1,457 research outputs found

    Optimum graph cuts for pruning binary partition trees of polarimetric SAR images

    Get PDF
    This paper investigates several optimum graph-cut techniques for pruning binary partition trees (BPTs) and their usefulness for the low-level processing of polarimetric synthetic aperture radar (PolSAR) images. BPTs group pixels to form homogeneous regions, which are hierarchically structured by inclusion in a binary tree. They provide multiple resolutions of description and easy access to subsets of regions. Once constructed, BPTs can be used for a large number of applications. Many of these applications consist in populating the tree with a specific feature and in applying a graph cut called pruning to extract a partition of the space. In this paper, different pruning examples involving the optimization of a global criterion are discussed and analyzed in the context of PolSAR images for segmentation. Through the objective evaluation of the resulting partitions by means of precision-and-recall-for-boundaries curves, the best pruning technique is identified, and the influence of the tree construction on the performances is assessed.Peer ReviewedPostprint (author's final draft

    Hyperspectral Image Segmentation Using a New Spectral Unmixing-Based Binary Partition Tree Representation

    No full text
    International audienceThe Binary Partition Tree (BPT) is a hierarchical region-based representation of an image in a tree structure. BPT allows users to explore the image at different segmentation scales. Often, the tree is pruned to get a more compact representation and so the remaining nodes conform an optimal partition for some given task. Here, we propose a novel BPT construction approach and pruning strategy for hyperspectral images based on spectral unmixing concepts. Linear Spectral Unmixing (LSU) consists of finding the spectral signatures of the materials present in the image (endmembers) and their fractional abundances within each pixel. The proposed methodology exploits the local unmixing of the regions to find the partition achieving a global minimum reconstruction error. Results are presented on real hyperspectral data sets with different contexts and resolutions

    Hyperspectral image segmentation using a new spectral mixture-based binary partition tree representation

    No full text
    International audienceThe Binary Partition Tree (BPT) is a hierarchical region-based representation of an image in a tree structure. BPT allows users to explore the image at different segmentation scales, from fine partitions close to the leaves to coarser partitions close to the root. Often, the tree is pruned so the leaves of the resulting pruned tree conform an optimal partition given some optimality criterion. Here, we propose a novel BPT construction approach and pruning strategy for hyperspectral images based on spectral unmixing concepts. The proposed methodology exploits the local unmixing of the regions to find the partition achieving a global minimum reconstruction error. We successfully tested the proposed approach on the well-known Cuprite hyperspectral image collected by NASA Jet Propulsion Laboratory's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). This scene is considered as a standard benchmark to validate spectral unmixing algorithms

    Gas Plume Detection and Tracking in Hyperspectral Video Sequences using Binary Partition Trees

    No full text
    International audienceThanks to the fast development of sensors, it is now possible to acquire sequences of hyperspectral images. Those hyperspectral video sequences are particularly suited for the detection and tracking of chemical gas plumes. However, the processing of this new type of video sequences with the additional spectral diversity, is challenging and requires the design of advanced image processing algorithms. In this paper, we present a novel method for the segmentation and tracking of a chemical gas plume diffusing in the atmosphere, recorded in a hyperspectral video sequence. In the proposed framework, the position of the plume is first estimated, using the temporal redundancy of two consecutive frames. Second, a Binary Partition Tree is built and pruned according to the previous estimate, in order to retrieve the real location and extent of the plume in the frame. The proposed method is validated on a real hyperspectral video sequence and compared with a state-of-the-art method

    Hyperspectral image representation and processing with binary partition trees

    Get PDF
    The optimal exploitation of the information provided by hyperspectral images requires the development of advanced image processing tools. Therefore, under the title Hyperspectral image representation and Processing with Binary Partition Trees, this PhD thesis proposes the construction and the processing of a new region-based hierarchical hyperspectral image representation: the Binary Partition Tree (BPT). This hierarchical region-based representation can be interpreted as a set of hierarchical regions stored in a tree structure. Hence, the Binary Partition Tree succeeds in presenting: (i) the decomposition of the image in terms of coherent regions and (ii) the inclusion relations of the regions in the scene. Based on region-merging techniques, the construction of BPT is investigated in this work by studying hyperspectral region models and the associated similarity metrics. As a matter of fact, the very high dimensionality and the complexity of the data require the definition of specific region models and similarity measures. Once the BPT is constructed, the fixed tree structure allows implementing efficient and advanced application-dependent techniques on it. The application-dependent processing of BPT is generally implemented through a specific pruning of the tree. Accordingly, some pruning techniques are proposed and discussed according to different applications. This Ph.D is focused in particular on segmentation, object detection and classification of hyperspectral imagery. Experimental results on various hyperspectral data sets demonstrate the interest and the good performances of the BPT representatio

