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We present an analytical model for a cold bosonic gas on an optical lattice (with densities of the order of 1
particle per site), targeting the critical regime of the Bose-Einstein-condensate superfluid-Mott-insulator tran-
sition. We focus on the computation of the one-body density matrix and its Fourier transform, the momentum
distribution which is directly obtainable from “time-of-flight” measurements. The expected number of particles
with zero momentum may be identified with the condensate population if it is close to the total number of
particles. Our main result is an analytic expression for this observable, interpolating between the known results
valid for the two regimes separately: the standard Bogoliubov approximation valid in the superfluid regime and

the strong-coupling perturbation theory valid in the Mott regime.
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I. INTRODUCTION

Since their experimental realization in 1995 [1], Bose-
Einstein condensates (BEC’s) have become one of the most
exciting fields in physics. Because the high degree of control
and good understanding of the microscopic physics involved,
they provide an excellent opportunity to investigate various
issues in atomic and molecular physics, quantum optics,
solid-state physics, and even high-energy physics and cos-
mology [2].

The interest in these systems is also boosted by its pos-
sible use in the implementation of quantum-information pro-
cessing (QIP) [3]. Cold neutral atoms in optical lattices are a
naturally scalable system, and because of the weak coupling
to the environment, long decoherence times are expected.
There are detailed proposals on how to build quantum gates
[4,5] and qubit buses [6] to exchange information between
different locations. All these properties make these systems a
promising candidate for QIP.

In most proposals, the physical qubit is a single atom
which may be in one of two preferred hyperfine states. This
implies strict control of the number of atoms per site, which
in principle may be achieved by driving the system deep into
the Mott insulator (MI) regime [7]. However, the gas is usu-
ally first condensed in a trap, and then the lattice is imprinted
on it. This implies driving the system through the superfluid-
(SF-) insulator transition. As with other phase transitions, we
expect that the particle distribution will be determined by
events at or just below the critical point; once the hopping
parameter is low enough, this distribution will be simply
frozen in [8].

To amplify this important point, we observe that it is ex-
pected that both Landau and Beliaev damping will be
strongly suppressed in the Mott regime [9]; this means that
the equilibration times will grow sharply as we cross from
the superfluid to the insulator phases. The pattern of correla-
tions among different sites and particle number fluctuations
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will get frozen once the relaxation time is long compared
with the characteristic time in which the parameters of the
model are being changed. Unless this change is made very
slowly, this will happen soon after entering the Mott regime.
In this “diabatic” transition, the likelihood of a vacancy or of
a multiply occupied site will correspond to those of a lattice
near the critical point, rather than to the parameters of the
operating regime.

The goal of this paper is to formulate an analytical model
for a cold bosonic gas on an optical lattice (with densities of
the order of one particle per site), targeting the critical re-
gime of the BEC-superfluid-Mott-insulator transition
[10,11]. We focus on the computation of the one-body den-
sity matrix [12] and its Fourier transform, the momentum
distribution which is directly obtainable from ‘“time-of-
flight” measurements [11,13,14] (see [15]). The expected
number of particles with zero momentum may be identified
with the condensate population if it is close to the total num-
ber of particles. Our main result is an analytic expression for
this observable, interpolating between the known results
valid for the two regimes separately: the standard Bogoliu-
bov approximation valid in the superfluid regime [16] and
the strong-coupling perturbation theory valid in the Mott re-
gime [17-20]. Comparison of our analytic results with exact
numerical solutions for N particles in a one-dimensional lat-
tice of N=9 sites shows that unlike the standard Bogoliubov
and strong-coupling perturbation our analytic solution sus-
tains a uniform accuracy throughout.

A. The model

We consider a system of N particles distributed over N
lattice sites, with an integer mean occupation number n
=N/N,. In terms of the creation and destruction operators
a_jf(t) and a,(r), the dynamics is described by the Bose-
Hubbard model (BHM) [21] Hamiltonian
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H=2{ Efljalaj+%]a 2a2} (1)

where the first term describes hopping between sites and the
second term the in-site repulsion between particles. The ma-
trix J;; is equal to J if the sites i and j are nearest neighbors
and zero otherwise. When the repulsion term dominates, the
ground state of the system has definite occupation numbers
for each site and weak correlations among different sites.
The system is in the so-called MI phase. When the hopping
term dominates, atoms condense into a single quantum state
extended over the whole lattice; the system is in the SF
phase.

In this paper we shall focus on the calculation of the one-
body density matrix

o1 =@ (Da (1), 2)

and its Fourier transform

1 .
Nq = _2 ezmq(l_k)/N‘YUllks (3)
s lk

where N, is the expected total number of particles with mo-
mentum ¢ (in units of 4/ N,a, where a is the lattice spacing).
N,y may be identified with the condensate population.

In the deep Mott regime (J=0), o =ndy and N, =n is the
same for all modes. In the opposite limit (U=0), o;,=n for
every pair of sites and N,=N&,.

Our goal is to obtain analytic expressions for this observ-
able in the intermediate regime U/nJ~ 1, with n~ 1 as well.

B. Some approaches to the one-body density matrix

To motivate our perspective below, let us begin with a
brief discussion of some of the most common approaches to
this problem in the literature and place our work in this con-
text. We feel that other than the few full-fledged numerical
calculations [22,23], none of the analytic approaches fully
cover the transition regime described above. Moreover, even
if a numerical calculation is feasible, it is useful to have a
reliable analytic approach to match against.

To begin with, since our interest is o, approaches based
on the Gutzwiller ansatz or mean-field theory [24] would not
be sufficient. These methods are very powerful to investigate
the phase diagram, but because they treat different sites as
independent, they severely distort the one-body density ma-
trix.

These approaches may be improved on, of course. The
Gutzwiller ansatz may be taken as just the first step in a
consistent perturbative expansion [25], and the mean-field
decoupling ansatz may be applied to full cells rather than
individual sites [26]. However, the required order in pertur-
bation theory (or the size of the fundamental cell) to get a
reliable result scales with the size of the lattice, and soon the
difficulty becomes comparable to a full numerical solution.

Starting from the superfluid regime, the simplest way to
get o is the Bogoliubov approach [27]. Since we shall con-
sider the case in which the gas is at fixed total particle num-
ber, rather than fixed chemical potential, we must consider
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instead the particle-number-conserving (PNC) formalism
[28]. However, for the purpose of this preliminary discussion
we may make an abstraction of the difference.

A simpleminded mean-field approach, in which we simply
replace a; by its “expectation value” z;, is bound to fail.
Since the BH Hamiltonian has global phase invariance a;
—>e“9a in view of the Goldstone theorem the mean-field
theory must be gapless [29]. In other words, simpleminded
mean-field theory can only describe the superfluid phase.

Since the one-body density matrix is the time coincidence
limit of the two-point function <aj-(t)ak(t’)>, one could think
of finding equations of motion for these functions directly
without including a mean field [30], but this approach also
fails. In a nutshell, the difficulty is as follows. The Heisen-
berg equation of motion for aT(t) is

(- z)— (1) =[H.a/(]=- EJ,Jal +Ua)? (4)
whereby
"(%@ (Day(1")) = E Jikal(Da(t)) - UlalPa) (Day(r)).
(5)

and we face a closure problem: namely, how to express the
four-point function in the last term in terms of two-point
functions. A typical resolution is a Hartree-like scheme,
where we approximate

((ala)(ay(t')) ~ 2a]()a (D) a](Dar(t))
= 2n{a}(ay(1")). (6)

However, in the weak-hopping limit we expect the system
will be close to the MI ground state

M) = [T |n); (7

(that is, each site is in a state of well-defined occupation
number), where we can compute

(aj(Day(t")) ~ nédy, (8)

((@*a)(Dayt) ~ n(n=1)8; = (n— 1){a](Na,(t").

)

We see the Hartree approximation is off by a factor of 2,
even if n>1 [31].

