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Abstract: Due to its great importance in several applied and theoretical fields, the signal estimation
problem in multisensor systems has grown into a significant research area. Networked systems are
known to suffer random flaws, which, if not appropriately addressed, can deteriorate the performance
of the estimators substantially. Thus, the development of estimation algorithms accounting for these
random phenomena has received a lot of research attention. In this paper, the centralized fusion linear
estimation problem is discussed under the assumption that the sensor measurements are affected
by random parameter matrices, perturbed by time-correlated additive noises, exposed to random
deception attacks and subject to random packet dropouts during transmission. A covariance-based
methodology and two compensation strategies based on measurement prediction are used to design
recursive filtering and fixed-point smoothing algorithms. The measurement differencing method—
typically used to deal with the measurement noise time-correlation—is unsuccessful for these kinds of
systems with packet losses because some sensor measurements are randomly lost and, consequently,
cannot be processed. Therefore, we adopt an alternative approach based on the direct estimation of
the measurement noises and the innovation technique. The two proposed compensation scenarios
are contrasted through a simulation example, in which the effect of the different uncertainties on the
estimation accuracy is also evaluated.

Keywords: centralized fusion estimation; random parameter matrices; time-correlated noise;
deception attacks; packet dropouts

1. Introduction

As a fundamental topic in the fields of control and signal processing, the estimation
problem in networked systems has attracted great research attention in recent years. The
presence of different uncertainty sources—errors in the measurement devices, limitations
in transmission processes or vulnerability of the network, among others—often causes
certain limitations, such as lack of signal information (commonly referred to as uncertain or
missing observations), fading measurements or transmission delays and packet dropouts,
which are usually random in nature. The performance of the estimators proposed in conven-
tional systems can significantly degrade due to these constraints, which typically result in
random imperfections in the data available for estimation. As a result, new problems arise
when studying the estimation problem in multisensor systems with networked-induced
phenomena. A comprehensive review of the main results and new challenges related to
this problem can be found in [1–4].
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Some of the aforementioned networked-induced phenomena that occur in a great
variety of application fields—e.g., digital control of chemical processes, radar control, navi-
gation systems and economic systems—can be modeled by including stochastic parameters
in the measurement equations. Consequently, the use of random parameter matrices in
the mathematical model of the sensor measurements offers a unified framework for de-
scribing such random events. Systems with multiplicative noises are a specific example
of systems with random measurement matrices and are of tremendous interest due to
their applicability in various areas of communication, image processing, etc. Systems with
uncertain observations or sensor gain degradation serve as another example. In addition,
networked systems with random delays can be transformed into systems with random
matrices. These facts, among others, explain why research on the estimation problem in
these kinds of systems with random parameter matrices have become increasingly popular
over the past years. For some representative contributions, see, for example, [5–10] and
references therein.

Over the last few decades, the research on the estimation problem in networked sys-
tems with packet dropouts has been considerably reported. Random packet losses during
the process of data transmission can be caused by congestion-related buffer overflows,
transmission failures in the physical network links or long transmission delays that cause
the discarding of outdated packets, among other reasons. A major topic in this kind of
systems is how to compensate the data packets that are lost. The most popular compensa-
tion strategies are the zero-input mechanism and the hold-input mechanism, under which
the filter input is either set to zero or it is held at the most recent data that were received,
respectively, when the current data are lost [11–14]. In [15], a packet dropout compensation
framework that includes the popular zero-input and hold-input mechanisms as special
cases is proposed. An alternative prediction compensation methodology has drawn the
attention of several authors in recent years; this methodology involves compensating each
missed measurement packet by its predictor (see, e.g., [16–18] and references therein).
Using this compensation strategy, centralized fusion estimators, including filter, predictor
and smoother, in the linear unbiased minimum variance sense are designed in [16]. The
problem of self-tuning distributed fusion state estimation in networked systems with un-
known packet receiving rates, noise variances and model parameters is addressed in [17].
A solution to the distributed fusion estimation problem in systems with random parameter
matrices is proposed in [18], under the assumption that transmissions to local processors
may experience one-step delays and packet dropouts, and either one or two measurements
can be simultaneously processed at each time instant.

In practice, time-correlated measurement and channel noises are found in many engi-
neering applications, such as radar systems, global navigation satellite systems, or wireless
networks, where the sampling frequency is usually high enough, thus making the measure-
ment noises be significantly correlated in two or more consecutive sampling periods. The
estimation problem under the assumption that the time-correlated measurement noises are
the output of a linear system model with white noise has been an important research focus
during the past years. The most popular methods to deal with this kind of noise correla-
tion are the state augmentation method—which is simple and direct, but computationally
expensive— and the measurement differencing method, which avoids increasing dimen-
sions but needs two consecutive measurements to compute the difference (see, e.g., [19–23]).
It should be noted that most of the published results are concerned with the estimation
problem in single-sensor systems, but the fusion estimation problem in networked systems
has received significantly less attention (see, e.g., [24,25]).

When the system is subject to random delays or packet dropouts, the sensor measure-
ment may not be received on time at the processor, and consequently, the measurement
differencing method cannot be used. In other words, for systems having packet losses,
the measurement differencing method will not work, and finding new non-augmentation
methods to deal with the time-correlated measurement noise in these kinds of systems is
a challenging issue. The state estimation problem for stochastic uncertain systems with
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time-correlated additive noises and random packet dropouts in transmission is addressed
in [26]—for linear systems—and [27]—for non-linear systems—using the predictor of a
sensor measurement as compensation when such measurement is lost.

Despite their undeniable benefits, sensor networks have some weaknesses that must
be considered when dealing with the estimation problem to guarantee the accuracy of
the designed estimators. One of the most common dangers that make a network less
reliable is the possibility of suffering cyber-attacks, and analyzing the success rate of such
attacks launched by adversaries has recently become a research topic of great interest. In
practice, successful attacks can usually be understood as intermittent or random in their
implementation. A comprehensive literature review related to cyber-attacks on networked
systems can be found in [28].

