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Abstract

In this paper, we study stochastic impulsive reaction-diffusion neural networks with

S-type distributed delays, aiming to obtain the sufficient conditions for global expo-

nential stability. First, an impulsive inequality involving infinite delay is introduced

and the asymptotic behaviour of its solution is investigated by the truncation method.

Then, global exponential stability in the mean-square sense of the stochastic impul-

sive reaction-diffusion system is studied by constructing a simple Lyapunov-Krasovskii

functional where the S-type distributed delay is handled by the impulsive inequality.

Numerical examples are also given to verify the effectiveness of the proposed results.

Finally, the obtained theoretical results are successfully applied to an image encryption

scheme based on bit-level permutation and the stochastic neural networks.

Keywords: Stochastic reaction-diffusion neural network, Impulse, S-type distributed

delay, Image encryption
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1. Introduction

In recent years, stochastic neural networks (SNNs) have been intensely investi-

gated due to their wide existence in our daily life. The stochastic perturbation in SNNs
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not only distinguishes SNNs from deterministic neural networks, but also brings es-

sential change to the dynamical behaviour of neural networks. Therefore, many re-5

searchers have studied the dynamical behaviour of SNNs, such as existence-uniqueness

of solutions, periodic oscillatory behaviour, stability properties, and synchronization

[1, 2, 11, 19, 21, 26, 34, 47]. In particular, stability analysis is undoubtedly one of

the most active parts in these researches of SNNs. Such stability studies focus on the

SNNs driven by stochastic noise [31], SNNs with Markovian jump [33, 36, 46], SNNs10

with impulse [4, 12, 16, 28, 44], etc. Among them, the stability analysis of stochastic

impulsive neural networks has been widely investigated because the state of SNNs may

change abruptly at certain moment of time and the impulse is effective force to stabilise

the system (see [10, 23, 39] and references therein).

The diffusion effect widely exists in biological and artificial neural networks [9].15

For instance, the interactions arising from the space-distributed structure of the mul-

tilayer cellular neural networks can be seen as diffusion phenomenon [24]. Hence,

stochastic impulsive reaction-diffusion neural networks (SIRDNNs) have attracted much

attention of researchers [29, 35, 40]. On the other hand, the time delay often occurs

in the electronic implementation of analog networks because of the finite speed of sig-20

nal transmission and amplifier switching. Hence, discrete time delays or distributed

time delays are included into neural networks [5, 20, 25, 44, 46]. In [31], an S-type

distributed delay in terms of Lebesgue-Stieltjes integration, which includes both of

the above delays, was incorporated over an infinitely long duration and had better de-

scription of hysteresis phenomenon in networks. Since then, the stability analysis of25

neural networks with S-type distributed delays has also attracted considerable interest

[31, 37]. Recently, there are also some significant works about probabilistic delays and

model-dependent time delays [3, 32].

For the application of nonlinear systems including neural networks, image encryp-

tion is common interest. In [6], Fridrich suggested that there are two procedures for30

chaos-based image encryption scheme: permutation and diffusion. Since then, many

researchers have focused on chaos-based encryption algorithms based on these two

procedures [45, 48]. In [4], Chen et al. presented impulsive synchronization criteria of

reaction-diffusion delayed neural networks and applied the theoretical results to a spa-
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tiotemporal chaotic cryptosystem. Then, Lakshmanan et al. [14] proposed an image35

encryption algorithm containing pixel permutation and diffusion based on the chaotic

signals generated from inertial neural networks with time-varying delays. More devel-

opment about the application of delayed neural networks to image encryption refers

to [4, 14, 27] and references therein. As mentioned above, SIRDNNs with S-type

distributed delays can model real world systems well, and the S-type distributed de-40

lays sometimes generate chaotic phenomenon which benefits the encryption process of

image encryption [37]. However, there is relatively less work about the stability and

application of SIRDNNs with S-type distributed delays because the effect of the delay

defined on (−∞, t0] is difficult to be eliminated and its non-differentiability blocks the

way of constructing Lyapunov-Krasovskii functional with distributed term.45

Motivated by the aforementioned discussion, we study SIRDNNs with S-type dis-

tributed delays and small impulsive disturbance, aiming to obtain the sufficient condi-

tions for global exponential stability in the mean-square sense. The main contribution

of this paper can be summarised as follows: (1) stability and boundedness of an im-

pulsive Halanay-type inequality are investigated by differential inequalities and the50

construction of several comparison functions where the infinite delay is transformed

to finite delay by the truncation method and then the sufficient conditions are obtained

by the limitation of an infinitesimal; (2) based on the proposed inequality, the S-type

distributed delays are handled by truncation method so that the Lyapunov-Krasovskii

functional candidate for the stability of SIRDNNs is a simple one without distributed55

term; (3) the obtained theoretical results are successfully applied to an image encryp-

tion scheme based on bit-level permutation and pixel-level diffusion.

This paper is organized as follows: In Section 2, some notations are presented and

asymptotic behaviour of an impulsive system is investigated. Based on the inequality,

we study global exponential stability of stochastic impulsive reaction-diffusion neural60

networks with S-type distributed delays in Section 3. The effectiveness of the results

is verified by some illustrative examples in Section 4 and the application to an image

encryption scheme in Section 5. Finally, some conclusions are drawn in Section 6.
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2. Preliminaries and lemmas

In this paper, unless otherwise specified, the following notations are used. A func-65

tion φ : J → Rn is piecewise continuous if φ(t) has at most a finite number of jump

discontinuities and φ(t+) = φ(t) for all points on J where J ⊆ R. PCb(J,R+) repre-

sents the family of all piecewise continuous bounded functions from J to R+ with norm

‖φ‖PCb(J,R+) = supθ∈J |φ(θ)| and φ(t−0 ) = φ(t0). PCb = PCb((−∞, t0],R+).

