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Abstract. This paper concerns the issues of exponential stability in Lagrange sense for a class
of stochastic Cohen–Grossberg neural networks (SCGNNs) with Markovian jump and mixed time
delay effects. A systematic approach of constructing a global Lyapunov function for SCGNNs with
mixed time delays and Markovian jumping is provided by applying the association of Lyapunov
method and graph theory results. Moreover, by using some inequality techniques in Lyapunov-
type and coefficient-type theorems we attain two kinds of sufficient conditions to ensure the global
exponential stability (GES) through Lagrange sense for the addressed SCGNNs. Ultimately, some
examples with numerical simulations are given to demonstrate the effectiveness of the acquired
result.
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1 Introduction

First and foremost, Cohen and Grossberg initiate the Cohen–Grossberg neural networks
(CGNNs) in 1983 [6]. Among different types of neural networks (NNs), CGNNs has
massively obtained many researchers attention on the basis of its comprehensive usage
in various domain like biology, computing technology and so on. In execution of NNs,
the time delays are necessary, and it may generate unwanted dynamic response like
instability and oscillation or chaotic behavior [19]. The influence of time delay on the
dynamic behavior of systems has become a fundamental problem and should be taken
into consideration in natural science and engineering technology [3,4,8–10,12–14,16,17,
21, 28].

Furthermore, communication of synaptic on the nervous system is a noisy progress,
the stability and instability of a NNs could be noticed by a valid stochastic input [31].
Especially, the stability principle for stochastic delayed neural networks become a prime
important research topic; see [1, 5]. Generally, in NNs, the information processing is
a fastening event that occurred in the modes, the modes can be concerned with expressing
finite state description from a trained network. Therefore, there are finite number of modes
in various extent of NNs and that may switch each other. Moreover, it can be demonstrated
that switching over NNs modes are regulated by a Markovian jumping. The NNs with
Markovian jumping were hot research topic, and many researchers admitted themselves
to do research in this field during the last decade; for this case, see [35, 36].

An important beneficial characteristics of CGNNs is Lyapunov global stability. In the
viewpoint of dynamical system, the unique equilibrium point, which attracts the entire
path and indicates in separate sense, is known as monostable [1,6,19,20,25,26,28,30,35].
It is worthy to note that the Lagrange stability concerned with the stability of the total sys-
tem that does not depend upon the particular equilibrium points. In particular, the Poincaré
inequality, Lyapunov–Krasovskii functional and stochastic analysis in Lagrange sense
was utilized. In [28], by using Lyapunov–Krasovskii functional and stochastic theory,
the stability results were obtained. In [22, 23], the author studied the stability of coupled
systems using Kronecker product method. With the help of Kirchhoff’s matrix tree theo-
rem, Li et al. [15] originated a novel approach called graph-theoretic approach. Utilizing
the achievements of the pioneering works, few researchers have initiated their work and
apply this approach. For example, in [30], boundedness of the stochastic van der Pol
oscillators was studied, in [32], boundedness of the stochastic differential equations were
studied, in [33], stability of the neutral networks was studied. In [31], the boundedness
of stochastic Cohen–Grossberg neural networks was studied by using M-matrix theory,
Lyapunov and graph theory. Even though the graph-theoretic approach is frequently used
in the study of stability; see [7, 11, 27, 31, 34]. In this novel approach, to the best of the
authors knowledge, researchers have not correlated them with NNs, there are one or two
of them in NNs. Inspired by the aforementioned works, we considered the Lagrange
stability analysis of CGNNs with Markovian jumping and mixed time delay. However,
this type of works are not available in the existing literatures.

In order to fulfill this gap, in this paper, we have incorporated the concepts of graph
theory with NNs. Especially, a mathematical representation of the NNs is assumed as
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a directed graph with vertex system as a single neuron, interaction or interconnection
among neurons in the synaptic connections as directed arcs. On the one hand, it is ob-
served that in the stability theory Lyapunov method plays a major role. But on the other
hand, constructing a suitable Lyapunov function was quite harder. So, in order to over-
come this situation, a novel technique was explored in the base of results in graph theory.
Compared with the outcome of some existing research work, the contribution of this
work is formulated by: (i) Novel method that depends on the incorporation of graph
theory principles as well as Lyapunov method, which are applied to investigate the GES
issues in Lagrange sense for a new class of SCGNNs with delays and Markovian jump
effects. (ii) In this work, new sufficient conditions are provided by Lyapunov-type and
coefficient-type theorems, respectively. (iii) To avoid the complication in finding the
Lyapunov function straightly, we construct a suitable Lyapunov function for vertex system
by using the results in graph theory. (iv) Finally, to expose the results in this work, we
describe some illustrative examples and simulations.

The content of this work is formulated as threefold. In Section 2, preliminaries and
model description are given. The main results of this work are given in Section 3, and
two numerical examples and simulations are presented in Section 4. Finally, we give
a conclusion of this work in Section 5.