One of the most common types of attacks are the so-called deception attacks, which
violate data integrity by purposefully altering sensor measurements. The complexity and
significance of studying the estimation problem in networked systems subject to decep-
tion attacks have inspired many fruitful efforts by the scientific community. In [29], an
integrated approach is proposed to simultaneously address the problems of detection and
estimation in discrete-time stochastic systems with event-triggered transmission, subject to
random disturbances and deception attacks. The problem of detection against deception
attacks in a remote estimation framework in multi-sensor systems is addressed in [30].
The distributed filtering problem for discrete-time systems with multiplicative noises and
deception attacks has been studied in [31]. In [32], a cluster-based approach is used to
address the distributed fusion estimation problem for networked systems when measure-
ments are subject to random deception attacks and the distributed estimation problem
in networked systems with a given topology has been studied in [33]—under false data
injection attacks—and in [34,35]—under deception attacks.

Main Contributions and Related Work

To the best of our knowledge, the optimal linear estimation problem in multi-sensor
systems with random parameter matrices and time-correlated additive noises has not been
fully investigated when the measurements are subject to random deception attacks, and
packet dropouts may occur during transmission. Motivated by the above discussion, we
consider a system model with the following characteristics: (a) the evolution model of the
signal to be estimated does not need to be known, since a covariance-based estimation
approach is used; (b) the model for the sensor-measured output under consideration
includes random parameter matrices, offering a broad framework for many network-
induced phenomena; (c) the sensor measured outputs are randomly affected by deception
attacks; (d) random packet dropouts may occur during data transmissions from the sensors
to the processing center and two different compensation models—based on measurement
prediction—are proposed to describe the measurements available after transmission. Apart
from the fact of considering a widespread system model that covers many general situations,
the most significant contribution of this paper lies in the fact that, in contrast to the existing
state-augmentation and measurement differencing methods, a non-augmentation technique
is used to deal with the time-correlation of the additive noises. More precisely, through the
direct estimation of the measurement noises and using the innovation technique under a
covariance-based approach, recursive centralized fusion filtering and fixed-point smoothing
algorithms are designed.

Some of the most closely related papers in the literature are [18,24–26]. In [18], systems
with random parameter matrices, one-step delays, packet dropouts and multi-packet
processing are considered; the main difference between the system model in [18] and the
current one is the presence of deception attacks and time-correlated noises, apart from
the fact that [18] allows the possibility that two packets can be received at each instant
of time. In [24], using the measurement-differencing method, centralized and distributed
fusion filtering and fixed-point smoothing algorithms are designed for networked systems
with random parameter matrices and time-correlated channel noise; so, in addition to the
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fact that we do not use the measurement-differencing approach, the key distinction with
the current results resides in the presence of random deception attacks and the possibility
of random packet dropouts in the transmission. The centralized and sequential fusion
filtering problems for networked uncertain systems, where the measurement noises are
time-correlated, are addressed in [25]; our study also considers time-correlated additive
noises and it extends the results in [25] by including random parameter matrices and
deception attacks in the measurement model, as well as random packet dropouts in the
transmission. Finally, random packet dropouts in transmission and time-correlated additive
noises are simultaneously considered in [26], but neither random parameter matrices
nor random deception attacks are considered in the measurement equation. It is also
noteworthy that the derivation in the estimation algorithms in [25,26] is based on the
knowledge of the state-space model, whereas the algorithms proposed in the current paper
do not require the signal evolution equation, but just the covariance function factorization
into a separable form (covariance information). These considerations are summarized in
Figure 1.

Figure 1. Related work [18,24–26]: comparison with the current paper.

Paper structure. The paper’s structure is outlined as follows. The problem under
consideration and the characteristics of the observation model are described in Section 2,
with special emphasis on the two compensation strategies proposed. The main results are
presented in Section 3, where some auxiliary lemmas are firstly introduced before the optimal
linear filtering and smoothing estimation algorithms are derived under the two compensation
frameworks considered. In Section 4, a simulation example is presented to show the feasibility
of the proposed estimators. Finally, some conclusions are drawn in Section 5.

Notation. As far as possible, standard mathematical notation will be used. If not explic-
itly stated, all vectors and matrices are assumed to be of suitable dimensions, compatible
with algebraic operations.

Rn and Rm×n Set of n-dimensional real vectors and set of m× n real matrices
δk,h Kronecker delta function
MT and M−1 Transpose and inverse of matrix M
M(a)T and M(a)−1 Shorthand for (M(a))T and (M(a))−1

(M1, . . . , Mk) Partitioned matrix whose blocks are the submatrices M1, . . . , Mk
Diag(N1, . . . , Nm) Block diagonal matrix, whose main-diagonal blocks are N1, . . . , Nm
In and 1n n× n identity matrix and n× 1 all-ones vector
0 Zero scalar or matrix of compatible dimension
⊗ and ◦ Kronecker and Hadamard product of matrices, respectively
E[a] = a Mathematical expectation of a random vector or matrix a
P(?) Probability of an event ?

Σab(ij)
k,h Covariance of random vectors a(i)k and b(j)

h (Σa(ij)
k,h = Σaa(ij)

k,h )

Σab(ij)
k,h = Cov[a(i)k , b(j)

h ] = E
[(

a(i)k − a(i)k
)(

b(j)
h − b

(j)
h
)T]

Gk = Gk,k Function Gk,h, depending on the time instants k and h, when h = k
F(i) = F(ii) Function F(ij), depending on the sensors i and j, when i = j
â(∗)k/s Optimal linear estimator of the vector ak based on

{
y(∗)1 , . . . , y(∗)s

}
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2. Problem Statement and Observation Model

The goal of this work is to design recursive algorithms for the centralized fusion least-
squares (LS) linear filtering and fixed-point smoothing problems, under the assumption
that the sensor measurements of the signal to be estimated are transmitted over unreli-
able communication channels and random packet dropouts may occur during the process
of data transmission. In addition, the output measurements—which are perturbed by
time-correlated additive noises and subject to stochastic deception attacks—may randomly
contain different uncertainties. By incorporating random parameter matrices into the
measurement model, a general framework to model multiple random phenomena is pro-
posed, including sensor gain degradation, missing or fading measurements, uncertainties
brought on by the presence of multiplicative noise, or both multiplicative noises and
missing measurements.

In order to compensate the lost data, two prediction compensation mechanisms are
proposed, using either the predictor of the lost data packet, or the predictor of the data
packet obtained by the sensor before the deception attack is launched.

