and Laplace’s equation (2.16) will be solved. 

 

Δ𝜙 = 0     (2.16) 

 

Laplace’s equation will provide the solution for the potential, while combining both 

equations will result in the wave function and the density. The boundary potentials for 

the side of the box are equal to the gate, source, and drain potentials, and are zero for 

the two remaining sides. Laplace’s equation in rectangular coordinates for three 

dimensions has a general solution (2.17) which satisfies the boundary conditions.  

 

∅ = 𝑒±𝑖𝛼𝑧𝑒±𝑖𝛽𝑧𝑒±𝑥√𝛼2+𝛽2
           (2.17) 
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2.5 POTENTIAL MODEL DERIVATION 

 

 

Figure 2.5 Cross section of the DG MOSFET with the used coordinate system 

 

Figure 2.5 shows the DG MOSFET used in the modelling, which is similar to that 

utilized in [50]. Quantum mechanics provides some simplification to the work done in 

[50].  

 

For accurate device modelling, the electrostatic body potential distribution for the 

range of biasing conditions must be modelled. The potential modelling is described 

based on Poisson's 2D equation: 

 

𝜕2𝜑

𝜕𝑥2 +
𝜕2𝜑

𝜕𝑦2 =
− 𝜌 (𝑥,𝑦)

𝜀
    (2.18) 

 

where 𝜑 is the electrostatic potential, 𝜌 is the space charge density, and 𝜀 is the 

dielectric constant.  

 

In order to solve Poisson’s equation, superposition is applied to separate the 

solution into a 2D Laplace equation for the capacitive coupling of the inner electrodes 

and the remainder comprises the potential arising from body charges. The boundary 

conditions are defined by the contacts at the source, drain, gates, and dielectric gaps in 

the body cross sections. Since the DG MOSFET used is lightly doped, the doping 

concentration is up to 1016 cm-3 [56], then their contribution is negligible in the 
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subthreshold region compared to the electrode capacitive coupling and charge coupling. 

This is valid even if the electron concentration rises upon connecting the device to a 

positive voltage, seeing as the quantum confinement energy will cause the density to 

fall quickly. [57] 

 

As a result, Poisson’s equation is simplified to a 2D Laplace equation. The 

decomposition of potential by superposition is no longer necessary. A single potential 

depending solely on x and y, can be found. That potential satisfies the same equation 

as φ1 in [50], but with slightly different boundary conditions shown in equations (2.19) 

to (2.22):  

 

𝜑
(𝑥,±

𝐿𝑦

2
)
= 𝑉𝑔 − 𝜑𝑚𝑠      (2.19) 

 

𝜑
(−

𝐿𝑥
2

,𝑦)
= 𝑉𝑠       (2.20) 

 

𝜑
(
𝐿𝑥
2

)
= 𝑉𝑑       (2.21) 

 

𝜀𝑜𝑥

𝑡𝑜𝑥
[𝑉𝑔𝑠 − 𝜑𝑚𝑠] = −𝜀𝑠𝑖

𝜕𝜑
(𝑥,±

𝐿𝑦
2

)

𝜕𝑦
       (2.22) 

 

where Vg, Vd, Vs, Vgs are the gate, drain, source, and gate-source voltages 

respectively and 𝜑𝑚𝑠 is the effective contact potential difference. In the quasi 2D case, 

the solution for potential is found in (2.23), (2.24), and (2.25).  

 

𝜑 = 𝜑 + �̃�     (2.23) 

 

𝜑 =
4(𝑉𝑔−𝑉𝑏𝑖)

𝜋 cosh[
(2𝑘+1)𝜋𝐿𝑦

2𝐿𝑥
]
× ∑

(−1)𝑘

2𝑘+1
[cos (

(2𝑘+1)𝜋𝑥

𝐿𝑥
)]𝑘 [cosh (

(2𝑘+1)𝜋𝑥

𝐿𝑥
)]    (2.24) 
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�̃� =

(

 
 
 
 
 
 

2

𝜋 sinh[
(2�̃�+1)𝜋𝐿𝑥

2𝐿𝑦
]
 ×

(

 
 
 

∑

{
 
 

 
 

(−1)�̃�

2�̃�+1
cos (

(2�̃�+1)𝜋𝑦

𝐿𝑦
) ×

[
(𝑉𝑑 + 𝑉𝑠) (tanh (

(2�̃�+1)𝜋𝐿𝑦

2𝐿𝑥
)) (cosh (

(2�̃�+1)𝜋𝑥

𝐿𝑥
))

+(𝑉𝑑 − 𝑉𝑠) (sinh (
(2�̃�)𝜋𝑥

𝐿𝑥
))

]

 }
 
 

 
 

�̃�  

)

 
 
 

)

 
 
 
 
 
 

    (2.25) 

 

The fourth boundary condition was not used; nevertheless, it is valid when the 

surface charge on the boundary is zero in the quasi-2D case. It should be noted that the 

necessity of superposition of the two potentials here is from the boundary conditions, 

not for the elimination of density from one equation. Figure 2.6 depicts the surface 

potential distribution along the channel for the proposed model compared with the 

classical model from [50] for a silicon thickness of 5nm. The proposed model was also 

compared with 2D numerical simulations using COMSOL for further result 

verification, as shown in Figure 2.7. There is good agreement between the model’s 

results and the numerical simulation. Figure 2.8 shows the proposed model’s result 

along the silicon thickness compared with the BALMOS numerical simulation provided 

in [40]. The results are well matched within ±5%. 

 

Figure 2.6 Surface potential distribution along the channel for tsi=5nm, tox=1nm, 

L=20nm,Vgs=0.1V, Vbi=0.6V NA=1016cm-3 for the proposed model compared with the classical 

model from [50] 
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Figure 2.7 Surface potential distribution along the channel for tsi=5nm, tox=1nm, Vds=0V, 

Vgs=0.5V, Vbi=0.6V NA = 1016 cm-3 for the proposed model compared with numerical simulations 

using COMSOL. 

 

Figure 2.8 Surface Potential along the Silicon Thickness for tsi=10nm, NA=1016cm-3 for the 

proposed potential model compared with the BALMOS numerical simulations in [40] 
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2.6 THRESHOLD VOLTAGE MODEL AND INVERSION 

CHARGE 

In order to obtain expressions for the inversion charge and subsequently the 

threshold voltage, the density and wave functions are deduced by simultaneously 

solving Poisson and Schrodinger’s equations. Since the potential energy for the electron 

in the region between two gates is small compared to its total energy, for nanoscale 

devices, it can be regarded as a small perturbation. Thus, the quantum perturbation 

theory [58] holds the answer to electron energy correction. What is of interest here is 

the correction of the wave function with respect to the case when the potential is zero. 