(Ω,F , P ) is a complete probability space with filtration {Ft}t≥t0 . A stochastic process70

u(t) = u(t,x, w) is said to be piecewise continuous if for almost allw ∈ Ω and x ∈ O

function u(t) is piecewise continuous. The impulse sequence on (t0,+∞) satisfies

t0 < t1 < t2 < · · · < tk < · · · and lim
k→∞

tk = +∞. M2([t0,+∞),Rn×m) denotes

the family of n×m-matrix-valued-measurable functionF (t) with
∫ +∞
t0
‖F (s)‖2Rn×mds

< ∞. (L2(O))n and (H1
0 (O))n are Hilbert spaces with norms ‖u‖ = ‖u‖(L2(O))n =75

(
∑n
i=1

∫
O |ui|

2dx)
1
2 and ‖u‖(H1

0 (O))n = (
∑n
i=1

∑l
j=1

∫
O( ∂ui∂xj

)2dx)
1
2 . CbFt0 denotes

the family ofFt0 -measurable bounded stochastic variables with norm ‖ϕ‖C , ‖ϕ‖CbFt0
= sup∞<θ≤t0 E‖ϕ(θ)‖ where E is the expectation operator. ‖A‖F , (tr(AAT ))

1
2 is

the Frobenius norm of A ∈ Rn×n and tr is the trace operator. L 0
2 (<, (L2(O))n) de-

scribes the space of Hilbert-Schmidt operators from< , Q
1
2 ((L2(O))m) into (L2(O))n80

where Q is a positive definite, self-adjoint, Hilbert-Schmidt operator with a finite trace

and ‖Ψ‖∗ ,
√

tr(ΨQΨ∗).

Lemma 1 (Poincaré inequality[30]). Let O be an open bounded smooth domain in Rl,

then ‖u‖ ≤ δ−1‖u‖(H1
0 (O))n , u ∈ (H1

0 (O))n, where the constant δ > 0 depends on

the size of domain O.85

Lemma 2 ([33]). Let x ∈ Rn, y ∈ Rn and κ > 0. Then we have

xTy + yTx ≤ κxTx+ κ−1yTy.

Lemma 3. Φ(t, x, y) ∈ C(R+ ×R×R,R) is nondecreasing in y for fixed (t, x), and

Ik(x) : R→ R is nondecreasing in x, k ∈ N+. If ν(t), µ(t), ν̄(t) = sup−τ≤θ≤0 ν(t+

θ), µ̄(t) = sup−τ≤θ≤0 µ(t+ θ) satisfy the following conditions:D+ν(t) ≤ Φ(t, ν(t), ν̄(t)), t ≥ t0, t 6= tk,

ν(tk) ≤ Ik(ν(t−k )), k ∈ N+,
(1)
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D+µ(t) > Φ(t, µ(t), µ̄(t)), t ≥ t0, t 6= tk,

µ(tk) ≥ Ik(µ(t−k )), k ∈ N+,
(2)

where ν, µ ∈ PCb, then ν(t) ≤ µ(t) for t ≤ t0 implies ν(t) ≤ µ(t) for t ∈ [t0,+∞).

Proof. The proof will be given in Appendix A.

Consider the following impulsive Halanay-type inequality: for any ε ≥ 0, there

exists τ ≥ 0 such that
dν(t)

dt
≤ aν(t) + b sup

−τ≤θ≤0
ν(t+ θ) + o(ε), t 6= tk, t ≥ t0,

ν(tk) ≤ ckν(t−k ), k ∈ N+,

(3)

where b ≥ 0, o(ε) ≥ 0, limε→0 o(ε) = 0, and ν(t) ∈ PCb. Denote γ = supk∈N+{ck}

and φ(θ) , ν(θ) for θ ≤ t0. If 0 < γ ≤ 1, γ = ck and ρ = tk − tk−1 for all k ∈ N+.

If γ > 1, ρ = infk∈N+{tk − tk−1} > 0. Then, we shall establish the sufficient90

conditions for stability of system (3) with small impulsive disturbance 0 < γ ≤ 1 and

boundedness for large impulsive disturbance γ > 1.

Lemma 4. If 0 < γ < 1, a + b
γ > 0, and a + b

γ + ln γ
ρ < 0, then there exist positive

constants M and λ such that ν(t) ≤Me−λ(t−t0)‖φ‖PCb for t ∈ [t0,+∞).

Proof. The proof will be presented in Appendix B.95

Remark 1. When γ = 1, the impulsive Halanay-type inequality degenerates to an

inequality without impulse which has been studied in [37] under the stability condition

a+ b < 0. Therefore, it is straightforward to deduce the following result.

Lemma 5. If 0 < γ ≤ 1 and a + b
γ < 0, then there exist positive constants M and λ

such that ν(t) ≤Me−λ(t−t0)‖φ‖PCb for t ∈ [t0,+∞).100

Lemma 6. If 0 < γ < 1 and a+ b
γ + ln γ

ρ < 0, then there exist positive constants M

and λ such that ν(t) ≤Me−λ(t−t0)‖φ‖PCb for t ∈ [t0,+∞).

Proof. The proof will be given in Appendix C.
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Remark 2. From the considered differential inequality (3) and Lemma 6, we see that

the infinite delayed system with certain conditions is transformed to a finite delayed105

system with an infinitesimal by the truncation method. Therefore, for a class of infinite

delayed system, we can impose conditions on the delay term toward stability after

the limitation of the infinitesimal. Moreover, the obtained results generalise Halanay

inequality [8], inequalities with infinite delay [31, 37], and other impulsive inequalities

with finite delay [15, 39, 42] to be suitable for infinite delayed impulsive system.110

Lemma 7. If γ > 1 and a+ bγ + ln γ
ρ < 0, then ν(t) in inequality (3) is bounded.

Proof. The proof will be presented in Appendix D.

Note that we can obtain boundedness of the impulsive system (3) with γ > 1, but

the stability vanishes. In order to explore the reason, we consider a degenerate case of

(3) with finite delay:
dν̃(t)

dt
≤ aν̃(t) + bν̃(t− τ), t 6= tk, t ≥ t0,

ν̃(tk) ≤ ckν̃(t−k ), k ∈ N+,

(4)

where τ > 0, b ≥ 0, ν̃(t) ∈ PCb([−τ, t0],R+). Denote γ = sup
k∈N+

{ck} and φ̃(θ) ,

ν̃(θ) for −τ ≤ t ≤ t0. Inspired from Theorem 1 in [10], we have the following result.

Lemma 8. If γ > 1 and a+ bγ + ln γ
ρ < 0, then there exist positive constants M and115

λ such that ν̃(t) ≤Me−λ(t−t0)‖φ‖PCb for t ∈ [t0,+∞).

Proof. The proof will be given in Appendix E.