2.1. Signal Process

The signal evolution equation does not need to be known, as the design of the proposed
estimation algorithms will not be based on the state-space model—which requires an
explicit mathematical model to express both the time variation of the signal and the
relationship of that signal to the observations used for estimation. We will use a covariance-
based estimation approach for the design of the algorithms that requires only the first- and
second-order moments of the processes involved in the model describing the observations
of all sensors. The advantage of this approach is that it is not necessary to derive a different
estimation algorithm when the signal evolution model varies; instead, the mean function
of the signal is assumed to be zero and its covariance function is expressed in a separable
form. More specifically, the following assumption on the signal process is required:

Hypothesis (H1). The signal {xk}k≥1 is an nx-dimensional second-order zero-mean random
process, whose covariance function can be factorized in a separable form: Σx

k,h = E[xkxT
h ] =

AkBT
h , h ≤ k, where Ak, Bh ∈ Rnx×n are known matrices.

Remark 1. The separable form of the signal covariance function required in assumption (H1) covers
many practical situations. For instance, when the state-space model is available, xk = Φk−1xk−1 +
wk−1, k ≥ 1, assuming non-singular transition matrices and a white noise independent of the initial
state, the covariance function of the signal can be expressed as E[xkxT

h ] = Φk,hE[xhxT
h ], h ≤ k,

where Φk,h = Φk−1 . . . Φh, and assumption (H1) is fulfilled taking, for example, Ak = Φk,0 and
Bh = E[xhxT

h ](Φ
−1
h,0)

T (see, e.g., [24]). Likewise, for the state-space model with stationary signals,
xk = Φxk−1 + wk−1, k ≥ 1, under the same assumptions of non-singularity and independence, the
covariance function can be expressed as E[xkxT

h ] = Φk−hE[xhxT
h ], h ≤ k; then, taking Ak = Φk

and Bh = E[xhxT
h ](Φ

−h)T , assumption (H1) is clearly true. Hence, the separability assumption
on the signal autocovariance function required in (H1) covers different types of stationary and
non-stationary signals and, as a result, the estimation problem approach based on such hypothesis
provides a unifying approach to obtain general algorithms that are applicable to a wide range of
practical situations, regardless of whether or not the state-space model is fully known. Consequently,
the covariance-based estimation approach provides us with a large variety of options for dealing with
different signal models without the need to design specific algorithms for each one. The signal of
linear systems or that of uncertain systems with state-dependent multiplicative noise are examples
of processes satisfying (H1), as it will be shown in Section 4.
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2.2. Measurement Model with Random Parameter Matrices and Time-Correlated Additive Noises

The measured outputs of the discrete-time random signal xk are assumed to be per-
turbed by random parameter matrices and time-correlated additive noises, according to
the following model:

z(i)k = C(i)
k xk + v(i)k , k ≥ 1; i = 1, . . . , m, (1)

where z(i)k ∈ Rnz is the output measurement of the i-th sensor at time k. The following

hypotheses about the matrices
{

C(i)
k
}

k≥1 and the additive noises
{

v(i)k
}

k≥1 are required:

Hypothesis (H2).
{

C(i)
k
}

k≥1, i = 1, . . . , m, are independent sequences of independent random

parameter matrices. Denoting c(i)pq (k) the (p, q)-th entry of C(i)
k , the first and second-order moments

E
[
c(i)pq (k)

]
and E

[
c(i)pq (k)c

(j)
p′q′ (k)

]
, for i, j = 1, . . . , m, p, p′ = 1, . . . , nz and q, q′ = 1, . . . , nx, are

assumed to be known.

From (H2), it is clear that the means C(i)
k = E

[
C(i)

k
]

are known and their (p, q)-th
entries are E

[
c(i)pq (k)

]
, p = 1, . . . , nz, q = 1, . . . , nx. Moreover, for any deterministic matrix

G ∈ Rnx×nx , the (p, q)-th entry of E[C(i)
k GC(j)T

k ] is given by
nx

∑
a=1

nx

∑
b=1

E
[
c(i)pa (k)c

(j)
qb
(k)
]
Gab.

Hypothesis (H3). The measurement noises
{

v(i)k
}

k≥0, i = 1, . . . , m, are time-correlated sequences
satisfying

v(i)k = D(i)
k−1v(i)k−1 + ξ

(i)
k−1, k ≥ 1; i = 1, . . . , m, (2)

where
{

D(i)
k
}

k≥0 are given deterministic parameter matrices and the following assumptions are
required:

Hypothesis (H3(a)). v(i)0 , i = 1, . . . , m, are zero-mean, second-order random vectors with known

covariance matrices: E[v(i)0 v(j)T
0 ] = Σv(ij)

0 , i, j = 1, . . . , m.

Hypothesis (H3(b)). {ξ(i)k }k≥0, i = 1, . . . , m, are zero-mean second-order white processes. They
are independent of each other, except at the same time instant, with known covariance matrices:

E[ξ(i)k ξ
(j)T
h ] = Σξ(ij)

k δk,h, k, h ≥ 0; i, j = 1, . . . , m.

2.3. Stochastic Deception Attacks

Let us consider that the sensor measured outputs are randomly perturbed by deception
attacks that are launched by a potential adversary, who injects some false information
involving two components: one that neutralizes the actual measurements and a noise
component, which is the blurred deceptive information added by the adversary. Specifically,
at the i-th sensor, i = 1, . . . , m, the deception signal is modeled as

z̆(i)k = −z(i)k + w(i)
k , k ≥ 1; i = 1, . . . , m,

where the following assumption on the noises
{

w(i)
k
}

k≥1 is required:

Hypothesis (H4). The noises
{

w(i)
k
}

k≥1, i = 1, . . . , m, are zero-mean, second-order white pro-
cesses. They are independent of each other, except at the same time instant, with known covariance
matrices: E

[
w(i)

k w(j)T
h
]
= Σw(ij)

k δk,h, k, h ≥ 1; i, j = 1, . . . , m.
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At every sensor i and every sampling time k, the deception attacks may randomly
succeed or fail, which can be modeled by a Bernoulli random variable, λ

(i)
k , taking the value

one, if the attack is successful, and the value zero, if it is unsuccessful. More precisely, the
sensor measurements, y̆(i)k , subject to random deception attacks, are modeled by:

y̆(i)k = z(i)k + λ
(i)
k z̆(i)k , k ≥ 1; i = 1, . . . , m,

or, equivalently,

y̆(i)k = (1− λ
(i)
k )z(i)k + λ

(i)
k w(i)

k , k ≥ 1; i = 1, . . . , m. (3)

Hence, a successful attack (λ(i)
k = 1) means that only the noise injected by the ad-

versary, w(i)
k , will be transmitted to the processing center, while an unsuccessful attack

(λ(i)
k = 0) means that the actual measured output, z(i)k , remains unchanged and will be trans-

mitted intact. The following assumption on these Bernoulli random variables is required:

Hypothesis (H5).
{

λ
(i)
k
}

k≥1, i = 1, . . . , m, are independent white sequences of Bernoulli random

variables with known probabilities P
(
λ
(i)
k = 1

)
= λ

(i)
k , k ≥ 1.

