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Abstract: In this paper, we further investigate the finite-/fixed-time synchronization (FFTS) problem
for a class of delayed memristive reaction-diffusion neural networks (MRDNNs). By utilizing the
state-feedback control techniques, and constructing a general Lyapunov functional, with the help
of inequality techniques and the finite-time stability theory, novel criteria are established to realize
the FFTS of the considered delayed MRDNNs, which generalize and complement previously known
results. Finally, a numerical example is provided to support the obtained theoretical results.
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1. Introduction

In 1971, Chua [1] firstly proposed the definition of memristor, and he was sure that it is the fourth
fundamental circuit element except for other three basic circuit elements: Capacitor, inductor and
resistor. Until 2008, Hewlett-Packard Lab declared that they realized the physical prototype of the
memristor and published their experimental findings on Nature [2]. In consideration of its brilliant
superiorities of nanoscale dimension, compatible with logical operation and information storage, and
low power consumption, scientific researchers usually replace conventional resistor with memristor in
biological or artificial neural networks, this is the so-called memristive neural networks (MNNs). Since
MNNs can be seen as a class of state dependent discontinuous dynamical system, and they can show
several distinctive dynamics characteristics. Therefore, the rich and complex dynamic behaviors of
MNNs have received phenomenal worldwide attention in the past years, see [3–9] and the references
therein.

Diffusion effects may have influence on dynamical behaviors of MNNs. As shown in [10–12], the
diffusion terms directly have influence on the existence and stability of equilibrium or (anti-)periodic
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solution of (high-order) Hopfield neural network models. In [13, 14], the dissipativity and passivity
analysis of coupled reaction-diffusion neural networks are rigorously analyzed. Recently, many
excellent synchronization results of reaction-diffusion neural networks are extensively studied since
their wide applications are found in many fields including such as artificial intelligence, face
recognition, emotion analysis and image identification, see for example, adaptive
synchronization [15], exponential synchronization [16], pinning synchronization [17], general decay
lag anti-synchronization [18], and so on.

It is well known that the aforementioned synchronization modes are usually realized in an infinite
time interval. However, in some practical applications such as robotics, a standard problem in system
theory is conceiving controllers to drive a system to a given positions as quickly as possible. In view
of this situation, the finite-time control technique is a powerful and useful tool to solve various
engineering problems, and it has demonstrated better robustness and disturbance rejection
properties [19, 20]. Although the results of many studies indicated that the finite-time synchronization
have the optimal convergence time, the halting (or settling) time of finite-time synchronization is
closely related to the initial value. Actually, the initial information of many practical systems are
unknown and difficult to measure, which makes us hard to estimate the halting time. In order to
overcome this shortcoming, Polyakov [21] initially proposed the concept of fixed-time stability,
which requires systems are global finite-time stable, and the halting time is independent of initial
values and can be bounded by an upper bound. Recently, the FFTS problem of neural networks are
extensively investigated under a unified framework, see [22–27] and the references therein. In
particular, the FFTS problem for a class of delayed MRDNNs were established based on the
constructed Lyapunov functional in terms of L2-norm [28], however, such a type of Lyapunov
functional is relatively conservative.

Inspired by the aforementioned discussions, the main purpose of this paper is to extend the obtained
results in [28] to a more general case. Specifically, we further study the FFTS for a class of delayed
MRDNNs by constructing a Lyapunov functional in terms of Lp-norm (p ≥ 2), with the help of theories
of finite-time stability, Green’s formula, and inequality techniques, novel criteria are established to
ensure the finite-/fixed-time stability of error neural networks, and then FFTS of delayed MRDNNs
can be realized under the drive-response framework.

The paper is outlined as follows. In Section 2, model description and necessary preliminaries are
presented. In Section 3, the FFTS of the addressed network system is studied. In Section 4, numerical
simulations are performed to validate the applicability of the theoretical results. Finally, the
conclusions are drawn in Section 5.