  

Since this is a nanoscale DG MOSFET, the electrons in the channel form a Two 

Dimensional Electron Gas (2DEG) as a result of their quantum confinement in one 

direction. In this model, the particle system considered is confined in two directions 

and one transport direction in order to further extend its application to GAA structures. 

This is based on modelling a 1D quantum wire formed between the gates in the same 

manner as a quantum wire transistor.[59] The system is first solved for one dimensional 

confinement, then solved for two dimensional confinement in order to be certain that it 

is valid for both cases. The first correction for the lowest confinement energy sub-band 

can be solved by: 

 

𝜓1
(1)

=
1

2𝐿𝑦
∑ [

𝜓𝑚

𝐸1−𝐸𝑚
∫ 𝑑𝑦

𝐿𝑦 2⁄

−𝐿𝑦 2⁄
 ×

[cos
(2𝑚+1)𝜋𝑦

𝐿𝑦
] [cos

𝜋𝑦

𝐿𝑦
 ] 𝑒𝑖𝑘𝑥𝑥𝜑 

]𝑚≠1                        (2.26) 

 

This formula leads to extensive calculations since the expression for 𝜙 is large. 

It appears that not only are all the corrections for the wave function small, because eVg 

is much smaller than the zero point energy for nanoscale devices, but also that the sum 

over m is dominated by the first few terms. [29] Furthermore, the sum is alternating. 

As an example, one of the largest terms of the first correction for the wave function is: 

 

𝑒

𝜋2𝐸1

𝑉𝑑𝑠

12sinh
𝜋𝐿𝑥
2𝐿𝑦

                                                           (2.27) 
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the wave function of the electron on the lowest confinement energy level is close 

to the same for zero potential: 

 

𝜓 = cos
𝜋𝑦

𝐿𝑦
                                                             (2.28) 

 

𝑛 = [cos
𝜋𝑦

𝐿𝑦
]
2

                                                         (2.29) 

 

Thus, for nanoscale devices, the carrier density depends almost entirely on the 

thickness. It is zero near the gate and the boundary condition shown in (2.22) could be 

applied. Since the Fermi-Dirac distribution for the ideal electron gas is:  

 

𝑓 = [1 + 𝑒
𝐸𝑛−𝐸𝐹

𝑘𝑇 ]
−1

                                                   (2.30) 

 

the number of electrons is equal to: 

 

𝑁 = 2∑ [1 + 𝑒
𝐸𝑛−𝐸𝐹

𝑘𝑇 ]
−1

𝑛                                                    (2.31) 

 

The sum over n can be replaced by an integral in the phase space. When the 

domain of integration is much larger than the cell of the phase space, which is given by 

the uncertainty principle, the cell is taken to be Planck’s constant. However, if the phase 

space domain is much larger than Planck’s constant for all three dimensions, this 

reduces to the expression in (2.32) 

 

𝑁 =
2

ℎ3 ∫𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 [1 + 𝑒
𝐸𝑛−𝐸𝐹

𝑘𝑇 ]
−1

         (2.32) 

 

the factor “2” represents the number of spin states. By integrating over the 

spatial coordinates, the volume in (2.33) results.  

 

𝑁 =
2𝑉

ℎ3 ∫𝑑𝑝 𝑑𝜃 𝑑𝜑 𝑝2 sin 𝜃 [1 + 𝑒
𝐸𝑛−𝐸𝐹

𝑘𝑇 ]
−1

         (2.33) 
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Subsequently, an integration over angles results in 4𝜋, which allows for the 

deduction of (2.34). 

 

𝑁 =
8𝜋𝑉

ℎ3 ∫𝑑𝑝 𝑝2 [1 + 𝑒
𝐸𝑛−𝐸𝐹

𝑘𝑇 ]
−1

                          (2.34) 

 

Since 𝑝2 = 2𝑚𝐸, 𝑑𝑝 𝑝2 = 𝑚√2𝑚𝐸𝑑𝐸 

  

𝑁 =
8𝜋𝑉

ℎ3 ∫𝑚√2𝑚𝐸𝑑𝐸 [1 + 𝑒
𝐸𝑛−𝐸𝐹

𝑘𝑇 ]
−1

                          (2.35) 

 

by changing the variable from E to 
𝐸

𝑘𝑇
= 𝜀 and for a constant 

𝐸𝐹

𝑘𝑇
= 𝜂, N will 

further evolve into the expression shown in (2.36) 

 

𝑁 =
8𝜋𝑉

ℎ3 √2[𝑚𝑘𝑇]
3

2 ∫𝑑𝜀 √𝜀 [1 + 𝑒
𝐸𝑛−𝐸𝐹

𝑘𝑇 ]
−1

                          (2.36) 

 

𝑁 =
4𝑉

√𝜋
(
2𝜋𝑚𝑘𝑇

ℎ2 )

3

2
𝐹1 2⁄ (𝜂) =

4𝑉

√𝜋𝜆𝑇
3 𝐹1 2⁄ (𝜂)                          (2.37) 

 

where F is the Fermi-Dirac integral for parameter ½ and lambda is the De 

Broglie wave length (2.38). 

 

𝜆𝑇
−2 =

2𝜋𝑚𝑘𝑇

ℎ2                                                      (2.38) 

 

So far, the confinement was only considered for the 2DEG DG MOSFET. As 

previously explained in the beginning of this section, quantum confinement will be 

considered in an additional direction in order to extend the application of the model to 

GAA structures. Thus, if quantum confinement takes place in two dimensions, the sum 

for that dimension cannot be replaced by an integral, resulting in (2.39).  

 

𝑁 =
2

ℎ
∑ ∫𝑑𝑥 𝑑𝑝𝑥𝑛𝑦,𝑛𝑧

[1 + 𝑒
𝐸(𝑝𝑥)+ 𝐸𝑛𝑦+𝐸𝑛𝑧−𝐸𝐹

𝑘𝑇 ]

−1

                    (2.39) 
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𝑁 =
2𝐿𝑥

ℎ
∑ ∫𝑑𝑝𝑥𝑛𝑦,𝑛𝑧

[1 + 𝑒
𝐸(𝑝𝑥)+ 𝐸𝑛𝑦+𝐸𝑛𝑧−𝐸𝐹

𝑘𝑇 ]

−1

                   (2.40) 

 

Through changing the variable from 𝑝𝑥 to 𝜀𝑥 =
𝑝𝑥

2

2𝑚𝑘𝑇
 and taking 𝜂𝑛𝑦,𝑛𝑧

=

𝐸𝐹−𝐸𝑛𝑦− 𝐸𝑛𝑧

𝑘𝑇
, the following expression results: 

 

𝑁 =
√2𝐿𝑥

√𝜋𝜆𝑇
∑ 𝐹−1 2⁄ (𝜂𝑛𝑦,𝑛𝑧

)𝑛𝑦,𝑛𝑧
                                                (2.41) 

 

where F is the FD integral for parameter -½ and λT is the DeBroglie wave length. 