2.4. Observation Model after Transmission: Two Packet Dropout Compensation Strategies

Let us consider that there exist random packet dropouts during data transmissions
from the sensors to the processing center. This will be modeled by a Bernoulli random
variable, γ

(i)
k , taking the value one, if the transmission is successful, and the value zero, if

the corresponding data packet is lost during transmission. The following assumption on
these Bernoulli random variables is required:

Hypothesis (H6).
{

γ
(i)
k
}

k≥1, i = 1, . . . , m, are independent white sequences of Bernoulli random

variables with known probabilities P
(
γ
(i)
k = 1

)
= γ

(i)
k , k ≥ 1.

When the current measurement is not received at the processing center, a compensating
measurement will be used instead. Among the different compensation strategies proposed
in the literature, we focus on the prediction compensation approach. Taking into account
that the observation model under consideration is subject to stochastic deception attacks,
two possible compensation models naturally arise:

Model I: Compensation with the prediction estimator of the measurement that is lost

(i.e., the one transmitted by the sensor after the attack is launched), ̂̆y(i)I
k/k−1. The observations

used at the processing center in this case are given by:

y(i)I
k = γ

(i)
k y̆(i)k + (1− γ

(i)
k )̂̆y(i)I

k/k−1, k ≥ 1; i = 1, . . . , m. (4)

Model II: Compensation with the prediction estimator of the actual sensor measured
output (the one obtained by the sensor before the attack is launched), ẑ(i)I I

k/k−1. The observa-
tion model after transmission in this case is given by:

y(i)II
k = γ

(i)
k y̆(i)k + (1− γ

(i)
k )ẑ(i)II

k/k−1, k ≥ 1; i = 1, . . . , m. (5)

Finally, the following independence assumption is required:

Hypothesis (H7). For i = 1, . . . , m, the signal process {xk}k≥1, the vector v(i)0 and the processes

{C(i)
k }k≥1, {ξ(i)k }k≥0, {w(i)

k }k≥1, {λ(i)
k }k≥1 and {γ(i)

k }k≥1 are mutually independent.
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Remark 2. The proposed compensation strategies work as follows:

• If γ
(i)
k = 1 (successful transmission from sensor i with no loss at the sampling time k), y̆(i)k

will be used for the estimation under both models.
• If γ

(i)
k = 0 (at the sampling time k, the data packet from sensor i is lost):

– The predictor of y̆(i)k , given by ̂̆y(i)I
k/k−1 = (1− λ

(i)
k )ẑ(i)I

k/k−1, will be used for the estimation
under Model I. Consequently, the compensating measurement considered is the predictor
of z(i)k weighted by the probability that z(i)k has not been attacked at time k.

– The predictor of z(i)k , that is ẑ(i)II
k/k−1, will be used for the estimation under Model II.

Consequently, the compensating measurement considered in this case does not take into
account the possibility of an attack.

Remark 3. For the considered kind of systems with time-correlated additive noises and trans-
mission random losses, the measurement differencing method—typically used to deal with the
time-correlation phenomena—is not successful, since some sensor measurements are randomly lost
and, consequently, cannot be processed (see [26]). Therefore, an alternative approach, based on the
direct estimation of the measurement noises and the innovation technique, will be used to address
the centralized fusion optimal linear estimation problem in the next section.

3. Main Results

Our aim is to design centralized fusion optimal linear filtering and fixed-point smooth-
ing algorithms, based on the observations within the compensation frameworks proposed
in the previous section. For this purpose, at every sampling time, k ≥ 1, we consider the
vector constituted by the measurements of all sensors, zk =

(
z(1)Tk , . . . , z(m)T

k
)T , satisfying

the following stacked measurement equation, which is easily derived from (1):

zk = Ckxk + vk, k ≥ 1, (6)

where Ck =
(
C(1)T

k , . . . , C(m)T
k

)T and vk =
(
v(1)Tk , . . . , v(m)T

k
)T . Let us observe that, from (2),

the additive noise {vk}k≥0 is a time-correlated sequence, satisfying

vk = Dk−1vk−1 + ξk−1, k ≥ 1, (7)

with Dk = Diag
(

D(1)
k , . . . , D(m)

k
)

and ξk =
(
ξ
(1)T
k , . . . , ξ

(m)T
k

)T .

Using (3) and denoting

y̆k =
(
y̆(1)Tk , . . . , y̆(m)T

k
)T , Λk = Diag

(
λ
(1)
k , . . . , λ

(m)
k
)
⊗ Inz and wk =

(
w(1)T

k , . . . , w(m)T
k

)T ,

it is straightforward to check that the stacked vector y̆k, constituted by the measurements
subject to random deception attacks, satisfies the following equation:

y̆k = (Imnz −Λk)zk + Λkwk, k ≥ 1. (8)

According to (4) and (5), and denoting

y(I)
k =

((
y(1)I

k

)T
, . . . ,

(
y(m)I

k

)T
)T

, y(II)
k =

((
y(1)II

k

)T
, . . . ,

(
y(m)II

k

)T
)T

,

̂̆y(I)
k/k−1 =

((̂̆y(1)I
k/k−1

)T
, . . . ,

(̂̆y(m)I
k/k−1

)T
)T

, ẑ(II)
k/k−1 =

((
ẑ(1)II

k/k−1

)T
, . . . ,

(
ẑ(m)II

k/k−1

)T
)T

and Γk = Diag
(
γ
(1)
k , . . . , γ

(m)
k
)
⊗ Inz , the observations used for the estimation can be

modeled by the following compact equations:
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Stacked Model I:

y(I)
k = Γk y̆k + (Imnz − Γk)̂̆y(I)

k/k−1, k ≥ 1. (9)

Stacked Model II:

y(II)
k = Γk y̆k + (Imnz − Γk)ẑ

(II)
k/k−1, k ≥ 1. (10)

Then, the centralized fusion optimal linear estimation (filtering and fixed-point smooth-
ing) problem is reformulated as the task of finding the LS linear estimator of the signal, xk,
based on the observations up to the time instant k + N, N ≥ 0, given in (9) or (10).

