28,752 research outputs found

    Solvable model for spatiotemporal chaos

    Get PDF
    We show that the dynamical behavior of a coupled map lattice where the individual maps are Bernoulli shift maps can be solved analytically for integer couplings. We calculate the invariant density of the system and show that it displays a nontrivial spatial behavior. We also introduce and calculate a generalized spatiotemporal correlation function

    New Duality Relations for Classical Ground States

    Full text link
    We derive new duality relations that link the energy of configurations associated with a class of soft pair potentials to the corresponding energy of the dual (Fourier-transformed) potential. We apply them by showing how information about the classical ground states of short-ranged potentials can be used to draw new conclusions about the nature of the ground states of long-ranged potentials and vice versa. They also lead to bounds on the T=0 system energies in density intervals of phase coexistence, the identification of a one-dimensional system that exhibits an infinite number of ``phase transitions," and a conjecture regarding the ground states of purely repulsive monotonic potentials.Comment: 11 pages, 2 figures. Slightly revised version that corrects typos. This article will be appearing in Physical Review Letters in a slightly shortened for

    Bosons Confined in Optical Lattices: the Numerical Renormalization Group revisited

    Get PDF
    A Bose-Hubbard model, describing bosons in a harmonic trap with a superimposed optical lattice, is studied using a fast and accurate variational technique (MF+NRG): the Gutzwiller mean-field (MF) ansatz is combined with a Numerical Renormalization Group (NRG) procedure in order to improve on both. Results are presented for one, two and three dimensions, with particular attention to the experimentally accessible momentum distribution and possible satellite peaks in this distribution. In one dimension, a comparison is made with exact results obtained using Stochastich Series Expansion.Comment: 10 pages, 15 figure

    Bose - Einstein Condensate Superfluid-Mott Insulator Transition in an Optical Lattice

    Get PDF
    We present in this paper an analytical model for a cold bosonic gas on an optical lattice (with densities of the order of 1 particle per site) targeting the critical regime of the Bose - Einstein Condensate superfluid - Mott insulator transition. We focus on the computation of the one - body density matrix and its Fourier transform, the momentum distribution which is directly obtainable from `time of flight'' measurements. The expected number of particles with zero momentum may be identified with the condensate population, if it is close to the total number of particles. Our main result is an analytic expression for this observable, interpolating between the known results valid for the two regimes separately: the standard Bogoliubov approximation valid in the superfluid regime and the strong coupling perturbation theory valid in the Mott regime.Comment: 40 pages, 6 figure

    Sliced rotated sphere packing designs

    Full text link
    Space-filling designs are popular choices for computer experiments. A sliced design is a design that can be partitioned into several subdesigns. We propose a new type of sliced space-filling design called sliced rotated sphere packing designs. Their full designs and subdesigns are rotated sphere packing designs. They are constructed by rescaling, rotating, translating and extracting the points from a sliced lattice. We provide two fast algorithms to generate such designs. Furthermore, we propose a strategy to use sliced rotated sphere packing designs adaptively. Under this strategy, initial runs are uniformly distributed in the design space, follow-up runs are added by incorporating information gained from initial runs, and the combined design is space-filling for any local region. Examples are given to illustrate its potential application
    • …
    corecore