For calculating carrier densities, the distributions change somewhat and can be 

expressed according to Fermi statistics as: 

 

𝐹𝑒 = [1 + 𝑒
(𝐸𝑛− 𝐸𝑐)−(𝐸𝐹−𝐸𝐶+𝑞𝜑)

𝑘𝑇 ]
−1

                                          (2.42) 

 

𝐹ℎ = [1 + 𝑒
−(𝐸𝑛− 𝐸𝑣)−(𝐸𝐹−𝐸𝐶−𝑞𝜑)

𝑘𝑇 ]
−1

                                        (2.43) 

 

where 𝜑 is the potential, q is the magnitude of the elementary charge, k is the 

Boltzmann constant, T is the absolute thermodynamic temperature, and 𝐸𝑐, 𝐸𝑣 are the 

boundaries of the conduction and valence bands, respectively. This distribution 

describes the probability for the electron and hole to be in the conducting and valence 

bands respectively.  

For conducting electrons, the calculations go as follows:  

 

𝑁 = 2∑ [1 + 𝑒
(𝐸𝑛− 𝐸𝑐)−(𝐸𝐹−𝐸𝐶+𝑞𝜙)

𝑘𝑇 ]
−1

𝑛                        (2.44) 

 

𝑁 =
2

ℎ
∑ ∫𝑑𝑥 𝑑𝑝𝑥 [1 + 𝑒

(𝐸𝑥− 𝐸𝑐)−(𝐸𝐹− 𝐸𝑐+ 𝑞𝜙− 𝐸𝑛𝑦− 𝐸𝑛𝑧)

𝑘𝑇 ]

−1

𝑛𝑦,𝑛𝑧
            (2.45) 
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𝑁 =
2 𝐿𝑥

ℎ
∑ ∫𝑑𝑝𝑥 [1 + 𝑒

(𝐸𝑥− 𝐸𝑐)−(𝐸𝐹− 𝐸𝑐+ 𝑞𝜙− 𝐸𝑛𝑦− 𝐸𝑛𝑧)

𝑘𝑇 ]

−1

𝑛𝑦,𝑛𝑧
            (2.46) 

 

by applying the approximate parabolic dispersion relation 𝐸𝑥 − 𝐸𝑐 =
𝑝𝑥

2

2𝑚
 

 

𝑁 =
2𝐿𝑥

ℎ
∑ ∫[𝑑√2𝑚(𝐸𝑥 − 𝐸𝑐)] [1 + 𝑒

(𝐸𝑥− 𝐸𝑐)−(𝐸𝐹− 𝐸𝑐+ 𝑞𝜙− 𝐸𝑛𝑦− 𝐸𝑛𝑧)

𝑘𝑇 ]

−1

𝑛𝑦,𝑛𝑧
(2.47) 

 

and the switching variable 𝜀 =
2𝑚(𝐸𝑥− 𝐸𝑐)

𝑘𝑇
and 𝜂𝑛𝑦,𝑛𝑧

= 𝐸𝐹 − 𝐸𝑐 +  𝑞𝜙 − 𝐸𝑛𝑦
− 𝐸𝑛𝑧

 

 

𝑁 =
√

2

𝜋
𝑉

𝜆𝑇𝐿𝑦𝐿𝑧
∑ 𝐹−1 2⁄ (𝜂𝑛𝑦,𝑛𝑧

)𝑛𝑦,𝑛𝑧
   (2.48) 

 

thus, the density of conducting electrons is: 

 

𝑛 =
√

2

𝜋
𝑉

𝜆𝑇𝐿𝑦𝐿𝑧
∑ 𝐹−1 2⁄ (

𝐸𝐹− 𝐸𝑐+ 𝑞𝜑− 𝐸𝑛𝑦− 𝐸𝑛𝑧

𝑘𝑇
)𝑛𝑦,𝑛𝑧
 (2.49) 

 

Similarly, for holes: 

 

𝑝 =
√

2

𝜋
𝑉

𝜆𝑇𝐿𝑦𝐿𝑧
∑ 𝐹−1 2⁄ (

𝐸𝑣− 𝐸𝐹− 𝑞𝜙+ 𝐸𝑛𝑦+ 𝐸𝑛𝑧

𝑘𝑇
)𝑛𝑦,𝑛𝑧
 (2.50) 

 

where the confinement length LZ and 𝐸𝑛𝑧
 account for the additional confinement 

in GAA structures. For silicon to be electro-neutral in the absence of potential it is 

required that p = n.  

 

If there were no confinement energies, the expression would be reduced to the 

classical result; since the argument would solely be 
−𝐸𝐹

𝑘𝑇
 , and that is much smaller than 

zero, so the Fermi-Dirac integral transforms into a Maxwellian expression.  
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The sum over 𝑛𝑦, 𝑛𝑧 is problematic because exact 𝐸𝑛𝑦
, 𝐸𝑛𝑧

 levels are unknown. 

In general, it is known that confinement energies rise as 𝐿𝑦, 𝐿𝑧 shrink, so the arguments 

in the FD integrals for n and p should fall and rise respectively. Electro-neutrality then 

implies the rise of the band gap, rise of the conducting band, and fall of the valence 

band energies. Sums over FD integrals can be changed to effective FD integrals:  

 

𝑛 =
√

2

𝜋

𝜆𝑇𝐿𝑦𝐿𝑧
𝐹−1 2⁄ (

𝐸𝐹− 𝐸𝑐+ 𝑞𝜙 −
Δ𝐺

2

𝑘𝑇
) =

√
2

𝜋

𝜆𝑇𝐿𝑦𝐿𝑧
𝐹−1 2⁄ (

− 𝐸𝐹+ 𝑞𝜑 −
Δ𝐺

2

𝑘𝑇
)        (2.51) 

 

𝑝 =
√

2

𝜋

𝜆𝑇𝐿𝑦𝐿𝑧
𝐹−1 2⁄ (

𝐸𝑣− 𝐸𝐹− 𝑞𝜙 −
Δ𝐺

2

𝑘𝑇
) =

√
2

𝜋

𝜆𝑇𝐿𝑦𝐿𝑧
𝐹−1 2⁄ (

− 𝐸𝐹− 𝑞𝜙 −
Δ𝐺

2

𝑘𝑇
)        (2.52) 

 

where ΔG is the deviation of gap energy for quantum wire from the gap energy of bulk 

material.  

 

The current is then carried by electrons that tunnel through the potential barrier 

from the source to the drain. The potential that describes the barrier can be found by 

solving Poisson and Laplace equations for all regions of operation. Since the electron 

density described by (2.50) falls exponentially for an argument much smaller than -1, 

the non-degenerate limit is taken as shown in (2.53). For arguments smaller than 3KT 

in (2.53), the non-degenerate density can be expressed as in (2.54). 