3.1. Preliminary Lemmas

Before deriving the centralized fusion filtering and fixed-point smoothing algorithms,
we analyze the statistical properties of the processes involved in the observation models
under consideration, as they will be necessary to address the LS linear estimation problem.
These properties will be given in the following preliminary lemmas, whose proof is omitted
since they follow quite easily from hypotheses (H1)–(H7).

Lemma 1. The processes involved in (6) and (7) satisfy the following properties:

(a) {Ck}k≥1 is a sequence of independent random parameter matrices with means Ck = E[Ck] =(
C(1)T

k , . . . , C(m)T
k

)T , k ≥ 1. Moreover, for any deterministic matrix G ∈ Rnx×nx , the

(i, j)-th entry of the matrix E
[
CkGCT

k
]

is E[C(i)
k GC(j)T

k ], i, j = 1, . . . , m.

(b) v0 is a zero-mean, second-order random vector with Σv
0 = E[v0vT

0 ] =
(
Σv(ij)

0
)

i,j=1,...,m.

(c) {ξk}k≥0 is a zero-mean, second-order white process with Σξ
k = E[ξkξT

k ] =
(
Σξ(ij)

k
)

i,j=1,...,m.

(d) The covariance function of the time-correlated noise {vk}k≥0, Σv
k,h = E[vkvT

h ], h ≤ k,
admits the following factorization: Σv

k,h = DkFT
h , in which Dk = Dk,0, FT

h = D−1
h,0 Σv

h,
Dk,h = Dk−1 . . . Dh and Σv

h is recursively computed as follows:

Σv
h = Dh−1Σv

h−1DT
h−1 + Σξ

h−1, h ≥ 1.

Lemma 2. The following properties hold for the processes involved in (8):

(a) {wk}k≥1 is a zero-mean, second-order white process with Σw
k = E[wkwT

k ] =
(
Σw(ij)

k
)

i,j=1,...,m.

(b) {Λk}k≥1 is a sequence of independent random matrices with

Λk = E
[
Λk
]
= Diag

(
λ
(1)
k , . . . , λ

(m)
k
)
⊗ Inz , k ≥ 1.

Denoting λk =
(
λ
(1)
k 1T

nz , . . . , λ
(m)
k 1T

nz

)T
=
(
λ
(1)
k , . . . , λ

(m)
k
)T ⊗ 1nz , k ≥ 1, the covariance

matrices Kλ
k = E

[
λkλT

k
]

and K1−λ
k = E

[
(1mnz − λk)(1mnz − λk)

T] are known, and their

entries can be computed taking into account that E[λ(i)
k λ

(j)
k ] =

{
λ
(i)
k , i = j,

λ
(i)
k λ

(j)
k , i 6= j.

(c) The autocovariance function Σy̆
k = E

[
y̆k y̆T

k
]

is given by:

Σy̆
k = K1−λ

k ◦
(
E[Ck AkBT

k CT
k ] +DkFT

k
)
+ Kλ

k ◦ Σw
k , k ≥ 1. (11)

Lemma 3. The stochastic process {Γk}k≥1 modeling the packet dropout phenomena in the stacked
observation models (9) and (10) is a sequence of independent random matrices with

Γk = E
[
Γk
]
= Diag

(
γ
(1)
k , . . . , γ

(m)
k
)
⊗ Inz , k ≥ 1.
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Denoting γk =
(
γ
(1)
k 1T

nz , . . . , γ
(m)
k 1T

nz

)T
=
(
γ
(1)
k , . . . , γ

(m)
k
)T ⊗ 1nz , k ≥ 1, the covariance

matrices Kγ
k = E

[
γkγT

k
]

are known, and their entries can be computed taking into account that

E[γ(i)
k γ

(j)
k ] =

{
γ
(i)
k , i = j,

γ
(i)
k γ

(j)
k , i 6= j.

Moreover, the signal process {xk}k≥1, the vector v0 and the processes {Ck}k≥1, {ξk}k≥0,
{wk}k≥1, {Λk}k≥1 and {Γk}k≥1 are mutually independent.

3.2. Optimal Filtering and Fixed-Point Smoothing Algorithms (Model I)

We will use an innovation approach to obtain x̂(I)
k/L, the LS linear estimator of the

signal xk based on the observations {y(I)
1 , . . . , y(I)

L } defined by (9); more specifically, we
aim at obtaining the signal filtering (L = k) and fixed-point smoothing (L = k + N, N ≥ 1)
estimators. According to this approach, the LS linear estimators of the signal, x̂(I)

k/L, based on

a set of observations
{

y(I)
h
}

h≤L, can be expressed as a linear combination of the innovations{
µ
(I)
h
}

h≤L as follows:

x̂(I)
k/L =

L

∑
h=1
X (I)

k,h Π(I)−1
h µ

(I)
h , k, L ≥ 1, (12)

where X (I)
k,h = E[xkµ

(I)T
h ], and the innovations and their covariances are µ

(I)
h = y(I)

h − ŷ(I)
h/h−1

and Π(I)
h = E[µ(I)

h µ
(I)T
h ], respectively.

So, the first key point is to find an appropriate expression for the one-stage observation
predictors ŷ(I)

h/h−1—or, equivalently, for the innovations µ
(I)
h —that allows us to obtain the

coefficients X (I)
k,h and the innovation covariances Π(I)

h appearing in expression (12) of x̂(I)
k/L.

From (9), taking into account the properties set out in Lemma 3 and the Orthogonal
Projection Lemma (OPL), the observation predictors are given by:

ŷ(I)
k/k−1 = Γk̂̆y(I)

k/k−1 + (Imnz − Γk)̂̆y(I)
k/k−1 = ̂̆y(I)

k/k−1, k ≥ 1.