2 Preliminaries and model descriptions

We begin this section with some notations and basic concepts related to graph theory,
which are extensively applied throughout this study.

2.1 Notations

A complete probability space [2] (Ξ,F,F ,P) with a 1-D Brownian movement W (·) and
a filtration F = {Ft} for t > 0 satisfies the standard conditions, and P indicates the
probability measure. Let R, Rn, Rm×n denote, respectively, the set of all real numbers,
Euclidean n-space andm×nmatrix. We define the length or norm for the vector in Rn as
Euclidean norm, and it is denoted by |·|. Also, E(·) denotes the mathematical expectation
on the subject of the probability measure, L = {1, 2, . . . , l}, and Rn+ = {u ∈ Rn:
uk > 0, k = 1, 2, . . . , n}. A generator S̃ = (sij)N×N of a right-continuous Markovian
chain s(t) taking values in a finite state space S = {1, 2, . . . , N} is defined by

P

{
s(t+ ϑ) =

j

s(t)
= i

}
=

{
sijϑ+ o(ϑ) if i 6= j;

1 + sijϑ+ o(ϑ) if i = j,

where ϑ > 0 and limϑ→0 o(ϑ)/ϑ = 0. Here the transition rate from i to j is sij , which is
nonnegative if i 6= j, while sij 6 −

∑
j 6=i sij .

2.2 Graph theory concepts

G = (V,A) is a digraph [29] with the collection of all vertices V = {1, 2, . . . , l} of
neuron, and A is a set of arcs (k, h) leading from kth neuron to hth neuron. A subgraph
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S of a digraph G is said to be spanning if the vertex set of S is same as the vertex set of
G. If each arc (k, h) is assigned by a positive weight akh, then the digraph G is said to
be weighted digraph W . The weight W(S) of subgraph S is the product of all its arcs
weights. A set of all arcs of the digraph G with distinct vertices {P1, P2, . . . , Pk} is said
to be a directed path P if {(Pk, Pk+1), k = 1, 2, . . . , l − 1}. The directed path P is said
to be a directed cycle Q if Pk = P1. A unicyclic graph U in digraph G is a subgraph
with a disjoint union of rooted trees whose roots form a dicycle. We define the weighted
matrix A = (akh)n×n of given weighted digraphW with vertices whose entry akh > 0 if
the weight of arc (k, h) exists, otherwise – 0. G is said to be strongly connected whenever
for any two of distinct vertices, there is a dipath from each other. The Laplacian matrix of
(G,A) is defined by

L = (lkh)l×l =

{
−lkh if k 6= h;∑
i 6=k lki if k = h,

2.3 Model description

In this paper, we consider the new class of stochastic Cohen–Grossberg neural networks
with mixed delays and Markovian jumping as

duk(t) = −ak
(
uk(t), s(t)

)[
bk
(
uk(t), s(t)

)
−

l∑
h=1

akhfh1
(
uh(t), s(t)

)
−

l∑
h=1

bkhfh2
(
uh
(
t− τd(t)

)
, s(t)

)
−

l∑
h=1

ckh

t∫
t−hd(t)

fh3
(
uh(r), s(r)

)
dr + Jk

(
s(t)

)]
dt+

[
dk
(
uk(t), s(t)

)

−
l∑

h=1

pkhgh1
(
uh(t), s(t)

)
−

l∑
h=1

qkhgh2
(
uh
(
t− τd(t)

)
, s(t)

)
−

l∑
h=1

tkh

t∫
t−hd(t)

gh3
(
uh(r), s(r)

)
dr

]
dW (t) (1)

and the initial conditions of (1) in the form

uk(v) = ϕk(v), v ∈ [−ξ, 0], (2)

for t > 0, where k = 1, 2, . . . , l. Here the state vector uk(t) ∈ R relate with kth neuron at
time t; ak(uk(t), s(t)) be the sign of amplification function, and bk(uk(t), s(t)) symbol-
izes the behaved function. The neuron transfer functions are represented by fhi(·) for all
i = 1, 2, 3. We individually expressed the matrices (akh)l×l, (bkh)l×l, (ckh)l×l as con-
nection weight matrices, discretely and distributively delayed matrices, and Jk(s(t))∈R
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stands for the neuron’s external input with |Jk(s(t))| 6 Jk (k = 1, 2, . . . ). W (·), s(·)
denote white noise and Markovian switching, respectively. τd(t) and hd(t) denotes, re-
spectively, discrete and distributed time delays with 0 6 τd(t) 6 τd and 0 6 hd(t) 6
hd. Both delays are differentiable on R satisfying the condition τ̇d(t) 6 τ̇d 6 1 and
ḣd(t) 6 ḣd 6 1. Here τd, τ̇d, hd and ḣd are positive scalars, and the diffusion coeffi-
cient dk(uk(t), s(t)) −

∑l
h=1 pkhgh1(uh(t), s(t)) −

∑l
h=1 skhgh2(uh(t − τd(t)), s(t))