A possible way around this problem is to obtain a formal
equation of motion for an object (say, a two-point function)
for finite U and J, and then approximate the coefficients in
the formal equation (for example, a self-energy) by their ex-
act value at J=0 or for very large J, as needed [14,32]. How-
ever, the actual expressions derived in this way are not reli-
able at the transition region, which is where our main interest
rests.

In the opposite Mott insulator regime, the most straight-
forward approach is Rayleigh-Schrodinger perturbation
theory in the parameter J [17-20]. However, the complexity
of the calculation increases steeply with each increasing or-
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der, and so its accuracy for finite values of J is hard to assess.
Comparison against exact solutions for n=1 and N,=5, 7,
and 9 shows that first-order perturbation theory breaks down
before the transition (see below). This is consistent with the
expectation that perturbation theory breaks down when Jn
>U.

Dilute gases with very strong repulsion may be treated as
a free Fermi gas [33]. This approach has been recently suc-
cessfully extended to densities n>1 [34].

Returning to the above failed Hartree attempt, it is clear
that the closure problem arises in the U term because it is the
nonlinear term, while the J term is linear. One obvious alter-
native is to reformulate the theory in such a way that this
situation is reversed. This is accomplished in the so-called
slave-boson—slave-fermion method [35].

The slave boson method requires the introduction of a
large number of auxiliary fields and constraints on the theory.
In this paper we shall explore a similar strategy (that is,
making the repulsion term linear, the hopping term nonlin-
ear) while keeping closer to the original fields in the Hamil-
tonian.

One possible way to implement this is to observe that the
interaction term is actually quadratic on the site occupation
number n;=aja;, since a/*a’=n;(n,~ 1). This suggests to con-
sider as fundamental a “phase” variable ¢; canonically con-
jugated to the occupation numbers n; [36,37]:

[nj»¢i]:_i5i' (10)

(here and after we assume 7=1). The original creation and
destruction operators are

a; = [exp(- i) Nn;, (11)

af = \nfexplig)]. (12)

The implementation of this idea hits some well-known
difficulties [38]. If the operator ¢; exists and is Hermitian,
then the operators exp(—irg;) are unitary and shift the state
|n) into [n—r). But such operators annihilate the vacuum
state |0), so they cannot be unitary. We shall return to these
difficulties below.

In terms of the density and phase variables, the classical
Hamiltonian becomes

n-3

— U

- E 2J;\Nnn; cos[@; — ¢;] + —n(n;— 1)
~ 2

J<i

(13)

If we further approximate V"FlftjEn in the hopping term,
then we obtain the quantum phase model [39,40]. This model
displays a phase transition, and it has been used to investi-
gate nonequilibrium aspects of the Mott transition [8].

On closer examination, the approximation involved is
valid when Un>J [41]. Therefore, for n~1 it fails at the
transition region. In conclusion, while the quantum phase
model is the best option on the shelf, it must be generalized
to lower densities to be truly reliable in the relevant regime
[42].

One possibility is to allow for particle fluctuations, but
only as far as any given site is never more than one particle

PHYSICAL REVIEW A 73, 023610 (2006)

above or below the average. Then it is possible to map the
problem onto the XY model or else use a path integral rep-
resentation in terms of spin-1 coherent states [43]. These
models also display a phase transition, and a Gross-
Pitaievsky description has been recently developed. How-
ever, we are not aware of attempts to carry the perturbative
evaluation of these models to higher orders. Below we shall
explore an alternative strategy with the same overall goals.

Finally we observe that the so-called truncated Wigner
approximation and other phase-space methods have been
successfully applied in the n>1 limit [44,45].

From this description we see the lack of suitable treatment
in the literature of the one-body density matrix at the transi-
tion region for low densities. Not only is there no single
approach which is fully reliable throughout, but moreover
those which are successful on one asymptotic regime are
based on a quite different physical model than the ones
which succeed on the other (compare, e.g., Bogoliubov
methods against the Tonks-Girardeau gas approach or strong-
coupling perturbation theory). A model which is able to de-
scribe the transition region within a single physical model
and keeping an uniform accuracy would be a definite step
forward. This is our aim here. To be fully understood, how-
ever, we must identify some desirable features any approach
to this problem must possess to be truly useful.

C. Our approach in the context of ongoing research

As we mentioned above, our interest in this problem of
the loading of BEC atoms onto an optical lattice is motivated
by the feasibility of using this process to initialize a quantum
computer. This longer-range goal sets certain constraints on
the model which we choose to perform our analysis.

The first consideration is that, although in this paper we
shall only discuss the equilibrium case, in last analysis one
needs a full nonequilibrium formulation of the problem. With
this goal in mind, we adopt the Schwinger-Keldysh or closed
time-path (CTP) [30,46] formalism from scratch. As a side
benefit, we shall see below that this choice is also helpful in
overcoming the formal difficulties of the density-phase rep-
resentation.

A related requirement is that there should be a well-
defined way to carry the perturbative evaluation of the model
to any order, but because this will be unavoidably complex,
already the first order in the expansion must give sensible
results. In particular, it is desirable to have the model in path
integral language, as it is the most adaptable to further imple-
mentation of perturbation theory.

Actually, the simplest quantum phase model formulation
fails this test; with some oversimplification, the problem is
that \n+ &n~ \n+6n/2\n is a bad approximation if &n>n
[47]. We shall seek a set of variables in which the perturba-
tive evaluation of o is more accurate than in the original
ones. We shall show this by comparing the first-order ap-
proximation to our model with exact solutions and to the
PNC and strong-coupling perturbation theories in the case of
small systems.

It is seen in actual experiments that collisions with non-
condensed particles and loss are not significant except on the
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longest time scales (above 1 s [48]). Therefore we shall con-
sider the case of an isolated gas—i.e., the total number of
particles will be constant [28]—as opposed to the case of a
gas interacting with a particle reservoir, whereby the chemi-
cal potential remains constant. However, instead of the PNC
approach, we shall develop a formalism which is more suit-
able to the path integral formulation of the model. We shall
regard the given value of the total particle number N=nN; as
a constraint on allowed states of the system, rather than just
a dynamical condition. The resulting theory will amount to
an independent quantization of the system; our model and
the PNC one will agree only with respect to the time evolu-
tion of observables which commute with N. Of course,
a;f(t)a,»(t) is one of these observables; not so the creation or
destruction operators separately. A detailed comparison of
the path integral and PNC approaches is given in Ref. [49].

Let us observe that this procedure is less unusual than it
may seem. For example, in studies of the ground state of the
system, it is common to adopt trial wave functions which
preclude site occupations farther from the mean than a few
units (a similar policy is sometimes adopted for the numeri-
cal diagonalization of the Hamiltonian). In practice, this
means that the Hilbert space of allowable states is con-
strained; the reduction is actually more drastic than the one
postulated here.

A similar procedure has been implemented in the field of
high-temperature superconductors near the Mott limit to en-
force such constraints as excluding double occupancy [50].

From the technical point of view, the advantage of taking
the given value of N as a hard constraint is that in the con-
strained system, the global phase invariance of the BHM
becomes local in time. Technically, the model becomes a
gauge theory, with the constraint N as gauge generator [51].
This allows us to take advantage of the powerful methods of
gauge theory quantization (of which we shall only have a
glimpse in this first take of the problem) [52].

When seen in the light of our stated long-term goal, a
number of shortcomings of our present work clearly stand
up, and it is only fair that we mention some of them. First, to
be sure we have an accurate description of the transition we
should also compute other observables, such as the particle
number fluctuations [53] and the dynamic structure factor
[20,54-56]. We have only considered a homogeneous lattice,
while a lattice superimposed onto a harmonic trap would be
more relevant to applications [57] (the presence of the trap
has a drastic effect on the transition [58]). We have not con-
sidered lattice fluctuations [59] or finite-temperature effects
[60]. We have considered a condensate of atoms without in-
ternal degrees of freedom, while of course the internal struc-
ture is essential for QIP [61].

