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Abstract 

This paper is concerned with the fusion filtering and fixed-point smoothing problems for a class of 

networked systems with multiple random uncertainties in both the sensor outputs and the 

transmission connections. To deal with this kind of systems, random parameter matrices are 

considered in the mathematical models of both the sensor measurements and the data available 

after transmission. The additive noise in the transmission channel from each sensor is assumed to 

be sequentially time-correlated. By using the time-differencing approach, the available 

measurements are transformed into an equivalent set of observations that do not depend on the 

time- correlated noise. The innovation approach is then applied to obtain recursive distributed and 

centralized fusion estimation algorithms for the filtering and fixed-point smoothing estimators of the 

signal based on the transformed measurements, which are equal to the estimators based on the 

original ones. The derivation of the algorithms does not require the knowledge of the signal 

evolution model, but only the mean and covariance functions of the processes involved (covariance 

information). A simulation example illustrates the utility and effectiveness of the proposed fusion 

estimation algorithms, as well as the applicability of the current model to deal with different network-

induced random phenomena. 

 



1. Introduction

One of the most active challenges related to networked systems is how to
optimize the use of multiple sets of information coming from different sensors
or sources, which are sent over transmission channels to a processing center
for the purpose of estimating the system state. Due to the great number of
applications of networked systems in different fields, such as space and terres-
trial exploration, target tracking and localization, guidance and navigation,
remote diagnostics and troubleshooting, aircraft, communication, etc., the
design of accurate and reliable fusion estimation algorithms that suit the
singularities of real situations has become a hot research topic over the last
decades. Depending on the data fusion architecture, the most significant fu-
sion techniques are the centralized fusion scheme, in which the raw measured
data from all the sensors are sent to a central processor that performs the
fusion, and the distributed fusion scheme, in which the sensor measurements
are firstly processed independently to obtain local estimators which are then
sent to the fusion center. A thorough review of the most common data fu-
sion techniques, not only aimed at the estimation problem but also at data
association and decision problems, can be found in [1] or [2].

Usually, the states of modern industrial systems are not available and
the measurement outputs are often subject to stochastic uncertainties, due
to physical constraints, measurement costs or environmental complexities,
among others; this kind of uncertainties in the measurements may include,
for example, fading measurements, which are frequently related to sensor
aging, and missing measurements or only-noise measurement outputs, which
are often caused by temporal sensor failures. Besides these uncertainties in
the sensor measured outputs, the data transmission through communication
networks may also be impaired by limited communication bandwidth, im-
perfect communication channels or network congestion, among others, which
produce unavoidable random uncertainties in the measurements available af-
ter transmission; for example, packet losses can occur as a consequence of
communication failures; communication delays are frequently found in mod-
ern industrial systems due to the finite speed of amplifiers or information
processing; and fading measurements are usually a consequence of imperfect
communication channels transforming part of the signal energy into heat
energy or absorbing it.
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Motivated by these considerations, which show the simultaneous existence
of different network-induced uncertainties in both the sensor measurements
and the data transmission from the sensor nodes to the remote processing
center, we propose to address the estimation problem in sensor networks
susceptible to both kinds of uncertainties.

In general, conventional sensor networks, where the sensor measured out-
puts always contain information about the real signal or target to be esti-
mated and perfect transmission connections are considered (see e.g. [3], [4]
and [5]), are not appropriate in the above-mentioned real-world engineering
problems where the observations, perturbed by additive noises, are also cor-
rupted by other types of random errors caused by the existence of different
network-induced uncertainties that can occur in both the sensor measure-
ments and the data transmission. These random failures in the measurement
and transmission mechanisms yield the degradation of the estimator perfor-
mance and, consequently, the use of innovative observation models, suitable
to describe these random phenomena, is an essential issue and the estima-
tion problem with one or more network-induced uncertainties has attracted
considerable attention (see e.g. [6], [7], [8], [9], [10] and [11]). A detailed
overview of significant contributions on the estimation and fusion for net-
worked systems with network-induced phenomena is presented in [12] and
[13].

Another remarkable issue when dealing with networked systems is the
occurrence of intermittent or even random faults in signals. Recently, the
joint state and fault estimation problem has been investigated in [14] for a
class of uncertain time-varying nonlinear systems with randomly occurring
faults and sensor saturations, characterizing the phenomenon of randomly
occurring faults by Bernoulli random variables with known probabilities.

Network-induced uncertainties in the sensor measurements. Sensor net-
works usually suffer intermittent failures or inaccuracy of the measurement
devices which may cause, for instance, random observation losses [6], sensor
gain degradation [9] or missing measurements [10]. A unified framework to
model these random phenomena is provided by the use of random parameter
matrices in the mathematical model of the sensor measured outputs. This
fact has encouraged an increasing research interest in the estimation problem
in networked systems with random measurement matrices, since they cover
a great variety of different networked-induced uncertainties as the above-
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mentioned ones (see e.g. [15], [16], [17], [18], [19] and references therein).

Network-induced uncertainties in the transmission channel. Since perfect
transmission is not always obtainable, especially in wireless sensor networks,
random time-delays, packet dropouts or fading phenomena often occur dur-
ing the data transmission from the sensors to the processing center. Several
estimation algorithms have been proposed in multisensor systems with only
transmission time-delays (see e.g. [20] and [21]) or packet dropouts (see e.g.
[22] and [23]), as well as in systems influenced by both phenomena simul-
taneously (see e.g. [24], [25], and [26]). The estimation problem in systems
with fading transmission channels has also drawn an increasing research in-
terest over the last years (see e.g. [27] and [28]). Such systems with fading
transmission channels must clearly include multiplicative noises that can be
modelled by random matrices. Also, systems with random sensor delays
and/or multiple packet dropouts are transformed into equivalent observation
models with random measurement matrices (see, e.g., [24] and [26]). Hence,
the use of random parameter matrices in the model of the data available
after transmission, which will be used for the estimation, provides a com-
prehensive way to incorporate these random disturbances occurring during
the transmission process (see e.g. [29] , [30] , [31], [32], [33] and references
therein).

Transmission noise correlation. Another significant transmission impair-
ment is the existence of noise in the communication channel. Most of the
above-mentioned papers consider networked systems with noise-free trans-
mission channels, or transmission channels whose additive noise is either
white or correlated on a finite-time interval. These hypotheses about the
channel noise can be generalized to the case of sequentially correlated noise
and numerous papers have emerged during the last decade concerning the
estimation problem under the assumption that the time-correlated channel
noise is the output of a linear system model with white noise (see, e.g. [34],
[35], [36], [37], [38] and references therein). The recursive filtering problem
for discrete-time linear systems with fading measurements is investigated in
[34] under the assumption that the time-correlated channel noise is the out-
put of a linear system model with white noise. This approach is becoming an
important focus of attention for the scientific community, as it is suitable to
model not only time-correlation but also periodic step changes in the noise
process caused by changes in the system (see [36]). In [35], the distributed

4



fusion filtering problem for networked systems with fading measurements and
time-correlated noise is addressed. Some of the most recent advances in this
field are the results in [37], where the estimation problem for networked sys-
tems with time-correlated channel noises, correlated multiplicative noises and
fading measurements is studied, considering that the time-correlated channel
noises are described by a seemingly autoregressive moving average model. In
[38], the Tobit Kalman filtering problem for discrete-time systems subject
to non-Gaussian Lèvy and time-correlated additive measurement noises is
investigated.

This paper is concerned with the least-squares centralized and distributed
fusion estimation problems based on covariance information. Taking the pre-
vious considerations into account, these problems will be addressed in a class
of multi-sensor networked systems with the following characteristics: (a) The
sensor measured outputs, influenced by random parameter matrices, are sent
over imperfect transmission channels to the processing center, yielding un-
certainties in the observations received by the estimator, which are also mod-
elled by random matrices; (b) the time-correlated channel noise is assumed
to obey a dynamic linear equation perturbed by white noise (a first-order
autoregressive model). By using the time-differencing approach, the original
measurements are remodeled to obtain an equivalent set of transformed ob-
servations (linear combinations of the original ones), which do not depend
on the time-correlated noise. Recursive algorithms are then obtained for
the centralized and distributed fusion estimators of the signal based on the
transformed measurements, for which the innovation approach is adopted.