−
∑l
h=1 tkh

∫ t
t−hd(t)

gh3(uh(r), s(r)) dr exhibit the noise strength. (pkh)l×l, (skh)l×l,
(tkh)l×l represented the connection weight matrices, and ghi(·), i = 1, 2, 3, denotes the
activation function. Here ξ = max{τd, hd}, and ϕk(·) (k ∈ L) is a continuous function
defined on [−ξ, 0] whose values are real numbers. On the whole, under some certain
conditions, the solution of given system (1) has a unique solution, which is indicated by
u(t, u0, s0) = (u1(t), . . . , ul(t))

T.
For Vk(uk(t), i) ∈ C2 (R × S;R+), we define a differential operator LVk(uk(t), i) :

R× S→ R+ combined with the kth equation of (1) by

LVk
(
uk(t), i

)
=
∂Vk
∂t

+
∂Vk
∂uk(t)

[
−ak

(
uk(t), s(t)

)(
bk(uk(t), s(t)

)
−

l∑
h=1

akhfh1
(
uh(t), s(t)

)
−

l∑
h=1

bkhfh2
(
uh
(
t− τd(t)

)
, s(t)

)
−

l∑
h=1

ckh

t∫
t−hd(t)

fh3
(
uh(r), s(r)

)
dr + Jk

(
s(t)

))]

+
∂2Vk
∂u2k(t)

[
dk
(
uk(t), s(t)

)
−

l∑
h=1

pkhgh1
(
uh(t), s(t)

)
−

l∑
h=1

qkhgh2
(
uh
(
t− τd(t)

)
, s(t)

)
−

l∑
h=1

tkh

t∫
t−hd(t)

gh3
(
uh(r), s(r)

)
dr

]2
+

N∑
j=1

sijVk
(
uk(t), j

)
.

Lemma 1. (See [15].) For l > 2, the upcoming identity holds:

l∑
k,h=1

ekakhFkh
(
uk(t), uh(t), i

)
=
∑
U∈U
W(U)

∑
(k,h)∈A(QU )

Fkh
(
uk(t), uh(t), i

)
.

Here, for any k, h ∈ L, cofactor of the kth diagonal element of Laplacian matrix is
expressed as ck, Fkh(uk(t), uh(t), i) is a arbitrary function, U is the collection of all
spanning unicyclic graphs of (G,A), W(U) is the weight of U , and QU denotes the
directed cycle of U . In addition, ek > 0 whenever (G,A) is strongly connected.

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


Novel Lagrange sense ES for time-delayed SCGNNs with Markovian jump parameters 731

Lemma 2. (See Young’s inequality in [18].) For any s, t ∈ R and for any m,n, ε > 0,

|s|m|t|n 6 ε|s|(m+n) +
n

m+ n

[
m

ε(m+ n)

]m/n
|t|(m+n)

as stated.

Definition 1. A set ω ⊆ Rn with compactness is known to be an attractive set of
SCGNNs (1) if, for every solution u(t) ∈ Rn \ ω with an initial condition (2),

lim
t→∞

ρ
(
u(t), ω

)
= 0

holds. Here ωc = Rn \ ω and ρ(u,w) = infz∈w ‖u − z‖, which denotes the length or
norm between u(t) and ω.

Definition 2. If there exist a radially unbounded and the positive definite function V ,
V (u(t), i) ∈ C2,1(Rn × S, R+), two positive constants ζ, s and a nonnegative con-
tinuous function k(·) such that for any solution u(t) of the given CGNNs system (1),
V (u(t), i) > s implies that

EV
(
u(t), i

)
− s 6 k(ϕ)e−ζt, t > 0,

then the compact set
ω =

{
u(t) ∈ Rn: V

(
u(t), i

)
6 s
}

is called a globally exponentially attractive (GEA) set of (1). Moreover, if network (1)
has GEA set, then it is known to be the GES through Lagrange sense for pth moment.

For the whole of this study, we consider the successive hypotheses to obtain Lagrange
stablity:

(A1) Let p > 2, αk, βk, γk, δk, λk, ηk be positive constants. A positive definite
function Vk(uk(t), i) ∈ C2,1(R × S, R+) exists, which is radially unbounded,
there is a arbitrary function Fkh(uk(t), uh(t), i) and matrix A = (akh)l×l,
where akh(i) > 0, such that

ηk
∣∣uk(t)∣∣p 6 Vk

(
uk(t), i

)
6 λk

∣∣uk(t)∣∣p (3)

for every k ∈ L, i ∈ S, t > 0, and

LVk
(
uk(t), i

)
6

l∑
k,h=1

akhFkh
(
uk(t), uh(t), i

)
− αk

∣∣uk(t)∣∣p
+ βk

∣∣uh(t− τd(t))∣∣p + γk

t∫
t−hd(t)

∣∣uh(r)∣∣p dr + δk. (4)
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(A2) For each i ∈ S, through every dicycle U of weighted digraph (G,A),∑
(p,q)∈A(QU )

Fpq
(
up(t), uq(t), i

)
6 0. (5)

(A3) Let ak(uk(t), i) be a positive and bounded, moreover we can assume that 0 <
infi∈S ak(uk(t), i) = ak 6 ak(uk(t), i) 6 ãk = supi∈S ak(uk(t), i) < +∞
for all k ∈ L, i ∈ S.

