27 research outputs found

    Model checking infinite-state systems: generic and specific approaches

    Get PDF
    Model checking is a fully-automatic formal verification method that has been extremely successful in validating and verifying safety-critical systems in the past three decades. In the past fifteen years, there has been a lot of work in extending many model checking algorithms over finite-state systems to finitely representable infinitestate systems. Unlike in the case of finite systems, decidability can easily become a problem in the case of infinite-state model checking. In this thesis, we present generic and specific techniques that can be used to derive decidability with near-optimal computational complexity for various model checking problems over infinite-state systems. Generic techniques and specific techniques primarily differ in the way in which a decidability result is derived. Generic techniques is a “top-down” approach wherein we start with a Turing-powerful formalismfor infinitestate systems (in the sense of being able to generate the computation graphs of Turing machines up to isomorphisms), and then impose semantic restrictions whereby the desired model checking problem becomes decidable. In other words, to show that a subclass of the infinite-state systems that is generated by this formalism is decidable with respect to the model checking problem under consideration, we will simply have to prove that this subclass satisfies the semantic restriction. On the other hand, specific techniques is a “bottom-up” approach in the sense that we restrict to a non-Turing powerful formalism of infinite-state systems at the outset. The main benefit of generic techniques is that they can be used as algorithmic metatheorems, i.e., they can give unified proofs of decidability of various model checking problems over infinite-state systems. Specific techniques are more flexible in the sense they can be used to derive decidability or optimal complexity when generic techniques fail. In the first part of the thesis, we adopt word/tree automatic transition systems as a generic formalism of infinite-state systems. Such formalisms can be used to generate many interesting classes of infinite-state systems that have been considered in the literature, e.g., the computation graphs of counter systems, Turing machines, pushdown systems, prefix-recognizable systems, regular ground-tree rewrite systems, PAprocesses, order-2 collapsible pushdown systems. Although the generality of these formalisms make most interesting model checking problems (even safety) undecidable, they are known to have nice closure and algorithmic properties. We use these nice properties to obtain several algorithmic metatheorems over word/tree automatic systems, e.g., for deriving decidability of various model checking problems including recurrent reachability, and Linear Temporal Logic (LTL) with complex fairness constraints. These algorithmic metatheorems can be used to uniformly prove decidability with optimal (or near-optimal) complexity of various model checking problems over many classes of infinite-state systems that have been considered in the literature. In fact, many of these decidability/complexity results were not previously known in the literature. In the second part of the thesis, we study various model checking problems over subclasses of counter systems that were already known to be decidable. In particular, we consider reversal-bounded counter systems (and their extensions with discrete clocks), one-counter processes, and networks of one-counter processes. We shall derive optimal complexity of various model checking problems including: model checking LTL, EF-logic, and first-order logic with reachability relations (and restrictions thereof). In most cases, we obtain a single/double exponential reduction in the previously known upper bounds on the complexity of the problems

    Maximal good step graph methods for reducing the generation of the state space

    Get PDF
    This paper proposes an effective method based on the two main partial order techniques which are persistent sets and covering step graph techniques, to deal with the state explosion problem. First, we introduce a new definition of sound steps, the firing of which enables to extremely reduce the state space. Then, we propose a weaker sufficient condition about how to find the set of sound steps at each current marking. Next, we illustrate the relation between maximal sound steps and persistent sets, and propose a concept of good steps. Based on the maximal sound steps and good steps, a construction algorithm for generating a maximal good step graph (MGSG) of a Petri net (PN) is established. This algorithm first computes the maximal good step at each marking if there exists one, otherwise maximal sound steps are fired at the marking. Furthermore, we have proven that an MGSG can effectively preserve deadlocks of a Petri net. Finally, the change performance evaluation is made to demonstrate the superiority of our proposed method, compared with other related partial order techniques

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 22nd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conference on Theory and Practice of Software, ETAPS 2019. The 29 papers presented in this volume were carefully reviewed and selected from 85 submissions. They deal with foundational research with a clear significance for software science