The main distinctive features of the current work are summarized as
follows: (1) The observation model includes time-varying random param-
eter matrices in both the sensor measurements and the data available af-
ter transmission, which provides a unified framework to deal with different
network-induced phenomena, that depend on time explicitly, such as random
observation losses, sensor gain degradation, fading or missing measurements,
in both the sensor measured outputs and the transmissions. (2) Since usu-
ally the noise changes with the environment or system structure, the channel
noise is assumed to be time-correlated, according to a linear system driven
by white noise, which is suitable to depict the changes in the noise pro-
cess caused by changes in the system. (3) The distributed and centralized
fusion estimation problems are addressed without requiring full knowledge
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of the state-space model generating the signal process, but only the mean
and covariance functions of the processes involved (covariance information),
thus providing a general approach to deal with different kinds of signal pro-
cesses. Actually, the proposed algorithms are also applicable to the con-
ventional formulation using the state-space model, even in the presence of
state-dependent multiplicative noise. (4) The innovation approach is used
to simplify the derivation of the proposed filtering and fixed-point smooth-
ing algorithms, which are recursive and computationally simple, thus being
suitable for online implementation.

To the best of the authors’ knowledge, the distributed and centralized
fusion estimation problems in this framework where the sensor measured
outputs and the measurement transmission are both perturbed by random
parameter matrices, in the presence of time-correlated channel noises, have
not yet been investigated, so it is an interesting research topic. Actually,
this is a realistic and comprehensive assumption to deal with networked sys-
tems featuring simultaneous random failures in the sensor outputs and the
measurements available after transmission. The existing results mainly fo-
cus on specific impairments in the measurement or transmission mechanisms
(missing/fading observations, random delays/packet dropouts, etc.), while
the consideration of random parameter matrices provides a global model to
cover all these impairments at once. Hence, the proposed results are more
general and realistic for practical applications.

The organization of the paper is summarized as follows. The problem is
formulated in Section 2. Section 3 discusses the distributed fusion filtering
and fixed-point smoothing problems. The centralized fusion estimation algo-
rithms are presented in Section 4. Section 5 shows a simulation example in
target tracking and some conclusions are drawn in Section 6. Finally, three
appendices provide the mathematical proofs of the main theoretical results.

Notation: The following standard notation is used throughout the paper.
Rn and Rm×n denote the n-dimensional Euclidean space and the set of all
m × n real matrices, respectively. For a matrix A, AT and A−1 denote its
transpose and inverse, respectively. In×n denotes the n× n identity matrix.
If the dimensions of a vector or a matrix are not explicitly stated, they
are assumed to be compatible with algebraic operations. E[·] denotes the
mathematical expectation and P [A] is the probability of event A. For any
function Gk,h, depending on the time instants k and h, we will write Gk =
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Gk,k for simplicity; analogously, F (i) = F (ii) will be written for any function
F (ij), depending on the sensors i and j. Finally, δk,h denotes the Kronecker
delta function.

2. Problem formulation and observation model

The aim of this paper is to design recursive algorithms for the distributed
and centralized fusion estimation problems using observations coming from a
sensor network, supposing that the sensor measurements of the signal to be
estimated are transmitted through unreliable communication channels and
different uncertainties can randomly occur not only in the measured outputs,
but also during the transmissions. Moreover, white additive noises in the
sensor measurements and time-correlated additive noises in the transmissions
are considered. A unifying framework to model multiple random phenomena
(e.g. sensor gain degradation, missing or fading measurements, uncertainties
caused by the presence of multiplicative noise, or both multiplicative noises
and missing measurements) is provided by the use of random measurement
matrices. In view of this consideration, the proposed observation model
will be perturbed by random measurement matrices in both the measured
outputs and the transmissions, thus allowing us to design general estimation
algorithms that will be suitable to address all the aforementioned random
phenomena comprehensively.

In the centralized estimation problem, the estimators are obtained by
fusion of all the network observations at each sampling time, whereas in
the distributed one, local estimators, based only on the observations of each
individual sensor, are previously obtained and the distributed estimator is
then calculated by fusion of the local ones. Our aim is to design recur-
sive algorithms for the optimal linear distributed and centralized filters and
fixed-point smoothers under the least-squares (LS) criterion, requiring only
the first and second-order moments of the processes involved in the model
that describes the observations coming from the different sensors (covariance
information). To deal with the LS estimation problem, the signal to be esti-
mated as well as the measurements and the noises in the observation model
will be assumed to be described by second-order random vectors defined on
a common probability space (Ω,A, P ).
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2.1. Signal process

As it is well known, the Kalman filter is the most popular contribution
to solve the estimation problem in gaussian linear stochastic systems and
provides the optimal LS estimator when the state-space model generating the
signal to be estimated is known. Since the estimation algorithms based on the
state-space model depend on the signal evolution equation, if this equation is
modified, new algorithms are needed. For example, the algorithms designed
for stationary signals whose evolution model is given by (a) xk+1 = Fxk +
wk, may not be applied to estimate non-stationary signals generated by the
equation (b) xk+1 = Fkxk+wk and, in turn, those obtained for (b) may not be
applied to signals including perturbations described by multiplicative noises,
as (c) xk+1 = (Fk +Gkεk)xk +wk. On the other hand, the evolution model of
the signal to be estimated can be unknown in many practical applications and
alternative information should be used; consequently, different algorithms,
based on that new information, ought to be derived.

In this paper, fusion estimation algorithms are proposed without requiring
the evolution model generating the signal process to be estimate, but only its
mean and covariance functions (covariance-based approach). More precisely,
the following hypothesis is assumed on the signal process:

(H1) The nx-dimensional signal {xk}k≥1 is a second-order zero-mean process
whose covariance function is expressed in a separable form, E[xkx

T
h ] =

AkB
T
h , h ≤ k, where Ak, Bh ∈ Rnx×n are known matrices.

Remark 1. Hypothesis (H1) on the signal covariance function is fulfilled by
different kinds of signals and the estimation based on such hypothesis, instead
of the state-space model, provides a unifying framework to obtain general
algorithms which are applicable to a large number of practical situations. For
example, assuming non-singular transition matrices:

- For a zero-mean stationary signal driven by a white noise which is in-
dependent of the initial state, (a) xk+1 = Fxk + wk, k ≥ 0, the state
at time k can be expressed in terms of the state at any previous time as

xk = F k−hxh +
k−1∑
j=h

F k−j−1wj, h ≤ k. Hence, taking into account that
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E[wjx
T
h ] = 0, j ≥ h, the covariances are expressed as

E[xkx
T
h ] = F k−hE[xhx

T
h ] +

k−1∑
j=h

F k−j−1E[wjx
T
h ] = F k−hE[xhx

T
h ], h ≤ k,

and (H1) is satisfied just taking Ak = F k and Bh = E[xhx
T
h ](F−h)T .

- Similarly, the covariance function of the non-stationary signal (b) xk+1 =
Fkxk + wk, k ≥ 0, can be expressed as E[xkx

T
h ] = Fk,hE[xhx

T
h ], h ≤ k,

where Fk,h = Fk−1 · · ·Fh, and (H1) is also fulfilled taking Ak = Fk,0 and
Bh = E[xhx

T
h ](F−1h,0)

T .

Even when the transition matrix is singular, hypothesis (H1) is satisfied,
although a different reasoning and factorization are needed (see e.g. [17]).
Finally, hypothesis (H1) is also fulfilled by the class of signals (c) xk+1 =
(Fk + Gkεk)xk + wk, k ≥ 0, affected by multiplicative noise, that will be
considered in Section 5.

In summary, hypothesis (H1) on the signal covariance function can be
verified for different kinds of signals and the estimation based on such hy-
pothesis, instead of the state-space model, provides a unifying framework to
obtain general algorithms which are applicable to a large number of practical
situations.