(A4) There are positive constants α(k)
i , ξ(k)i , βk, δk. For all (uk(t), i) ∈ R′ × S,

uk(t)ak
(
uk(t), i

)(
−bk(uk(t), i)− Jk(i)

)
6 α

(k)
i

∣∣uk(t)∣∣2 + βk∣∣dk(uk(t), i)∣∣2 6 ξ
(k)
i

∣∣uk(t)∣∣2 + δk.

(A5) There are positive constants Ah, Bh, Ch, Dh, Eh, Fh such that∣∣fh1(uh(t), i)∣∣ ∨ ∣∣gh1(uh(t), i)∣∣ 6 Ah
∣∣uh(t)∣∣+Bh,∣∣fh2(uh(t− τd(t)), i)∣∣ ∨ ∣∣gh2(uh(t− τd(t)), i)∣∣ 6 Ch

∣∣uh(t− τ(t))∣∣+Dh,∣∣∣∣∣
t∫

t−hd(t)

fh3
(
uh(s), i

)
ds

∣∣∣∣∣ ∨
∣∣∣∣∣

t∫
t−hd(t)

gh3
(
uh(s), i

)
ds

∣∣∣∣∣
6 Eh

t∫
t−hd(t)

∣∣uh(s)∣∣ds+ Fh,

where h ∈ L, i ∈ S.

3 Exponential stability of stochastic Cohen–Grossberg neural
networks

In this section, we examined Lagrange stability issued of CGNNs. Our main results are
given by two types of sufficient conditions in the system: Lyapunov-type theorem and
coefficient-type theorem.

3.1 Lyapunov-type theorem

Theorem 1. For any positive constants αk, βk, γk, δk, λk, ηk, assume that (A1)–(A2)
holds. Then (1) is pth moment GES through Lagrange sense. In addition, the compact set
ω = {u ∈ Rn: V (u) 6 δ/(αη)} is GEA set of (1).

Proof. Choose (u0, s0) ∈ R × S and put u(t, u0, s0) = u(t), λ = maxi∈S
∑l
k=1 ekλk.

Define the global Lyapunov functional

V (u(t), i) =

l∑
k=1

ekVk
(
uk(t), i

)
.
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Here ek be the cofactor of kth diagonal element of the L of the digraph (G,A). Then
following inequality easily holds under (3):

V
(
u(t), i

)
6 λ

∣∣u(t)∣∣p,
and

V
(
u(t), i

)
>

l∑
k=1

ekηk
∣∣uk(t)∣∣p > ( l∑

k=1

ekηk

)1−p/2(
min
16k6l

ekηk

)p/2∣∣u(t)∣∣p
> η

∣∣u(t)∣∣p.
Hence,

η
∣∣u(t)∣∣p 6 V

(
u(t), i

)
6 λ

∣∣u(t)∣∣p,
where η = (

∑l
k=1ekηk)

1−p/2(min16k6l ekηk)
p/2. Define the stopping time ιd =

inf{t>0: |u(t)| > d}, where d be the positive constant. Let td = t ∧ ιd for any t > 0.
Denoteα = maxi∈S

∑l
k=1 ekαk, β = maxi∈S

∑l
k=1 ekβk, γ = maxi∈S

∑l
k=1 ekγk,

δ = maxi∈S
∑l
k=1 ekδk. Using generalized Itô’s formula,

E
(
eαtdV

(
u(td), s(td)

))
= V (u0, s0) +E

td∫
0

eαwLV
(
u(w), s(w)

)
dw

+ αE

td∫
0

eαwV
(
u(w), s(w)

)
dw (6)

in which

LV
(
u(w), i

)
6

l∑
k=1

ek

[
l∑

k,h=1

akhFkh
(
uk(w), uh(w), i

)
− αk

∣∣uk(w)∣∣p
+ βk

∣∣uh(w − τd(w))∣∣p + γk

t∫
t−hd(t)

∣∣uh(w)∣∣p dw + δk

]

6 −α
∣∣u(w)∣∣p + β

∣∣u(w − τd(w))∣∣p + γ

t∫
t−hd(t)

∣∣u(w)∣∣p dw + δ.