    Object recognition in hyperspectral images using Binary Partition Tree representation

    Get PDF
    In this work, an image representation based on Binary Partition Tree is proposed for object detection in hyperspectral images. This hierarchical region-based representation can be interpreted as a set of hierarchical regions stored in a tree structure, which succeeds in presenting: (i) the decomposition of the image in terms of coherent regions and (ii) the inclusion relations of the regions in the scene. Hence, the BPT representation defines a search space for constructing a robust object identification scheme. Spatial and spectral information are integrated in order to analyze hyperspectral images with a region based perspective. For each region represented in the BPT, spatial and spectral descriptors are computed and the likelihood that they correspond to an instantiation of the object of interest is evaluated. Experimental results demonstrate the good performances of this BPT-based approach. (C) 2015 Elsevier B.V. All rights reserved.Peer ReviewedPostprint (author’s final draft

    Binary partition trees-based robust adaptive hyperspectral RX anomaly detection

    No full text
    International audienceThe Reed-Xiaoli (RX) is considered as the benchmark algorithm in multidimensional anomaly detection (AD). However, the RX detector performance decreases when the statistical parameters estimation is poor. This could happen when the background is non-homogeneous or the noise independence assumption is not fulfilled. For a better performance, the statistical parameters are estimated locally using a sliding window approach. In this approach, called adaptive RX, a window is centered over the pixel under the test (PUT), so the background mean and covariance statistics are estimated us- ing the data samples lying inside the window's spatial support, named the secondary data. Sometimes, a smaller guard window prevents those pixels close to the PUT to be used, in order to avoid the presence of outliers in the statistical estimation. The size of the window is chosen large enough to ensure the invertibility of the covariance matrix and small enough to justify both spatial and spectral homogeneity. We present here an alternative methodology to select the secondary data for a PUT by means of a binary partition tree (BPT) representation of the image. We test the proposed BPT-based adaptive hyperspectral RX AD algorithm using a real dataset provided by the Target Detection Blind Test project

    Hyperspectral Image Representation and Processing With Binary Partition Trees

    Full text link

    Semi-Automatic Classification of Cementitious Materials using Scanning Electron Microscope Images

    No full text
    International audienceSegmentation and classification are prolific research topics in the image processing community, which have been more and more used in the context of analysis of cementitious materials, on images acquired with Scanning Electron Microscopes (SEM). Indeed, there is a need to be able to detect and to quantify the materials present in a cement paste in order to follow the chemical reactions occurring in the material even days after the solidification. In this paper, we propose a new approach for segmentation and classification of cementitious materials based on the denoising of the data with the Block Matching 3D (BM3D) algorithm, Binary Partition Tree (BPT) segmentation, Support Vector Machines (SVM) classification, and the interactivity with the user. The BPT provides a hierarchical representation of the spatial regions of the data, allowing a segmentation to be selected among the admissible partitions of the image. SVMs are used to obtain a classification map of the image. This approach combines state-of-the-art image processing tools with the interactivity with the user to allow a better segmentation to be performed, or to help the classifier discriminate the classes better. We show that the proposed approach outperforms a previous method on synthetic data and several real datasets coming from cement samples, both qualitatively with visual examination and quantitatively with the comparison of experimental results with theoretical ones

    Hyperspectral super-resolution of locally low rank images from complementary multisource data

    Get PDF
    International audienceRemote sensing hyperspectral images (HSI) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images (MSI) in order to obtain super-resolution HSI. Most approaches adopt an unmixing or a matrix factorization perspective. The derived methods have led to state-of-the-art results when the spectral information lies in a low dimensional subspace/manifold. However, if the subspace/manifold dimensionality spanned by the complete data set is large, i.e., larger than the number of multispectral bands, the performance of these methods decrease mainly because the underlying sparse regression problem is severely ill-posed. In this paper, we propose a local approach to cope with this difficulty. Fundamentally, we exploit the fact that real world HSI are locally low rank, that is, pixels acquired from a given spatial neighborhood span a very low dimensional subspace/manifold, i.e., lower or equal than the number of multispectral bands. Thus, we propose to partition the image into patches and solve the data fusion problem independently for each patch. This way, in each patch the subspace/manifold dimensionality is low enough such that the problem is not ill-posed anymore. We propose two alternative approaches to define the hyperspectral super-resolution via local dictionary learning using endmember induction algorithms (HSR-LDL-EIA). We also explore two alternatives to define the local regions, using sliding windows and binary partition trees. The effectiveness of the proposed approaches is illustrated with synthetic and semi real data
    • …
    corecore