2.2. Multi-sensor observation model

Let us consider m sensors, which measure a discrete-time random signal
xk ∈ Rnx and provide measured outputs perturbed by random parameter
matrices and additive noises, according to the following model:

z
(i)
k = C

(i)
k xk + v

(i)
k , k ≥ 1, i = 1, . . . ,m, (1)

where z
(i)
k ∈ Rnz is the output response of the i-th sensor at time k. The

following hypotheses are required about the matrices C
(i)
k ∈ Rnz×nx and the

measurement noise vectors v
(i)
k ∈ Rnz :

(H2)
{
C

(i)
k

}
k≥1, i = 1, . . . ,m, are independent sequences of independent

random parameter matrices with known first and second-order mo-
ments, E

[
c(i)
pq

(k)
]

and E
[
c(i)
pq

(k)c(j)
p′q′

(k)
]
, for p, p′ = 1, . . . , nz and q, q′ =

1, . . . , nx, where c(i)
pq

(k) denotes the (p, q)-th entry of C
(i)
k . We denote

C
(i)

k ≡ E
[
C

(i)
k

]
.
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(H3) The measurement noises
{
v
(i)
k

}
k≥1, i = 1, . . . ,m, are second-order zero-

mean white processes with E
[
v
(i)
k v

(j)T
h

]
= R

(ij)
k δk,h, i, j = 1, . . . ,m.

It is assumed that the measured outputs of the different sensors, z
(i)
k , i =

1, . . . ,m, are transmitted through unreliable channels which cause stochastic
impairments; on the one hand, sequentially correlated additive noises, η

(i)
k ,

and, on the other, transmission uncertainties described by random parameter
matrices, H

(i)
k , are considered. The presence of multiplicative random param-

eter matrices in the model of the data available after transmission provides
a unified framework to describe some random disturbances, which are often
yielded by unreliable transmissions, such as gain degradation, missing or fad-
ing measurements, or presence of multiplicative noise, as it will be shown in
Section 5. Specifically, the following model is assumed for the measurements,
z̆
(i)
k , available after transmission from the i-th sensor:

z̆
(i)
k = H

(i)
k z

(i)
k + η

(i)
k , k ≥ 1, i = 1, . . . ,m, (2)

with
η
(i)
k = D

(i)
k−1η

(i)
k−1 + ξ

(i)
k−1, k ≥ 1, i = 1, . . . ,m, (3)

where D
(i)
k ∈ Rnz×nz are known matrices. The following hypotheses are

imposed about the sequences
{
H

(i)
k

}
k≥1,

{
ξ
(i)
k

}
k≥0 and the random vectors

η
(i)
0 :

(H4)
{
H

(i)
k

}
k≥1, i = 1, . . . ,m, are independent sequences of independent ran-

dom parameter matrices with known first an second-order moments,
E
[
h(i)

pq
(k)
]

and E
[
h(i)

pq
(k)h(j)

p′q′
(k)
]
, for p, q, p′, q′ = 1, . . . , nz, where h(i)

pq
(k)

denotes the (p, q)-th entry of H
(i)
k . We denote H

(i)

k ≡ E[H
(i)
k ].

(H5) The noises
{
ξ
(i)
k

}
k≥0, i = 1, . . . ,m, are second-order zero-mean white

processes with E
[
ξ
(i)
k ξ

(j)T
h

]
= S

(ij)
k δk,h, i, j = 1, . . . ,m.

(H6) For i = 1, . . . ,m, η
(i)
0 are second-order zero-mean random vectors with

E
[
η
(i)
0 η

(j)T
0

]
= Q

(ij)
0 , i, j = 1, . . . ,m.

(H7) For i = 1, . . . ,m, the signal process {xk}k≥1, the vector η
(i)
0 and the

processes
{
C

(i)
k

}
k≥1,

{
H

(i)
k

}
k≥1,

{
v
(i)
k

}
k≥1 and

{
ξ
(i)
k

}
k≥0 are mutually

independent.

10



Remark 2. Clearly, from (1) and the above model hypotheses, the processes{
z
(i)
k

}
k≥1, i = 1, . . . ,m, have zero mean and, taking into account the con-

ditional expectation properties, the following expressions for the covariance
matrices Σz(ij)

k,h ≡ E
[
z
(i)
k z

(j)T
h

]
and ΣHz(ij)

k,h ≡ E
[
H

(i)
k z

(i)
k z

(j)T
h H

(j)T
h

]
, i, j =

1, . . . ,m, are easily obtained:

Σz(ij)

k,h = E
[
C

(i)
k AkB

T
hC

(j)T
h

]
+R

(ij)
k δk,h, h ≤ k,

ΣHz(ij)

k,h = E
[
H

(i)
k Σz(ij)

k,h H
(j)T
h

]
, h ≤ k.

(4)

From the independence hypothesis, it is clear that, for j 6= i or h 6= k,

E
[
C

(i)
k AkB

T
hC

(j)T
h

]
= C

(i)

k AkB
T
hC

(j)T

h , E
[
H

(i)
k Σz(ij)

k,h H
(j)T
h

]
= H

(i)

k Σz(ij)

k,h H
(j)T

h ;

otherwise, the entries of E
[
C

(i)
k AkB

T
k C

(i)T
k

]
and E

[
H

(i)
k Σz(i)

k H
(i)T
k

]
are calcu-

lated by using the following general formula, in which Γ =
(
Γpq

)
∈ Rn1×n2

and P =
(
Ppq

)
∈ Rn2×n2 are random and deterministic matrices, respectively:

(
E[ΓPΓT ]

)
pq

=

n2∑
a,b=1

E[ΓpaΓqb]Pab, p, q = 1, . . . , n1.

3. Distributed fusion estimation problem

In Subsection 3.1, LS local signal estimators, x̂
(i)
k/L, L ≥ k, are obtained by

recursive algorithms and then, in Subsection 3.2, the distributed fusion signal
estimators, x̂

(D)
k/L, L ≥ k, are deduced as a matrix-weighted linear combination

of the local ones by applying the LS criterion.

3.1. Recursive algorithms for the local LS linear estimators

Our aim is to obtain recursive algorithms for the local LS linear filter
and fixed-point smoothers, by using an innovation approach. According to
such approach, an observation process is transformed into an equivalent one,
named innovation process, and the LS linear estimator, ζ̂k/L, of a random
vector ζk based on a set of observations {yh, 1 ≤ h ≤ L}, can be expressed
as a linear combination of the innovations {µh, 1 ≤ h ≤ L}, defined by µh =
yh − ŷh/h−1, as follows:

ζ̂k/L =
L∑

h=1

E[ζkµ
T
h ]
(
E
[
µhµ

T
h

])−1
µh, k ≥ 1; (5)
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consequently, the first key point is obtaining the innovation process.

Taking into account that the observations
{
z̆
(i)
k

}
k≥1 in (2) are influenced

by the sequentially correlated noises
{
η
(i)
k

}
k≥1 given in (3), we will work

with linear transformations of them adopting, as is usual in such cases, the
time-differencing approach [34].

3.1.1. Measurement differencing

To address the LS linear estimation problem of the signal, xk, from the ob-
servations with time-correlated measurement noise given in (2), z̆

(i)
1 , . . . , z̆

(i)
L ,

the measurement differencing approach is used to remove the noise η
(i)
k .

Namely, the transformed measurements are obtained as follows:

y
(i)
k = z̆

(i)
k −D

(i)
k−1z̆

(i)
k−1, k ≥ 2; y

(i)
1 = z̆

(i)
1 , i = 1, . . . ,m. (6)

Since the sets {y(i)1 , . . . , y
(i)
L } and {z̆(i)1 , . . . , z̆

(i)
L } can be obtained one from

the other by linear transformations, the LS linear estimator of xk based on
z̆
(i)
1 , . . . , z̆

(i)
L is just that based on y

(i)
1 , . . . , y

(i)
L .

Next, in order to look for an expression that allows us to obtain the
innovation µ

(i)
k = y

(i)
k − ŷ

(i)
k/k−1 –or, equivalently, the one-step observation

predictor ŷ
(i)
k/k−1– in a simple way, we will rewrite (6).