Substituting this in Itô’s formula (6), we get the following:

E
(
eαtdV

(
u(td), i

))
6 V (u0, s0) +E

td∫
0

eαwβ
∣∣u(w − τd(w))∣∣p

+ γE

td∫
0

eαw
t∫

t−hd(t)

∣∣u(s)∣∣p dsdw +E

td∫
0

eαwδ dw.
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Then we get

E
(
eαtV

(
u(t), i)

)
6 V (u0, s0) +

βeατd

1− τ̇d
E

t∫
−τd

eαw
∣∣u(w)∣∣p dw

+ γτde
ατdE

t∫
−τd

eαw
∣∣u(w)∣∣p dw +

δ

α

[
eαt − 1

]
eαtE

∣∣u(t)∣∣p 6 ∣∣ϕ(0)∣∣p + [ β

1− τ̇d
+ γτd

]
1

η
eατd |ϕ|p + δ

αη
Eeαt − δ

αη

E
∣∣u(t)∣∣p − δ

αη
6

[∣∣ϕ(0)∣∣p + [ β

1− τ̇d
+ γτd

]
1

η
eατd |ϕ|p + δ

αη

]
e−αt,

where |ϕ|p = E
∫ t
−τd e

αw|u(w)|p dw. This is of the form

EV
(
u(t), i

)
− l 6 k(ϕ)e−αt.

Here k(ϕ) = |ϕ(0)|p + [β/(1 − τ̇d) + γτd]e
ατd |ϕ|p/η + δ/(αη) and l = δ/(αη). Then

(1) is pth moment GES via Lagrange sense, and the set ω is globally attractive set.

Remark 1. Allowing that the digraph (G,A) is balanced, then the following equation
possess:

l∑
k,h=1

akhFkh(uk(t), uh(t), i)

=
1

2

∑
U∈U
W(U)

∑
(k,h)∈A(QU )

[
Fkh

(
uk(t), uh(t), i

)
+ Fhk

(
uh(t), uk(t), i

)]
.

Extending condition (5) into∑
(k,h)∈QU

5
[
Fkh

(
uk(t), uh(t), i

)
+ Fhk

(
uh(t), uk(t), i

)]
6 0. (7)

From Figure 1 we point out that there are two directed cycle Q1 and Q2. Here

A(Q1) =
{
(1, 2), (2, 4), (4, 3), (3, 1)

}
,

A(Q2) =
{
(1, 3), (3, 4), (4, 2), (2, 1)

}
.

Hence, for all functions, assumption (A2) is satisfied the balanced digraph with these
vertices.

Corollary 1. Let (G,A) be a balanced digraph. If we put (7) in the place of (5), then the
Lyapunov-kind theorem holds.
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Figure 1. The structure of balanced digraph. Figure 2. The structure of not strongly connected
digraph.

Remark 2. For each k, h, there exists functions Rk(uk) and Rh(uh) such that

Fkh
(
uk(t), uh(t), i

)
6 Rk

(
uk(t)

)
−Rh

(
uh(t)

)
.

At that point, ∑
(k,h)∈QU

[
Rk
(
uk(t)

)
−Rh

(
uh(t)

)]
6 0. (8)

It is easy to understand that in Fig. 1,∑
(k,h)∈A(QU )

Fkh
(
uk(t), uh(t), i

)
6 0.

Hence, assumption (A2) is satisfied for the dicycles.

Corollary 2. The determination of Lyapunov-type theorem holds whenever we retriev-
ed (5) by (8).

Remark 3. We essentially need strongly connectedness of digraph (G,A) in Theorem 1.
Particularly, the system stability depends on the topology property of CGNNs. Suppose
conversely assume that, (G,A) is not strongly connected than we may examine the stabil-
ity of a region of vertices system alone. For instance, (G,A) be a not strongly connected
digraph having four vertices with weights one. It is easy to understand that in Fig. 2. The
weighted matrix A and Laplacian matrix L are listed as below:

A =


0 0 0 0
1 0 0 0
1 1 0 1
1 0 0 0

 , L =


0 0 0 0
−1 1 0 0
−1 −1 3 −1
−1 0 0 1

 .

By calculating, we get e1 = 0, e2 = 0, e3 = 0, e4 = 3. That is, the subsystem stability
is illustratable. This means that stability of the 4th vertex can be verified, however, the
complete system stability cannot be examined. So from the graph theory view point,
strong connectedness is needed.
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3.2 Coefficient-type theorem

Theorem 2. Let p > 2, suppose that assumptions (A3)–(A5) are holds. Then (1) is
globally exponentially stable in the Lagrange sense.

Proof. For clarity, we denote ak(uk(t), i) = ak, bk(uk(t), i) = bk, dk(uk(t), i) = dk.
For any fixed k ∈ L, i ∈ S, define functions Vk : R× S→ R+ by

Vk
(
uk(t), i

)
=
∣∣uk(t)∣∣p.