2. Model description and preliminaries

As shown in [28], we consider the following delayed MRDNNs:

∂u j(t, z)
∂t

=

m∑
l=1

D jl
∂2u j(t, z)
∂z2

l

− c ju j(t, z) +

n∑
k=1

a jk(u) fk
(
uk(t, z)

)
+

n∑
k=1

b jk(u)gk
(
uk(t − τ, z)

)
+ I j, j = 1, 2, ..., n, (2.1)
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where n is the number of neurons, Ω is a bounded domain with smooth boundary ∂Ω in Rm and the
space vector z = (z1, z2, . . . , zm)T ∈ Ω, u j(t, z) corresponds to the state of the jth neuron at time t
and in space z ∈ Ω, D jl ≥ 0 is the transmission diffusion coefficient along the jth neuron, c j > 0
represents the neural self-inhibition, I j is the external input or bias, τ > 0 is the transmission delay
among neurons, fk

(
uk(t, z)

)
and gk

(
uk(t−τ, z)

)
correspond to neuronal activation functions of k-th neuron

without and with time delay, respectively; The feedback connection weight a jk(u) is the function of
f jk(t, z) , fk

(
uk(t, z)

)
− u j(t, z) and the delayed feedback connection weight b jk(u) is the function of

g jk(t, z) , gk
(
uk(t − τ, z)

)
− u j(t, z). They are defined as

a jk(u) =


â jk, D− f jk(t, z) > 0,
ǎ jk, D− f jk(t, z) < 0,
a jk(t−, z), D− f jk(t, z) = 0,

and

b jk(u) =


b̂ jk, D−g jk(t, z) > 0,
b̌ jk, D−g jk(t, z) < 0,
b jk(t−, z), D−g jk(t, z) = 0,

where D− f jk(t, z) and D−g jk(t, z) respectively denote the upper left Dini-derivation of f jk(t, z) and
g jk(t, z) with regard to t, â jk, ǎ jk, b̂ jk, b̌ jk are known constants, a jk(t−, z), b jk(t−, z) are the left limit of a jk

and b jk with regard to t. We refer to [7, 16] for more information about the characterization of
memristive neural networks.

The Dirichlet boundary condition and initial value of system (2.1) are given by

u j(t, z) =0, (t, z) ∈ [−τ,∞) × ∂Ω,

u j(s, z) =ϕ j(s, z), (s, z) ∈ [−τ, 0] ×Ω, (2.2)

where ϕ j(s, z) ∈ C
(
[−τ, 0] ×Ω,R

)
.

According to the drive-response framework proposed by Pecora and Carroll in [29], we regard
MRDNNs (2.1) as the drive system, and the corresponding response system for (2.1) can be described
by the following form:

∂ũ j(t, z)
∂t

=

m∑
l=1

D jl
∂2ũ j(t, z)
∂z2

l

− c j̃u j(t, z) +

n∑
k=1

a jk (̃u) fk
(̃
uk(t, z)

)
+

n∑
k=1

b jk (̃u)gk
(̃
uk(t − τ, z)

)
+ I j + W j(t, z), j = 1, 2, ..., n, (2.3)

where W j(t, z) is the appropriate control input that will be designed in order to obtain a certain control
objective.

As to system (2.3), the Dirichlet boundary and initial value conditions are shown as follows:

ũ j(t, z) =0, (t, z) ∈ [−τ,∞) × ∂Ω,

ũ j(s, z) =ψ j(s, z), (s, z) ∈ [−τ, 0] ×Ω, (2.4)

in which ψ j(s, z) ∈ C
(
[−τ, 0] ×Ω,R

)
, j = 1, 2, . . . , n.
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Let us define the synchronization error function as e j(t, z) = ũ j(t, z) − u j(t, z), and then
subtracting (2.3) from (2.1) yields the error system:

∂e j(t, z)
∂t

=

m∑
l=1

D jl
∂2e j(t, z)
∂z2

l

− c je j(t, z) +

n∑
k=1

[
a jk (̃u) fk

(̃
uk(t, z)

)
− a jk(u) fk

(
uk(t, z)

)]
+

n∑
k=1

[
b jk (̃u)gk

(̃
uk(t − τ, z)

)
− b jk(u)gk

(
uk(t − τ, z)

)]
+ W j(t, z)

=

m∑
l=1

D jl
∂2e j(t, z)
∂z2

l

− c je j(t, z) +

n∑
k=1

a jk (̃u)
[
fk
(̃
uk(t, z)

)
− fk

(
uk(t, z)

)]
+

n∑
k=1

[
a jk (̃u) − a jk(u)

]
fk
(
uk(t, z)

)
+

n∑
k=1

[
b jk (̃u) − b jk(u)

]
gk

(
uk(t − τ, z)

)
+

n∑
k=1

b jk (̃u)
[
gk

(̃
uk(t − τ, z)

)
− gk

(
uk(t − τ, z)

)]
+ W j(t, z), j = 1, 2, ..., n. (2.5)

The Dirichlet boundary condition and initial value associated with error system (2.5) is

e j(t, z) =0, (t, z) ∈ [−τ,∞) × ∂Ω,

e j(s, z) =ψ j(s, z) − ϕ j(s, z), (s, z) ∈ [−τ, 0] ×Ω. (2.6)

It is evident to see that the finite-/fixed-time synchronization problem of drive-response
systems (2.1) and (2.3) is equivalent to the finite-/fixed-time stability problem of error system (2.5). In
order to achieve such a synchronization goal, the following preliminaries including assumptions,
definitions and lemmas are needed.

Assumption 2.1. The activation functions fk and gk are globally Lipschitz continuous and bounded,
that is, there exist positive constants L f

k , L
g
k , Fk and Gk such that

| fk(x) − fk(y)| ≤ L f
k |x − y|,

|gk(x) − gk(y)| ≤ Lg
k |x − y|,

and
| fk(x)| ≤ Fk, |gk(x)| ≤ Gk

hold for any x, y ∈ R.

Definition 2.1 (see [25]). Drive system (2.1) and response system (2.3) are said to achieve finite-time
(or fixed-time) synchronization, if there exists a halting time T depending (or independent) on the initial
values,

lim
t→T
‖ e(t, ·) ‖= 0

and
‖ e(t, ·) ‖= 0, f or t ≥ T,

where ‖ · ‖ denotes some norm.
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Lemma 2.2 (see [24, 26]). Suppose that V(x(t)) : Rn → R is C-regular, and that x(t) : [0,∞) → Rn is
absolutely continuous on any compact interval of [0,∞). Let K (V) = k1Vα + k2Vβ, where k1, k2 > 0,
If D+V(x) ≤ −K (V) and T =

∫ V(x(0))

0
1

K (σ)dσ < ∞, then,

(1) if 0 ≤ α, β < 1, V(x(t)) will reach zero in a finite time and the halting time is bounded by

T ≤ min
{V1−α(x(0))

k1(1 − α)
,

V1−β(x(0))
k2(1 − β)

}
;

(2) if α > 1, 0 ≤ β < 1, V(x(t)) will reach zero in a fixed time and the halting time is bounded by

T ≤
1
k1

1
α − 1

+
1
k2

1
1 − β

.

Lemma 2.3 (see [26, 30]). Suppose

Ω =
{
z = (z1, z2, · · · , zm)T|hm

l ≤ zl ≤ hM
l , l = 1, 2, · · · ,m

}
is a bounded compact set with smooth boundary ∂Ω and mes Ω > 0, ϕ(z) ∈ C1(Ω) is a real-valued
function satisfying ϕ(z)|∂Ω = 0, then∫

Ω

ϕ2(z)dz ≤
(hM

l − hm
l

π

)2
∫

Ω

(∂ϕ
∂zl

)2
dz.

