80 research outputs found

    A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks

    Get PDF
    Multisensor fusion and consensus filtering are two fascinating subjects in the research of sensor networks. In this survey, we will cover both classic results and recent advances developed in these two topics. First, we recall some important results in the development ofmultisensor fusion technology. Particularly, we pay great attention to the fusion with unknown correlations, which ubiquitously exist in most of distributed filtering problems. Next, we give a systematic review on several widely used consensus filtering approaches. Furthermore, some latest progress on multisensor fusion and consensus filtering is also presented. Finally, conclusions are drawn and several potential future research directions are outlined.the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61374039, 61304010, 11301118, and 61573246, the Hujiang Foundation of China under Grants C14002 and D15009, the Alexander von Humboldt Foundation of Germany, and the Innovation Fund Project for Graduate Student of Shanghai under Grant JWCXSL140

    A new approach to distributed fusion filtering for networked systems with random parameter matrices and correlated noises

    Get PDF
    This paper is concerned with the distributed filtering problem for a class of discrete-time stochastic systems over a sensor network with a given topology. The system presents the following main features: (i) random parameter matrices in both the state and observation equations are considered; and (ii) the process and measurement noises are one-step autocorrelated and two-step cross-correlated. The state estimation is performed in two stages. At the first stage, through an innovation approach, intermediate distributed least-squares linear filtering estimators are obtained at each sensor node by processing available output measurements not only from the sensor itself but also from its neighboring sensors according to the network topology. At the second stage, noting that at each sampling time not only the measurement but also an intermediate estimator is available at each sensor, attention is focused on the design of distributed filtering estimators as the least-squares matrix-weighted linear combination of the intermediate estimators within its neighborhood. The accuracy of both intermediate and distributed estimators, which is measured by the error covariance matrices, is examined by a numerical simulation example where a four-sensor network is considered. The example illustrates the applicability of the proposed results to a linear networked system with state-dependent multiplicative noise and different network-induced stochastic uncertainties in the measurements; more specifically, sensor gain degradation, missing measurements and multiplicative observation noises are considered as particular cases of the proposed observation model.This research is supported by Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional FEDER (grant no. MTM2014- 52291-P, MTM2017-84199-P)

    Optimal Energy Allocation for Kalman Filtering over Packet Dropping Links with Imperfect Acknowledgments and Energy Harvesting Constraints

    Get PDF
    This paper presents a design methodology for optimal transmission energy allocation at a sensor equipped with energy harvesting technology for remote state estimation of linear stochastic dynamical systems. In this framework, the sensor measurements as noisy versions of the system states are sent to the receiver over a packet dropping communication channel. The packet dropout probabilities of the channel depend on both the sensor's transmission energies and time varying wireless fading channel gains. The sensor has access to an energy harvesting source which is an everlasting but unreliable energy source compared to conventional batteries with fixed energy storages. The receiver performs optimal state estimation with random packet dropouts to minimize the estimation error covariances based on received measurements. The receiver also sends packet receipt acknowledgments to the sensor via an erroneous feedback communication channel which is itself packet dropping. The objective is to design optimal transmission energy allocation at the energy harvesting sensor to minimize either a finite-time horizon sum or a long term average (infinite-time horizon) of the trace of the expected estimation error covariance of the receiver's Kalman filter. These problems are formulated as Markov decision processes with imperfect state information. The optimal transmission energy allocation policies are obtained by the use of dynamic programming techniques. Using the concept of submodularity, the structure of the optimal transmission energy policies are studied. Suboptimal solutions are also discussed which are far less computationally intensive than optimal solutions. Numerical simulation results are presented illustrating the performance of the energy allocation algorithms.Comment: Submitted to IEEE Transactions on Automatic Control. arXiv admin note: text overlap with arXiv:1402.663

    Two Compensation Strategies for Optimal Estimation in Sensor Networks with Random Matrices, Time-Correlated Noises, Deception Attacks and Packet Losses

    Get PDF
    Due to its great importance in several applied and theoretical fields, the signal estimation problem in multisensor systems has grown into a significant research area. Networked systems are known to suffer random flaws, which, if not appropriately addressed, can deteriorate the performance of the estimators substantially. Thus, the development of estimation algorithms accounting for these random phenomena has received a lot of research attention. In this paper, the centralized fusion linear estimation problem is discussed under the assumption that the sensor measurements are affected by random parameter matrices, perturbed by time-correlated additive noises, exposed to random deception attacks and subject to random packet dropouts during transmission. A covariance-based methodology and two compensation strategies based on measurement prediction are used to design recursive filtering and fixed-point smoothing algorithms. The measurement differencing method— typically used to deal with the measurement noise time-correlation—is unsuccessful for these kinds of systems with packet losses because some sensor measurements are randomly lost and, consequently, cannot be processed. Therefore, we adopt an alternative approach based on the direct estimation of the measurement noises and the innovation technique. The two proposed compensation scenarios are contrasted through a simulation example, in which the effect of the different uncertainties on the estimation accuracy is also evaluated.Ministerio de Ciencia e Innovacion, Agencia Estatal de InvestigacionEuropean Commission PID2021-124486NB-I0