It is also interesting to observe that some of the quantities
we compute in this paper have been measured in both one-
and three-dimensional systems [62,63]. We will comment
briefly on these results in Sec. VII; a detailed discussion will
be given elsewhere [64].

In spite of these unachieved goals, the formulation of a
fully analytic theory of the one-body density matrix is a nec-
essary first step towards constructing a realistic theory of the
loading process, which we now proceed to tackle.
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D. This paper

The rest of the paper is organized as follows. Over the
next four sections, we develop a formal presentation of the
model. In Sec. II, we develop the CTP path integral repre-
sentation for expectation values of BEC observables. In Sec.
III, this representation is translated to the density-phase rep-
resentation. In Sec. IV, we shift to a set of variables, more
suitable for the further perturbative evaluation of these ex-
pectation values. In Sec. V we explore the simplest approxi-
mation, where the theory is linearized in the inhomogeneous
modes.

In Sec. VI we apply this machinery to the computation of
the one-body density matrix and the momentum distribution
function. In the final section VII we show the results of a
comparison of our model against both exact numerical re-
sults and other approximated approaches, and conclude with
some final remarks.

In Appendix A we present a brief derivation of the other
approximate approaches discussed in the Results section:
namely, first-order perturbation theory in J/N and the PNC
approach to first order in N~'. These results are not and are
included only to prevent any misunderstandings due to dif-
ferent notations between this and the original papers. Appen-
dix B discusses the validity of Eq. (143) below as an ap-
proximation to Eq. (141).

II. CTP PATH INTEGRAL APPROACH TO BEC’s

In this section we will put together the basic formulas for
the coherent-state path integral method [65] to compute ex-
pectation values of observables within the causal CTP ap-
proach [46].

Before we get down to the formulas, let us try and convey
the idea of the approach in simple terms. Let us begin with
the problem of computing the vacuum expectation value

(O), of some observable O. One possibility is to add a term
—JO to the Hamiltonian. Let us call H the original Hamil-
tonian, H; the Hamiltonian H;=H ~JO. Then, if we can find
the ground-state energy E; of the Hamiltonian, first-order
perturbation theory implies that (O),=—dE,/dJ at J=0. We

have translated the problem of computing <é>0 into the prob-
lem of computing E;.

As it turns out, a surprisingly efficient way of computing
E; is by computing the matrix elements of the Euclidean
evolution operator [66]

eWel/l = (0]e~"H1)0y, (14)

where |0) is the vacuum state (we may assume that the ex-
ternal source J is switched off adiabatically at infinity, so the
vacuum is unambiguously defined). It turns out that when the
Euclidean lapse T—o, W,[J]—-TE, so again (O),
=T"'dW [J]/dJ at J=0.

In a time-dependent situation, however, a Euclidean for-
mulation is not readily available. One may attempt to make
do with the analytical continuation of Eq. (14) back to physi-
cal time (7 inside the brackets is the time-ordering operator),
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eVulll = (0 out|Te~/4H7|0 in), (15)

but this is untenable. The “expectation values” derived from

W,, are generally complex, even if O is Hermitian, and they
do not evolve causally in time [67]. The problem comes from
the fact that they are no longer expectation values, but rather
matrix elements between the asymptotic vacua |0 in) and
|0 out), which are not necessarily equivalent in this time-
dependent situation.

The solution found by Schwinger [46] was not to include
one external source but two, J! and JZ, and to define a gen-

erating functional
f{exp(z’ J dtsz)]

XT{exp(—ifdtHﬂ)} ‘O in>, (16)

where T is the anti-time-ordering operator. We may also
think of J' and J? as a single source defined on a “closed
time path” which reaches from 7=0, say, to the far future
[wherein the source takes the values J'()] and then bounces
back to t=0 [the source switching to J*()], therein the name
of the method. It is readily shown that differentiation of
Werp yields true expectation values, which are of course real
and evolve causally.

Since both quantum states in Eq. (16) are defined at the
same reference time t=0, Wrp is readily generalized to non-
vacuum situations [68]. Let p; be the density matrix describ-
ing the state at t=t¢,. Then expectation values with respect to
p; may be obtained from the CTP generating functional

eiwztr{U;l(tf,ti)U1(ff»ti)P(fi)}’ (17)

ngﬁg==Tlexp<—iJvfdﬂ7%ﬂ)}. (18)

i

eWerdd] = <O in

where

Our problem is to build a generating functional which will
allow us to compute the one-body density matrix. Our start-
ing point will be Eq. (17). For reasons of efficiency, we shall
seek a path integral representation of the trace.

In this and the next two sections, we shall construct this
representation. In this section we shall use the well-known
coherent-state representation [65], putting the emphasis on
the implementation of CTP boundary conditions. Then we
shall proceed to rewrite the CTP generating functional in
terms of more suitable variables to optimize the accuracy of
its perturbative expansion.

A. Coherent-state representation

We shall begin by recalling the usual coherent-state path
integral representation of transition amplitudes [65]. The
CTP boundary conditions shall be introduced in next subsec-
tion.

For simplicity, let us consider a single one-particle state.
There is a basis made of occupation number eigenstates |n):
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Nln) = n|n). (19)

In particular, there is the vacuum state |0). These states are
orthonormal and complete:

(mn) = 8,,,, (20)

> |n)n|=1. 1)

The destruction and creation operators relate states of differ-
ent occupation numbers

a|n>=v’;|n— 1), dln)y=vn+1n+1). (22)
Therefore,
a'a=N, [a,a']=1. (23)

A coherent state |@) is an eigenstate of the destruction
operator:

alay = ala). (24)

Adopting the normalization {0|a)=1 we find

(n|a) = iﬁ (25)

A
Let |l;) be a second coherent state; then,
{a|b) = exp{a’b}. (26)

The vacuum is the coherent state with a=0.
While not orthogonal, the coherent states are complete in
the sense that

21

J da_da exp{—a alja)a|=1. 27)

We may use the completeness relationship to write down
the trace of an operator A:

trA = >, (n|A|n) = f

Now consider the transition amplitude between the state
|a;) at time ;=0 and the state |a,) at time 77, where |a;) is the
eigenstate of the Heisenberg operator a(t;) with proper value
a. Since a(t;)=e""fae™"", we have (h=1)

exp{—a’al{alAla). (28)

da"da
21

|y = e™la) (29)
and
(@fa;) = @le"ay. (30)

Let N be some large number and e=7,/N. Write a;,=ay,
a=ay. Then, inserting N—1 identity operators, we have

Ml da’da

<Ef|ai> = f 1—.[ - . - exp{— a:an}<an+l|e_iH8|an>
ael 27T

X{ay|e”¢|ay), (31)

which may be written as [assuming the Hamiltonian H
=H(a",a) is in normal form]
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(afla;) = j [Daly- expliSyla’.alle, (32)

where
N-1 %
da,da,
[Daly =11 =, (33)
n=1 i

N
Sla",al= 2 ia,(a,-a,,) - eH(a,.a,,)}.
n=1

Going to the continuum limit, where a,—a,_; ~¢&daldt,
we get

(a(ty)fla(t)) = f [DalexpliS[a”.alle” “%,  (34)

Sla*,a]l= f dt{ia*%—H(a*,a)}. (35)

The integration is over paths where the initial value of a and
the final value of a” are fixed and given by a(t;) and a'(1y),
respectively.