Lemma 2.4 (see [26]). If a1, a2, · · · , an are positive numbers, then

na1a2 · · · an ≤ an
1 + an

2 + · · · + an
n.

3. Main results

In this section, new criteria will be established to realize the finite-/fixed-time synchronization
between the drive MRDNNs (2.1) and response MRDNNs (2.3) by constructing a novel Lyapunov
functional. To present the main results of this section, we first design the following controller:

W j(t, z) = − P j1e j(t, z) − P j2sign
(
e j(t, z)

)
− P j3

(
‖ e(t, ·) ‖1−p + ‖ e(t, ·) ‖p(α−1) )

e j(t, z)

−

n∑
k=1

P j4sign
(
e j(t, z)

)∣∣∣ek(t − τ, z)
∣∣∣, j = 1, 2, ..., n, (3.1)

where

‖ e(t, ·) ‖=
( ∫

Ω

n∑
j=1

|e j(t, z)|pdz
) 1

p and p ≥ 2,

the feedback gain parameters P j1, P j2, P j3, P j4 are positive constants determined later, and α ≥ 0. For
convenience, we denote

ā jk = max{|â jk|, |ǎ jk|}, b̄ jk = max{|b̂ jk|, |b̌ jk|},

á jk = max{â jk, ǎ jk}, à jk = min{â jk, ǎ jk},

b́ jk = max{b̂ jk, b̌ jk}, b̀ jk = min{b̂ jk, b̌ jk}.
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Remark 3.1. It is noteworthy that the designed negative exponential controller (3.1) is reasonable
(see [28]), which is essentially different from those without diffusive effects. On the other hand, the
controller (3.1) with one exponential parameter α is easier to adjust than the controller with multiple
exponential parameters in practical applications.

We are now in a position to state the main theoretical result as follows.

Theorem 3.1. If Assumption 2.1 hold, and the control parameters satisfy

P j1 ≥ −

m∑
l=1

D jlπ
2

(hM
l − hm

l )2
− c j + a j jL

f
j + A j,

P j2 ≥

n∑
k=1

(|á jk − à jk|Fk + |b́ jk − b̀ jk|Gk),

P j4 ≥

n∑
k=1

b jkLg
k , (3.2)

where

A j =
1
p

[ n∑
k=1
k, j

p−1∑
m=1

(a jk)pξm(L f
k )pσm +

n∑
k=1
k, j

(ak j)pξp(L f
j )

pσp
]
,

p∑
m=1

ξm =

p∑
m=1

σm = 1.

Then,

(I) the drive MRDNNs (2.1) and response MRDNNs (2.3) are finite-timely synchronous when 0 ≤
α < 1;

(II) the drive MRDNNs (2.1) and response MRDNNs (2.3) are fixed-timely synchronous when α > 1.

Proof. Consider the following Lyapunov functional:

V(t) =

∫
Ω

n∑
j=1

|e j(t, z)|pdz, p ≥ 2.

Calculating the upper right Dini-derivative of V(t) along the trajectories of system (2.5), we obtain

D+V(t) =

∫
Ω

n∑
j=1

p|e j(t, z)|p−2e j(t, z)
{ m∑

l=1

D jl
∂2e j(t, z)
∂z2

l

− c je j(t, z)

+

n∑
k=1

a jk (̃u)
[
fk
(̃
uk(t, z)

)
− fk

(
uk(t, z)

)]
+

n∑
k=1

[
a jk (̃u) − a jk(u)

]
fk
(
uk(t, z)

)
+

n∑
k=1

[
b jk (̃u) − b jk(u)

]
gk

(
uk(t − τ, z)

)
+

n∑
k=1

b jk (̃u)
[
gk

(̃
uk(t − τ, z)

)
− gk

(
uk(t − τ, z)