Substituting (1)-(3) into (6), and taking into account that H
(i)
k−1 and C

(i)
k−1

are correlated with y
(i)
k−1, expression (6) is rewritten as follows:

y
(i)
k = H

(i)
k C

(i)
k xk −D(i)

k−1H
(i)

k−1C
(i)

k−1xk−1 + V
(i)
k−1, k ≥ 2;

y
(i)
1 = H

(i)
1 z

(i)
1 +D

(i)
0 η

(i)
0 + ξ

(i)
0 ,

(7)

where

V
(i)
k = ξ

(i)
k −D

(i)
k

(
H

(i)
k C

(i)
k −H

(i)

k C
(i)

k

)
xk+H

(i)
k+1v

(i)
k+1−D

(i)
k H

(i)
k v

(i)
k , k ≥ 1. (8)

Note that the original observations (1)–(3) have been transformed into
the new observations (7) that do not depend on the time-correlated noise

{η(i)k }k≥1. To address the signal estimation problem from the observations
given by (7), it is necessary to know the first and second-order properties of
the involved processes, which are presented in the next lemma.
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Lemma 1. Under the model hypotheses, the following properties are satis-
fied:

(a) The observation processes
{
y
(i)
k

}
k≥1, i = 1, . . . ,m, given in (7), have

zero-mean and their covariance matrices, Σy(ij)

k ≡ E
[
y
(i)
k y

(j)T
k

]
, satisfy

Σy(ij)

k = ΣHz(ij)

k − ΣHz(ij)

k,k−1D
(j)T
k−1 −D

(i)
k−1Σ

Hz(ij)

k−1,k + S
(ij)
k−1

+D
(i)
k−1Σ

Hz(ij)

k−1 D
(j)T
k−1 , k ≥ 2;

Σy(ij)

1 = ΣHz(ij)

1 +D
(i)
0 Q

(ij)
0 D

(j)T
0 + S

(ij)
0 .

(9)

(b) The signal process
{
xk
}
k≥1 and the processes

{
y
(i)
k

}
k≥1, i = 1, . . . ,m,

are correlated and, for i = 1, . . . ,m, we have

E
[
xky

(i)T
h

]
=

{
AkΨ

(i)T
Bh

, h ≤ k,

BkΨ
(i)T
Ah

, h > k,
(10)

where Ψ
(i)
Gk

, for Gk = Ak, Bk, are given by

Ψ
(i)
Gk
≡ H

(i)

k C
(i)

k Gk −D(i)
k−1H

(i)

k−1C
(i)

k−1Gk−1, k ≥ 2;

Ψ
(i)
G1
≡ H

(i)

1 C
(i)

1 G1.
(11)

(c) The processes
{
V

(i)
k

}
k≥1, i = 1, . . . ,m, given in (8), satisfy E

[
V

(i)
k y

(j)T
h

]
=

V(ij)
k δk,h, for h ≤ k, where

V(ij)
k = D

(i)
k

(
H

(i)

k C
(i)

k AkB
T
k C

(j)T

k H
(j)T

k − ΣHz(ij)

k

)
, k ≥ 1. (12)

The matrices ΣHz(ij)

k,k−1 and ΣHz(ij)

k in (9) and (12) are given in (4).

Proof. See Appendix A. �

3.1.2. One-stage observation predictor: ŷ
(i)
k/k−1, i = 1, . . . ,m.

From (c) in Lemma 1, E[V
(i)
k ŷ

(i)T
h/h−1] = 0, for h < k, and E

[
V

(i)
k µ

(i)T
k

]
=

E
[
V

(i)
k y

(i)T
k

]
= V(i)

k ; then, using (5) and denoting Π
(i)
k = E

[
µ
(i)
k µ

(i)T
k

]
, it is

13



easy to see that V̂
(i)
k/k = V(i)

k Π
(i)−1
k µ

(i)
k , k ≥ 1, and, from (7) for y

(i)
k , according

to the projection theory, the one-stage observation predictor ŷ
(i)
k/k−1, satisfies:

ŷ
(i)
k/k−1 = H

(i)

k C
(i)

k x̂
(i)
k/k−1−Dk−1H

(i)

k−1C
(i)

k−1x̂
(i)
k−1/k−1+ V(i)

k−1Π
(i)−1
k−1 µ

(i)
k−1, k ≥ 2;

ŷ
(i)
1/0 = 0.

(13)
Hence, besides the last innovation, the one-stage predictor and the filter of
the signal are required.

Since from (5), the signal estimators are given by x̂
(i)
k/L =

L∑
h=1

X (i)
k,hΠ

(i)−1
h µ

(i)
h ,

with X (i)
k,h = E

[
xkµ

(i)T
h

]
, we proceed to calculate the required coefficients for

the predictor and filter, X (i)
k,h = E

[
xky

(i)T
h

]
− E

[
xkŷ

(i)T
h/h−1

]
, 1 ≤ h ≤ k.

Using expression (13) for ŷ
(i)
h/h−1, together with (5) for x̂

(i)
h/h−1 and x̂

(i)
h−1/h−1,

we have that

E
[
xkŷ

(i)T
h/h−1

]
=

h−1∑
j=1

X (i)
k,jΠ

(i)−1
j

(
H

(i)

h C
(i)

h X
(i)
h,j +D

(i)
h−1H

(i)

h−1C
(i)

h−1X
(i)
h−1,j

)T
−X (i)

k,h−1Π
(i)−1
h−1 V

(i)T
h−1 , 2 ≤ h ≤ k,

which, using (10) for E
[
xky

(i)T
h

]
, h ≤ k, guarantees that X (i)

k,h = AkJ
(i)
h , 1 ≤

h ≤ k, with J
(i)
h given by

J
(i)
h = Ψ

(i)T
Bh
−

h−1∑
j=1

J
(i)
j Π

(i)−1
j J

(i)T
j Ψ

(i)T
Ah
−J (i)

h−1Π
(i)−1
h−1 V

(i)T
h−1 , h ≥ 2; J

(i)
1 = Ψ

(i)T
B1

.

Then, by defining the vectors

O
(i)
L =

L∑
l=1

J
(i)
l Π

(i)−1
l µ

(i)
l , L ≥ 1, (14)

we have that the signal predictors and filter are given by x̂
(i)
k/L = AkO

(i)
L ,

L ≤ k, and, from (13), the following expression for the observation one-step
predictor is obtained:

ŷ
(i)
k/k−1 = Ψ

(i)
Ak
O

(i)
k−1 + V(i)

k−1Π
(i)−1
k−1 µ

(i)
k−1, k ≥ 2. (15)
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3.1.3. Local filtering and fixed-point smoothing algorithms

Recursive algorithm for the local LS linear filter, x̂
(i)
k/k, and smoothers,

x̂
(i)
k/k+N , at the fixed point k, for any N ≥ 1, are presented in the following

theorem. The proof, based on the above results, is deduced without much
difficulty, so the details are omitted here.

Theorem 1. Under hypotheses (H1)-(H7), for each i = 1, . . . ,m, the local

LS linear filtering estimators, x̂
(i)
k/k, and the corresponding error covariance

matrices, Σ
(i)
k/k ≡ E

[
(xk − x̂(i)k/k)(xk − x̂(i)k/k)T

]
, are given by

x̂
(i)
k/k = AkO

(i)
k , k ≥ 1,

Σ
(i)
k/k = Ak

(
Bk − Akr

(i)
k

)T
, k ≥ 1,

where

O
(i)
k = O

(i)
k−1 + J

(i)
k Π

(i)−1
k µ

(i)
k , k ≥ 1; O

(i)
0 = 0,

r
(i)
k = r

(i)
k−1 + J

(i)
k Π

(i)−1
k J

(i)T
k , k ≥ 1; r

(i)
0 = 0,

J
(i)
k = Ψ

(i)T
Bk
− r(i)k−1Ψ

(i)T
Ak
− J (i)

k−1Π
(i)−1
k−1 V

(i)T
k−1 , k ≥ 2; J

(i)
1 = Ψ

(i)T
B1

.

The innovations, µ
(i)
k , and their covariance matrices, Π

(i)
k = E

[
µ
(i)
k µ

(i)T
k

]
, are

obtained by

µ
(i)
k = y

(i)
k −Ψ

(i)
Ak
O

(i)
k−1 − V

(i)
k−1Π

(i)−1
k−1 µ

(i)
k−1, k ≥ 2; µ

(i)
1 = y

(i)
1 ,

Π
(i)
k = Σy(i)

k −Ψ
(i)
Ak

(Ψ
(i)T
Bk
− J (i)

k )− V(i)
k−1Π

(i)−1
k−1

(
Ψ

(i)
Ak
J
(i)
k−1 + V(i)

k−1

)T
, k ≥ 2;

Π
(i)
1 = Σy(i)

1 ,

where y
(i)
k , Σy(i)

k , Ψ
(i)
Ak

, Ψ
(i)
Bk

and V(i)
k are given in (6), (9), (11) and (12),

respectively.