Using (8), Lemma 1 and the OPL, we obtain:

̂̆y(I)
k/k−1 = (Imnz −Λk)ẑ

(I)
k/k−1, k ≥ 1, (13)

and from (6), Lemma 2 and using the OPL again, we obtain:

ẑ(I)
k/k−1 = Ck x̂(I)

k/k−1 + v̂(I)
k/k−1, k ≥ 1. (14)

Consequently, the innovations can be written as:

µ
(I)
k = Γk

(
y̆k − (Imnz −Λk)

(
Ck x̂(I)

k/k−1 + v̂(I)
k/k−1

))
, k ≥ 1. (15)

Hence, we need the one-stage predictors of both the signal, x̂(I)
k/k−1, and the noise,

v̂(I)
k/k−1. Note that, similarly to (12), defining now V (I)

k,h = E[vkµ
(I)T
h ], the noise estimators,

v̂(I)
k/L, are expressed as a linear combination of the innovations as follows:

v̂(I)
k/L =

L

∑
h=1
V (I)

k,h Π(I)−1
h µ

(I)
h , k, L ≥ 1. (16)

Expressions (12) and (16) for the LS linear estimators as linear combination of the
innovations, are the starting points to derive the recursive algorithms for the centralized



Sensors 2022, 22, 8505 11 of 21

LS linear filter, x̂(I)
k/k, and smoothers, x̂(I)

k/k+N , at the fixed point k, for N ≥ 1, which are
presented in the following theorem.

Theorem 1. Under hypotheses (H1) to (H7), the centralized LS linear filtering estimators, x̂(I)
k/k, and

the corresponding error covariance matrices, Σ̂(I)
k/k = E

[
(xk− x̂(I)

k/k)(xk− x̂(I)
k/k)

T], are computed by:

x̂(I)
k/k = (Ak , 0)O(I)

k , k ≥ 1,

Σ̂(I)
k/k = AkBT

k − (Ak , 0)r(I)
k (Ak , 0)T , k ≥ 1,

(17)

where
O(I)

k = O(I)
k−1 + J(I)

k Π(I)−1
k µ

(I)
k , k ≥ 1; O(I)

0 = 0,

J(I)
k =

((
CkBk , Fk

)
−
(
Ck Ak , Dk

)
r(I)

k−1

)T(
Imnz −Λk

)
Γk, k ≥ 1,

r(I)
k = r(I)

k−1 + J(I)
k Π(I)−1

k J(I)T
k , k ≥ 1; r(I)

0 = 0.

(18)

The innovations, µ
(I)
k , and their covariance matrices, Π(I)

k = E
[
µ
(I)
k µ

(I)T
k
]
, are obtained by:

µ
(I)
k = y(I)

k − (Imnz −Λh)
(
Ck Ak , Dk

)
O(I)

k−1, k ≥ 1,

Π(I)
k = Kγ

k ◦
(

Σy̆
k − (Imnz −Λk)Σẑ(I)

k (Imnz −Λk)
)

, k ≥ 1,
(19)

with Σy̆
k given in (11) and

Σẑ(I)

k =
(
Ck Ak , Dk

)
r(I)

k−1

(
Ck Ak , Dk

)T , k ≥ 1. (20)

Additionally, at any sampling time k ≥ 1, by starting from the filter, x̂(I)
k/k, and its error

covariance matrix, Σ̂(I)
k/k, as initial conditions, the centralized LS linear smoothers, x̂(I)

k/k+N , and

their error covariances, Σ̂(I)
k/k+N = E

[
(xk − x̂(I)

k/k+N)(xk − x̂(I)
k/k+N)

T], are recursively obtained
as follows:

x̂(I)
k/k+N = x̂(I)

k/k+N−1 +X
(I)
k,k+NΠ(I)−1

k+N µ
(I)
k+N , N ≥ 1,

Σ̂(I)
k/k+N = Σ(I)

k/k+N−1 −X
(I)
k,k+NΠ(I)−1

k+N X
(I)T
k,k+N , N ≥ 1,

(21)

where X (I)
k,k+N = E[xkµ

(I)T
k+N ] is computed by:

X (I)
k,k+N =

((
Bk , 0

)
−M(I)

k,k+N−1

)(
Ck+N Ak+N , Dk+N

)T
(Imnz −Λk+N)Γk+N , N ≥ 1, (22)

and M(I)
k,k+N = E[x̂(I)

k/k+NO(I)T
k+N ] are obtained from the recursive formula

M(I)
k,k+N = M(I)

k,k+N−1 +X
(I)
k,k+NΠ(I)−1

k+N J(I)T
k+N , N ≥ 1; M(I)

k,k = (Ak , 0)r(I)
k . (23)

Proof. We first obtain the signal prediction and filtering estimators x̂(I)
k/s, s ≤ k. From (15),

it is clear that the coefficients X (I)
k,h = E[xkµ

(I)T
h ] verify

X (I)
k,h =

(
E
[
xk y̆T

h
]
−
(

E
[
xk x̂(I)T

h/h−1

]
CT

h + E
[
xk v̂(I)T

h/h−1

])
(Imnz −Λh)

)
Γh, 1 ≤ h ≤ k.

Now, using (8) and the properties of the processes involved in this equation, we have
that E

[
xk y̆T

h
]
= AkBT

h CT
h (Imnz −Λh), and from (12) and (16), we obtain

E
[
xk x̂(I)T

h/h−1

]
=

h−1

∑
j=1
X (I)

k,j Π(I)−1
j X (I)T

h,j ; E
[
xk v̂(I)T

h/h−1

]
=

h−1

∑
j=1
X (I)

k,j Π(I)−1
j V (I)T

h,j , h ≥ 2.
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Hence,

X (I)
k,h =

[
AkBT

h CT
h − (1− δh,1)

h−1

∑
j=1
X (I)

k,j Π(I)−1
j

(
ChX

(I)
h,j + V (I)

h,j
)T
]
(Imnz −Λh)Γh, 1 ≤ h ≤ k.