)]
− P j1e j(t, z) − P j2sign

(
e j(t, z)

)
− P j3

(
‖e(t, ·)‖1−p + ‖e(t, ·)‖p(α−1))e j(t, z)
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−

n∑
k=1

P j4sign
(
e j(t, z)

)
|ek(t − τ, z)|

}
dz

≤

∫
Ω

n∑
j=1

p|e j(t, z)|p−2e j(t, z)
m∑

l=1

D jl
∂2e j(t, z)
∂z2

l

dz −
∫

Ω

n∑
j=1

pc j|e j(t, z)|pdz

+

∫
Ω

n∑
j=1

n∑
k=1

pa jk|e j(t, z)|p−1
∣∣∣ fk

(̃
uk(t, z)

)
− fk

(
uk(t, z)

)∣∣∣dz

+

∫
Ω

n∑
j=1

n∑
k=1

p|á jk − à jk||e j(t, z)|p−1|
∣∣∣ fk

(
uk(t, z)

)∣∣∣dz

+

∫
Ω

n∑
j=1

n∑
k=1

p|b́ jk − b̀ jk||e j(t, z)|p−1|
∣∣∣gk

(
uk(t − τ, z)

)∣∣∣dz

+

∫
Ω

n∑
j=1

n∑
k=1

pb jk|e j(t, z)|p−1
∣∣∣gk

(̃
uk(t − τ, z)

)
− gk

(
uk(t − τ, z)

)∣∣∣dz

−

∫
Ω

n∑
j=1

pP j1|e j(t, z)|pdz −
∫

Ω

n∑
j=1

pP j2|e j(t, z)|p−1dz

−

∫
Ω

n∑
j=1

n∑
k=1

pP j4|e j(t, z)|p−1|ek(t − τ, z)|dz

− min
1≤ j≤n
{pP j3}

(
‖e(t, ·)‖ + ‖e(t, ·)‖pα). (3.3)

First, integrating by parts, and in view of Lemma 2.3, we have

n∑
j=1

∫
Ω

e j(t, z)
( m∑

l=1

D jl
∂2e j(t, z)
∂z2

l

)
dz ≤ −

n∑
j=1

m∑
l=1

D jlπ
2

(hM
l − hm

l )2

∫
Ω

e2
j(t, z)dz. (3.4)

Moreover, it follows from Assumption 2.1 and Lemma 2.4 that

n∑
j=1

n∑
k=1

pa jk|e j(t, z)|p−1
∣∣∣ fk

(̃
uk(t, z)

)
− fk

(
uk(t, z)

)∣∣∣
≤

n∑
j=1

n∑
k=1

pa jk|e j(t, z)|p−1L f
k |ek(t, z)|

=

n∑
j=1

pa j jL
f
j |e j(t, z)|p +

n∑
j=1

n∑
k=1
k, j

pa jkL f
k |e j(t, z)|p−1|ek(t, z)|

=

n∑
j=1

pa j jL
f
j |e j(t, z)|p +

n∑
j=1

n∑
k=1
k, j

p
( p−1∏

m=1

(a jk)ξm(L f
k )σm |e j(t, z)|

)
(a jk)ξp(L f

k )σp |ek(t, z)|

≤

n∑
j=1

pa j jL
f
j |e j(t, z)|p +

n∑
j=1

n∑
k=1
k, j

( p−1∑
m=1

(a jk)pξm(L f
k )pσm |e j(t, z)|p + (a jk)pξp(L f

k )pσp |ek(t, z)|p
)
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=

n∑
j=1

pa j jL
f
j |e j(t, z)|p +

n∑
j=1

( n∑
k=1
k, j

p−1∑
m=1

(a jk)pξm(L f
k )pσm +

n∑
k=1
k, j

(ak j)pξp(L f
j )

pσp
)
|e j(t, z)|p

=

n∑
j=1

p(a j jL
f
j + A j)|e j(t, z)|p, (3.5)

where
p∑

m=1

ξm =

p∑
m=1

σm = 1,

n∑
k=1
k, j

p−1∑
m=1

(a jk)pξm(L f
k )pσm +

n∑
k=1
k, j

(ak j)pξp(L f
j )

pσp = pA j.