Moreover, at any sampling time k ≥ 1, by starting from the filter, x̂
(i)
k/k,

and its error covariance matrix, Σ
(i)
k/k, the local LS linear smoothers, x̂

(i)
k/k+N ,

and their error covariances, Σ
(i)
k/k+N ≡ E

[
(xk − x̂(i)k/k+N)(xk − x̂(i)k/k+N)T

]
, are

recursively calculated as follows:

x̂
(i)
k/k+N = x̂

(i)
k/k+N−1 + X (i)

k,k+NΠ
(i)−1
k+N µ

(i)
k+N , N ≥ 1,

Σ
(i)
k/k+N = Σ

(i)
k/k+N−1 −X

(i)
k,k+NΠ

(i)−1
k+N X

(i)T
k,k+N , N ≥ 1,

15



where

X (i)
k,k+N =

(
Bk − E(i)

k,k+N−1
)
Ψ

(i)T
Ak+N

−X (i)
k,k+N−1Π

(i)−1
k+N−1V

(i)T
k+N−1, N ≥ 1;

X (i)
k,k = AkJ

(i)
k ,

and E
(i)
k,k+N ≡ E[x̂

(i)
k/k+NO

(i)
k+N ] is given by

E
(i)
k,k+N = E

(i)
k,k+N−1 + X (i)

k,k+NΠ
(i)−1
k+h J

(i)T
k+N , N ≥ 1; E

(i)
k,k = Akr

(i)
k .

�

Remark 3. The simultaneous consideration of random parameter matrices
to model the uncertainties in both the sensor measured outputs and the trans-
missions, as well as the presence of sequentially time-correlated noises in the
transmission channels, entail some difficulties. They are mainly related to the
choice of expression (7), which describes the measurements transformed by

differentiation, y
(i)
k , and allows us to obtain the one-step observation predic-

tor ŷ
(i)
k/k−1 and, consequently, the innovation, µ

(i)
k = y

(i)
k − ŷ

(i)
k/k−1, in a simple

way. Actually, expression (7) has been the starting point for the derivation
of the local algorithms presented in Theorem 1 and it will be also essential
to obtain the proposed distributed and centralized algorithms in the following
sections.

3.2. Distributed LS fusion linear estimators

The aim of this section is to derive distributed fusion estimators x̂
(D)
k/k+N ,

k ≥ 1, N ≥ 0, as matrix-weighted linear combinations of the correspond-
ing local estimators, x̂

(i)
k/k+N , i = 1, . . . ,m, where the weight matrices are

computed by minimizing the mean squared estimation error. These estima-
tors require the cross-covariance matrices between any two local estimators,
K

(ij)
k/k+N ≡ E[x̂

(i)
k/k+N x̂

(j)T
k/k+N ], which are recursively obtained as shown below

by starting from those of the filters, K
(ij)
k/k .

The algorithms to obtain K
(ij)
k/k , k ≥ 1, and K

(ij)
k/k+N , N ≥ 1, for fixed

k ≥ 1, are presented in theorems 2 and 3, respectively, and the distributed
fusion estimators x̂

(D)
k/k+N , k ≥ 1, N ≥ 0, are given in Theorem 4. The

assumptions and notation in these theorems are the same as those of the
previous sections.
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Theorem 2. For i, j = 1, . . . ,m, the cross-covariance matrices between any
two local filters, K

(ij)
k/k = E

[
x̂
(i)
k/kx̂

(j)T
k/k

]
, are given by

K
(ij)
k/k = Akr

(ij)
k AT

k , k ≥ 1, (16)

where r
(ij)
k ≡ E

[
O

(i)
k O

(j)T
k

]
are obtained from the following algorithm, in

which J
(ij)
h,k ≡ E[O

(i)
h µ

(j)T
k ] and Π

(ij)
h,k ≡ E[µ

(i)
h µ

(j)T
k ], for h = k − 1, k:

r
(ij)
k = r

(ij)
k−1 + J

(ij)
k−1,kΠ

(j)−1
k J

(j)T
k + J

(i)
k Π

(i)−1
k J

(ji)T
k , k ≥ 1; r

(ij)
0 = 0, (17)

J
(ij)
k = J

(ij)
k−1,k + J

(i)
k Π

(i)−1
k Π

(ij)
k , k ≥ 1, (18)

J
(ij)
k−1,k =

(
r
(i)
k−1 − r

(ij)
k−1
)
Ψ

(j)T
Ak

+ J
(i)
k−1Π

(i)−1
k−1 V

(ji)T
k−1 − J

(ij)
k−1Π

(j)−1
k−1 V

(j)T
k−1 , k ≥ 2;

J
(ij)
0,1 = 0,

(19)

Π
(ij)
k = Σy(ij)

k −Ψ
(i)
Ak

(
r
(j)
k−1Ψ

(j)T
Ak

+ J
(j)
k−1Π

(j)−1
k−1 V

(j)T
k−1 + J

(ij)
k−1,k

)
−V(ij)

k−1Π
(j)−1
k−1

(
Ψ

(j)
Ak
J
(j)
k−1 + V(j)

k−1
)T− V(i)

k−1Π
(i)−1
k−1 Π

(ij)
k−1,k, k ≥ 2;

Π
(ij)
1 = Σy(ij)

1 ,

(20)

Π
(ij)
k−1,k =

(
J
(i)
k−1 − J

(ji)
k−1
)T

Ψ
(j)T
Ak

+ V(ji)T
k−1 − Π

(ij)
k−1Π

(j)−1
k−1 V

(j)T
k−1 , k ≥ 2. (21)

Proof. See Appendix B. �

Theorem 3. For i, j = 1, . . . ,m, and fixed k ≥ 1, the cross-covariance
matrices between any two local smoothers, K

(ij)
k/k+N = E

[
x̂
(i)
k/k+N x̂

(j)T
k/k+N

]
, are

obtained by

K
(ij)
k/k+N = K

(ij)
k/k+N−1 + Φ

(ij)
k,k+NΠ

(j)−1
k+N X

(j)T
k,k+N

+X (i)
k,k+NΠ

(i)−1
k+N

(
Φ

(ji)
k,k+N + X (j)

k,k+NΠ
(j)−1
k+N Π

(ji)
k+N

)T
, N ≥ 1,

(22)

where the initial condition, K
(ij)
k/k , is given in Theorem 2 and the matrices

Φ
(ij)
k,k+N ≡ E

[
x̂
(i)
k/k+N−1µ

(j)T
k+N

]
are calculated as follows:

Φ
(ij)
k,k+N =

(
E

(i)
k,k+N−1 − E

(ij)
k,k+N−1

)
Ψ

(j)T
Ak+N

+ X (i)
k,k+N−1Π

(i)−1
k+N−1V

(ji)T
k+N−1

−
(
X (i)

k,k+N−1Π
(i)−1
k+N−1Π

(ij)
k+N−1 + Φ

(ij)
k,k+N−1

)
Π

(j)−1
k+N−1V

(j)T
k+N−1, N ≥ 1;

Φ
(ij)
k = AkJ

(ij)
k−1,k,

(23)
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with E
(ij)
k,k+N ≡ E

[
x̂
(i)
k/k+NO

(j)T
k+N

]
given by

E
(ij)
k,k+N = E

(ij)
k,k+N−1 + Φ

(ij)
k,k+NΠ

(j)−1
k+N J

(j)T
k+N

+ X (i)
k,k+NΠ

(i)−1
k+N

(
J
(ji)
k+N−1,k+N + J

(j)
k+NΠ

(j)−1
k+N Π

(ji)
k+N

)T
, N ≥ 1;

E
(ij)
k = Akr

(ij)
k .

(24)

Proof. See Appendix C. �

Remark 4. Since, from the Orthogonal Projection Lemma (OPL), J
(i)
k−1,k =

0 and Π
(i)
k−1,k = 0, it is easy to verify that expressions (17)-(21) in Theorem

2 are consistent with their homologous ones in the single-sensor case. Con-
sequently, the recursive formula (23) leads to Φ

(i)
k,k+N = 0 for N ≥ 0, as it

is directly derived from the OPL, and (24) is also consistent with formula of

E
(i)
k,k+N given in Theorem 1. So, for j = i, expressions (16) and (22) for the

covariances K
(i)
k/k+N = E

[
x̂
(i)
k/k+N x̂

(i)T
k/k+N

]
, N ≥ 0, are reduced to

K
(i)
k/k+N = K

(i)
k/k+N−1 + X (i)

k,k+NΠ
(i)−1
k+N X

(i)T
k,k+N , N ≥ 1,

K
(i)
k/k = Akr

(i)
k A

T
k ,

with r
(i)
k , Π

(i)
k+N and X (i)

k,k+N given in Theorem 1.