Then, by defining:

Jx(I)
h =

[
BT

h CT
h − (1− δh,1)

h−1

∑
j=1

Jx(I)
j Π(I)−1

j
(
Ch Ah Jx(I)

j + V (I)
h,j
)T
]
(Imnz −Λh)Γh, h ≥ 1, (24)

we conclude that X (I)
k,h = Ak Jx(I)

h , h ≤ k, and denoting:

Ox(I)
s =

s

∑
h=1

Jx(I)
h Π(I)−1

h µ
(I)
h , s ≥ 1; Ox(I)

0 = 0, (25)

we have that the signal predictors and filter are given by:

x̂(I)
k/s = AkOx(I)

s , 1 ≤ s ≤ k. (26)

Secondly, to obtain the prediction and filtering estimators of the noise, v̂(I)
k/s, s ≤ k, we

follow an analogous reasoning to that used for the signal estimators, which leads us to:

V (I)
k,h =

[
DkFT

h − (1− δh,1)
h−1

∑
j=1
V (I)

k,j Π(I)−1
j

(
ChX

(I)
h,j + V (I)

h,j
)T
]
(Imnz −Λh)Γh, 1 ≤ h ≤ k,

and defining:

Jv(I)
h =

[
FT

h − (1− δh,1)
h−1

∑
j=1

Jv(I)
j Π(I)−1

j
(
ChX

(I)
h,j +Dh Jv(I)

h
)T
]
(Imnz −Λh)Γh, h ≥ 1, (27)

we obtain that V (I)
k,h = Dk Jv(I)

h , h ≤ k. Hence, the noise predictors and filter are given by:

v̂(I)
k/s = DkOv(I)

s , 1 ≤ s ≤ k, (28)

where

Ov(I)
s =

k

∑
h=1

Jv(I)
h Π(I)−1

h µ
(I)
h , s ≥ 1; Ov(I)

0 = 0. (29)

Now, by substituting (26) and (28) for s = k − 1 in (15), we have the following
expression for the innovation:

µ
(I)
k = y(I)

k − (Imnz −Λh)
(

Ck AkOx(I)
k−1 +DkOv(I)

k−1

)
, k ≥ 1. (30)

Next, from (25) and (29), the following recursive relations for the vectors Ox(I)
k and

Ov(I)
k are straightforward:

Oa(I)
k = Oa(I)

k−1 + Ja(I)
k Π(I)−1

k µ
(I)
k , k ≥ 1; Oa(I)

0 = 0, (a = x, v), (31)

and from (24) and (27), it is clear that:

Jx(I)
k =

(
CkBk − Ck Akrx(I)

k−1 −Dkrvx(I)
k−1

)T
(Imnz −Λk)Γk, k ≥ 1,

Jv(I)
k =

(
Fk − Ck Akrxv(I)

k−1 −Dkrv(I)
k−1

)T
(Imnz −Λk)Γk, k ≥ 1,

(32)
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where

rab(I)
k = E

[
Oa(I)

k Ob(I)T
k

]
=

k

∑
h=1

Ja(I)
h Π(I)−1

h Jb(I)T
h , k ≥ 1; rab(I)

0 = 0, (a, b = x, v),

which clearly satisfies

rab(I)
k = rab(I)

k−1 + Ja(I)
k Π(I)−1

k Jb(I)T
k , k ≥ 1; rab(I)

0 = 0, (a, b = x, v). (33)

From now on, we use the following notations for simplicity:

O(I)
k =

(
Ox(I)

k
Ov(I)

k

)
, J(I)

k =

(
Jx(I)
k

Jv(I)
k

)
, r(I)

k = E[O(I)
k O(I)T

k ] =

(
rx(I)

k rxv(I)
k

rvx(I)
k rv(I)

k

)
.

Derivation of expressions (17)–(20):

• From (26), it is clear that x̂(I)
k/k = (Ak , 0)O(I)

k and, hence, its covariance is given by

E
[
x̂(i)k/k x̂(i)Tk/k

]
= (Ak , 0)r(I)

k (Ak , 0)T . Then, using the OPL to write the filtering error

covariances as Σ̂(I)
k/k = E[xkxT

k ]− E
[
x̂(I)

k/k x̂(I)T
k/k
]

and taking into account that, from (H1),
E[xkxT

k ] = AkBT
k , expression (17) is proven.

• From (31)–(33), expression (18) is directly obtained.

• From (30), the expression of µ
(I)
k in (19) is straightforward.

To obtain Π(I)
k = E[µ(I)

k µ
(I)T
k ] = E[Γk(y̆k − ̂̆y(I)

k/k−1)(y̆k − ̂̆y(I)
k/k−1)

TΓk], we apply the
Hadamar product properties and the OPL to express these matrices as:

Π(I)
k = Kγ

k ◦
(

Σy̆
k − E[̂̆y(I)

k/k−1
̂̆y(I)T

k/k−1]
)

, k ≥ 1,

and using (13) for ̂̆y(I)
k/k−1, the expression of Π(I)

k in (19) is proven.

• Substituting (26) and (28) in (14), we obtain ẑ(I)
k/k−1 =

(
Ck Ak , Dk

)
O(I)

k−1, and expres-

sion (20) for its covariance Σẑ(I)

k is easily obtained.

Derivation of expressions (21)–(23):

• Expression (21) for the smoothers x̂(I)
k/k+N is easily derived using (12), and from it, the

recursive formula for the fixed-point smoothing error covariance matrices, Σ̂(I)
k/k+N , is

immediately deduced.

• Expression (22) for X (I)
k,k+N = E[xkµ

(I)T
k+N ] =

(
E
[
xk y̆T

k+N
]
− E

[
xk̂̆y(I)T

k+N/k+N−1
])

Γk+N is
derived as follows:

– On the one hand, the independence properties, together with (H1) and (8), lead
us to E[xk y̆T

k+N ] = Bk AT
k+NCT

k+N(Imnz −Λk+N), which can be written as:

E[xk y̆T
k+N ] = (Bk , 0)

(
Ck+N Ak+N , Dk+N

)T
(Imnz −Λk+N), N ≥ 1.

– On the other hand, using expression (13) for the one-stage predictors ̂̆y(I)
k+N/k+N−1

with ẑ(I)
k+N/k+N−1 =

(
Ck+N Ak+N , Dk+N

)
O(I)

k+N−1, it is clear that

E
[
xk̂̆y(I)T

k+N/k+N−1
]
= E

[
xkO(I)T

k+N−1

](
Ck+N Ak+N , Dk+N

)T
(Imnz −Λk+N), N ≥ 1.
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Therefore, denoting M(I)
k,k+N = E[xkO(I)T

k+N ], N ≥ 0, expression (22) holds.

• Using that O(I)
k+N = O(I)

k+N−1 + J(I)
k+NΠ(I)−1

k+N µ
(I)
k+N , the recursive expression (23) for the

matrices M(I)
k,k+N is directly obtained. Its initial condition, M(I)

k,k = (Ak , 0)r(I)
k , is easily

derived taking into account that, from the OPL, M(I)
k,k = E[x̂(I)

k/kO(I)T
k ].