On the other hand, by Assumption 2.1, we have

n∑
j=1

n∑
k=1

p|á jk − à jk||e j(t, z)|p−1
∣∣∣ fk

(
uk(t, z)

)∣∣∣ ≤ n∑
j=1

n∑
k=1

p|á jk − à jk|Fk|e j(t, z)|p−1, (3.6)

n∑
j=1

n∑
k=1

p|b́ jk − b̀ jk||e j(t, z)|p−1
∣∣∣gk

(
uk(t − τ, z)

)∣∣∣ ≤ n∑
j=1

n∑
k=1

p|b́ jk − b̀ jk|Gk|e j(t, z)|p−1, (3.7)

and

n∑
j=1

n∑
k=1

pb jk|e j(t, z)|p−1
∣∣∣gk

(̃
uk(t − τ, z)

)
− gk

(
uk(t − τ, z)

)∣∣∣
≤

n∑
j=1

n∑
k=1

pb jk|e j(t, z)|p−1Lg
k |ek(t − τ, z)|. (3.8)

Substituting (3.4)–(3.8) into (3.3) and combining with (3.2) produces

D+V(t) ≤
∫

Ω

n∑
j=1

p
[
−

m∑
l=1

D jlπ
2

(hM
l − hm

l )2
− c j + a j jL

f
j + A j − P j1

]
|e j(t, z)|pdz

+

∫
Ω

n∑
j=1

p
[ n∑

k=1

(
|á jk − à jk|Fk + |b́ jk − b̀ jk|Gk

)
− P j2

]
|e j(t, z)|p−1dz

+

∫
Ω

n∑
j=1

p(
n∑

k=1

b jkLg
k − P j4)|e j(t, z)|p−1|ek(t − τ, z)|dz

− min
1≤ j≤n
{pP j3}

(
‖e(t, ·)‖ + ‖e(t, ·)‖pα)

≤ − min
1≤ j≤n
{pP j3}

(
V

1
p (t) + Vα(t)

)
. (3.9)
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Case I. If 0 ≤ α < 1, one notices from the Lemma 2.2 that the finite-time synchronization of delayed
MRDNNs (2.1) and (2.3) is achieved under the designed controller (3.1), and the halting time can be
bounded by

T1 ≤

∫ V(0)

0

1

min
1≤ j≤n
{pP j3}V

1
p + min

1≤ j≤n
{pP j3}Vα

dV

≤min
{∫ V(0)

0

1

min
1≤ j≤n
{pP j3}V

1
p

dV,
∫ V(0)

0

1
min
1≤ j≤n
{pP j3}Vα

dV
}

= min
{

pV1− 1
p (0)

p − 1
,

V1−α(0)
1 − α

}
1

min
1≤ j≤n
{pP j3}

. (3.10)

Case II. If α > 1, due to Lemma 2.2, the fixed-time synchronization of delayed MRDNNs (2.1)
and (2.3) is guaranteed under the controller (3.1). Moreover, the halting time is estimated by

T2 ≤
pα − 1

min
1≤ j≤n
{pP j3}(α − 1)(p − 1)

.

The proof is complete. �

Remark 3.2. In [28], the authors only studied the MRDNNs (2.1), and considered the Lyapunov
functional in terms of L2-norm. However, in this paper, by virtue of inequality techniques, we
construct a more general Lyapunov functional. So the results given in this paper are less conservative
and extend the previous works.