Remark 3. Comparison of Lemma 7 and 8 indicates that the instability of impulsive

system (3) with γ > 1 may originate from infinite delay. To obtain stability, stricter

conditions are needed to be imposed on the delay term.120
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3. Stability analysis of SIRDNNs

First, we consider the following SIRDNNs with S-type distributed delays
du(t,x) = [∇ · (D(t,x) ◦ ∇u(t,x)) +A(t)u(t,x) + F (t,u)

+ F (t,S(u))]dt+G(t,S(u))dW (t,x), t ≥ t0, t 6= tk,

u(tk,x) = (I +Ck)u(t−k ,x),

(5)

with Dirichlet boundary condition and initial condition

u(t,x)|x∈∂O = 0, t ≥ t0; u(θ,x) = ϕ(θ,x) ∈ CbFt0 , θ ∈ (−∞, t0], x ∈ O, (6)

where u(t,x) = (u1(t,x), · · · , un(t,x))T , D(t,x) = (Dij(t,x))n×l, Dij(t,x) ≥

D̃ij > 0, ∇ · (D(t,x) ◦ ∇u) = (
∑l
j=1

∂(D1j(t,x)
∂u1
∂xj

)

∂xj
, · · · ,

∑l
j=1

∂(Dnj(t,x)
∂un
∂xj

)

∂xj
)T ,

and ◦ denotes Hadamard product. Besides, A(t) = diag(A1(t), A2(t), · · · , An(t)),

Ai(t) ≤ Ãi, F = (f1, f2, · · · , fn)T , and G = (Gij)n×m ∈ Mn,m
2 (t0, t) [7]. S(u) =125 ∫ 0

−∞ dη(θ)u(t + θ,x) is Lebesgue-Stieltjes integrable and η(θ) is non-decreasing

bounded variation function which satisfies
∫ 0

−∞ dη(θ) = (η̂ij)n×n and η̂ij > 0. O

is an open bounded and connected subset of Rl with a sufficient regular boundary ∂O.

W (t,x) is an infinite dimensional Q-Wiener process [7]. I and Ck are the identical

and impulsive matrices. Unless otherwise specified, we assume that130

(H1) there exists a positive bounded function L(t) such that ‖F (t, ς1) − F (t, ς2)‖ ∨

‖G(t, ς1)−G(t, ς2)‖∗ ≤ L(t)‖ς1 − ς2‖, where t ∈ [t0,+∞), ς1, ς2 ∈ (L2(O))n.

(H2) F (t, 0) ∈M2([t0,+∞),Rn),G(t, 0) ∈M2([t0,+∞),Rn×m).

According to Theorem 5.1 in [38], system (5) has a unique mild solution for t ∈

[t0,+∞). Then, we shall have the following results for stability of system (5)-(6)135

with small impulsive disturbance and boundedness for large impulsive disturbance.

Theorem 1. Assume that H1 and H2 hold. Then system (5)-(6) is globally exponen-

tially stable in the mean-square sense, if there exists a positive constant κ such that

0 < γ < 1,

−2δ2 min
ij
{D̃ij}+2 max

i
{Ãi}+2κ+κ−1L̃2+2n(1+κ−1)‖η̂‖2F L̃2/γ+

ln γ

ρ
< 0, (7)

where L̃ = supt≥t0 L(t), γ = supk∈N+ ‖{I +Ck‖2F } and ρ = tk − tk−1 for k ∈ N+.
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Proof. Given ϕ ∈ CbFt0 , we write u(t,x) = u(t,x;ϕ) and define a Lyapunov-

Krasovskii functional candidate by V (t,u(t,x)) = ‖u(t,x)‖2. We denote V (t,u(t,x))

by V (t). For t ∈ (tk−1, tk), k ∈ N+, thanks to Itô formula [18], we have

dV (t) = LV dt+ 2

∫
O
uTGdW dx, (8)

where

LV =

∫
O
uT (t,x)(∇ · (D(t,x) ◦ ∇u(t,x)))dx

+

∫
O

(∇ · (D(t,x) ◦ ∇u(t,x)))Tu(t,x)]dx

+

∫
O

[uT (t,x)A(t)u(t,x) + u(t,x)TAT (t)u(t,x)]dx

(9)

+

∫
O

[uT (t,x)F (t,u) + F T (t,u)u(t,x)]dx

+

∫
O

[uT (t,x)F (t,S(u)) + F T (t,S(u))u(t,x)]dx

+ tr(GQG∗) ,
6∑
i=1

LVi.

Taking expectation of dV (t), we know that dEV (t)
dt = ELV . From Gauss formula,

Dirichlet boundary condition and Poincaré inequality, we have

l∑
j=1

∫
O
ui(t,x)

∂

∂xj
(Dij(t,x)

∂ui(t,x)

∂xj
)dx ≤ −

l∑
j=1

∫
O
Dij(t,x)(

∂ui(t,x)

∂xj
)2dx,

(10)

indicating that, ELV1 + ELV2 ≤ −2δ2 min
ij
{D̃ij}EV (t). Obviously, ELV3 ≤ 2 max

i

{Ai(t)}EV (t). From Lemma 2 and (H1), we obtain

ELV4 ≤ κE
∫
O
uT (t,x)u(t,x)dx+ κ−1E

∫
O
F T (t,u)F (t,u)dx,

≤ κEV (t) + κ−1L2(t)E
∫
O
uT (t,x)u(t,x)dx ≤ (κ+ κ−1L2(t))EV (t),

(11)

ELV5 ≤ κE
∫
O
uT (t,x)u(t,x)dx+ κ−1E

∫
O
F T (t,S(u))F (t,S(u))dx

≤ κEV (t) + κ−1L2(t)E‖
∫ 0

−∞
dη(θ)u(t+ θ,x)‖2.

(12)

8



Since
∫ 0

−∞ dηij(θ) = η̂ij > 0 (i, j = 1, 2, · · · , n) and ηij(θ) is non-decreasing

bounded variation function, there exists a constant τ ≥ t such that
∫ −τ
−∞ dηij(θ) ≤ ε

for any ε ≥ 0 and i, j = 1, 2, · · · , n. Therefore,

E‖
∫ 0

−∞
dη(θ)u(t+ θ,x)‖2

≤ 2E‖
∫ 0

−τ
dη(θ)u(t+ θ,x)‖2 + 2E‖

∫ −τ
−∞

dη(θ)u(t+ θ,x)‖2

≤ 2n‖η̂‖2F sup
−τ≤θ≤0

E‖u(t+ θ,x)‖2 + 2nε2E‖ϕ‖2C,

(13)

and

ELV5 ≤ κEV (t) + 2nκ−1‖η̂‖2FL(t)2 sup
−τ≤θ≤0

EV (t+ θ) + 2nε2κ−1L(t)2E‖ϕ‖2C.