B. CTP boundary conditions

We now have all the necessary elements to evaluate the
CTP generating functional, Eq. (17). The idea is that the
initial density matrix p is propagated forwards in time with
some Hamiltonian H' and then backwards with a Hamil-
tonian H>. Insert three identity operators in Eq. (17) to obtain

* 1 1 g 2% 2
eiw=f daydayday dayday dag
2w 2mi 2i

Xexp{- (a;,aN + a(')*a(l) + ag*ag)}<aN| Us(1y, t,~)|a§)*
><<61N| U1(ff,ti)|a(1)><a(l)|P(ti)|a(2)>- (36)
Now use the corresponding path integral representations

* 1% 1 o 2% 5 2
eiw=f daydayda, dayday dag
2w 2w 2i

Xexplayay —aq ag = aj agiaglp(t)ap)

X f [Da*]y_, exp{-iSx[a®",a*]"}

><f[Dal]N_]exp{iS}\,[al*,al]}. (37)

The configuration on the forward branch has a1(0)=a(') and
al*(tf)=a:,. On the backward branch, we have az*(0)=a3*
and az(tf)=aN. Once W is known, causal expectation values
may be computed by differentiation.

Equation (37) is the main result of this section. In order to
make use of it, however, we must rewrite it in a more suit-
able set of variables. This translation is the subject of the
next two sections.
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II1. DENSITY AND PHASE VARIABLES IN THE CTP
FORMULATION

In this section we present the basic elements of the path
integral formulation of a system of bosonic atoms in an op-
tical lattice in terms of number and phase variables, while
enforcing a fixed total particle number. This will set the stage
for a further canonical transformation to a more convenient
set of degrees of freedom, to be carried out in the next sec-
tion.

A. Madelung representation for the creation
and destruction operators

Our starting point is the Madelung representation for the
creation and destruction operators, Eqs. (11) and (12). The
phase observables ¢; have eigenstates |¢;), which are a com-
plete basis if ¢; runs over a full circle. To account for the
periodic nature of these variables, we define the inner prod-
uct

Uele =2 8¢~ @ —2mk), (38)
k

with k running over all integers. A transition element is de-
composed into transitions between phase eigenstates, medi-
ated by these identity operators. However, as shown by
Kleinert [69], all but one of these sums may be avoided if we
allow ¢; to run over all real numbers and not just a circle.
Since the line is the covering space of the circle, we shall call
this extended theory the covering theory.

In the covering theory, the discrete observable n; is re-
placed by a continuous observable p,, whose eigenstates |p;)
[such that {p/|p;)=8;8(p’—p)] generate the Hilbert space.
Then the physical subspace is the one generated by the |p;)
where p; happens to be a non-negative integer.

In the expanded Hilbert space, we have the p representa-
tion of a state |#):

(pil) = ). (39)
In this representation, the operator
J
=i, 40
b=l (40)
meaning that
. d
(ol ey = i—lpy). (41)
p;
Therefore
(pilexp(=ire)|y) = dlp; +r). (42)

So if [h)=|n), ¥(p;)=(pi=n) and exp(~irg;)|n)=|n~-r), as
expected:

9
(pileilen = la_p<pi|¢i> = odpilen, (43)
SO
(pileyy = e7ei, (44)
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The reason this scheme works better in the CTP formula-
tion than in other approaches is that it affords us the freedom
to choose an arbitrary initial condition. As long as the initial
condition is chosen within the physical subspace, the dynam-
ics of the system itself guarantees that there will be no un-
physical results. In particular, we turn the covering theory
into the physical theory by inserting the one missing identity
of the form of Eq. (38) into the path integral in a suitable
way (see below).

B. CTP path integrals in number and phase variables

Before considering the BHM, let us discuss how to build
CTP path integrals for the BHM in terms of number and
phase variables. The key is to clarify the boundary conditions
the histories within the path integral must satisfy.

Our starting point is the path integral representation, Eq.
(37), for the CTP generating functional. The action is given
in Eq. (35), whereby ia” is formally the momentum conju-
gate to a. To transform the action to density and phase vari-
ables, define a generating functional

0= _—lazezi“’, (45)
2
SO
. o o
ia =——Q, pz—Q. (46)
da dop
Then,
ia"da — Hdt = pdo — Hdt — dQ (47)
and

S=fdt{p[;—f —H(p,@)} [0ty -0(r)],  (48)

— . U
H=-2 JiNpipfexpli(e;— )1} + > Epi(pi - 1),
ij i

(49)

where Q=(-i/2)N.

The other factors in the measure may also be expressed in
terms of N. In this representation, we consider paths which
begin at values ¢'(0) and ¢*(0) and end at a common phase
o (N)=*(T)= @s. Observe that both the initial and final val-
ues of the densities are undetermined.

Of course, the physical phase variable ¢ must be identi-
fied with periodicity 277. We do this by inserting the identity
operator, Eq. (38), at some point within the path integral. So
we have two kinds of expectation values: the expectation
values of the covering theory (without the insertion) and the
physical expectation values (with the insertion), which we
shall call {(:--)) and (- --), respectively. The relationship be-
tween these constructs will be further clarified below.

C. Enforcing a fixed particle number

The quantum theory of the BEC may be regarded as the
quantization of the nonrelativistic classical field theory de-

PHYSICAL REVIEW A 73, 023610 (2006)

fined by the action functional, Eq. (48), where the canonical
variables are p;(f) and their conjugate momentum ¢;(r). We
are interested in the case in which the particle number takes
on a definite value N. We may reinforce this point by adding
a constraint on the theory. This is achieved by introducing a
Lagrange multiplier u(z) and rewriting the action as

Sfixed =S+ f dfl/«(f)z (P: - I’l) . (50)

The original action, Eq. (48), is invariant under a global
transformation ¢;(f) — ¢;(t)+ constant but the action, Eq.
(50), is invariant under the local (in time) transformations

dé
¢ilt) = @) + 00), p— p= (51
When 6 is infinitesimal, these are just canonical transforma-
tions generated by the constraint. Therefore it must be quan-
tized using the methods developed for gauge theories, such
as the Fadeev-Popov method.

This comes about because now the path integral is redun-
dant, since we may transform the fields as in Eq. (51). We
may fix the redundancy by factoring out the gauge group.
Choose some function fy=f[ g, ¢;), such that df,/d6+ 0.
Then,

A A p
V=0 f Dpf(t)Dqu(t)D/L“e‘[StIOI_SIZOt]Det[ie] :
60 | o0

(52)

where
0= f D6 (53)

is the volume of the gauge group we wish to factor out,
1
S50 [ @S wlp-nle - [ afi 60

and s is the “gauge-fixing parameter,” which may be chosen
freely. The determinant may be expressed as a path integral
over Grassmann “ghost” fields [52]. For simplicity, we shall
adopt a gauge-fixing condition f which transforms linearly,

du
Codr’ ©55)
so that its determinant is a constant and may be ignored.

In the path integral, x'(0) and w?(0) are integrated over.
In principle, there are no restrictions at 7, but we may as-
sume u'(T)=u>(T) with no loss of generality. Physically, u
has the meaning of a fluctuating chemical potential.

We note that the freedom to choose the gauge-fixing con-
dition f and the gauge-fixing parameter s is the key to the
power of the method. In this paper, we shall restrict our-
selves to the simple choice above for f and to the “Landau”
gauge s — (. Other choices may be used to meet the demands
of more advanced applications or to optimize the conver-
gence of perturbation theory.
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A different strategy to introduce freely chosen functions
in the formalism and then exploit the freedom therefrom is
the so-called stochastic gauge method [70].

Generating functionals as defined in Egs. (37) and (52),

after adding an external source coupled to an operator 0,
may be used to generate correlation functions involving this

operator. If O commutes with N, both representations are
equivalent. Otherwise, they will yield different results. For-
tunately, when we compute the one-body density matrix we
are within the domain of the equivalence of both formalisms.

D. Vanishing of the order parameter

As a check on the formalism being developed, let us
verify that the order parameter {(a;(r)) vanishes identically.
This must hold in any system with a finite number of par-
ticles.