 

𝐸𝐹 − 𝐸𝜑 +
Δ𝐺

2
≥ 3𝑘𝑇                                                     (2.53) 

 

𝑛 =
√2 𝜋⁄

𝜆𝑇𝐿𝑦𝐿𝑧
𝑒

(
− 𝐸𝐹+ 𝑞𝜑 −

Δ𝐺
2

𝑘𝑇
)

                                               (2.54) 

 

Since the volume is small, the mean number of electrons is fewer than unity and 

is deduced as in (2.55). 

 

𝑁 ≤
√2 𝜋⁄ 𝐿𝑥

𝜆𝑇
𝑒−3                                                              (2.55) 
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For arguments larger than 3kT, the FD integral has a different degenerate limit and the 

degenerate density is: 

 

𝑛 =
√2 𝜋⁄

𝜆𝑇𝐿𝑦𝐿𝑧

2

√𝜋
√− 𝐸𝐹+ 𝑞𝜑 −

Δ𝐺

2

𝑘𝑇
                                                (2.56) 

 

The barrier potential is then calculated for both degenerate and nondegenerate limits. 

If this degenerate limit is applied to the whole space, then a Poisson solution that rises 

very rapidly is implied. To verify this implication, Poisson’s equation is then: 

 

𝜑𝑜
′′ =

2√2𝑞

𝜋𝜀𝜆𝑇𝐿𝑦𝐿𝑧

√− 𝐸𝐹+ 𝑞𝜑 −
𝛥𝐺

2

𝑘𝑇
 ~250𝑛𝑚−2√− 𝐸𝐹+ 𝑞𝜑 −

𝛥𝐺

2

𝑘𝑇
                             (2.57) 

 

By changing the variable from 𝜑 to 𝛼 =
−

𝐸𝐹
𝑞

+ 𝜙 −
Δ𝐺

2𝑞

𝑉𝑇
, a differential equation results 

 

𝛼 = 104 𝑛𝑚−2

𝑉
√𝛼                                                                  (2.58) 

 

The numerical solution for (2.58) is shown in Figure 2.9. From the solution, it is 

seen that for a small 0.08 nm change in the degenerate layer thickness, the potential 

rises about 200VT = 5.2V. This means that the degenerate layer is very thin even in the 

nanoscale regime.  

 

 

Figure 2.9 Numerical Solution for (2.58). The ordinate represents alpha, while the abscissa is the 

thickness of the degenerate layer 
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If the nondegenerate limit in (2.53) is taken between the gates, then a small 

number of electrons would be present since quantum tunneling is not considered in this 

model. Hence, the alternate possibility is that when the average density is small enough, 

Poisson’s equation is reduced to Laplace’s equation as a result of the reduction of the 

many electron problem to a one electron problem. Laplace’s equation can be used to 

determine the potential which rises slowly with the thickness of the degenerate layer. If 

the number of electrons goes beyond unity, the area rapidly shrinks into a layer.  

 

𝜑𝑜
′′ = 0                                                                     (2.59) 

 

𝜑𝑜
 = 𝐴�̃� + 𝐵 =

𝑉𝑔−𝜑𝑚𝑠−
Δ𝐺

2
−𝐸𝐹

𝑙(𝑥)+
𝜀

𝜀𝑜𝑥
𝑡𝑜𝑥

�̃� +
Δ𝐺

2𝑞
+

𝐸𝐹

𝑞
                                     (2.60) 

 

where 𝑙(𝑥) is the thickness of the degenerate is layer dependent on position along 

the channel and �̃� measures the change in thickness inside the layer. Constants A, B are 

determined so that alpha is zero on the lower boundary of the layer and on the upper 

boundary, the condition is same as in [50].  

 

In [60], Figures 2 and 9 show that below threshold voltage and at the subthreshold 

region, there is a significant difference between lightly doped and highly doped devices 

not only at the minimum potential values, but also in electron concentrations. This 

consequently has an effect on the threshold voltage; our model is introduced based on 

the inversion charge at the minimum potential value. The sheet density of the inversion 

charge can be expressed as: 

 

𝑄𝑖𝑛𝑣 = 2
2√2

𝜋𝜆𝑇𝐿𝑦𝐿𝑧
∫

√
𝜑1

𝑚𝑖𝑛+
𝑉𝑔−𝜑𝑚𝑠−

Δ𝐺
2

−𝐸𝐹

𝐼(𝑥)+
𝜀

𝜀𝑜𝑥
𝑡𝑜𝑥

�̃�

𝑉𝑇
𝑑�̃� 

𝑙𝑥𝑜

0
                         (2.61)    

 

where 𝑙𝑥𝑜
 is the thickness at the position at which the potential reaches its 

minimum value. This virtual cathode position can be calculated as in (2.62). 𝜑1
𝑚𝑖𝑛 

(2.63) is the minimum potential at 𝑥𝑜. 
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𝑥𝑜 =
𝐿

2
−

𝑡𝑜

𝜆
ln√

𝐶𝑜

𝐶1
                                                               (2.62) 

 

𝜑1
𝑚𝑖𝑛 = 𝑒

−
𝐿𝜆

2𝑡𝑜2√𝐶0𝐶1 cos 𝜆
𝑦

𝑡𝑜
                                               (2.63) 

 

where C0, C1 are shown in Appendix A. The integral is then substituted with 𝑙(𝑥𝑜)�̃�
𝑒𝑓𝑓 

 

𝑄𝑖𝑛𝑣 = 2
2√2𝑙

𝜋𝜆𝑇𝐿𝑦𝐿𝑧

√
𝜑1

𝑚𝑖𝑛+
𝑉𝑔−𝑉𝑚𝑠−

Δ𝐺
2𝑞

−
𝐸𝐹
𝑞

𝑙+
𝜀

𝜀𝑜𝑥
𝑡𝑜𝑥

�̃�𝑒𝑓𝑓

𝑉𝑇
𝑑�̃�                            (2.64) 

 

For the classical and quantum approaches, there are different connections between 

the sheet inversion charge and potential. The expression in [50] is shown in (2.65) and 

(2.66) shows the proposed expression incorporating quantum effects. 