(14)

Besides, from (H1), we see that

ELV6 ≤ L(t)2E‖
∫ 0

−∞
dη(θ)u(t+ θ,x)‖2

≤ 2n‖η̂‖2FL(t)2 sup
−τ≤θ≤0

EV (t+ θ) + 2nε2L(t)2E‖ϕ‖2C.
(15)

Thus, combining (8)-(15), we have

dEV (t)

dt
≤ a(t)EV (t) + b(t) sup

−τ≤θ≤0
EV (t+ θ) + d(t)ε2,

≤ ãEV (t) + b̃ sup
−τ≤θ≤0

EV (t+ θ) + d̃ε2,

(16)

where a(t) = −2δ2 min
ij
{D̃ij} + 2 max

i
{Ai(t)} + 2κ + κ−1L2(t), b(t) = 2n(1 +

κ−1)‖η̂‖2FL2(t), d(t) = 2n(1+κ−1)L2(t)E‖ϕ‖2C, ã = −2δ2 min
ij
{D̃ij}+2 max

i
{Ãi}+

2κ + κ−1L̃2, b̃ = 2n(1 + κ−1)‖η̂‖2F L̃2, and d̃ = 2n(1 + κ−1)L̃2E‖ϕ‖2C. When140

t = tk, EV (tk) ≤ γEV (t−k ) where γ = supk∈N+{‖I + Ck‖2F }. When t ≤ t0,

EV (t) = E‖ϕ(t)‖2 ∈ PCb. From Lemma 6 and (7), we see that there exist positive

constants M and λ such that E‖u(t,x)‖2 ≤Me−λ(t−t0)E‖ϕ‖2C. Then, system (5)-(6)

is globally exponentially stable in the mean-square sense.

Corollary 1. Assume that H1 and H2 hold. Then system (5)-(6) is globally exponen-

tially stable in the mean-square sense, if 0 < γ < 1,

−2δ2 min
ij
{D̃ij}+ 2 max

i
{Ãi}+ 2 + L̃2 + 4n‖η̂‖2F L̃2/γ +

ln γ

ρ
< 0, (17)

9



where L̃ = supt≥t0 L(t), γ = ‖I +Ck‖2F and ρ = tk − tk−1 for all k ∈ N+.145

Remark 4. It is noted from (7) that impulsive coefficient can be treated as a positive

factor of stability if the impulsive interval and γ are small enough, which indicates the

potential of impulsive control for SRDNNs.

Theorem 2. Assume that H1 and H2 hold. Then system (5)-(6) is bounded in the

mean-square sense, if there exists a positive constant κ such that γ > 1,

−2δ2 min
ij
{D̃ij}+2 max

i
{Ãi}+2κ+κ−1L̃2+2nγ(1+κ−1)‖η̂‖2F L̃2+

ln γ

ρ
< 0, (18)

where L̃ = supt≥t0 L(t), γ = supk∈N+{‖I +Ck‖2F } and ρ = infk∈N+{tk− tk−1} >

0.150

Remark 5. For SIRDNNs with finite delays, global exponential stability can be easily

obtained by Lemma 6 and 8 when γ > 0, which indicates that the reason why global

stability vanishes for γ > 1 lies in S-type distributed delays.

Next, we consider impulsive control of the following stochastic reaction-diffusion

neural networks

dū(t,x) = [∇ · (D(t,x) ◦ ∇ū(t,x)) +A(t)ū(t,x) +B1(t)F̄1(ū)

+B2(t)F̄2(S(ū))]dt+E(t)Ḡ(S(ū))dW (t,x), t ≥ t0, t 6= tk

ū(tk,x) = Ckū(t−k ,x),

ū(θ,x) = ϕ̄(θ,x) ∈ CbFt0 , θ ∈ (−∞, t0], x ∈ O,

(19)

with the homogeneous Dirichlet boundary condition, where B1(t) = (B1ij(t))n×n,

B2(t) = (B2ij(t))n×n, E(t) = (Eij(t))n×n, and C is the impulsive controller gain155

to be determined and ρ = tk − tk−1 for all k ∈ N+. Assume that the following condi-

tions hold,

(H3) ‖F̄1(ς1)− F̄1(ς2)‖ ∨ ‖F̄2(ς1)− F̄2(ς2)‖ ∨ ‖Ḡ(ς1)− Ḡ(ς2)‖∗ ≤ L̄‖ς1 − ς2‖,

(H4) Dij(t,x) ≥ D̄ij > 0, Ai(t) ≤ Āi, |B1ij(t)| ≤ B̄1ij , |B2ij(t)| ≤ B̄2ij ,

|Eij(t)| ≤ Ēij , where t ∈ [t0,+∞), i, j = 1, · · · , n, and ς1, ς2 ∈ (L2(O))n.160

Theorem 3. Assume that H3 and H4 hold. Then the global exponential stability in

the mean-square sense of system (19) is guaranteed under the impulsive controller
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γ = supk∈N+{‖C‖}2F ∈ (0, 1), if there exists a positive constant κ such that

−2δ2 min
ij
{D̄ij}+ 2 max

i
{Āi}+ κ(‖B̄1‖2F + ‖B̄2‖2F )

+ κ−1L̄2 + 2nL̄2‖η̂‖2F (κ−1 + ‖Ē‖2F )/γ +
ln γ

ρ
< 0.

(20)

Proof. The details of the proof are similar to those of Theorem 1, so we just give an

outline of the proof. Given ϕ̄ ∈ CbFt0 , we define a Lyapunov-Krasovskii functional

candidate by V̄ (t) = V̄ (t, ū(t,x)) = ‖ū(t,x)‖2. For t ∈ (tk−1, tk), k ∈ N+, thanks

to Itô formula [18], we have

dV̄ (t) = LV̄ dt+ 2

∫
O
ūTE(t)ḠdW dx, (21)

where

LV̄ =

∫
O
ūT (t,x)(∇ · (D(t,x) ◦ ∇ū(t,x)))dx

+

∫
O

(∇ · (D(t,x) ◦ ∇ū(t,x)))T ū(t,x)]dx

+

∫
O

[ūT (t,x)A(t)ū(t,x) + ū(t,x)TAT (t)ū(t,x)]dx

+

∫
O

[ūT (t,x)B1(t)F̄1(ū) + (B1(t)F̄1(ū))T ū(t,x)]dx

+

∫
O
ūT (t,x)B2(t)F̄2(t,S(ū))dx+

∫
O

(B2(t)F̄2(t,S(ū)))T ū(t,x)dx

+ tr((E(t)Ḡ)Q(E(t)Ḡ)∗) ,
6∑
i=1

LV̄i.