    26. Theorietag Automaten und Formale Sprachen 23. Jahrestagung Logik in der Informatik: Tagungsband

    Get PDF
    Der Theorietag ist die Jahrestagung der Fachgruppe Automaten und Formale Sprachen der Gesellschaft fĂŒr Informatik und fand erstmals 1991 in Magdeburg statt. Seit dem Jahr 1996 wird der Theorietag von einem eintĂ€gigen Workshop mit eingeladenen VortrĂ€gen begleitet. Die Jahrestagung der Fachgruppe Logik in der Informatik der Gesellschaft fĂŒr Informatik fand erstmals 1993 in Leipzig statt. Im Laufe beider Jahrestagungen finden auch die jĂ€hrliche Fachgruppensitzungen statt. In diesem Jahr wird der Theorietag der Fachgruppe Automaten und Formale Sprachen erstmalig zusammen mit der Jahrestagung der Fachgruppe Logik in der Informatik abgehalten. Organisiert wurde die gemeinsame Veranstaltung von der Arbeitsgruppe ZuverlĂ€ssige Systeme des Instituts fĂŒr Informatik an der Christian-Albrechts-UniversitĂ€t Kiel vom 4. bis 7. Oktober im Tagungshotel Tannenfelde bei NeumĂŒnster. WĂ€hrend des Tre↔ens wird ein Workshop fĂŒr alle Interessierten statt finden. In Tannenfelde werden ‱ Christoph Löding (Aachen) ‱ TomĂĄs Masopust (Dresden) ‱ Henning Schnoor (Kiel) ‱ Nicole Schweikardt (Berlin) ‱ Georg Zetzsche (Paris) eingeladene VortrĂ€ge zu ihrer aktuellen Arbeit halten. DarĂŒber hinaus werden 26 VortrĂ€ge von Teilnehmern und Teilnehmerinnen gehalten, 17 auf dem Theorietag Automaten und formale Sprachen und neun auf der Jahrestagung Logik in der Informatik. Der vorliegende Band enthĂ€lt Kurzfassungen aller BeitrĂ€ge. Wir danken der Gesellschaft fĂŒr Informatik, der Christian-Albrechts-UniversitĂ€t zu Kiel und dem Tagungshotel Tannenfelde fĂŒr die UnterstĂŒtzung dieses Theorietags. Ein besonderer Dank geht an das Organisationsteam: Maike Bradler, Philipp Sieweck, Joel Day. Kiel, Oktober 2016 Florin Manea, Dirk Nowotka und Thomas Wilk

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Algorithmic Analysis of Infinite-State Systems

    Get PDF
    Many important software systems, including communication protocols and concurrent and distributed algorithms generate infinite state-spaces. Model-checking which is the most prominent algorithmic technique for the verification of concurrent systems is restricted to the analysis of finite-state models. Algorithmic analysis of infinite-state models is complicated--most interesting properties are undecidable for sufficiently expressive classes of infinite-state models. In this thesis, we focus on the development of algorithmic analysis techniques for two important classes of infinite-state models: FIFO Systems and Parameterized Systems. FIFO systems consisting of a set of finite-state machines that communicate via unbounded, perfect, FIFO channels arise naturally in the analysis of distributed protocols. We study the problem of computing the set of reachable states of a FIFO system composed of piecewise components. This problem is closely related to calculating the set of all possible channel contents, i.e. the limit language. We present new algorithms for calculating the limit language of a system with a single communication channel and important subclasses of multi-channel systems. We also discuss the complexity of these algorithms. Furthermore, we present a procedure that translates a piecewise FIFO system to an abridged structure, representing an expressive abstraction of the system. We show that we can analyze the infinite computations of the more concrete model by analyzing the computations of the finite, abridged model. Parameterized systems are a common model of computation for concurrent systems consisting of an arbitrary number of homogenous processes. We study the reachability problem in parameterized systems of infinite-state processes. We describe a framework that combines Abstract Interpretation with a backward-reachability algorithm. Our key idea is to create an abstract domain in which each element (a) represents the lower bound on the number of processes at a control location and (b) employs a numeric abstract domain to capture arithmetic relations among variables of the processes. We also provide an extrapolation operator for the domain to guarantee sound termination of the backward-reachability algorithm
    corecore