 

  𝑉𝑇 ln
𝑄𝑖𝑛𝑣

2𝑡𝑜𝑛𝑖
= 𝜑

(𝑥𝑜,
𝑡𝑜
2
)
                                                          (2.65) 

 

𝑉𝑇 [
𝑄𝑖𝑛𝑣𝜋𝜆𝑇𝐿𝑦𝐿𝑧

4√2𝑙
]
2

= 𝜑
(𝑥𝑜,

𝑡𝑜
2
)
                                                          (2.66) 

 

𝜑1
𝑚𝑖𝑛 is taken at Vg=VTH seeing as 𝐶0, 𝐶1 are parameters that depend on the gate 

voltage through the dependence of  𝜑1 on the gate voltage through the surface potential 

𝜑𝑆0. �̃�𝑒𝑓𝑓is taken to be at 𝑙/2. 𝜑1
𝑚𝑖𝑛is the same as in [50] except for a change in 𝜑𝑆0 as 

shown in (2.67). The inversion sheet charge at the threshold is taken to be 3×1010cm-2.  

 

𝜑𝑆0 =
𝑉𝑔−𝜑𝑚𝑠−

Δ𝐺

2
−𝐸𝐹

1+
4𝑡𝑜𝑥𝜀

𝑡𝑜𝜀𝑜𝑥
𝑡𝑜𝑥

�̃�𝑒𝑓𝑓 +
Δ𝐺

2𝑞
+

𝐸𝐹

𝑞
                                             (2.67) 

 

The FD integral has a very good approximation, with an error smaller than 0.5%. 

 

𝐹−1 2⁄
 (𝜂) =

𝑒−𝜂−𝜉′

[𝑒−𝜂−𝜉]2
                                                          (2.68) 
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where: 

 

𝜉 = 3√
𝜋

2
[𝜂 + 2.13 + (|𝜂 − 2.13|2.4 + 9.6)5 12⁄ ]

−3 2⁄
                      (2.69) 

 

After some calculation, it can be deduced that: 

 

𝐹−1 2⁄
 (0) ≈ 1                                                              (2.70) 

 

So for 𝜂 = 𝜑 −
𝐸𝐹

𝑞
−

Δ𝐺

2𝑞
≥ 0 there would be more than unity electrons present, 

which is not in agreement with the threshold sheet charge taken. Hence, it can be taken 

that 𝜂 is negative, and because the channel length is at least four times larger than the 

DeBroglie thermal length, we can go to the nondegenerate limit to calculate the 

threshold voltage. The threshold inversion charge can then be expressed as in (2.71).  

 

𝑄𝑖𝑛𝑣 = 2 
√

2

𝜋

𝜆𝑇𝐿𝑦𝐿𝑧
∫𝑑𝑦 𝑒

(
𝜙 −

Δ𝐺
2

−𝐸𝐹

𝑉𝑇
)

=
√

2

𝜋

𝜆𝑇𝐿𝑦
𝑒

(

𝑉𝑇𝐻−𝜙𝑚𝑠+𝜙1
𝑚𝑖𝑛|

𝑦=
𝑡𝑜
2

−
Δ𝐺
2𝑞

−𝐸𝐹

𝑉𝑇
)

         (2.71) 

 

By reusing 𝜑1
𝑚𝑖𝑛 in (2.63), the derived quantum corrected threshold voltage for [14] 

can be formulated as in (2.72) for the DG MOSFET with 2DEG confinement; 

 

𝑉𝑇𝐻 = 𝑉𝑇 ln (
Qinv𝜆𝑇𝐿𝑦

2√
2

𝜋

) + 𝜑𝑚𝑠 − (𝑒
−

𝐿𝜆

2𝑡𝑜2√𝐶0𝐶1 cos 𝜆
𝑦

𝑡𝑜
) +

Δ𝐺

2𝑞
+ 𝐸𝐹        (2.72) 

 

where 

𝐶0𝐶1 =

(

 
 
 

𝑆2
2[𝑉𝑇𝐻 − 𝜑𝑚𝑠]

2

−[𝑉𝑇𝐻 − 𝜑𝑚𝑠][𝑉𝑏𝑖 + 𝑉𝑑𝑠] [1 − 𝑒
−

𝐿𝜆 
𝑡𝑜   ]

+𝑆1
2 [(𝑉𝑏𝑖 + 𝑉𝑑𝑠) (1 − 𝑒

−
𝐿𝜆𝑄

𝑡𝑜 )

2

𝑉𝑏𝑖 − 𝑉𝑑𝑠
2 𝑒

−
𝐿𝜆 
𝑡𝑜 ]

)

 
 
 

   (2.73) 
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where S1 and S2 depend on the device dimensions and are shown in Appendix 

A. The solution can be found by solving a quadratic equation in the threshold voltage. 

If L>>t in (2.72), the influence of the third term can be neglected, and the only 

significant correction is that resulting from the gap change. It is reasonable to conclude 

that the nondegenerate limit describes the subthreshold regime, while the saturation 

regime is the degenerate limit.  

 

The numerical BALMOS simulations provided in [40], [61] were utilized for the 

validation of the threshold voltage results. Figure 2.10 shows the plot for proposed 

threshold voltage model for silicon thicknesses from 3 to 25 nm, with L = 20 nm, 

tox=1nm, and VDS=0.15V. Good agreement within ±3% is observed with the numerical 

simulation.   

 

Figure 2.11 shows the threshold voltage for VDS values of 0.1, 0.5 and 1V to account 

for DIBL for channel lengths ranging from 10 to 50 nm. The model correctly shows a 

decrease in the threshold voltage not only as channel length decreases, but also as the 

drain source voltage increases. Figure 2.12 shows the threshold voltage roll off for 

channel lengths ranging from 7 – 100 nm for 5, 10, and 15 nm thicknesses and a 1nm 

oxide thickness. No fitting parameters have been used in any of the simulations.  

 

Figure 2.10 Threshold Voltage Vs tsi ranging from 3 to 25 nm for the proposed model in (35) 

in comparison with the BALMOS numerical simulation presented in [61] 
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Figure 2.11 Threshold Voltage for L ranging from 10-50 nm for various Drain-Source 

voltages for the proposed model in (35) at tsi=5nm. 

 

Figure 2.12 Threshold Voltage Roll-Off for L ranging from 7-100 nm at various tsi for the 

proposed model in (35).   
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CHAPTER 3  

RELIABILITY MODELLING  

 

3.1 INTRODUCTION 

    DG MOSFETS operating in the deca-nanometer regime face reliability 

apprehensions as a result of degradations; most notably Hot Carrier Injection (HCI), as 

well as negative bias temperature instability effects [45][46]. These two particular 

degradation mechanisms arise from the permanent interface traps which are 

irrecoverable after some time of operation. NBTI not only causes a decrease in 

transconductance and channel carrier mobility, but it also causes an increase in the off 

current and in the absolute threshold voltage value. [49] 

 

    Numerous varying work has been published in the area of device modelling 

including nanoscale scaling effects. The 2011 work in [62] modelled the quantum 

mechanical effects of NBTI degradation, however, quantum effects and quantum 

confinement were not studied. The two dimensional models provided in [26] did not 

incorporate the effects of DIBL nor degradation. The two-stage model in [46] 

remarkably captures all aspects of NBTI effects; nevertheless, quantum confinement 

was not discussed. The recently published quantum modelling work in [37][63] focuses 

on accurate physics-based modelling of ballistic devices without the inclusion of 

reliability.  