(22)

From Lemma 2, (H3) and (H4), we obtain

ELV̄4 ≤ κE
∫
O
ūT (t,x)B1(t)BT

1 (t)ū(t,x)dx+ κ−1E
∫
O
F̄ T1 (ū)F̄1(ū)dx,

≤ κ‖B1(t)‖2FE V̄ (t) + κ−1L̄2E
∫
O
ūT (t,x)ū(t,x)dx

≤ (κ‖B̄1‖2F + κ−1L̄2)E V̄ (t),

(23)

ELV̄5 ≤ κE
∫
O
ūT (t,x)B2(t)BT

2 (t)ū(t,x)dx+ κ−1E
∫
O
F̄ T2 (S(ū))F̄2(S(ū))dx

≤ κ‖B̄2‖2FE V̄ (t) + 2nκ−1L̄2(‖η̂‖2F sup
−τ≤θ≤0

E V̄ (t+ θ) + ε2E‖ϕ̄‖2C),

(24)
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and

ELV̄7 ≤ L̄2‖E(t)‖2FE‖
∫ 0

−∞
dη(θ)ū(t+ θ,x)‖2

≤ 2nL̄2‖Ē‖2F (‖η̂‖2F sup
−τ≤θ≤0

E V̄ (t+ θ) + ε2E‖ϕ̄‖2C).

(25)

Thus, combining (10), (21)-(25), we have

dE V̄ (t)

dt
≤ āE V̄ (t) + b̄ sup

−τ≤θ≤0
E V̄ (t+ θ) + d̄ε2, (26)

where ā = −2δ2 min
ij
{D̄ij} + 2 max

i
{Āi} + κ‖B̄1‖2F + κ‖B̄2‖2F + κ−1L̄2, b̄ =

2nL̄2‖η̂‖2F (κ−1 + ‖Ē‖2F ), and d̄ = 2nL̄2(κ−1 + ‖Ē‖2F )E‖ϕ̄‖2C. When t = tk,

E V̄ (tk) ≤ γE V̄ (t−k ) where γ = supk∈N+{‖C‖2F }. When t ≤ t0, E V̄ (t) = E‖ϕ̄(t)‖2 ∈

PCb. From Lemma 6, we see that system (19) is globally exponentially stable in the

mean-square sense, if 0 < γ < 1 and (20) hold.165

Remark 6. In this paper, we establish the stability conditions of SIRDNNs with S-

type distributed delays while Refs. [35, 40] does not consider the distributed delays. In

most recent works about distributed delays [4, 46, 47], a Lyapunov-Krasovskii func-

tional with distributed term is introduced, however, the suitable Lyapunov-Krasovskii

functional with distributed term is usually difficult to find. Here, as the infinite delays170

are handled by truncation method and an impulsive inequality, we are able to con-

struct a simple Lyapunov-Krasovskii functional candidate without the distributed term.

Therefore, the method we used is more effective and general. Besides, we also extend

some works about non-autonomous neural networks [13, 22, 43] to impulsive ones.

4. Numerical examples175

In this section, two numerical examples are given to illustrate the effectiveness of

the obtained results.

Example 1. Consider the following SIRDNN
du(t, x) = [D(t)∆u(t, x)−A(t)u(t, x) + f(t,S(u))]dt

+ g(t,S(u))dw(t), t 6= tk, t ≥ 0,

u(tk, x) = (1 + C)u(t−k , x), tk = k, k ∈ N+,

(27)
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with the homogeneous Dirichlet boundary condition, where x ∈ [−5, 5], D(t) =

0.11 + 0.1 sin(t), A(t) = −5.9 − 0.1 sin2(t), f(t,S(u)) = sin2(2t) tanh(S(u)),

g(t,S(u)) = tanh(S(u)), η(θ) = eθ, θ ∈ (−∞, 0], and C = e−1 − 1. The ini-180

tial condition is chosen as ϕ(θ, x) = sin(x5 ) for θ ∈ [−100, 0] and ϕ(θ, x) = 0 for

θ ∈ (−∞,−100). It is easy to check that 0 < γ < 1 and condition (7) holds with

κ =
√

2e+1
2 . Thus, system (27) is globally exponentially stable as shown in Figure 1.

Figure 1: Trajectory simulation of SIRDNN (27) in Example 1.

Example 2. Consider the following stochastic impulsive neural networks
du(t) = [−3.5u(t) + 0.2f(u) + 0.2f(S(u))]dt

+ 0.2g(S(u))dw(t), t 6= tk, t ≥ 0,

u(tk) = 2u(t−k ), tk = 0.25k, k ∈ N+,

(28)

with the homogeneous Dirichlet boundary condition, where f(u) = g(u) = |u+1|+|u−1|
2 ,

S(u) =
∫ 0

−∞ η(θ)u(t + θ)dθ, and w(t) is the standard Brownian motion. The initial

condition is taken as

u(θ) =

 M −1 ≤ θ ≤ 0,

0 θ < 1.

It is easy to check that γ > 1 and condition (18) holds with κ =
√
2
2 . Here, we consider

two types of delays: distributed delay
∫ 0

−∞ η(θ)u(t + θ)dθ =
∫ 0

−∞ eθu(t + θ)dθ and185

discrete delay
∫ 0

−∞ η(θ)u(t + θ)dθ = e−1u(t − 1). From Theorem 2 and Remark 5,

system (28) with distributed delay is bounded while the discrete delayed one is globally

exponentially stable. Figure 2 illustrates simulation of dynamical behaviour of system

(28) with initial conditions M = 5 and M = −5, which shows the boundedness of the

13



infinite delayed system and stability of the finite delayed system, in agreement with the190

theory.

Figure 2: Simulation of system (28) with distributed delay (left) and discrete delay (right) in Example 2.

5. Application to image encryption

In this section, we apply the aforementioned stability analysis to a 2-D drive-

response system. Then, the generated drive and response signals are delivered into an

image cryptosystem which is built based on bit-level permutation and and pixel-level195

diffusion inspired by [4, 45, 48].