4. Numerical simulation

In this section, we shall use numerical simulations to verify the practicability of the theoretical
results.
Example 4.1. Let Ω = [−3, 3], n = 2,m = 1, and consider the delayed drive-response memristive
NNs (2.1)–(2.3) with two neurons, choose the system parameters: D1 = 1.2,D2 = 1.4, c1 = 0.7, c2 =

0.8, I1 = 0.8, I2 = 1.2, τ = 0.6, fk(·) = sin(·) and gk(·) = tanh(·), k = 1, 2. It is readily seen that the
activation functions fk, gk satisfy Assumption (2.1) with L f

k = Lg
k = 1, and Fk = Gk = 1, k = 1, 2, the

memristive connection weights are taken as follows:

a jk(u) =


â jk, D− f jk(t, z) > 0,
ǎ jk, D− f jk(t, z) < 0,
a jk(t−, z), D− f jk(t, z) = 0,

and

b jk(u) =


b̂ jk, D−g jk(t, z) > 0,
b̌ jk, D−g jk(t, z) < 0,
b jk(t−, z), D−g jk(t, z) = 0,
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where

A = (â jk)2×2 =

(
3.6 2.8
4.5 3.9

)
, A = (ǎ jk)2×2 =

(
2.2 −1.8
−1.9 3.7

)
,

B = (b̂ jk)2×2 =

(
1.7 2.9
1.8 2.8

)
, B = (b̌ jk)2×2 =

(
−1.2 2.7
−0.2 −0.6

)
,

the boundary-initial value conditions are given as

u j(t,−3) = u j(t, 3) = 0, ũ j(t,−3) = ũ j(t, 3) = 0,

u1 = 2.4 sin(πz), u2 = −4.2 cos(
πz
2

), ũ1 = 3.2 sin(πz), ũ2 = 1.5 sin(πz),

for (t, z) ∈ [−0.6, 0] × [−3, 3]. The controller parameters in (3.1) are chosen as

P11 = 8.2, P12 = 10.1, P21 = 7.2, P22 = 16.5, P13 = 0.5, P23 = 0.25, P14 = 11.3, P24 = 10.5

and
p = 2, ξ1 = 0.4, ξ2 = 0.6, σ1 = σ2 = 0.5, α = 2.

Notice that

A1 =
1
p

[
(a12)pξ1(L f

2)pσ1 + (a21)pξ2(L f
1)pσ2

]
≈ 4.1791,

A2 =
1
p

[
(a21)pξ1(L f

1)pσ1 + (a12)pξ2(L f
2)pσ2

]
≈ 3.3856,

P11 = 8.2 > 6.7504 ≈ −
d1π

2

62 − c1 + a11L f
1 + A1,

P21 = 7.2 > 6.1022 ≈ −
d2π

2

62 − c2 + a22L f
2 + A2,

P12 = 10.1 > 9.1 =

2∑
k=1

[
|á1k − à1k|Fk + |b́1k − b̀1k|Gk

]
,

P22 = 16.5 > 12 =

2∑
k=1

[
|á2k − à2k|Fk + |b́2k − b̀2k|Gk

]
,

P14 = 11.3 > 4.6 = b11Lg
1 + b12Lg

2,

P24 = 10.5 > 4.6 = b21Lg
1 + b22Lg

2,

which means that all conditions in Theorem 3.1 hold. Therefore it can be concluded that the
drive-response MRDNNs (2.1)–(2.3) can realize fixed-time synchronization, and the simulated
synchronization error trajectories are presented in Figure 1, which are consistent with the theoretical
results.
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Figure 1. Spatiotemporal evolution of ei(t, z), i = 1, 2.

5. Conclusions

In this paper, the FFTS criteria for the considered MRDNNs with discrete delay have been proposed.
To do this, a negative exponent feedback controller was designed and a general Lyapunov functional
(p ≥ 2) was constructed to realize the FFTS behaviors. Finally, a numerical example has been given to
show the effectiveness and usefulness of the presented criteria. The next work will consider the FFTS
issue of the consider model with leakage delays and distributed delays.
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