 

In order to fully model the deca-nanometer performance of DG structures, it is 

crucial to model the effects of quantum confinement in addition to degradation effects 

on the electrostatics of the device. This work represents, for the first time, two 

dimensional simple compact models incorporating quantum confinement, NBTI, as 

well as, short channel effects (SCE). 
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3.2 POTENTIAL MODEL DERIVATION 

 

Figure 3.1 Cross section of the DG PMOSFET with the used coordinate system assuming a 

homogenous distribution of interface traps 

 

A cross section of the DG MOSFET used is depicted in Figure 3.1. The potential 

model in [51] was derived based on the solution of a 2D Poisson equation. Utilizing the 

potential model previously derived in [51], the expression can be rewritten in a compact 

form as shown in (3.1) 

 

𝝋𝑵𝑩𝑻𝑰,𝑺𝑪 = 𝑭 × 𝝋𝒔𝒄 + 𝑬                     (3.1) 

 

where 𝜑𝑁𝐵𝑇𝐼,𝑆𝐶 is the potential when the SCEs and NBTI effect are considered 

and 𝜑𝑠𝑐 is the potential when SCEs are only considered, and  

 

𝐹 =
5040𝐿𝜆1

6+840𝐿3𝜆1
4+42𝐿5𝜆1

2+𝐿7

5040𝐿𝜆1
6+840𝐿3𝜆1

4+42𝐿5𝜆1
2+𝐿7+5040𝐿𝑆+840𝐿3𝑔+42𝐿5𝜆′

     (3.2) 

 

𝜆1 = √
∈𝑠𝑖𝑡𝑠𝑖𝑡𝑜𝑥+∈𝑜𝑥(𝑡𝑠𝑖𝑥−𝑥2)

2∈𝑜𝑥
                                      (3.3) 

𝜆′ =
−𝛼∈𝑠𝑖𝑡𝑜𝑥

∈𝑜𝑥+𝛼∈𝑠𝑖𝑡𝑜𝑥
𝜆1
2 +

𝛼∈𝑠𝑖𝑡𝑜𝑥(𝑡𝑠𝑖𝑥−𝑥2)

2∈𝑜𝑥+2𝛼∈𝑠𝑖𝑡𝑜𝑥
            (3.4) 
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𝑺 = 𝟑 𝝀𝟏
𝟒𝝀′ + 𝟑 𝝀𝟏

𝟐𝝀′𝟐 + 𝝀′𝟑                            (3.5) 

 

𝒈 = 𝟐𝝀𝟏
𝟐𝝀′ + 𝝀′𝟐                      (3.6) 

 

where L is the channel length, ∈𝑠𝑖 is the silicon permittivity, 𝑡𝑠𝑖 is the channel 

thickness,  𝑡𝑜𝑥 is the gate oxide thickness, 𝑉g′ = 𝑉𝑔 − 𝑉𝑓𝑏, 𝑉𝑓𝑏 is the flat band voltage, 

A,B,C are constants, and 𝛼 and 𝛽 are NBTI parameters discussed in [51] 

 

𝐸 =
1

5040𝐿𝜆1
6 + 840𝐿3𝜆1

4 + 42𝐿5𝜆1
2 + 𝐿7 + 5040𝐿𝑆 + 840𝐿3𝑔 + 42𝐿5𝜆′

× 

[
 
 
 
 
 

𝑽𝒅(𝟓𝟎𝟒𝟎𝒚𝑺 + 𝟖𝟒𝟎𝒚𝟑𝒈 + 𝟒𝟐𝒚𝟓𝝀′) +

𝑽𝒃𝒊(𝟓𝟎𝟒𝟎𝑳𝑺 + 𝟖𝟒𝟎((𝑳 − 𝒚)𝟑 + 𝒚𝟑)𝒈 + 𝟒𝟐𝒚𝟓𝝀′)

−𝑽𝒈′𝒈(𝟖𝟒𝟎(𝑳 − 𝒚)𝟑 − 𝑳𝟑 + 𝒚𝟑) +

𝟒𝟐((𝑳 − 𝒚)𝟓 − 𝑳𝟓 + 𝒚𝟓)(𝝀′ + 𝝀𝟏
𝟐)

−𝑨′(𝟖𝟒𝟎(𝑳 − 𝒚)𝟑 − 𝑳𝟑 + 𝒚𝟑)(𝒈 + 𝝀𝟏
𝟒) ]

 
 
 
 
 

  (3.7) 

 

and  

 

𝐀′ =
−𝛂∈𝐬𝐢 𝐭𝐨𝐱 𝐕𝐠′−𝛃∈𝐬𝐢 𝐭𝐨𝐱

(∈𝐨𝐱+𝛂∈𝐬𝐢 𝐭𝐨𝐱)
            (3.8)  

 

 Given that the model derived in Chapter 2 incorporates SCEs, 𝜑𝑠𝑐 can be 

replaced with the potential model including both quantum effects and SCEs. Thus, the 

potential for quantum confinement effects and NBTI together can be expressed as in 

(3.9).   

 

 𝝋𝑵𝑩𝑻𝑰,𝑸𝑬 = 𝑭 × 𝝋𝑸𝑬 + 𝑬                                (3.9) 

 

where 𝜑𝑁𝐵𝑇𝐼,𝑄𝐸 is the potential of the combined effect of NBTI and quantum 

confinement effects and 𝜑𝑄𝐸 is the compact quantum confinement potential model 

derived in the previous chapter. 
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The combined expression in (3.9) is used in plotting the surface potential along 

the channel as shown in Figure 3.2 and Figure 3.3 at a channel length of 10 nm, a built-

in voltage, Vbi  of  -0.6V and a drain voltage, Vd, of 0V and -0.5V respectively. The 

figure also shows the potential distribution for each effect separately. At an oxide 

thickness of 1nm and L=10nm, the NBTI effect is significant, furthermore, a silicon 

thickness of 5nm allows quantum confinement to be prominent as well. Therefore, the 

results represented for the combined model show the effect of both quantum 

confinement and NBTI on the distribution of the surface potential.  

 

In order to validate these results, numerical simulations were carried out using 

COMSOL to predict the surface potential under both effects at a channel length of 20 

nm and a 5 nm silicon thickness. The COMSOL simulation was performed by solving 

two Partial Differential Equations (PDEs). The 2D Poisson and 1D Schrodinger 

equations were solved self consistently in multi-physics mode.  

 

Figure 3.4 shows the proposed model compared with the numerical results. Very 

good agreement within ±3% is observed, thereby verifying the model for channel 

lengths down to 20 nm. Furthermore, not only is it matching within ±3% achieved at a 

zero volt drain voltage, but it is also within ±6% at a drain voltage of -0.5V.  