5.1. Drive-response system

The drive-response system used for image encryption is given by

ds(t, x) = [−As(t, x) +B1f(s(t, x)) +B2f(S(s))]dt+ES(s)dw(t), (29)

with the homogeneous Dirichlet boundary condition, where O = [−10, 10], s(t, x) =

(s1(t, x), s2(t, x))T is the drive signal (or response signal), w(t) is the standard Brow-

nian motion, f(s) = tanh(s), S(s) = s(t − τ(t), x), τ(t) = et/(1 + et), A = I ,

E = 1.293I , and

B1 =

 1.1 −0.1

−0.5 0.45

 , B2 =

 −1.1 −0.1

−0.2 −0.4

 .
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The drive signal s(t, x) and response signal s̃(t, x) are generated by the following

initial conditions

s1(θ, x) = sin2(
xπ

2
), s2(θ, x) = cos2(

xπ

2
), x ∈ O \ ∂O,

s̃1(θ, x) =

 1, x ∈ Ok \ ∂O;

0, otherwise,
s̃2(θ, x) =

 −1, x ∈ COOk \ ∂O;

0, otherwise,

where −1 ≤ θ ≤ 0 and Ok = [−10 + 0.2k,−9.9 + 0.2k] (k = 0, 1, · · · , 99).

From Theorem 1 and 3, it is straightforward to assert that the error signal, defined by

e(t, x) = s(t, x) − s̃(t, x), is globally exponentially stable in the mean-square sense200

by the impulsive controller e(tk, x) = 0.22e(t−k , x) (tk = 0.14k, k ∈ N+), that is

the synchronization of drive-response signals. As shown in Figure 3, the uncontrolled

error signal is unstable and the controlled appears to decay to zero, in agreement with

the theory.

Figure 3: The trajectories of error signals without control (left) and with impulsive control (right).

5.2. Image cryptosystem based on bit-level permutation and drive-response signals205

The image cryptosystem is built with the help of methodologies proposed in [4,

45, 48], as shown in Figure 4(left). The cryptosystem consists of transmitter end and

receiver end where the drive-response signals are generated. Then the signals are deliv-

ered into the encryption box and decryption box to cipher the plain image and decrypt

the ciphered image. The encryption scheme includes bit-level permutation (confusion)210

and pixel-level diffusion based on the drive signal. The full details are given as follows.
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Figure 4: Flow chart (left) and test images (right) of the image cryptosystem.

(1) Bit-level permutation. First, the plain image (M×N) is divided into 8 binary

images. Then, 1-8 bit binary images are combined into a whole image (M×8N) which

is permuted by the Arnold cat map. The Arnold cat map is defined by x′

y′

 =

 1 p

q pq + 1

 x

y

mod

 M

8N

 , (30)

where (x, y) represents the coordinate in the bit-level combined image and (x′, y′)

represents the new coordinate. The parameters p and q are determined by

p = (|s[8xN + y + 103]× 105|)modM, q = (|s[end− 8xN − y]× 105|)modN,

where s is the combination of drive signals s1 and s2. Through the bit-level permuta-

tion, the pixels’ values and positions are changed and the bits in all the bit plane are

changed, which is different from Zhu’s algorithm [48].

(2) Pixel-level diffusion. For the pixel-level diffusion, we apply the drive signal to215

the diffusion phase proposed in [48] instead of the chaotic sequence generated by the

logistic map. The main procedures are sketched as follows:

Step 1: the pixels in the permuted image are scanned from upper-left to lower-right and

form a permuted sequence.

Step 2: each pixel is diffused by c[i + 1] = p[i + 1] ⊕ {{[4 × (c[i]/1000) × (1 −220

c[i]/1000)× 1000] + (s[i+ 100]× 105)mod256}mod256}, where c, p and s represent

the ciphered sequence, permuted sequence and drive signal, respectively.

Step 3: the ciphered sequence is reshaped to be the ciphered image.
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5.3. Experimental results

This subsection reports the performance analysis for the image cryptosystem. Four225

different images, including Lena (gray 512×512), Clock (gray 128×128), Lady (color

256×256), and Pepper (color 512×512) as shown in Figure 4(right), are tested to show

the effectiveness. For color images, the red, green and blue components are extracted

to be ciphered or decrypted, respectively. Figure 5 illustrates the plain images, ciphered

images, decrypted images of Lena and Lady. Visually, the ciphered images are quite230

different from the plain images whereas the decrypted images are identical with the

plain images. A good cryptosystem should resist various attacks, so the key space

Figure 5: Lena image (top) and Lady image (bottom).

analysis, differential analysis and statistical analysis are performed to demonstrate the

security as follows.

(1) Key space analysis. The encryption scheme includes the following keys: the235

parameters of the spatiotemporal chaotic neural networks, the synchronous time, and

the initial condition of the ciphered sequence. As stated in [4, 48], the key space is

large enough in theory to resist the brute-force attack and the encryption scheme is

sensitive to the secret keys. Moreover, the stochastic factor (Brownian motion) can

also be treated as the key, since the used drive-response system is stochastic chaotic240

system. The irreproducibility of stochastic factor improves the security of the scheme.
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Table 1: NPCR and UACI performance compared with LM, Refs. [48] and [17].

Round Proposed scheme LM Ref. [48] Ref [17]

N
PC

R 1 0.0059 0.0043 0.004223 0.0003357

2 0.8964 0.8643 0.8120 0.03328

3 0.9964 0.9958 0.9961 0.7993

U
A

C
I 1 0.019 0.0014 0.001366 0.00008774

2 0.3016 0.2904 0.2739 0.00008774

3 0.3347 0.3350 0.3340 0.2186

(2) Differential analysis. A good encryption scheme should be sensitive to the plain

images because an adversary may find out the relationship between the ciphered images

and the plain images through observing the change of the ciphered results caused by

slight change of the plain images. Generally, the number of pixels change rate (NPCR)

and unified average changing intensity (UACI) are employed to test the sensitivity. The

NPCR and UACI are calculated by

NPCR =
Σi,jD(i, j)

M ×N
× 100%, UACI =

Σi,j |c1(i, j)− c2(i, j)|
255×M ×N

× 100%, (31)

where c1 and c2 are two ciphered images and D(i, j) is defined by

D(i, j) =

 1, c1(i, j) 6= c2(i, j),

0, otherwise.

Here, we use two plain images: original Lena image and the other Lena image obtained

by changing 1 bit of (511,511). Then, these two images are ciphered by the same keys

to calculate NPCR and UACI. The results are listed in Table 1 compared with Refs.

[48] and [17]. To testify the effect of drive-response signals, we also perform the245

proposed encryption process based on the logistic map (LM) instead of drive-response

signals. By comparison in Table 1, both NPCR and UACI reach higher performance

than LM and Refs. [17, 48]. Therefore, the proposed algorithm is more efficient to

resist differential attack.