To compute the order parameter, let us add a source
coupled to (pil:

fdt’Ej}(t’)¢}(t’). (56)
J
Now observe that
(al(t) = \pi();,. (57)

where

(Vox(0));, = f DD (DD p{(1)

Xexp i|:St1m—S,2{,,+Jdt,EJTkj(f')(P}(f'):| ;
J
(58)
and

Jai(t) == 8t — ;) 8. (59)

Let us now show that this vanishes. Make the change of
variables within the path integral:

@i (1) = (1) + 69 (1), E o¢i (1) =0. (60)

The homogeneous phases @“(¢) appear linearly in the action.
When we integrate them out, they enforce the constraints

dp; - dp;
E|:E_]ki:|=0’ 27=0- (61)

But these constraints are impossible to meet, since they con-
tradict the further constraints from the integration over w in
the s — 0 gauge.

IV. SET OF DEGREES OF FREEDOM

In this section, we perform a canonical transformation
from the phase and density variables introduced above to a
set of degrees of freedom which are more adept for the per-
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turbative evaluation of the one-body density matrix
(a)(t))ag(t))).

As in the evaluation of the order parameter in the previous
section, the basic idea is to write the creation and destruction
operators in their polar representation and then consider the
exponential terms as the result of external sources coupled to
the phases.

In the general case, a closed evaluation of the one-body
density matrix is not possible. We may try assuming that all
quantities may be decomposed into an homogeneous compo-
nent and a small inhomogeneous part,

pi =p'+ 5p;., (62)

etc. However, one is concerned about the \E factors in the
expectation value. Concretely, while the action becomes qua-
dratic in the J—0 limit and so a linearized approximation
would seem reasonable at small enough hopping, a term like
\p; does not become Gaussian in any controlled way.

Our proposal is to introduce a set of canonically conju-
gated variables, so that no square roots appear in the defini-
tion of the one-body density matrix or the Hamiltonian. This
will make the perturbative expansion starting from a qua-
dratic approximation to the Hamiltonian more straightfor-
ward.

However, as stated in the Introduction, it is not enough to
have a well-defined perturbative expansion, but already the
first terms must give sensible results. In our case, the first
term in the expansion corresponds to keeping only the qua-
dratic terms in the Hamiltonian. This simplified model will
be investigated in next section.

A. Set of variables

To avoid the nonanalytic square roots in the creation and
destruction operators, we proceed as follows. In the first
branch, we define a (complex) variable §il from

a} =[exp(- i(Pil)]\/p_il =exp(~ig)), (63)
al" = pllexplie})] = p} explic). )

This is actually a canonical transformation, since

00!
pi__ﬁqo-l’

l

0'= (%)E {exp[- Zi(fil - 901‘1)]} = _712 p,!-

(65)

The conjugated momentum is again pil. It follows that, on the
first branch,

1 .
1= [ at S % 1) S[Ze] @

0

On the second branch we write instead

@' =\ plexplig))] = exp(i&). (67)

Again there is a generating function
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i 2 i
0’ = 2 {expl2(& - @) =22pl,  (68)
i i
NV pi2 is the momentum conjugated to §12* The action

2% .
§?= f dr{E p?% - H(pz,gz*)} - 5[2 p?]T. (69)
i i 0

In the second branch, therefore,
a; =[exp(-i&)1p;. (70)
Explicitly, the Hamiltonians read
) U
H(p',€) == 2 Jypfexpli(e - &)1+ 2 pilpi = 1),
ij i
(71)

* * * U
H(p", &) == 2 Jifexpli(g - &)pi + 2 EP,-Z(p? -1),
iy L

(72)

plus the gauge terms, in both cases. Observe that in the vari-
ables, the action is explicitly analytical.

Canonical matters

If we regard the a; as ¢ numbers with equal-time commu-
tators

[aisa;] = 0jjs (73)
we conclude
[pip;]=0, (74)
lpia;]=~a;5;, (75)
o)
[pine ] = —e4is;. (76)
Now observe that
e Cipetti=pi+ilppEl+ o, (77)
but also
e ipieti=p;—[pie e’ (78)
Therefore
[pin&)=—i8;. (79)

Finally, the §; commute among themselves.
As a curiosity, we can actually solve for the §; operators.
The commutation rule suggests &;=¢;+ig(p;). We now have

<p2|a|pl> = \/;5;)2+1,p1

={(pale”|p,)
= (p,|[el7 eIV |p))

1
:chprexp{if dt[—go(@+l>—ig(p)}},
0 dt

(80)
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where we integrate over paths with p(0)=p; and p(1)=p,.
From the integration over ¢, we get dp/dt=-1, and so the
functional integral vanishes unless p,=p;—1, as expected.
Finally,

Vi = exp( f "’ | dpg(p)> | (81)
If G(p) is the primitive of g(:)l,
G(p) = Glp— 1)+ 5 Ip] (82)
so
G(p) = nTlp+1] (83)
and
e =5 up+ 1] (54)

If p>1, we have the Stirling approximation In I'[x]~ (x
—DIn(x=1)—(x=1) and so {x]~In(x—1), as expected. If
we reinstate the 7 factors, we find we must replace p by p/#,
so in the semiclassical limit we always have p>1.

Let us close this section with a word on the path of inte-
gration and measure appropriate to the path integral repre-
sentation. Since the (&;,p;) are canonically conjugated vari-
ables, the measure of integration is the Liouville measure at
each time slice in the path integral, d§;Adp;. To reduce this
to a more familiar form, we observe that since g(p;)=(—i)
X(&-£)12, then déndp;=idéndE 128 (p;). Therefore at
each time slice we must integrate over the whole complex §&;
plane; if we adopt the noncanonical (but more usual) (&, f;k)
pair as independent variables, then a nontrivial measure
arises.

This subtlety will not be an obstacle in what follows,
since the relevant expectation values will be computed di-
rectly from symmetry arguments or by using the properties
of the Heisenberg (g-number) operators involved, rather than
by an explicit evaluation of the path integral.

B. Dynamics in the variables

At this point we introduce the eigenvectors f),; of the ma-
trix J;; and the corresponding eigenvalues j,. For example,
consider the case in d=1, Ny=2K+1:

Jij=J[6; ju1 + 6 j-1]. (85)

The eigenvectors of J;; are

1 2mipj
f ?exp[ ], -KspsK (86)
PN, N;

and the eigenvalues
2mp
j,=2J — . 87
ip cos[ N, } (87)

We now split all variables into a homogeneous and an
inhomogeneous part:
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pi (1) = py(t) + i (1), (88)
K= 2 fOf (89)
p#0
and similarly
& (1) = &0+ X (1), (90)
X{(t) = 2 X3(0f i (91)
p#0

The Hamiltonian becomes
H(p07 X )
- pOE ‘Iz]{exp[l(X X )]} E ‘,l] j{exp[l(X X )]}

U U
+ngp$(pé D+ X 5(r3)2~ (92)

V. LINEARIZED APPROXIMATION

We see from Eq. (92) that the model ressembles the dy-
namics of a solid, with X; playing the role of the ion posi-
tions and a periodic interaction potential between ions. There
is a sophisticated technology to deal with such systems [41].
The simplest possible approach is the linearized approxima-
tion in which the excitations of the “solid” are described as a
free phonon gas. We shall now develop the implications of
this view.

In this section, we shall derive concrete expressions for
the Heisenberg operators corresponding to the X, and r, op-
erators introduced above, Egs. (89) and (91). These expres-
sions shall be used in the next section to derive an analytic
approximation for the one-body density matrix.

A. Lowest-order equilibrium theory

The goal of this subsection is to express the Heisenberg
operators X, and r, of Eqs. (89) and (91) in terms of the
destruction and creation operators «, and a; with commuta-
tion relations

[a,, ozj]] = Oy (93)

This representation will be useful in the rest of the paper to
compute expectation values of several observables. The cor-
responding expressions are given below in Egs. (110)—(112).