 

Figure 3.2 Potential Distribution along the channel for the combined effect of Quantum and 

NBTI effects and for Quantum and NBTI separately for L=10nm, Tsi=5nm, Tox=1nm, Vds=0V, 

Vbi=-0.6V, after 10 years of operation 
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Figure 3.3 Potential Distribution along the channel for the combined effect of Quantum and 

NBTI effects and for Quantum and NBTI separately for L=10nm, Tsi=5nm, Tox=1nm, Vds=-

0.5V, Vbi=-0.6V, after 10 years of operation 

 

 

Figure 3.4 Potential Distribution along the channel for the model compared with the numerical 

COMSOL simulation for L=10nm, Tsi=5nm, Tox=1nm, Vbi=-0.4V, after 10 years of operation 
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3.3 THRESHOLD VOLTAGE DERIVATION 

The threshold voltage expression in [51] can be separated in a compact form as shown 

in (3.10) 

 

𝑉𝑡ℎ𝑁𝐵𝑇𝐼,𝑆𝐶 
= (1 − 𝜉)(Vfb + m) + 𝜉. 𝑉𝑡ℎ_𝑆𝐶 + 𝑑        (3.10) 

 

where 𝑉𝑡ℎ_𝑁𝐵𝑇𝐼 is the threshold voltage including NBTI and SCEs effects, 𝑉𝑡ℎ_𝑆𝐶  

is the threshold voltage including SCEs only, and also 𝜉,m, 𝑑 are NBTI factors. 

 

𝑚 =
1

c
(𝑎′(𝑉𝑏𝑖 + 𝑉𝑑) + 𝑏′𝑉𝑏𝑖)                         (3.11) 

 

c = 1 − a − b, 𝑎 =
sinh(

𝑦𝑚𝑖𝑛
𝜆1

)

sinh(
𝐿

𝜆1
)

, 𝑏 =
sinh(

𝐿−𝑦𝑚𝑖𝑛
𝜆1

)

sinh(
𝐿

𝜆1
)

     (3.12) 

 

𝑑 = −
𝛽′∈𝑠𝑖𝑡𝑜𝑥

(∈𝑜𝑥−𝛽′′∈𝑠𝑖𝑡𝑜𝑥)
−

𝑎′(𝑉𝑏𝑖+𝑉𝑑)+𝑏′𝑉𝑏𝑖

c
         (3.13) 

 

a′ =
sinh(

ymin
λNBTI

)

sinh(
L

λNBTI
)
−

sinh(
ymin
λ1

)

sinh(
L

λ1
)

, b′ =
sinh(

L−ymin
λNBTI

)

sinh(
L

λNBTI
)

−
sinh(

L−ymin
λ1

)

sinh(
L

λ1
)

    (3.14) 

 

r =
∈ox−β′′∈si tox

(∈ox+α∈sitox)
                             (3.15) 

 

ξ =
1

r
(1 +

a′+b′

c
)                                (3.16) 

 

λNBTI = √
∈sitsitox+(∈ox+α∈sitox)(tsix−x2)

2∈ox+2α∈sitox
            (3.17) 

 

λ1 = √
∈sitsitox+∈ox(tsix−x2)

2∈ox
                      (3.18) 

 

Where 𝛼 and 𝛽′′ is parameter for NBTI defined in [51] and 𝑦𝑚𝑖𝑛 is defined as 

shown in (3.19) 
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ymin = λ1 tanh−1 (
sinh(

𝐿

𝜆1
)−𝑓(𝑉𝑑)

cosh(
𝐿

𝜆1
)

)                               (3.19) 

 

And  𝑓(𝑉𝐷) =
𝑉𝑏𝑖+𝑉𝑑−𝑉𝑔′ 

𝑉𝑏𝑖−𝑉𝑔′
                                     (3.20) 

 

A compact threshold voltage model for the combined effect of both NBTI and 

quantum effects can be estimated based on (3.10) 

 

𝑉𝑡ℎ𝑁𝐵𝑇𝐼,𝑄𝐶 
= (1 − 𝜉)(Vfb + m) + 𝜉. 𝑉𝑡ℎ_𝑄𝐶 + 𝑑     (3.21) 

 

where 𝑉𝑡ℎ𝑁𝐵𝑇𝐼,𝑄𝐶 
 is the threshold voltage for the combined effect of NBTI and 

quantum confinement effects and 𝑉𝑡ℎ_𝑄𝐶 is the threshold voltage including quantum 

confinement effects as derived in Chapter 2 and is rewritten as in (3.22) to account for 

the co-ordinate system difference. Qinv is taken to be 3×1010cm-2.  

 

VTH_QC =

(

 
 
 VT ln(

QinvλTtsi

2√
2

π

) + Vfb

−(e
−

LλQ

2to 2√C0C1 cos λQ
x

to
+

ΔG

2q
+ EF)

)

 
 
 

           (3.22) 

 

where 

 

C0C1 =

(

 
 

S2
2[VTHQC

− Vfb]
2

− [VTHQC
− Vfb][Vbi + Vds]

+S1
2 [(Vbi + Vds) (1 − e

−
LλQ

to )

2

Vbi − Vds
2 e

−
LλQ

to ]

)

 
 

 (3.23) 

 

2λQ tan(λQ) = Cr                                                       (3.24) 

 

Cr =
εoxto

εsitsi
                                                  (3.25) 
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where S1 and S2 are as defined in Appendix A. 𝑉𝑇 is the thermal voltage, 𝑉𝑑𝑠 is 

the drain source voltage, 𝐸𝐹 is the energy of Fermi level,  𝑡𝑜 =
𝑡𝑠𝑖

2
 , Δ𝐺 is the deviation 

of gap energy for quantum wire from the gap energy of bulk material, 𝑞 is the 

magnitude of the elementary charge, and 𝜆𝑇 is the De Broglie wavelength.  

 

Variations in the channel length affect current transport models (ION and IOFF), 

while changes in the silicon thickness define the quantum confinement. Hence, even in 

very long channel devices, if the silicon thickness is below 10nm quantum confinement 

will be significant. [64] This is evident in the threshold voltage plot at tsi=5nm and tox= 

1nm in Figure 3.5, as the VTH value in the long channel range (𝑉𝑡ℎ𝑙𝑜𝑛𝑔 ) varies 

significantly between the quantum free NBTI model, and the proposed model. Figure 

3.6 corroborates this as tsi is taken at 18nm, thereby eliminating the effect of quantum 

confinement. As shown, the long channel VTH value converges towards the same value 

for all three models. The proposed model correctly models the behavior of the device 

as it exhibits both phenomena.  