(3) Statistical analysis. To demonstrate the robustness of cryptosystem, we also250

perform analysis of histogram, entropy, and correlation of the plain images and ci-

phered images. The ciphered images should process certain random properties, which
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means the decrease in variance of histogram, closeness of entropy to 8, and small cor-

relation of plain images and ciphered images and of two adjacent pixels in ciphered

images. Figure 6 illustrates the histograms of the plain Lena image, ciphered image,255

and decrypted image. Figure 7 depicts the correlation distribution of two adjacent

pixels in horizontal, vertical, and diagonal directions. The significant reduction in cor-

relation indicates that the correlation of adjacent pixels in the plain images has been

removed. The quantification of the ciphered results is presented in Tables 2-4, in-

Figure 6: Histograms of Lena images.

Figure 7: Correlation of adjacent pixels in plain image (top) and ciphered image (bottom).

Table 2: Variance of histogram.

Image Lena Clock Lady Pepper

Original 6.37e5 2.40e4 9.09e5 3.31e6

Ciphered 1.04e3 56.02 876.63 3.41e3

Decrypted 6.37e5 2.40e4 9.09e5 3.31e6

cluding variance of histogram [45], entropy, and correlation of the plain images and260

ciphered images (CPC), and correlations of two adjacent pixels. The correlations of

two adjacent pixels of color images are absolute averages of RGB components. From
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Table 3: Entropy and CPC of different images.

Image Lena Clock Lady Pepper

Entropy 7.9993 7.9901 7.9971 7.9993

CPC 2.24e-4 0.015 -5.27e-3 1.20e-3

Figure 6 and Table 2, the variances of histograms of ciphered images significantly de-

crease compared with those of plain images. The uniformity of the histograms of the

ciphered images makes statistic attacks difficult. As a result, the proposed method is265

able to resist chosen-plaintext or known-plaintext attacks. From Tables 3 and 4, the

entropy 7.9993 of Lena is close to 8 and the correlations of two adjacent pixels agree

with the description of Figure 7, which also imply the random-like appearance of the

ciphered images.

Table 4: Correlations of two adjacent pixels in horizontal, vertical, and diagonal directions.

Image Horizontal Vertical Diagonal Average

Lena
Original 0.9726 0.9863 0.9596 0.9728

Ciphered -0.0018 -0.0018 -0.0018 0.0018

Clock
Original 0.9445 0.9518 0.9518 0.9494

Ciphered 0.0025 0.0079 0.0131 7.833e-3

Lady
Original 0.9677 0.9596 0.9453 0.9575

Ciphered 4.17e-3 0.0056 3.28e-3 4.35e-3

Pepper
Original 0.9802 0.9814 0.9641 0.9753

Ciphered 1.03e-3 8.64e-4 7.97e-4 8.98e-4

Remark 7. In comparison with recent image encryption application of neural networks270

[4, 27, 37], the proposed scheme is more robust to statistic attacks because the abso-

lute average correlation of two adjacent pixels for Lady and Pepper is 2.63e-3 which is

smaller than 3.35e-3 of [37] and 3.40e-3 of [27] and the correlation for Lena is smaller

than 9.20e-3 of [4]. Besides, the proposed scheme is robust to differential attack be-

cause NPCR reaches 0.99 and UACI reaches 0.33.275
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6. Conclusion

In this paper, we establish sufficient conditions for global exponential stability of

SIRDNNs based an impulsive inequality involving infinite delay. The asymptotic be-

haviour of SIRDNNs with S-type distributed delays is studied by truncating the infinite

delay to finite delay and an infinitesimal and the global exponential stability is estab-280

lished by the Lyaponov method. Finally, the applicability of the proposed theories is

verified by some illustrative examples and the application to image encryption. Future

work will focus on SIRDNNs with S-type distributed delays and large impulse. To

achieve the stability, stronger conditions on the S-type distributed delays are needed.

Besides, the dissipativity theory provides primary structure for synthesis and analysis285

in several domains of control engineering problems [19, 20, 21], so another future work

will concentrate on the dissipativity state estimation for SIRDNNs.
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Appendix A. Proof of Lemma 3

Proof. First, we prove that ν(t) ≤ µ(t) for t ∈ [t0, t1). If it is not true, there exists

t∗ ∈ [t0, t1) such that ν(t∗) > µ(t∗), indicating that there exists t̄ ∈ [t0, t
∗) satisfying

ν(t̄) = µ(t̄), D+ν(t̄) ≥ D+µ(t̄), ν(t) ≤ µ(t), (32)

where t ∈ [t0, t̄), furthermore, ν̄(t̄) ≤ µ̄(t̄). From the condition of the Lemma, we see

D+ν(t̄) ≤ Φ(t̄, ν(t̄), ν̄(t̄)) ≤ Φ(t̄, µ(t̄), µ̄(t̄)) < D+µ(t̄), (33)

which contradicts (32). Hence, ν(t) ≤ µ(t) for t ∈ [t0, t1). Then, when t = t1, the295

monotonicity of Ik implies that ν(t1) ≤ Ik(ν(t−1 )) ≤ Ik(µ(t−1 )) ≤ µ(t1). Based on

the mathematical induction, the lemma is proved by using the similar process.
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Appendix B. Proof of Lemma 4

Proof. Since a+ b
γ > 0 and a+ b

γ+ ln γ
ρ < 0, there exists a positive constant λ′ < − ln γ

ρ

such that −λ′ + a+ b
γ e
−(λ′+ ln γ

ρ )τ < 0. Let Φ(t, x, y) = ax+ by + o(ε),

µ(t) =

 ‖φ‖PCb , t ≤ t0,

γk−1M ′eλ
′(t−t0) − o(ε)

a+b , t ∈ [tk−1, tk),

where M ′ = ‖φ‖PCb + o(ε)
a+b . Obviously, when t ≤ t0, ν(t) ≤ µ(t). For t ∈ (tk−1, tk),

we have

D+ν(t) ≤ aν(t) + b sup
−τ≤θ≤0

ν(t+ θ) + o(ε) = Φ(t, ν(t), ν̄(t)),

D+µ(t) = γk−1λ′M ′eλ
′(t−t0) > γk−1(a+

b

γ
e−(λ

′+ ln γ
ρ )τ )M ′eλ

′(t−t0)

≥ aµ(t) + bM ′γk−1 sup
−τ≤θ≤0

γ
θ
ρ−1eλ

′(t+θ−t0) +
ao(ε)

a+ b

≥ aµ(t) + b sup
−τ≤θ≤0

µ(t+ θ) + o(ε) = Φ(t, µ(t), µ̄(t)).