We work within the lowest-order theory which is obtained
by keeping only the quadratic terms in the classical action. It
is a theory of linear fields, and so we may actually solve the
Heisenberg equations, which are the same as the classical
equations of motion. In this section, therefore, we shall work
directly in terms of g-number operators, the Heisenberg
equations, and canonical commutation relations, rather than
from the path integral.

The “free” quadratic part of the Hamiltonian is

PHYSICAL REVIEW A 73, 023610 (2006)

u P
H(p05rp’Xp) = E E(ri)z + EOE Jlj[Xj _Xi]2
l iy

. U
- lE Jijrj[Xj -X]+ NsEP()(PO -1).
ij

(94)
Calling
v, =2(2J = j,) =8/ sin® =7 (95)
we may perform the sums |
2 Fipi[X; - X]= (96)

2’”

2 JlX;- X = 22 LX) - Xx,] = 2 vpX_pXps

7)

so (assuming for p, the constrained value py=n)

E v pXo,.
p

(98)

I Xp) = Er_p1,+ EVpoXp

The Heisenberg equations of motion are just the classical
Hamilton equations

1704 i
Ztﬁ =Ur,- EVPX’” (99)
dr i

—L=—pr —nvX (100)

dr 2 PP PAp:
We seek a solution of the form
X,()=A, e~ 4+ BT e @pt (101)

[recall that the X; are not Hermitian, but they satisfy (X'),

=(X_,),
(D)= (= )[Cye™ ' - (102)

Substituting Egs. (101) and (102) into Egs. (99) and (100)
we obtain both linear relationships among the coefficients

Cipeiwpt] .

U
Ay=—C, (103)
(x)p -z
2
U
B,= C,, (104)
V,
w,+ —2’1
and the dispersion relation [37]
/ v
w,= Vp<Ul’l+—42). (105)
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We now write down the canonical commutation relations
[cf. Eq. (79)]

1
[ri’Xj]:(_i)|:5ij_17:|, (106)
whereby
(7 Xl = (=) 8pig0- (107)

Substituting our solution of the Heisenberg equations, we
obtain [C,,C,]=0 and

2w
—[C,,Ci1=96,
an

(108)

4’

so the C, are not canonical destruction operators. We intro-
duce operators «,, through

(109)

The a, satisty the desired commutation relations, Eq. (93).
The final formulas read

nv . .
(=) —LZ —iwyt _ ot
rp(t) - ( l) 2(1) [ape L4 a_pe P ]9
94
]ai,,e’“’ﬁ’}.

(111)

(110)

(SRRS

1 .
X, (1) = :{ [w[,+ gg}ape"’“’lﬁt+ [w[,—

/
\2n v,w),

With the same argument, we get

] aye” ' + {wp + —E] ol e”"ﬂ} )
2 4

(112)

(SRRS

N 1
(X )p = —’*{ |:wp _
\anprp

B. Wick theorem and boundary conditions

Because we have been able to keep the discussion so far
at the level of the Hamiltonian and canonical operators, we
did not have to deal with the issue of the periodicity condi-
tions on the phase variables. However, in order to actually
use this theory to compute physical expectation values, we
must confront this issue.

Let us first ignore all periodicity conditions. This means
that we are concerned with the expectation values ({---)) of
the covering theory. Because the lowest-order approximation
to the Hamiltonian is Gaussian, Wick’s theorem implies

(e = (113)
for any linear function A of the X,’s and r,’s.

Now we turn to the issue of the expectation values in the
physical theory, where the periodicity conditions are en-
forced. To this effect it is convenient to think in terms of the
path integral representation of the expectation values.

One way to implement the boundary conditions is not to
simply match the history at the second branch to the initial
state at time t(2)=0, but to all possible translations of this
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initial state—namely, translating all the phases by an amount
@, — @;+2mk;, for all possible integers k;. Since the transla-
tion operator for phases is p;, this amounts to defining a
expectation value

(eMy=CS, <<exp[i<A S k,-pﬁz)(O))]». (114)
K i

In this equation, the expectation value on the left-hand
side is physical and the one on the right-hand side belongs to
the covering theory. Observe that because we are using a
CTP representation of the path integrals, there are no order-
ing ambiguities; this is one of the side benefits of the CTP
formulation, even when discussing equilibrium properties.

Adding the exponentials is equivalent to forcing pgz)(O) to
be an integer. Since the homogeneous value p' is alread

g g Py Yy
constrained to be an integer by integration over the Lagrange
multiplier £?(0), it may be ignored. So we shall adopt the
definition

(eM=CS <<exp[i<A 2> kirf-z)(O))]». (115)
k; i

The constant C is defined by the condition that (1)=1, so

cY, exp{— 27> klMlmkm} =1, (116)
k; Im
where
Mlm:<<rlrm>>- (117)
We now have
) -1
(eMy=C> exp(7<<[A +27, kirgz)(O)]2>>> )
k; i
(118)
The exponent reads
=((AD) + 472 k(rP(0)A)) + 22D kM, k.
i Im
(119)
Finally, observe that
Mlm - n 2 eZvTip(l—m)/Ns_VL ) (120)

sp#0 2(0[,

Since the sum is restricted to nonvanishing momenta, M,
has a zero mode, corresponding to homogeneous configura-
tions. In the orthogonal subspace, M,,, has an inverse

1 . 2w
Ml_ni - 2 e2mp(l—m)/NS_B.

(121)
nNsp#O Vp

Let us check the asymptotic form of these expressions.

1. SF limit

The matrix M, represents the particle number fluctuation
correlations between sites / and m. In the SF limit, we expect
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M ,,=n[ 8,,—1/N,]. Indeed, in this limit 2w, — ,. So
(eiy ~ Ce-12)6A%)

xS exp(— 277[2 k(P(0)A) + mk?])-
k i

(122)
The sum will be dominated by the k;=0 term, so

(eh) — £=1DUA%), (123)

In other words, treating the density variables as continu-
ous (thereby ignoring periodicity conditions) is not a serious
mistake. This is consistent with the large number fluctuations
in this regime.

2. MI limit

For the same reasons, in the MI limit we expect M,
—0. Then many terms contribute to the sum, and we may
replace the discrete sum by an integral. Under this approxi-
mation, in fact, we are forcing the r; not just to be an integer,
but to vanish.

Completing the square, we get

(elt) = 1 exp{ S (PO <0)A>>}

(124)

As expected, in this limit,
<exp(i§‘, ,Bkrk(O))> =1 (125)

k
We can prove this by observing that, for A=pr,

<<r22)(0)A)>:,8th. This implies that the particle number
fluctuations (r;(0)r;(0)) vanish in this limit.

VI. ONE-BODY DENSITY MATRIX

We may now turn to computing the one-body density ma-
trix, Eq. (2):

o= {a)(t)ay(t)) = (exp i & - &1(1))).

Observe that in our variables, the observable to be computed
is a pure exponential: there are no square roots to be devel-
oped. This is the whole point of introducing the variables.
We shall use the machinery introduced above. The desired
expectation value is given by Egs. (118) and (119).

(126)

A. One-body density matrix in the covering theory

The first step is to compute the expectation value disre-
garding periodicity conditions—that is, extending the path
integral to the covering space:

aj (t)a(t))) = Cexpli(é = E)1(0)).-

To compute this expression, one would aim to split the &
variables into homogeneous and inhomogeneous parts and to
use the formulas above. However, there is a difficulty. We
have solved for the Heisenberg operators corresponding to

(127)
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the inhomogeneous parts, but not for those of the homoge-
neous terms. As it happens, however, using a symmetry ar-
gument saves this effort. Because of the symmetry and the
total particle number constraint, we must have

o100 = {af(t)a(ty)) =n. (128)
Using this property we can avoid computing explicitly the
expectation values for the homogeneous operators. Notice,
however, that Eq. (128) involves a physical expectation
value (as opposed to an expectation value within the cover-
ing theory).