Once the local LS linear estimators and their cross-covariance matrices
have been calculated, in the following theorem the distributed fusion estima-
tors are designed as the matrix-weighted linear combination of the local ones
that minimizes the mean squared error.

Theorem 4. From the local estimators x̂
(i)
k/k+N , i = 1, . . . ,m, calculated by

the algorithm in Theorem 1, and their cross-covariance matrices, K
(ij)
k/k+N ,

given in theorems 2 and 3, the distributed filtering and smoothing estimators
are given by

x̂
(D)
k/k+N = Ξk/k+N

(
Kk/k+N

)−1
X̂k/k+N , k ≥ 1, N ≥ 0,

where X̂k/k+N =
(
x̂
(1)T
k/k+N , . . . , x̂

(m)T
k/k+N

)T
, Kk/k+N =

(
K

(ij)
k/k+N

)
i,j=1,...,m

and

Ξk/k+N =
(
K

(1)
k/k+N , . . . , K

(m)
k/k+N

)
.
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The error covariance matrices of the distributed estimators are given by

Σ
(D)
k/k+N = AkB

T
k −Ξk/k+NK

−1
k/k+NΞT

k/k+N , k ≥ 1, N ≥ 0.

Proof. This proof is standard and it can be seen in [17]. �

4. Centralized fusion estimators

This section is concerned with the design of recursive LS linear filtering
and fixed-point smoothing algorithms under the centralized fusion approach;
namely, our aim is to obtain recursive algorithms for the LS linear estimators
of xk based on the observations {y(i)1 , . . . , y

(i)
k+N , N ≥ 0, i = 1, . . . ,m}. Such

estimators will be denoted by x̂
(C)
k/k+N . To address this problem, in which the

observations of the different sensors are jointly processed at each sampling
time, the following vectors and matrices are defined:

zk=

 z
(1)
k
...

z
(m)
k

 , vk=

 v
(1)
k
...

v
(m)
k

 , ξk=

 ξ
(1)
k
...

ξ
(m)
k

 , η0=

 η
(1)
0
...

η
(m)
0

 , Ck=

 C
(1)
k
...

C
(m)
k

 ,

yk=

 y
(1)
k
...

y
(m)
k

 , Hk=

H
(1)
k · · · 0
...

. . .
...

0 · · · H
(m)
k

 , Dk=

D
(1)
k · · · 0
...

. . .
...

0 · · · D
(m)
k

 .

Then, denoting Hk ≡ E[Hk] and Ck ≡ E[Ck], we obtain the following
stacked version of the observation model (7) and (8):

yk = HkCkxk −Dk−1Hk−1Ck−1xk−1 + Vk−1, k ≥ 2;
y1 = H1z1 +D0η0 + ξ0,
Vk = ξk −Dk

(
HkCk −HkCk

)
xk +Hk+1vk+1 −DkHkvk, k ≥ 1.

(25)

From hypotheses (H2)-(H7), the following properties of the processes
involved in (25) are easily inferred:

• {Hk}k≥1 and {Ck}k≥1 are sequences of independent random matrices with
known means, Hk and Ck, k ≥ 1.

• {vk}k≥1 and {ξk}k≥0 are zero-mean noise processes with E[vkv
T
s ] = Rkδk,s

and E[ξkξ
T
s ] = Skδk,s, with Rk =

(
R

(ij)
k

)
i,j=1,...,m

and Sk =
(
S
(ij)
k

)
i,j=1,...,m

,

respectively.
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• η0 is a zero-mean random vector with E[η0η
T
0 ] = Q0 =

(
Q

(ij)
0

)
i,j=1,...,m

.

• The signal process {xk}k≥1, the vector η0 and the processes {Hk}k≥1,
{Ck}k≥1, {vk}k≥1 and {ξk}k≥0 are mutually independent.

Equation (25) and the above properties on the involved processes yield
LS linear filtering and fixed-point smoothing algorithms based on the stacked
observations, {yk}k≥1, whose structure is similar to that of the local ones
given in Theorem 1. Therefore, we will just indicate the computational
procedure to obtain the centralized estimators, which is also valid for the
local ones.

Computational procedure. The computational procedure of the proposed
centralized fusion estimators is summarized as follows:

1) Previous matrices. From the matrices Σy(ij)

k , Ψ
(i)
Ak
, Ψ

(i)
Bk

and V(ij)
k , given

in (9)-(12), we obtain Σy
k =

(
Σy(ij)

k

)
i,j=1,...,m

, ΨGk
=
(
Ψ

(1)T
Gk

, . . . ,Ψ
(m)T
Gk

)T
,

for Gk = Ak, Bk, and Vk =
(
V(ij)
k

)
i,j=1,...,m

. These matrices are obtained

from the model hypotheses and, hence, they can be calculated before the
observations are available.

2) Centralized filtering recursive algorithm.

2a) Initial conditions:

∗ Compute J1 = ΨT
B1

, Π1 = Σy
1 and r1 = J1Π

−1
1 JT

1 ; then, the error

covariance matrix, Σ
(C)
1/1 = A1

(
B1 − A1r1

)T
, is obtained.

∗ When y1 =
(
z̆
(1)T
1 , . . . , z̆

(m)T
1

)T
is available, we get the innovation,

µ1 = y1; we calculate O1 = J1Π
−1
1 µ1 and, then, the centralized filter

x̂
(C)
1/1 = A1O1 is obtained.

2b) At any sampling time k ≥ 2, starting with the prior knowledge of the
(k − 1)-th iteration, which provides Jk−1, Πk−1, rk−1, µk−1 and Ok−1,
the proposed centralized filtering algorithm operates as follows:

∗ Compute Jk = ΨT
Bk
− rk−1ΨT

Ak
− Jk−1Π−1k−1VT

k−1 and, from it,

Πk = Σy
k −ΨAk

(ΨT
Bk
− Jk)− Vk−1Π−1k−1 (ΨAk

Jk−1 + Vk−1)T .

Then, we calculate rk = rk−1 + JkΠ−1k JT
k and, from it, the error

covariance matrix, Σ
(C)
k/k = Ak

(
Bk − Akrk

)T
is obtained.
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∗ When the new measurement z̆k =
(
z̆
(1)T
k , . . . , z̆

(m)T
k

)T
is available,

we get yk = z̆k −Dk−1z̆k−1, and the innovation is calculated by

µk = yk −ΨAk
Ok−1 − Vk−1Π−1k−1µk−1.

Finally, Ok = Ok−1+JkΠ−1k µk is computed and the centralized filter,

x̂
(C)
k/k = AkOk, is obtained.

3) Centralized fixed-point smoothing recursive algorithm.

3a) Initial conditions: For each fixed sampling point, k ≥ 1, the initial

conditions of the smoothing algorithm are the centralized filter, x̂
(C)
k/k =

AkOk, the filtering error covariance matrix, Σ
(C)
k/k = Ak

(
Bk − Akrk

)T
,

and Xk,k = AkJk, Ek,k = Akrk.

3b) At the sampling time k+N , with N = 1, 2, . . . , run the filtering algo-
rithm until time k + N ; then, by starting with the initial conditions,
the proposed centralized smoothing algorithm operates as follows:

∗ For each fixed k ≥ 1 and N = 1, 2, . . . , compute

Xk,k+N =
(
Bk − Ek,k+N−1

)
ΨT

Ak+N
−Xk,k+N−1Π

−1
k+N−1V

T
k+N−1

and, from it, the smoother, x̂
(C)
k/k+N , and its error covariance matrix,

Σ
(C)
k/k+N , are obtained by

x̂
(C)
k/k+N = x̂

(C)
k/k+N−1 + Xk,k+NΠ−1k+Nµk+N ,

Σ
(C)
k/k+N = Σ

(C)
k/k+N−1 −Xk,k+NΠ−1k+NX T

k,k+N .

∗ For the next step, Ek,k+N = Ek,k+N−1 + Xk,k+NΠ−1k+hJ
T
k+N is then

calculated.