Now, we compute LVk(uk(t), i) : R× S→ R+ by using assumptions (A3)–(A5):

LVk
(
uk(t), i

)
6 p
∣∣uk(t)∣∣p−2uTk (t)(−akbk − akJk)

+ p
∣∣uk(t)∣∣p−2uTk (t)ak l∑

h=1

akhfh1
(
uh(t), i

)
+ p
∣∣uk(t)∣∣p−2uTk (t)ak l∑

h=1

bkhfh2
(
uh
(
t− τd(t)

)
, i
)

+ p
∣∣uk(t)∣∣p−2uTk (t)ak l∑

h=1

ckh

t∫
t−hd(t)

fh3
(
uh(s), i

)
ds

+

N∑
j=1

sij
∣∣uk(t)∣∣p + p(p− 1)

∣∣uk(t)∣∣p−2|dk|2
− p(p− 1)

∣∣uk(t)∣∣p−2
∣∣∣∣∣

l∑
h=1

pkhgh1
(
uh(t), i

)∣∣∣∣∣
2

− p(p− 1)
∣∣uk(t)∣∣p−2

∣∣∣∣∣
l∑

h=1

qkhgh2
(
uh
(
t− τd(t)

)
, i
)∣∣∣∣∣

2

− p(p− 1)
∣∣uk(t)∣∣p−2

∣∣∣∣∣
l∑

h=1

tkh

t∫
t−hd(t)

gh3
(
uh(s), i

)
ds

∣∣∣∣∣
2

. (9)

Using Young’s inequality and (A3)–(A5), we can compute the terms

p
∣∣uk(t)∣∣p−2uTk (t)ak l∑

h=1

akhfh1
(
uh(t), i

)
and

p(p− 1)
∣∣uk(t)∣∣p−2

∣∣∣∣∣
l∑

h=1

pkhgh1
(
uh(t), i

)∣∣∣∣∣
2
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in (10) as follows:

p
∣∣uk(t)∣∣p−2uTk (t)ak l∑

h=1

akhfh1
(
uh(t), i

)
6 pak

l∑
h=1

|akh|Ah
∣∣uk(t)∣∣p + ak

l∑
h=1

|akh|Ah
∣∣uh(t)∣∣p + ε1

∣∣uk(t)∣∣p
+
ε
−(p−1)
1

p

(
akp

l∑
h=1

akhBh

)p
, (10)

p(p− 1)
∣∣uk(t)∣∣p−2

∣∣∣∣∣
l∑

h=1

pkhgh1
(
uh(t), i

)∣∣∣∣∣
2

6 2lp(p− 1)

l∑
h=1

p2khA
2
h

∣∣uk(t)∣∣p + 4l(p− 1)

l∑
h=1

p2khA
2
h

∣∣uh(t)∣∣p
+ ε4

∣∣uk(t)∣∣p + 2

p
ε
−(p−2)/2
4

(
2lp(p− 1)

l∑
h=1

p2khB
2
h

)p/2
. (11)

Similarly, we compute terms in (9) as follows:

p
∣∣uk(t)∣∣p−2uTk (t)ak l∑

h=1

bkhfh2
(
uh
(
t− τd(t)

)
, i
)

6 pak

l∑
h=1

|bkh|Ch
∣∣uk(t)∣∣p + ak

l∑
h=1

|bkh|Ch
∣∣uh(t− τd(t))∣∣p

+ ε2
∣∣uk(t)∣∣p + ε

−(p−1)
2

p

(
akp

l∑
h=1

bkhDh

)p
, (12)

p
∣∣uk(t)∣∣p−2uTk (t)ak l∑

h=1

ckh

t∫
t−hd(t)

fh3
(
uh(s), i

)

6 akp
l∑

h=1

|ckh|Ehh
∣∣uk(t)∣∣p + ak

l∑
h=1

|ckh|Eh

t∫
t−hd(t)

∣∣uh(s)∣∣p ds
+ ε3

∣∣uk(t)∣∣p + ε
−(p−1)
3

p

(
akp

l∑
h=1

ckhFh

)p
+ C1, (13)

p(p− 1)
∣∣uk(t)∣∣p−2

∣∣∣∣∣
l∑

h=1

qkhgh2
(
uh
(
t− τd(t)

)
, i
)∣∣∣∣∣
2
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6 2lp(p− 1)

l∑
h=1

q2khC
2
h

∣∣uk(t)∣∣p|+ 4lp(p− 1)

l∑
h=1

q2khC
2
h

×
∣∣uh(t− τd(t))∣∣p + ε5

∣∣uk(t)∣∣p
+

2

p
ε
−(p−2)/2
5

(
2lp(p− 1)

l∑
h=1

q2khD
2
h

)p/2
, (14)

p(p− 1)
∣∣uk(t)∣∣p−2

∣∣∣∣∣
l∑

h=1

tkh

t∫
t−hd(t)

gh3
(
uh(s), i

)
ds

∣∣∣∣∣
2

6 2lph(p− 1)

l∑
h=1

t2khE
2
h

∣∣uk(t)∣∣p
+ 4lp(p− 1)

l∑
h=1

t2khE
2
h

t∫
t−hd(t)

