27 research outputs found

    Global exponential convergence of delayed inertial Cohen–Grossberg neural networks

    Get PDF
    In this paper, the exponential convergence of delayed inertial Cohen–Grossberg neural networks (CGNNs) is studied. Two methods are adopted to discuss the inertial CGNNs, one is expressed as two first-order differential equations by selecting a variable substitution, and the other does not change the order of the system based on the nonreduced-order method. By establishing appropriate Lyapunov function and using inequality techniques, sufficient conditions are obtained to ensure that the discussed model converges exponentially to a ball with the prespecified convergence rate. Finally, two simulation examples are proposed to illustrate the validity of the theorem results

    Global exponential synchronization of quaternion-valued memristive neural networks with time delays

    Get PDF
    This paper extends the memristive neural networks (MNNs) to quaternion field, a new class of neural networks named quaternion-valued memristive neural networks (QVMNNs) is then established, and the problem of drive-response global synchronization of this type of networks is investigated in this paper. Two cases are taken into consideration: one is with the conventional differential inclusion assumption, the other without. Criteria for the global synchronization of these two cases are achieved respectively by appropriately choosing the Lyapunov functional and applying some inequality techniques. Finally, corresponding simulation examples are presented to demonstrate the correctness of the proposed results derived in this paper

    Exponential synchronization for second-order switched quaternion-valued neural networks with neutral-type and mixed time-varying delays

    Get PDF
    This article focuses on the global exponential synchronization (GES) for second-order state-dependent switched quaternion-valued neural networks (SOSDSQVNNs) with neutral-type and mixed delays. By proposing some new Lyapunov–Krasovskii functionals (LKFs) and adopting some inequalities, several new criteria in the shape of algebraic inequalities are proposed to ensure the GES for the concerned system by using hybrid switched controllers (HSCs). Different from the common reducing order and separation ways, this article presents some new LKFs to straightway discuss the GES of the concerned system based on non-reduction order and nonseparation strategies. Ultimately, an example is provided to validate the effectiveness of the theoretical outcomes

    Stability analysis for delayed quaternion-valued neural networks via nonlinear measure approach

    Get PDF
    In this paper, the existence and stability analysis of the quaternion-valued neural networks (QVNNs) with time delay are considered. Firstly, the QVNNs are equivalently transformed into four real-valued systems. Then, based on the Lyapunov theory, nonlinear measure approach, and inequality technique, some sufficient criteria are derived to ensure the existence and uniqueness of the equilibrium point as well as global stability of delayed QVNNs. In addition, the provided criteria are presented in the form of linear matrix inequality (LMI), which can be easily checked by LMI toolbox in MATLAB. Finally, two simulation examples are demonstrated to verify the effectiveness of obtained results. Moreover, the less conservatism of the obtained results is also showed by two comparison examples

    Synchronization of Clifford-valued neural networks with leakage, time-varying, and infinite distributed delays on time scales

    Get PDF
    Neural networks (NNs) with values in multidimensional domains have lately attracted the attention of researchers. Thus, complex-valued neural networks (CVNNs), quaternion-valued neural networks (QVNNs), and their generalization, Clifford-valued neural networks (ClVNNs) have been proposed in the last few years, and different dynamic properties were studied for them. On the other hand, time scale calculus has been proposed in order to jointly study the properties of continuous time and discrete time systems, or any hybrid combination between the two, and was also successfully applied to the domain of NNs. Finally, in real implementations of NNs, time delays occur inevitably. Taking all these facts into account, this paper discusses ClVNNs defined on time scales with leakage, time-varying delays, and infinite distributed delays, a type of delays which have been relatively rarely present in the existing literature. A state feedback control scheme and a generalization of the Halanay inequality for time scales are used in order to obtain sufficient conditions expressed as algebraic inequalities and as linear matrix inequalities (LMIs), using two general Lyapunov-like functions, for the exponential synchronization of the proposed model. Two numerical examples are given in order to illustrate the theoretical results

    Global exponential stability conditions for quaternion-valued neural networks with leakage, transmission and distribution delays

    Get PDF
    This paper studies the global exponential stability problem of quaternion-valued neural networks (QVNNs) with leakage, transmission, and distribution delays. To address this issue, a direct method based on system solutions is proposed to ensure the global exponential stability of the considered network models. In addition, this method does not need to construct any Lyapunov-Krasovskii functional, which greatly reduces the amount of computation. Finally, a numerical example is given to demonstrate the effectiveness of the proposed results

    New results on finite-/fixed-time synchronization of delayed memristive neural networks with diffusion effects

    Get PDF
    In this paper, we further investigate the finite-/fixed-time synchronization (FFTS) problem for a class of delayed memristive reaction-diffusion neural networks (MRDNNs). By utilizing the state-feedback control techniques, and constructing a general Lyapunov functional, with the help of inequality techniques and the finite-time stability theory, novel criteria are established to realize the FFTS of the considered delayed MRDNNs, which generalize and complement previously known results. Finally, a numerical example is provided to support the obtained theoretical results

    Weighted Sum Synchronization of Memristive Coupled Neural Networks

    Get PDF
    Funding Information: This work is supported by the National Natural Science Foundation of China (No. 61971185) and the Open Fund Project of Key Laboratory in Hunan Universities (No. 18K010). Publisher Copyright: © 2020 Elsevier B.V.It is well known that weighted sum of node states plays an essential role in function implementation of neural networks. Therefore, this paper proposes a new weighted sum synchronization model for memristive neural networks. Unlike the existing synchronization models of memristive neural networks which control each network node to reach synchronization, the proposed model treats the networks as dynamic entireties by weighted sum of node states and makes the entireties instead of each node reach expected synchronization. In this paper, weighted sum complete synchronization and quasi-synchronization are both investigated by designing feedback controller and aperiodically intermittent controller, respectively. Meanwhile, a flexible control scheme is designed for the proposed model by utilizing some switching parameters and can improve anti-interference ability of control system. By applying Lyapunov method and some differential inequalities, some effective criteria are derived to ensure the synchronizations of memristive neural networks. Moreover, the error level of the quasi-synchronization is given. Finally, numerical simulation examples are used to certify the effectiveness of the derived results.Peer reviewe

    Novel Lagrange sense exponential stability criteria for time-delayed stochastic Cohen–Grossberg neural networks with Markovian jump parameters: A graph-theoretic approach

    Get PDF
    This paper concerns the issues of exponential stability in Lagrange sense for a class of stochastic Cohen–Grossberg neural networks (SCGNNs) with Markovian jump and mixed time delay effects. A systematic approach of constructing a global Lyapunov function for SCGNNs with mixed time delays and Markovian jumping is provided by applying the association of Lyapunov method and graph theory results. Moreover, by using some inequality techniques in Lyapunov-type and coefficient-type theorems we attain two kinds of sufficient conditions to ensure the global exponential stability (GES) through Lagrange sense for the addressed SCGNNs. Ultimately, some examples with numerical simulations are given to demonstrate the effectiveness of the acquired result
    corecore