    Networked distributed fusion estimation under uncertain outputs with random transmission delays, packet losses and multi-packet processing

    Get PDF
    This paper investigates the distributed fusion estimation problem for networked systems whose mul- tisensor measured outputs involve uncertainties modelled by random parameter matrices. Each sensor transmits its measured outputs to a local processor over different communication channels and random failures –one-step delays and packet dropouts–are assumed to occur during the transmission. White sequences of Bernoulli random variables with different probabilities are introduced to describe the ob- servations that are used to update the estimators at each sampling time. Due to the transmission failures, each local processor may receive either one or two data packets, or even nothing and, when the current measurement does not arrive on time, its predictor is used in the design of the estimators to compensate the lack of updated information. By using an innovation approach, local least-squares linear estimators (filter and fixed-point smoother) are obtained at the individual local processors, without requiring the signal evolution model. From these local estimators, distributed fusion filtering and smoothing estimators weighted by matrices are obtained in a unified way, by applying the least-squares criterion. A simula- tion study is presented to examine the performance of the estimators and the influence that both sensor uncertainties and transmission failures have on the estimation accuracy.This research is supported by Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional FEDER (grant no. MTM2017-84199-P)

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Covariance-Based Estimation from Multisensor Delayed Measurements with Random Parameter Matrices and Correlated Noises

    Get PDF
    The optimal least-squares linear estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems subject to randomly delayed measurements with different delay rates. For each sensor, a different binary sequence is used to model the delay process. The measured outputs are perturbed by both random parameter matrices and one-step autocorrelated and cross correlated noises. Using an innovation approach, computationally simple recursive algorithms are obtained for the prediction, filtering, and smoothing problems, without requiring full knowledge of the state-space model generating the signal process, but only the information provided by the delay probabilities and the mean and covariance functions of the processes (signal, random parameter matrices, and noises) involved in the observation model. The accuracy of the estimators is measured by their error covariance matrices, which allow us to analyze the estimator performance in a numerical simulation example that illustrates the feasibility of the proposed algorithms

    Centralized filtering and smoothing algorithms from outputs with random parameter matrices transmitted through uncertain communication channels

    Get PDF
    The least-squares linear centralized estimation problem is addressed for discrete-time signals from measured outputs whose disturbances are modeled by random parameter matrices and correlated noises. These measurements, coming from different sensors, are sent to a processing center to obtain the estimators and, due to random transmission failures, some of the data packet processed for the estimation may either contain only noise (uncertain observations), be delayed (sensor delays) or even be definitely lost (packet dropouts). Different sequences of Bernoulli random variables with known probabilities are employed to describe the multiple random transmission uncertainties of the different sensors. Using the last observation that successfully arrived when a packet is lost, the optimal linear centralized fusion estimators, including filter, multi-step predictors and fixed-point smoothers, are obtained via an innovation approach; this approach is a general and useful tool to find easily implementable recursive algorithms for the optimal linear estimators under the least-squares optimality criterion. The proposed algorithms are obtained without requiring the evolution model of the signal process, but using only the first and second-order moments of the processes involved in the measurement model.This research is supported by Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigaciónand Fondo Europeo de Desarrollo Regional FEDER (grant no. MTM2017-84199-P)

    Networked fusion estimation with multiple uncertainties and time-correlated channel noise

    Get PDF
    This paper is concerned with the fusion filtering and fixed-point smoothing problems for a class of networked systems with multiple random uncertainties in both the sensor outputs and the transmission connections. To deal with this kind of systems, random parameter matrices are considered in the mathematical models of both the sensor measurements and the data available after transmission. The additive noise in the transmission channel from each sensor is assumed to be sequentially time-correlated. By using the time-differencing approach, the available measurements are transformed into an equivalent set of observations that do not depend on the timecorrelated noise. The innovation approach is then applied to obtain recursive distributed and centralized fusion estimation algorithms for the filtering and fixed-point smoothing estimators of the signal based on the transformed measurements, which are equal to the estimators based on the original ones. The derivation of the algorithms does not require the knowledge of the signal evolution model, but only the mean and covariance functions of the processes involved (covariance information). A simulation example illustrates the utility and effectiveness of the proposed fusion estimation algorithms, as well as the applicability of the current model to deal with different network-induced random phenomena.This research is supported by Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional FEDER (grant no. MTM2017-84199-P)

    Optimal linear filter design for systems with correlation in the measurement matrices and noises: recursive algorithm and applications

    Get PDF
    This paper addresses the optimal least-squares linear estimation problem for a class of discrete-time stochastic systems with random parameter matrices and correlated additive noises. The system presents the following main features: (1) one-step correlated and cross-correlated random parameter matrices in the observation equation are assumed; (2) the process and measurement noises are one-step autocorrelated and two-step cross-correlated. Using an innovation approach and these correlation assumptions, a recursive algorithm with a simple computational procedure is derived for the optimal linear filter. As a significant application of the proposed results, the optimal recursive filtering problem in multi-sensor systems with missing measurements and random delays can be addressed. Numerical simulation examples are used to demonstrate the feasibility of the proposed filtering algorithm, which is also compared with other filters that have been proposed.Ministerio de Ciencia e Innovación [FPU programme] [grant number MTM2011-24718
    corecore