∣∣uh(s)∣∣p ds
+ ε6

∣∣uk(t)∣∣p + 2

p
ε
−(p−2)/2
6

(
2lp(p− 1)

l∑
h=1

t2khF
2
h

)p/2
+ C2. (15)

By substituting (11)–(15) in (10), we have LVk(uk(t), i) as follows:

LVk
(
uk(t), i

)
6 −α̃

∣∣uk(t)∣∣p + l∑
k,h=1

akhFkh
(
uk(t), uh(t), i

)
+ β̃

∣∣uh(t− τd(t))∣∣p + γ̃

t∫
t−hd(t)

∣∣uh(s)∣∣p ds+ δ̃,

Fkh
(
uk(t), uh(t), i

)
=

{[
ã
∣∣akh∣∣Ah − 4l(p− 1)

l∑
h=1

p2khA
2
h

]∣∣uh(t)∣∣p
−
[
ã|akh|Ak − 4l(p− 1)p2khA

2
k

]∣∣uk(t)∣∣p},
D = D1 +D2 +D3 −D4 −D5 −D6 +D7,

ε = ε1 + ε2 + ε3 − ε4 − ε5 − ε6 + ε7, C = C1 + C2.

Here

D1 =
ε
−(p−1)
1

p

(
akp

l∑
h=1

|akh|Bh

)p

, D2 =
ε
−(p−1)
2

p

(
akp

l∑
h=1

|bkh|Dh

)p

,

D3 =
ε
−(p−1)
3

p

(
akp

l∑
h=1

|ckh|Fh

)p

, D4 =
2

p
ε
−(p−2)/2
4

(
2lp(p−1)

l∑
h=1

p2khB
2
h

)p/2

,
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D5 =
2ε
−(p−2)/2
5

p

(
2lp(p−1)

l∑
h=1

q2khD
2
h

)p/2

, D6 =
2ε
−(p−2)/2
6

p

(
2lp(p−1)

l∑
h=1

t2khF
2
h

)p/2

,

D7 =
2ε
−(p−2)/2
7

p

(
pβk + p(p−1)δk

)p/2
.

Hence the weighted digraph (G,A) is strongly connected. Therefore, by Theorem 1,
(1) is pth moment GES in Lagrange Sense.

Remark 4. Suppose that system (1) has no noise, at that moment rewritten as follows:

duk(t) = −ak
(
uk(t), s(t)

)[
bk
(
uk(t), s(t)

)
−

l∑
h=1

akhf1h
(
uh(t), s(t)

)
−

l∑
h=1

bkhf2h
(
uh(t− τ(t)), s(t)

)
−

l∑
h=1

ckh

t∫
t−h(t)

f3h
(
uh(r), s(r)

)
dr + Jk

(
s(t)

)]
dt, (16)

k ∈ L, t > 0. Here the system is same as the system in [24, Eq. (1)] .

Remark 5. Assume that hypotheses (A1)–(A2) hold, then the result of (16) is GES in
lagrange sense. For that reason, we strictly generalizes the results in [24].

Remark 6. In fact, we proved Theorem 1 by using Lyapunov functions and topological
structure of CGNNs. Consequently, it is essential to locate some suitable Lyapunov func-
tions to examine the presence of Theorem 1, that is the role of Theorem 2. Obviously,
Theorem 2 represents the specific aspect in what manner to obtain specific function Fij to
find out (3) and (4) in Theorem 1. In addition, this explains that (3) and (4) are accessible
and achievable.

4 Illustrative examples

In this section, we examine two examples and numerical simulations to determine the
exactness of this work.

Example 1. Consider the following two interacting neurons of SCGNNs with time delays
and Markovian jump effects:

duk(t) = −ak
(
uk(t), s(t)

)[
bk
(
uk(t), s(t)

)
−

2∑
h=1

akhfh1
(
uh(t), s(t)

)
−

2∑
h=1

bkhfh2(uh
(
t− τd(t)

)
, s(t))
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−
2∑

h=1

ckh

t∫
t−hd(t)

fh3
(
uh(r), s(r)

)
dr + Jk

(
s(t)

)]
dt

+

[
dk
(
uk(t), s(t)

)
−

2∑
h=1

pkhgh1
(
uh(t), s(t)

)
−

2∑
h=1

qkhgh2
(
uh
(
t− τd(t)

)
, s(t)

)
−

2∑
h=1

tkh

t∫
t−hd(t)

gh3
(
uh(r), s(r)

)
dr

]
dW (t). (17)

Here we labeled s(t) as the right-continuous Markovian chain and

S̃ = (sij)2×2 =

[
−ν ν
1 −1

]
as a generator with the values in S = {1, 2}, where ν > 0, and the specified parameters are
in Table 1. The initial conditions are stated by φ(v1) = 0.2 and φ(v2) = 0.5. Connected
weight matrix are A = (akh)2×2, B = (bkh)2×2, C = (ckh)2×2, P = (pkh)2×2, Q =
(qkh)2×2, T = (tkh)2×2. Then

A = 2

[
−3 −0.5
−0.03 −0.02

]
, B =

[
0.05 0.2
0.03 0.01

]
, C =

[
−0.3 0.2
−0.02 −0.01

]
,

P =

[
−0.5 −0.5
3 −0.1

]
, Q =

[
0.2 0.1
1 −0.5

]
, T =

[
0.3 −0.1
3 −0.1

]
.