5. Numerical simulation example

In this section, the applicability of the filtering and fixed-point algorithms
proposed in the current paper is illustrated by a simulation example. Con-
sider the following target tracking system [5]:

xk+1 =
(
F1 + εkF2

)
xk + Υwk, k ≥ 1,
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where F1 =

(
0.95 0.01

0 0.95

)
, F2 =

(
0.01 0

0 0.01

)
and Υ =

(
0.8
0.6

)
. The se-

quences {εk}k≥1 and {wk}k≥1 are standard white gaussian scalar noises, and
the initial signal x0 is an standard gaussian two-dimensional random vector.
The first and second component of xk are the position and velocity of the
target, respectively.

Assuming that the initial signal, x0, and the sequences {εk}k≥1 and
{wk}k≥1 are mutually independent, the signal covariance function is given
by E[xkx

T
s ] = F k−s

1 E[xsx
T
s ], s ≤ k, where E[xsx

T
s ] is recursively obtained

by:

E[xsx
T
s ] = F1E[xs−1x

T
s−1]F

T
1 + F2E[xs−1x

T
s−1]F

T
2 + ΥΥT , s ≥ 1,

with E[x0x
T
0 ] = I2×2; hence, assumption (H1) is satisfied just taking Ak = F k

1

and BT
s = F−s1 E[xsx

T
s ].

Let us consider that this target is measured by four sensors, whose mea-
sured outputs, z

(i)
k , k ≥ 1, i = 1, 2, 3, 4, are expressed by model (1) with

C
(1)
k = β

(1)
k (0.74, 0.75), C

(2)
k = β

(2)
k (0.75, 0.70), C

(3)
k = β

(3)
k (0.80, 0.75)

and C
(4)
k = β

(4)
k (0.84, 0.85), where {β(i)

k }k≥1, i = 1, 2, 3, 4, are mutually
independent white processes with the following time-invariant probability
distributions:

• β(i)
k , i = 1, 4, are uniformly distributed over [0.2, 0.8] and [0.3, 0.9], respec-

tively.

• P [β
(2)
k = 0.9] = 0.8, P [β

(2)
k = 0.1] = 0.2.

• β(3)
k are Bernoulli random variables with P [β

(3)
k = 1] = β.

According to these probability distributions, the random coefficients C
(i)
k ,

i = 1, 2, 3, 4, model continuous gain degradation in sensors 1 and 4, discrete
gain degradation in sensor 2 and missing measurements in sensor 3.

The additive noise processes {v(i)k }k≥1, i = 1, 2, 3, 4, are defined by v
(i)
k =

ciρk, i = 1, 2, 3, 4, where c1 = c3 = 0.5, c2 = c4 = 0.75 and {ρk}k≥1 is a
zero-mean gaussian white process with variance 0.5.

After the transmission, the received information can be expressed by the
model (2)-(3) assuming the following characteristics [19]:
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• For i = 1, 2, 3, H
(i)
k = λ

(i)
k and H

(4)
k = λ

(4)
k

(
1 + 0.95θk

)
, where {θk}k≥1 is a

standard gaussian white process, the sequences {θk}k≥1 and {λ(i)k }k≥1, i =

1, 2, 3, 4, are mutually independent, and {λ(i)k }k≥1, i = 1, 2, 3, 4, are white
processes with the following time-invariant probability distributions:

– λ
(1)
k is uniformly distributed over [0.1, 0.9].

– P [λ
(2)
k = 0] = 0.3, P [λ

(2)
k = 0.5] = 0.3, P [λ

(2)
k = 1] = 0.4.

– For i = 3, 4, λ
(i)
k are Bernoulli random variables with P [λ

(i)
k = 1] = λ.

Consequently, the random coefficients H
(i)
k , i = 1, 2, 3, 4, model contin-

uous and discrete gain degradation in transmissions from sensors 1 and
2, respectively, missing measurements in transmissions from sensor 3, and
both missing measurements and multiplicative noise in transmissions from
sensor 4.

• The noise processes {η(i)k }k≥1, i = 1, 2, 3, 4, are defined by η
(i)
k = D(i)η

(i)
k−1+

ξ
(i)
k−1, with D(1) = D(3) = 0.95, D(2) = D(4) = 0.75, and {ξ(i)k }k≥0 are

defined by ξ
(i)
k = aiξk, with a1 = a3 = 0.75, a2 = a4 = 1.25, with {ξk}k≥0

a zero-mean Gaussian white process with variance 1.5. Finally, for i =
1, 2, 3, 4, η

(i)
0 = η0, where η0 is an standard gaussian variable.

First, to compare the effectiveness of the proposed distributed and cen-
tralized filtering and fixed-point smoothing estimators, one hundred itera-
tions of the respective algorithms have been performed, considering constant
values of the probabilities β = 0.5 and λ = 0.5. Figure 1 displays the lo-
cal filtering error variances and the distributed and centralized filtering and
fixed-point smoothing error variances of the first and second signal compo-
nents. For each signal component, this figure shows, on the one hand, that
the error variances of the distributed fusion filtering estimators are lower
than those of every local estimator, but greater than those of the centralized
ones. On the other hand, it is observed that the error variances correspond-
ing to the smoothers are less than those of the filters. Also, it is deduced that
the smoothers at each fixed-point k become more accurate as the number of
available observations, k+N , increases; this fact is more evident in the case
of the centralized smoothers, since for the distributed ones the difference is
practically negligible for N ≥ 2.
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Figure 1: Error variance comparison of the local, distributed and centralized estimators.
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Figure 2: First signal component error variances for the distributed and centralized esti-
mators when λ = 0.9 and β = 0.3, 0.5, 0.7, 0.9.

Next, in order to show the effect of the missing measurements phe-
nomenon in sensor 3, the distributed and centralized estimation error vari-
ances of the first signal component are plotted in Figure 2 for different values
of the probability β. It can be seen that the performance of the estimators is
indeed influenced by this probability and, as expected, the estimation error
variances decrease as the probability β increases; hence, the performance of
both, the distributed and centralized estimators, improves when 1 − β, the
probability of missing measurements, decreases. Also, as in Figure 1, this
figure shows that the error variances corresponding to the smoothers are less
than those of the filters and the smoother with lag N = 2 is better than that
with N = 1. Similar results and, therefore, the same conclusions are inferred
for the second signal component.

Finally, in order to show how the estimation accuracy is influenced by
the effect of missing measurements in the transmissions of the sensors 3 and
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Figure 3: Second signal component error variances for the distributed and centralized
estimators when β = 0.9 and λ = 0.3, 0.5, 0.6, 0.7, 0.8, 0.9.

4, the distributed and centralized filtering and smoothing error variances of
the second signal component are displayed in Figure 3 for different values
of the probability λ. As in Figure 2, it is observed that the distributed and
centralized error variances become smaller as the probability λ increases,
which means that the performance of both estimators improves when the
missing probability 1 − λ decreases. This fact was expected, since more
information is available when the probability λ is greater and, therefore, the
accuracy of the estimators is improved for higher values of such probability
λ. Similar results and, consequently, the same conclusions are obtained for
the first signal component.

6. Conclusions

In this paper, the LS linear fusion filtering and fixed-point smoothing
problems have been considered under the distributed and centralized fusion
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schemes, for a class of discrete-time networked systems with random pa-
rameter matrices and time-correlated channel noise. More precisely, random
measurement matrices have been considered in the sensor output model and
also in the data available after the transmission from the sensors to the pro-
cessing center where the estimation is carried out. Hence, the proposed model
provides a general framework to deal with network-induced uncertainties in
both the sensor measurements and the transmission channels. The additive
channel noise is assumed to obey a dynamic linear equation perturbed by
white noise and, as is usual in such cases, the time-differencing methodol-
ogy has been applied to linearly transform the available measurements with
time-correlated noise into new ones that do not depend on the time-correlated
noise. Taking into account that the LS linear estimator of the signal based
on the original measurements is equal to the LS linear estimator based on the
new ones, the estimation problem has been reformulated as that of obtaining
recursive algorithms for the distributed and centralized fusion estimators of
the signal based on the transformed measurements, for which an innovation-
based methodology has been adopted. Finally, a computer simulation ex-
ample has shown that the proposed estimation algorithms are suitable for
practical implementation and cover a great variety of engineering problems
that fit in the system model under consideration, with multiple uncertainties
in both the sensor measurements and the transmission, such as continuous
and discrete gain degradation, missing measurements or multiplicative noise.
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Appendix A. Proof of Lemma 1

By substituting (2) with (3) into (6), y
(i)
k is rewritten as follows:

y
(i)
k = H

(i)
k z

(i)
k −D

(i)
k−1H

(i)
k−1z

(i)
k−1 + ξ

(i)
k−1, k ≥ 2;

y
(i)
1 = H

(i)
1 z

(i)
1 +D

(i)
0 η

(i)
0 + ξ

(i)
0 .