To return to our main argument, we shall seek an expres-
sion not for the expectation value <<a7(tl)ak(t1)>> but rather
for the ratio between this expectation value and the occupa-
tion number ({a}(t,)a(t,))). To obtain an expression for this
ratio, we shall exploit the fact that we are seeking the expec-
tation value of an exponential. This expectation value is
equivalent to a generating functional for connected graphs W
where we couple & to a source j(1)=—8,;8(t—1;) and & to
J2i(t)=6y6,(t—1,). Formally,

(aj (1) ag(t,))) = Mid2il, (129)
Decomposing &' in modes, we see that this 1s the same as
coupling the homogeneous terms to sources J ui= T o(t—ty)
(1ndependent of k and /) and the inhomogeneous terms to
sources 177, )(t)——fpkﬁ(t t,) and n(l)(t)=fplé(t—t1).

In the dlagonal case, we would have k=1I and we would
find the expectation value on symmetry grounds alone.
So now we aim to identify how the nondiagonal case is
different from the diagonal one. With this goal, we write
10=7" 0+ 87800 and 875" (0)=67" &1—1,). W has

1 P
the functlonal Taylor expansion

k
e ]
TR TR AND i S DX
q>0q P1 q
X o)+ oy, (130)

where the G, (tl,
expectation Values

,1;) are the time-ordered connected

Gpl---pq(t]’ tee ’tk) = <<X,1;1(t1) o 'X‘ll;q(tk)»c’ (131)

computed for a field driven by the sources ja, 17(1), and 7]

Since the correlation functions are contmuous and these
sources turn on at the same time as the 6771p, they may be
ignored. Keeping only up to quadratic terms, we get

afeae)) =™ exp{ (2= o, —f,,klz},
p
(132)

Wo = W, 7]1p, 772,;] (133)
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Observe that we have separated the diagonal and nondi-
agonal contributions. The former, encoded into W, shall be
obtained below from the symmetry condition, Eq. (128), so
we need not worry about explicitly computing the path inte-
gral.

In the vacuum state,

(XD = XN = B3 (134)
P
prk—f,,z|2=isin2{%;”}, (135)
SO
(aj(t)ay(t))) = e™oX[1 - k], (136)
where

s

X[m] =exp{(_2U> > L Sinz[K_m}}- (137)

N p>0 wp N

B. Periodicity corrections

We now consider the further corrections in Egs. (118) and
(119) coming from the periodicity conditions. For this, we
need to evaluate ((r}z)(O)Akl(tl)» with

2% 1
Ay=§ —fk-

First observe that there is no loss of generality in taking
t;=0*. Also there is no problem here with the homogeneous
terms, because they commute with a, and so give a vanish-
ing expectation value.

There is no loss of generality in setting the site index k
=0. In vacuum,

(138)

i 1 m
(1O Aon) = 3| 80— = [Mjn+ Myo] | = 0]

(139)

By symmetry, we must have ojypo=n. We use this condition
to determine W, obtaining

Y[m]
=nX[m]—— 140
1m0 = nX[m] Y[o]’ (140)
where X[m] is defined in Eq. (137), and
Y[m] = 2 exp(— 27T|:IE kiv;" + WE klMl]k]:| ) N
K i ij
(141)

where v;ﬁ was introduced in Eq. (139).

These expressions determine the one-body density matrix
in the two limiting cases U/J—0 and U/J—. In the
former, corresponding to the deep superfluid phase, we have
Y[m]/Y[0]~1 and o0,y <1 =nX[m], given by Eq. (137).

In the latter limit, corresponding to the deep Mott insula-
tor phase, we may replace the sum in Eq. (141) by an inte-
gral over continuous variables k;. In this continuum approxi-
mation we get
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1ol virs1=n(X[m])?. (142)

In the intermediate region, we may approximate Eq. (141)
by

Yim] =TT 95(wCle™ B0y 0y(nDl e Fr), (143)

p>0

where 5 is the elliptic theta function [71]:

1 27pl
C"=—|1+2> cos{ P ”
r Ns >0 Ns

x sin2[me]——]}Lc052[me} . (144)
N 2(1)[, N

1 2mpl 2
D"'=— E sin[ P ” 1+—Vp— sin[ me},
r Nv Nf 2w[’ NV

>0
(145)
2apl || |2
E,,:ﬂjL 1+22, cos{ Trp} , (146)
4pr >0 NS
2apl || |2
Fo=—2 1S sin[ Wp” . (147)
Nswp >0 Ns

This approximation is further discussed in Appendix B.
We have checked its accuracy for small lattices by compar-
ing it to a numerical evaluation of Eq. (141).

VII. RESULTS AND REMARKS
A. Results

In this section, we shall compare the analytic results
above against an exact calculation of the momentum distri-
bution function, Eq. (3), for a one-dimensional lattice of nine
sites and nine atoms (n=1). The exact solution was obtained
by numerical diagonalization of the Bose-Hubbard Hamil-
tonian. We set J=1 and change U from O to 60. We have
performed similar calculations for five and seven sites, find-
ing the results to be totally consistent with the N=9 case.
The allowed values of momentum are given by p(q)
=q(2mh/aN,), where a is the lattice spacing and ¢ is an
integer. Since by symmetry p(—q)=p(q), there are only five
independent occupation numbers, corresponding to g=0-
(the condensate) 4. These are plotted in Figs. 1-5, respec-
tively.

In these figures we have also plotted the occupation num-
bers as given by the PNC method (Bogoliubov) calculations
and by first-order strong-coupling perturbation theory. In all
the plots, the solid line is our prediction, the dash-dotted line
is the exact numerical solution, the dotted line corresponds to
first-order strong-coupling perturbation theory, and the
dashed line to the PNC method.

We see that for these small lattices our model fares worse
than perturbation theory or the PNC approach in the corre-
sponding limits of the deep Mott or superfluid regions, but
unlike these formalisms, it sustains a uniform accuracy
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FIG. 1. (Color online) The occupation number for the homoge-
neous mode as a function of U; n=1, Ny=9, and J=1. The solid line
is our prediction; the dash-dotted line is the exact numerical solu-
tion. The dotted line corresponds to first-order strong-coupling per-
turbation theory and the dashed line to the PNC method.

throughout. It therefore achieves the goals set in the Intro-
duction.

B. Remarks

In this paper we have presented an analytic approximation
for the one-body density matrix (or, equivalently, its Fourier
transform, the momentum distribution) for a cold gas of
structureless bosons in a homogeneous optical lattice. We
have focused on the regime of low integer filling factor near
the superfluid-insulator transition, which is not sufficiently
covered in the literature. We have checked our results against
exact calculations for small lattices and against the theoreti-
cal predictions from the Bogoliubov approach and first-order
strong-coupling perturbation theory. Our model interpolates
between these theoretical alternatives, keeping a uniform ac-
curacy in the transition region.

Our model works deep in the MI region, because the ap-
proximation we use for the one-body density matrix becomes
exact when J=0. This is an advantage of our choice of vari-
ables over the usual density-phase variables. In the superfluid
regime the model predicts that quantum fluctuations in the X,

n;

10 20 30 40
ua

FIG. 2. (Color online) The occupation number for the first mode
as a function of U; the conventions are the same as in Fig. 1.

PHYSICAL REVIEW A 73, 023610 (2006)

etrcetecttecegTenncctccnnnanns
1 [T e f --------------------------- -1
i s
s 7
* s
4 P
.I
/7 72
o~ .I. /
] 7/
= 0.5 | .‘l /7 i
% /7
L
; /
r4
7
/
0 P |
10 20 30 40
ujy

FIG. 3. (Color online) The occupation number for the second
mode as a function of U; the conventions are the same as in Fig. 1.

degrees of freedom scale like U [cf. Eq. (134)] and thus also
qualitatively captures the decay of condensate population
and the increase of noncondensate atoms.