Let p = 2, uk(t) is positive and radially unbounded, moreover, 0 < infi∈S uk(t) 6
uk(t) 6 supi∈S uk(t) < +∞ then we have the following inequalities:

uk(t)uk(t)
(
−(1 + uk(t)− 0.5)

)
6 0.5

∣∣uk(t)∣∣2,∣∣0.5uk(t)∣∣2 6 0.25
∣∣uk(t)∣∣2, ∣∣0.5 sinuh(t)∣∣ 6 0.5

∣∣uh(t)∣∣,∣∣− 0.5 sinhuh
(
t− (0.1 cos t)

)∣∣ 6 0.5
∣∣uh(t− (0.1 cos t)

)∣∣+ 0.5,∣∣∣∣∣
t∫

t−sin t

0.9uh(r) dr

∣∣∣∣∣ 6 0.9

t∫
t−sin t

∣∣uh(r)∣∣ dr.
Therefore, conditions (A4)–(A5) are satisfied by the given parameters. Hence, by the hy-
pothesis of Theorem 2, (17) is GES in Lagrange sense. Finally, the path of (17) converges
to zero. Two trajectories of the given system are displayed in Fig. 4.
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Table 1. Parameters for t 6 0 and k = 1.

Parameter Parameter

ak(uk(t), s(t)) uk(t) fh2(uh(t− τ(t)), s(t)) tanuh(t− (0.1 cos t))
bk(uk(t), s(t)) (1 + uk(t)) gh2(uh(t− τ(t)), s(t)) −0.5 sinhuh(t)
dk(uk(t), s(t)) 0.5uk(t) fh3(uh(r), s(r)) 0.9uh(r)
fh1(uh(t), s(t)) 0.5 sinuh(t) gh3(uh(r), s(r)) 0.5 tanhuh(r)
gh1(uh(t), s(t)) |uh(t)| Jk(i) 0.5

Table 2. Parameters for t 6 0 and k = 1.

Parameter

f1h(uh(t), s(t)) tanuh(t)
f2h(uh(t− τd(t)), s(t)) 1− sinuh(t)
f3h(uh(r), s(r)) sinuh(r)
ak(uk(t), s(t)) uk(t)

bk(uk(t), s(t)) 1 + euk(t)

Jk(i) 1.5

Example 2. In this illustration, we examine the upcoming delayed SCGNNs with Marko-
vian jumping to show that our condition have a wide application than the results [24]

duk(t) = −ak
(
uk(t), s(t)

)[
bk
(
uk(t), s(t)

)
−

2∑
h=1

akhfh1
(
uh(t), s(t)

)
−

2∑
h=1

bkhfh2
(
uh
(
t− τd(t)

)
, s(t)

)
−

2∑
h=1

ckh

t∫
t−hd(t)

fh3
(
uh(r), s(r)

)
dr + Jk

(
s(t)

)]
dt, (18)

where s(t) be the right-continuous Markovian chain, is show in Fig. 3, and

S̃ = (sij)2×2 =

[
−δ δ
1 −1

]
is a generator, whose value is S = {1, 2}. Here δ > 0, and the initial conditions are
φ1(v) = 0.2 and φ2(v) = 0.5. The connected weight matrix are A = (akh)2×2, B =
(bkh)2×2, C = (ckh)2×2, then

A =

[
−5 −0.5
−0.3 −0.2

]
, B =

[
−0.5 0.2
0.1 0.3

]
, C =

[
0.3 −0.1
3 −0.1

]
.

By putting p = 2, the parameters in Table 2 satisfy all the conditions given in the
hypothesis of Theorem 2. Then by theorem, the trivial solution of (18) in mean square
Lagrange stability. Thus, our result is more easily verified and applied in practice than
[14]. Two trajectories of system (18) are displayed in Fig. 5. Obviously from figure the
result of given system (18) is exponential stability in Lagrange sense for p = 2.
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Figure 3. Markovian jump.
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Figure 4. State response for Cohen–Grossberg
neural network with noise.
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Figure 5. State response for CGNNs without
noise.

5 Conclusions

The most important part of this work is concentrated on the investigation of the stabil-
ity analysis of CGNNs with mixed time-varying delays and Markovian switching using
graph-theory method. Here we accomplished two novel sufficient principles that assures
the pth moment exponential stability in Lagrange Sense of CGNNs. It is pointed out
that the method and techniques presented here are more precisely vary from the previous
method and techniques such as linear matrix inequality, the method of variation parameter.
At the end of this work, we have given two examples to conclude and justify our main
results.
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