(26)

From this expression, the following statements are deduced:
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(a) Clearly,
{
y
(i)
k

}
k≥1, i = 1, . . . ,m, are zero-mean processes and from (26)

it is evident that Σy(ij)

k satisfy (9).

(b) Substituting (1) into (26) and using the independence hypotheses we have

E
[
xky

(i)T
h

]
= E[xkx

T
h ]C

(i)T

h H
(i)T

h − E[xkx
T
h−1]C

(i)T

h−1H
(i)T

h−1D
(i)T
h−1, h ≥ 2;

E
[
xky

(i)T
1

]
= E[xkx

T
1 ]C

(i)T

1 H
(i)T

1 ,

and the separable form of the signal covariance (H1) leads to (10).

(c) Using again (26) for y
(j)
h , the model hypotheses easily lead to E

[
V

(i)
k y

(j)T
h

]
=

0, for h < k, and V(ij)
k = E

[
V

(i)
k y

(j)T
k

]
= E[V

(i)
k z

(j)T
k H

(j)T
k ]. Then, just

replacing V
(i)
k by (8), we obtain

V(ij)
k = −D(i)

k E
[(
H

(i)
k z

(i)
k −H

(i)

k C
(i)

k xk
)
z
(j)T
k H

(j)T
k

]
,

thus proving expression (12), since E
[
xkz

(j)T
k H

(j)T
k

]
= AkB

T
k C

(j)

k H
(j)

k .

�

Appendix B. Proof of Theorem 2

From the expression of the filters and the recursive expression of the
vectors O

(i)
k in Theorem 1, (16)-(18) are easily obtained.

• To obtain (19) for J
(ij)
k−1,k = E

[
O

(i)
k−1y

(j)T
k

]
−E

[
O

(i)
k−1ŷ

(j)T
k/k−1

]
, firstly we use

(15) for ŷ
(j)
k/k−1, which leads to

J
(ij)
k−1,k = E

[
O

(i)
k−1y

(j)T
k

]
− r(ij)k−1Ψ

(j)T
Ak
− J (ij)

k−1Π
(j)−1
k−1 V

(j)T
k−1 .

Next, using (7) for y
(j)
k , expressing E

[
O

(i)
k−1x

T
h

]
= E

[
O

(i)
k−1x̂

(i)T
h/k−1

]
by the

OPL and writing x̂
(i)
h/k−1 = AhO

(i)
k−1, h = k, k − 1, we obtain

E
[
O

(i)
k−1y

(j)T
k

]
= r

(i)
k−1Ψ

(j)T
Ak

+ E
[
O

(i)
k−1V

(j)T
k−1

]
.

Finally, from definition (14) forO
(i)
k−1 and (c) in Lemma 1, E

[
O

(i)
k−1V

(j)T
k−1

]
=

J
(i)
k−1Π

(i)−1
k−1 V

(ji)T
k−1 and (19) is proven.
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• To obtain (20), starting from Π
(ij)
k = Σy(ij)

k −E
[
y
(i)
k ŷ

(j)T
k/k−1

]
−E
[
ŷ
(i)
k/k−1µ

(j)T
k

]
,

firstly we use (7) for y
(i)
k and we reason as in the previous item to obtain

E
[
y
(i)
k ŷ

(j)T
k/k−1

]
= Ψ

(i)
Ak
E[O

(j)
k−1ŷ

(j)T
k/k−1] + V(ij)

k−1Π
(j)−1
k−1 E[µ

(j)
k−1ŷ

(j)T
k/k−1].

Then, from (15) for ŷ
(j)
k/k−1 and ŷ

(i)
k/k−1:

E
[
y
(i)
k ŷ

(j)T
k/k−1

]
= Ψ

(i)
Ak

(
r
(j)
k−1Ψ

(j)T
Ak

+ J
(j)
k−1Π

(j)−1
k−1 V

(j)T
k−1

)
+V(ij)

k−1Π
(j)−1
k−1

(
Ψ

(j)
Ak
J
(j)
k−1 + V(j)

k−1
)T
,

E[ŷ
(i)
k/k−1µ

(j)
k ] = Ψ

(i)
Ak
J
(ij)
k−1,k + V(i)

k−1Π
(i)−1
k−1 Π

(ij)
k−1,k,

and expression (20) for Π
(ij)
k is obtained.

• Finally, (21) is proven just expressing Π
(ij)
k−1,k = E

[
µ
(i)
k−1y

(j)T
k

]
−E
[
µ
(i)
k−1ŷ

(j)T
k/k−1

]
and adopting a similar reasoning using (7) for y

(j)
k and (15) for ŷ

(j)
k/k−1,

which leads to

E
[
µ
(i)
k−1y

(j)T
k

]
= J

(i)T
k−1Ψ

(j)T
Ak

+ V(ji)T
k−1 ,

E
[
µ
(i)
k−1ŷ

(j)T
k/k−1

]
= J

(ji)T
k−1 Ψ

(j)T
Ak

+ Π
(ij)
k−1Π

(j)−1
k−1 V

(j)T
k−1 .

From these expectations, expression (21) is straightforward.

�

Appendix C. Proof of Theorem 3

Using the expressions of the local smoothers, x̂
(i)
k/k+N , i = 1 . . . ,m, given in

Theorem 1, the recursive expression (22) for the cross-covariance matrices
between any two local smoothers, is immediately deduced. To derive (23)

for Φ
(ij)
k,k+N = E

[
x̂
(i)
k/k+N−1y

(j)T
k+N

]
− E

[
x̂
(i)
k/k+N−1ŷ

(j)T
k+N/k+N−1

]
we use (15) for

ŷ
(j)
k+N/k+N−1 and definition of E

(ij)
k,k+N to obtain:

Φ
(ij)
k,k+N = E

[
x̂
(i)
k/k+N−1y

(j)T
k+N

]
− E(ij)

k,k+N−1Ψ
(j)T
Ak+N

− E
[
x̂
(i)
k/k+N−1µ

(j)T
k+N−1

]
Π

(j)−1
k+N−1V

(j)T
k+N−1.

29



• The first expectation in the above expression is obtained as in Appendix
B, using (7) for y

(j)
k+N , the OPL and the expression of the predictor and

the filter, x̂
(i)
h/k+N−1 = AhO

(i)
k+N−1, h = k +N, k +N − 1; namely:

E
[
x̂
(i)
k/k+N−1y

(j)T
k+N

]
= E

(i)
k,k+N−1Ψ

(j)T
Ak+N

+ X (i)
k,k+N−1Π

(i)−1
k+N−1V

(ji)T
k+N−1.

• For the second expectation, we use again the recursive expression of the
smoothers, x̂

(i)
k/k+N−1 = x̂

(i)
k/k+N−2 + X (i)

k,k+N−1Π
(i)−1
k+N−1µ

(i)
k+N−1, and then:

E
[
x̂
(i)
k/k+N−1µ

(j)T
k+N−1

]
= Φ

(ij)
k,k+N−1 + X (i)

k,k+N−1Π
(i)−1
k+N−1Π

(ij)
k+N−1.

Substituting these expectations, expression (23) is immediately derived, and

the initial condition, Φ
(ij)
k = AkJ

(ij)
k−1,k, is clear from x̂

(i)
k/k−1 = AkOk−1 and

definition of J
(ij)
k−1,k.

Finally, expression (24) for E
(ij)
k,k+N is straightforward from the recursive

expressions of the smoothers, x̂
(i)
k/k+N , and vectors O

(j)
k+N , given in Theorem

1. Its initial condition, E
(ij)
k = Akr

(ij)
k , is also clear from x̂

(i)
k/k = AkOk and

the definition of r
(ij)
k .
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