 

Figure 3.5 Threshold Voltage for NBTI, Quantum and the proposed model effect at Tsi = 5nm, 

Vds=0V, Tox=1nm after 10 years of operation 
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Figure 3.6 Threshold Voltage for NBTI, Quantum and the proposed model at Tsi = 18nm, 

Vds=0V, Tox=1.5nm after 10 years of operation 

 

Since it is evident that quantum confinement has a higher effect on the threshold 

voltage, the plot in Figure 3.7 shows the combined threshold voltage model compared 

with the quantum model for a channel length range of 8 to 25nm. The graph is plotted 

at different Vd values to represent the influence of DIBL. The NBTI effect in the 

combined model is significant at a channel length below 16nm, and is more substantial 

at higher drain voltages which agrees with the findings in [65]. Figure 3.8 depicts the 

comparison between the proposed threshold voltage model in (3.22) and the COMSOL 

simulation which shows that any approximations in the model do not affect its accuracy. 
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Figure 3.7 Threshold Voltage for combined model compared with Quantum Threshold Voltage 

at Vds=0V and -0.5V, Tsi = 5nm, Tox=1nm, for L ranging from 8 – 25nm after 10 years of 

operation 

 

The threshold roll-off voltage and drain-induced barrier lowering (DIBL) are 

respectively shown in Figures 3.9 and 3.10, where the threshold voltage roll off is 

calculated according to:  

 

𝑉𝑡ℎ−𝑟𝑜𝑙𝑙−𝑜𝑓𝑓 = 𝑉𝑡ℎ𝑙𝑜𝑛𝑔
− 𝑉𝑡ℎ                                 (3.26) 

 

And the DIBL is calculated as shown in (3.27) 

 

𝐷𝐼𝐵𝐿 =
𝑉𝑡ℎ(𝑉𝑑(𝑙𝑜𝑤))−𝑉𝑡ℎ(𝑉𝑑(ℎ𝑖𝑔ℎ)) 

𝑉𝑑(ℎ𝑖𝑔ℎ)− 𝑉𝑑(𝑙𝑜𝑤)
                                       (3.27) 

 

where 𝑉𝑑(ℎ𝑖𝑔ℎ)=-0.5V and 𝑉𝑑(𝑙𝑜𝑤)=0V. 
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Figure 3.8 Threshold Voltage for the proposed model verified against the numerical simulation at 

Tsi = 5nm, Vds=0V, Tox=1nm after 10 years of operation 

 

 

Figure 3.9 Threshold voltage roll-off for combined effect of Quantum and NBTI effects and for 

Quantum and NBTI separately at Tsi = 5nm, Tox=1nm, for L ranging from 7 – 50nm. 
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Figure 3.10 DIBL for the combined effect of Quantum and NBTI effects at tsi=5 nm and tsi=10 

nm, for L ranging from 8 – 50nm. 
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CHAPTER 4  

CONCLUSIONS AND FUTURE WORK 

 

4.1 CONCLUSION 

This thesis has presented simple 2D compact analytical quantum correction 

continuous models for potential, threshold voltage, and inversion charge in a 

symmetrical lightly doped DG MOSFET including quantum confinement for the 

potential, threshold voltage, and the carrier charge sheet density by solving 2D Poisson 

and Schrödinger’s equation along the silicon film thickness. The electron and hole 

quasi-Fermi potentials were taken into account.  

 

The models were also extended to include the combined effects of quantum 

confinement and NBTI on the 2D electrostatics of an undoped symmetrical DG 

MOSFET. The model results have shown that the effects of quantum confinement are 

more significant when compared to the effects of NBTI studied after 10 years of 

operation at a 1GHz frequency. Nonetheless, NBTI has a noteworthy impact on the 

threshold voltage, which is more extensive at higher drain voltages, at channel lengths 

below 16nm. All proposed models are Verilog-A compatible and have been verified 

against numerical simulations.  

 

The quantum corrected potential and threshold voltage models were verified 

versus BALMOS and COMSOL numerical simulation. Agreement has been observed 

within ±5% with numerical simulations for silicon thicknesses ranging from 3 to 20 

nm. The compact combined models provided for the potential distribution and the 

threshold voltage have been verified against COMSOL numerical simulations with very 

good matching within ±3-6% for channel lengths down to 7nm as well.  

 

4.2 FUTURE WORK 

Future extensions intended for this work include: 

- Modelling carrier transport through an analytical current model to compute 

the gain and transconductance. This would allow the model to be suitable 

for SPICE Simulators.  
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- Validation for GAA structures and narrow channel ballistic devices  

- Reliability modelling for other nanoscale devices; such as FinFET and SPIN 

devices. 

- Reliability modelling for new materials, such as III-V materials.  

 

There are certain factors and phenomena that can be added to the models to 

increase their accuracy. The proposed models avoided these effects in order to maintain 

the simplicity of the model. Effects avoided include: 

- Inter sub-band scattering modelling 

- Solving a 3D Poisson equation instead of solving a 2D Poisson equation to 

model the surface potential. This would validate the overall potential profile 

with a higher precision.  

- Solving a 2D Schrodinger equation instead of a 1D Schrodinger equation 

would offer a more accurate representation of the charge profile.  
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APPENDIX A 

 

PARAMETER EQUATIONS FROM [50] 

 

 

PARAMETER 

 

 

EQUATION 

 

 

𝜆 

 

 

2𝜆 tan(𝜆) = 𝐶𝑟                             (𝐴. 1)                        

 

𝐶𝑟 

 

𝜀𝑜𝑥𝑡𝑜
𝜀𝑠𝑖𝑡𝑠𝑖

                                         (𝐴. 2) 

 

 

𝑆1 

 

4 sin(𝜆)

[2𝜆 + sin(𝜆)]. [ 1 − 𝑒
−2

𝐿𝜆
𝑡𝑜 ]

                  (𝐴. 3) 

 

 

 

𝑆2 

 

4𝜆 cos (
𝜆
2) (1 − 𝑒

−
𝐿𝜆
𝑡𝑜)

[2𝜆 + sin(𝜆)]. [ 1 − 𝑒
−2

𝐿𝜆
𝑡𝑜 ]

                  (𝐴. 4) 

 

 

𝐶0 
𝑆1 ∗ [𝑉𝐷𝑆 + 𝑉𝑏𝑖 (1 − 𝑒

−
𝐿𝜆
𝑡𝑜)] − 𝑆2 ∗ 𝜑𝑠𝑜     (𝐴. 5) 

 

𝐶1 
𝑆1 ∗ [𝑉𝑏𝑖 (1 − 𝑒

−
𝐿𝜆
𝑡𝑜) − 𝑉𝐷𝑆 (𝑒

−
𝐿𝜆
𝑡𝑜)] − 𝑆2 ∗ 𝜑𝑠𝑜     (𝐴. 6) 
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