(34)

From Lemma 3, we know that

ν(t) ≤ γk−1M ′eλ
′(t−t0) − o(ε)

a+ b
≤ 1

γ
M ′e−λ(t−t0) − o(ε)

a+ b
,

where λ = −(λ′ + ln γ
ρ ) > 0. As ε → 0, we obtain that Φ(t) ≤ Me−λ(t−t0)‖φ‖PCb

for t ∈ [t0,+∞) where M = 1/γ.300

Appendix C. Proof of Lemma 6

Proof. Combining Lemma 5 with 4, we simply need to prove the result for a+ b
γ = 0.

The details of the proof are similar to those of Lemma 4, so we give an outline focusing

on the different parts. Since ln γ
ρ < 0, there exists a positive constant λ′ < − ln γ

ρ such

that −λ′ + a + b
γ e
−(λ′+ ln γ

ρ )τ < 0. Let µ(t) = γk−1M ′′eλ
′(t−t0) for t ∈ [tk−1, tk),

k ∈ N+, where M ′′ = ‖φ‖PCb . For t ∈ (tk−1, tk), if ε is small enough, we have

D+µ(t) = γk−1λ′M ′′eλ
′(t−t0) > (a+

b

γ
e−(λ

′+ ln γ
ρ )τ )γk−1M ′′eλ

′(t−t0) + o(ε)

≥ aµ(t) + b sup
−τ≤θ≤0

µ(t+ θ) + o(ε) = Φ(t, µ(t), µ̄(t)).

(35)

22



As proof of Lemma 4, we conclude that there exist positive constants M and λ such

that ν(t) ≤ Me−λ(t−t0)‖φ‖PCb for t ∈ [t0,+∞) where λ = −(λ′ + ln γ
ρ ) > 0 and

M = 1/γ. Then, the Lemma is proved.

Appendix D. Proof of Lemma 7305

Proof. Denote λ = a + ln γ
ρ . Since a + bγ + ln γ

ρ < 0, then − bγλ < 1, indicating that

there exists a constant n ∈ (0, 1) such that − bγλ < n. From Lemma 3, we derive the

following comparison system

dµ(t)

dt
= aµ(t) + b sup

−τ≤θ≤0
µ(t+ θ) + o(ε) + ε′, t 6= tk, t ≥ t0,

µ(tk) = γµ(t−k ), k ∈ N+,

µ(t) = ‖φ‖PCb , t ≤ t0,

(36)

for any ε′ > 0. Obviously, ν(t) ≤ µ(t) for t ∈ [t0,+∞). Then we shall prove that µ(t)

is bounded. Using similar process of Lemma 5 in [37], we know that µ(t) ≤ µ(tk−1)

for t ∈ [tk−1, tk). If µ(t) is not bounded, there exists k∗ ∈ N+ such that µ(tk∗) = M

and µ(t) < M for t0 ≤ t < tk∗ where M > 4γ
1−n max{‖φ‖PCb ,−

o(ε)+ε′

λ }. By the

formula for the variation of parameters and Lemma 3.1 in [41], we see that

µ(tk∗) ≤ γeλ(tk∗−t0)µ(t0) + (o(ε) + ε′)γ

∫ tk∗

t0

eλ(tk∗−s)ds

+ bγ

∫ tk∗

t0

eλ(tk∗−s) sup
−τ≤θ≤0

µ(s+ θ)ds

≤ γ‖φ‖PCb −
o(ε) + ε′

λ
γ(1− eλ(tk∗−t0))− bγM

λ
(1− eλ(tk∗−t0))

≤ 1− n
2

M + nM < M.

(37)

This is contradiction. Hence, µ(t) and ν(t) are bounded.
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Appendix E. Proof of Lemma 8

Proof. From Lemma 3, we derive the following comparison system
dµ̃(t)

dt
= aµ̃(t) + bµ̃(t− τ) + ε′, t 6= tk, t ≥ t0,

µ̃(tk) = γµ̃(t−k ), k ∈ N+,

µ̃(t) = ‖φ̃‖PCb , t ≤ t0,

(38)

for any ε′ > 0. Obviously, ν̃(t) ≤ µ̃(t) for t ∈ [t0,+∞). First, let us consider the

function δ(λ) = λ+ a+ bγeλτ + ln γ
ρ , where λ ∈ [0,+∞). Since a+ bγ + ln γ

ρ < 0

and b ≥ 0, we obtain δ(0) < 0 and δ(λ) is continuous and monotonous, furthermore,

δ(λ) → +∞ as λ → +∞. Consequently, there exists a constant λ′ > 0 such that

δ(λ′) < 0. Then we shall prove that µ̃(t) ≤ M ′′e−λ
′(t−t0) + kε′ where t ≥ t0,

M ′′ = γ‖φ̃‖PCb([−τ,t0],R+), and k = − γ

a+bγ+ ln γ
ρ

. If it is not true, there exists t∗ > t0

such that µ̃(t∗) ≥M ′′e−λ′(t∗−t0)+kε′ and µ̃(t) < M ′′e−λ
′(t−t0)+kε′ for t0 ≤ t < t∗.

By the formula for the variation of parameters and Lemma 3.1 in [41], we see that

µ̃(t∗) ≤ γeα(t
∗−t0)φ(t0) + ε′γ

∫ t∗

t0

eα(t
∗−s)ds+ bγ

∫ t∗

t0

eα(t
∗−s)µ̃(s− τ)ds

≤M ′′eα(t
∗−t0) + (bk + 1)γε′

∫ t∗

t0

eα(t
∗−s)ds+M ′′eαt

∗+λ′t0bγeλ
′τ

∫ t∗

t0

e−(α+λ
′)sds

< M ′′eα(t
∗−t0) + kε′(1− eα(t

∗−t0))−M ′′eαt
∗+λ′t0(α+ λ′)

∫ t∗

t0

e−(α+λ
′)sds

≤M ′′eα(t
∗−t0) + kε′ +M ′′e−λ

′(t∗−t0) −M ′′eα(t
∗−t0)

= kε′ +M ′′e−λ
′(t∗−t0),

where α = a+ ln γ
ρ . This is contradiction. Hence, µ̃(t) ≤ ν̃(t) ≤M ′′e−λ′(t−t0) + kε′

for t ∈ [t0,+∞), furthermore, the lemma is proved as ε′ → 0.
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