However, the agreement is not perfect. The qualitative but
not quantitative agreement suggests that higher-order correc-
tions are required for a proper description of the physics. For
observables like the number fluctuations at one site, which
vanish in the Mott regime according to the linearized ap-
proximation, for example, higher-order corrections would be
dominant.

Quantum corrections will also be important for the dy-
namic structure factor. There is no contradiction between the
phonon spectrum of our model [cf. Eq. (105)] and a gapped
dynamic structure factor, because in the Mott regime the am-
plitudes of the single-phonon poles go to zero, while other
poles arise because of higher-order corrections. However, in
this paper, we have not presented actual results for the par-
ticle number fluctuations or the dynamic structure factor;
these must be included in the list of unfinished business we
discussed in the Introduction.

A preliminary comparison we made against available ex-
perimental results [62,63] of the condensate fraction from an
array of one-dimensional lattices contained within a three-
dimensional trap for variable U/J showed fair agreement

1 F =

.--ﬂ:ggt:ﬁ}nﬁ;

10 20 30 40
u/J

FIG. 4. (Color online) The occupation number for the third
mode as a function of U; the conventions are the same as in Fig. 1.
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FIG. 5. (Color online) The occupation number for the fourth
mode as a function of Uj; the conventions are the same as in Fig. 1.

between the experimental results and the predictions of our
model. In these experiments, the central tubes had around
N,=60 populated sites [63]. The mean occupation number
was close to n=2 near the center of the trap and close to n
=1 if averaged over all lattices [72]. We have compared the
experimental results to the predictions of our model for sev-
eral values of N, around 60 and filling fractions n=1 and 2.
The results are fairly independent of N, in this range and
very sensitive to n instead. As a typical representative, we
show in Fig. 6 the prediction of our model for the condensate
fraction for N;=61 and n=1. We have superimposed the ex-
perimental results as reported in [62].

We do not regard this as a validation of our model, since
it was derived for a translationally invariant lattice and the
parabolic confinement is not adequately included in our
model. Nevertheless, the agreement is encouraging and sug-
gests that our model might be more suitable for trapped sys-
tems as in this case, in contrast to the commensurate trans-
lationally invariant lattice, there is not a sharp MI transition.
We defer a detailed discussion to a future communication
[64].

In summary, in our view, this work lays the grounds for
the formulation of a quantum-field theoretical approach ca-
pable of dealing with the intermediate regime. Even though

75
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FIG. 6. (Color online) Condensate fraction (%) plotted against
U. Solid line: prediction from our model using the parameters n
=1, Ny=61, and J=1. Dots: experimental points obtained from Fig.
4(a) in Ref. [62].
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the agreement with exact numerical solutions is not perfect,
we find it satisfactory because we are using only the first-
order approximation. It is a reasonable expectation that by
including higher-order corrections we might narrow the
present gap. We are perhaps still a long way from a reliable,
fully nonequilibrium model of the initialization process of a
QIP device based on cold atoms on an optical lattice, but
from this work we have gained some confidence that we are
moving in the right direction.
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APPENDIX A: APPROXIMATE APPROACHES
TO THE MOMENTUM DISTRIBUTION FUNCTION

In this appendix we shall derive the formulas we plotted
in the figures to match against our model. We include it only
to dispel any ambiguity regarding notation.

1. Strong-coupling Rayleigh-Schrodinger perturbation theory

This is just ordinary perturbation theory in the parameter
J, starting from the state [MI) in Eq. (7). The BH Hamil-
tonian, Eq. (1), is written as H=H,+H,, where H,, is the U
term and H,=-3,J,,ala;. Since (MI|H,|MI)=0, the vacuum
energy is unchanged to first order. H,|MI) is a superposition
of one-particle-hole states, all of which have energy U above

the vacuum, so the first-order ground state is

1
IT) = IMI) - H,|MI) (A1)
and the momentum distribution function is
4J
nq=n+5n(n+ 1)005{277]%]. (A2)

2. PNC method

To simplify the problem, we shall consider only the case
of a homogeneous, time-independent lattice.

The starting point of the method is the Heisenberg equa-
tion of motion for the destruction operator a;:

(- i)gaj(t) =[H.a(]=2 Jya;- Uala;.  (A3)
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Parametrize

e—i,ut
aj=—=ao| 1 + > ezm”]/NsAp .
/N,
p#0

(Ad)
There are three key observations: (i) the operators A, pre-
serve total particle number, (ii) the fact that the one-body
density matrix allows for a homogeneous eigenvector im-
plies {(agayA,)=0 for all p, and (iii) we have the exact iden-
tity
agao[l + > A;Ap] =N. (AS)
p#0
Now we develop a perturgative expansion in inverse pow-
ers of N, assuming a,~ O(VN) and A,~ O(1/N). Multiply-
ing Eq. (A3) by a, we get, to first order,

u=Un-2J, (A6)
dA, v
i E=T A+ Un(A, + AT). (A7)

As usual, we seek a solution through a Bogoliubov trans-
formation. Taking into account the commutation relations for
the A, we get

1 . )
A,= ?{e_""ﬂ’cpAp + e""p’spAfp}, (A8)
VN
-5 =1 (A9)

(in this simple problem, we may assume the Bogoliubov co-
efficients are real). We get

[wp—Un—EZB]cp—Unspzo, (A10)
Unc,,+{w,,+ Un+322}s,,=0, (A11)

from where we recover the dispersion relation, Eq. (105),
and

1| Un+v)/2 172
sp=—?{n—VL—1] . (A12)
V2 wp

The momentum distribution function is np=si for p#0

and np=N-2X,.,n, for the homogeneous mode.

APPENDIX B: APPROXIMATE FORMULA
FOR THE ONE-BODY DENSITY MATRIX

The idea is to evaluate Eq. (141) by decomposing the
quadratic term in a sum of squares. Of course, one possibility
is to write

1 o~
k= V/_]VE ezmp]/NSkp. (B1)
s P

The problem is that the requirement that all k; be integers
places a highly nontrivial constraint on l;p.
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2mpj
N, ]} (B2)

g,(j) = sgn{sin[ 2;’] J ] } (B3)

These functions are not orthogonal, but they are a basis.
Therefore we can always write

Consider instead the functions

() = sgn{ cos{

= a0+ 5 3 [anfy )+ by, ) (B4)

p>0

Observe that f is always a null eigenvector of M;;. We
expect f and g will be approximate eigenvectors. For a large
number of sites, ¢2™4/Ns and f,, g, will be nearly orthogonal
unless g==+p, and we shall have

2 2mpt ||| [2mps
f”(J)NNs{”zz COS[ N, H}COS{ N, }

=0
(BS)

sin{zmﬂ} ’ }Sin{m] (B6)
N, N,

g(j) ~ %{2

s | >0
So
1
2 Mjlgp(l) -~ Apgp(j)’ (BS)
1
where of course Ay=0 and
nv
A,,=2—E, p#0. (B9)
wp
Then from the decomposition, Eq. (B4), we get
2 kpl'= 2 (a,Ch = b,DY), (B10)
i p>0
(BI11)

2 2
E klMl]k] = 2 (apEp + prP)’
ij p>0

where the coefficients are given in Egs. (144)—(147).

Although each term of the series, Eq. (141), factorizes,
there are correlations among the a and b coefficients from
the discreteness of the kj. For example, for three sites we
have that b,=k;—k_; must be an integer, but a,=ky—k;
+(b;/2) will be integer if b; is even or half-integer if b, is
odd. However, when the number of sites is large we may
neglect these correlations and assume that the a and b coef-
ficients simply take integer values. Under this approxima-
tion, the multiple sum, Eq. (141), factorizes and we obtain
Eq. (143), where U5 is the elliptic theta function [71]:

oo

B(zq)=1+22 q"2 cos[2nz].

n=1

(B12)
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