Remark 4. The simultaneous consideration of random parameter matrices, time-correlated additive
noises and random deception attacks in the sensor measured outputs, together with the presence
of random packet dropouts during transmission, is a novelty itself and involves some difficulties
in the derivation of the proposed algorithms. One of the main challenges is concerned with the
time-correlation of the noise. Since the measurement differencing approach has not been used to
transform the original measurements into an equivalent set of observations that do not depend on
time-related noise, a first difficulty was to obtain the noise estimators. On the one hand, since a
covariance-based estimation approach is used, it has been necessary to obtain a factorization—in a
separable form—for the noise covariance function (Lemma 1 (c)). On the other hand, even though
the derivation of expression (28) for the noise estimators, v̂(I)

k/s, is analogous to (26) for the signal

estimators, x̂(I)
k/s, additional difficulties are met when deducing simple formulas for the innovation

covariances matrix, Π(I)
k , from the innovation µ

(I)
k (expression (30)). The definition of the vectors

O(I)
k and J(I)

k , as well as the matrices r(I)
k , made the derivation of Π(I)

k —and, consequently, the
design of the algorithms—significantly simpler. In addition, the proposed filtering and smoothing
algorithms have an attractive recursive structure thanks to the above.

3.3. Optimal Filtering and Fixed-Point Smoothing Algorithms (Model II)

Recursive algorithms for the centralized LS linear filter, x̂(II)
k/k , and smoothers, x̂(II)

k/k+N ,
at the fixed point k for any N ≥ 1 based on the observations (10) within the compensation
framework proposed in Model II, are presented in the following theorem.

Theorem 2. Under hypotheses (H1) to (H7), the centralized LS linear filtering estimators, x̂(II)
k/k ,

and the corresponding error covariance matrices, Σ̂(II)
k/k = E

[
(xk − x̂(II)

k/k)(xk − x̂(II)
k/k)

T], can be

obtained by replacing the superscript “(I)” with “(II)” in (17). The vectors O(II)
k and the matrices

r(II)
k and J(II)

k are computed by replacing the superscript “(I)” with “(II)” in (18).

The innovations, µ
(II)
k , and their covariance matrices, Π(II)

k = E
[
µ
(II)
k µ

(II)T
k

]
, are obtained by:

µ
(II)
k = y(II)

k − (Imnz − ΓkΛh)
(
Ck Ak , Dk

)
O(II)

k−1, k ≥ 1,

Π(II)
k = Kγ

k ◦
(

Σy̆
k − (Imnz −Λk)Σẑ(II)

k + Σẑ(II)

k Λk

)
− ΓkΛkΣẑ(II)

k ΛkΓk, k ≥ 1,

where Σy̆
k is given in (11) and Σẑ(II)

k is computed by replacing the superscript “(I)” with “(II)”
in (20).

The recursive algorithm for the centralized LS linear fixed-point smoothers, x̂(II)
k/k+N , and their

error covariances, Σ̂(II)
k/k+N = E

[
(xk − x̂(II)

k/k+N)(xk − x̂(II)
k/k+N)

T], is provided by (21)–(23), just
replacing the superscript “(I)” by “(II)”.

Proof. The filtering and fixed-point smoothing algorithms in Theorem 2 can be proven in a
similar way to those in Theorem 1; therefore, the details are omitted to save space.

4. Simulation Example

In this section, we illustrate the implementation of the proposed centralized fusion
filtering and fixed-point smoothing algorithms by a simulation example.
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Scalar signal process. As in [18], let us consider a discrete-time scalar signal process
{xk}k≥0 described by an AR(1) model. Specifically, we consider the following model
(perturbed by both additive noise and signal-dependent multiplicative noise) to generate
the signal:

xk+1 =
(
0.9 + 0.01αk

)
xk + εk, k ≥ 0,

where {αk}k≥0 and {εk}k≥0 are standard Gaussian white processes and the initial signal,
x0, is a zero-mean Gaussian variable with variance 0.1. These noise sequences and the
initial signal are assumed to be mutually independent; then, it is easy to establish that the
signal covariance function is given by Σx

k,h = E[xkxh] = 0.9k−hE[xhxT
h ], h ≤ k; hence, it

is clear that it can be expressed in a separable form as Σx
k,h = AkBh, with Ak = 0.9k and

Bh = 0.9−hΣx
h, where Σx

h = E[x2
h] is recursively obtained by Σx

h = 0.8101 Σx
h−1 + 1, h ≥ 1

with initial condition Σx
0 = 0.1.

Sensor measured outputs. Let us consider a three-sensor network providing scalar
measurements of the signal that fit the following model:

z(i)k = C(i)
k xk + v(i)k , k ≥ 1, i = 1, 2, 3.

In addition, let us assume, in accordance with the theoretical study, that different uncertain-
ties are present:

• At each sensor, i = 1, 2, 3, the random parameter sequences {C(i)
k }k≥1, are chosen to

model different kinds of network-induced uncertainties, namely:

– C(1)
k = 0.8θ

(1)
k , in which {θ(1)k }k≥1 is a sequence of independent random variables,

with uniform distribution over the interval [0.3, 0.7]
(continuous fading measurements in sensor 1).

– C(2)
k = 0.7θ

(2)
k , where {θ(2)k }k≥1 is a sequence of independent random variables

with probability mass function P(θ(2)k = 0) = 0.1, P(θ(2)k = 0.5) = 0.5, P(γ(2)
k =

1) = 0.4 (discrete fading measurements in sensor 2).
– C(3)

k = 0.9θ
(3)
k , in which {θ(3)k }k≥1 is a sequence of independent Bernoulli random

variables with P(θ(3)k = 1) = θ
(3)

, ∀k ≥ 1 (missing measurements in sensor 3).

Moreover,
{

θ
(i)
k
}

k≥1, i = 1, 2, 3, are assumed to be mutually independent white
sequences.

• The noise processes {v(i)k }k≥0, i = 1, 2, 3, are defined by v(i)k = D(i)v(i)k−1 + ξ
(i)
k−1, k ≥ 1,

in which:

– D(1) = D(3) = 0.8 and D(2) = 0.7;

– ξ
(i)
k = aiξk, k ≥ 0, i = 1, 2, 3, with a1 = a3 = 0.5, a2 = 0.25 and {ξk}k≥0 a standard

Gaussian white process;
– v(i)0 = v0 is a standard Gaussian variable, for i = 1, 2, 3.

In addition, according to the theoretical model under consideration, it is assumed that
the measurements at each sensor are affected by deception attacks. The data injected by
the attackers are described by z̆(i)k = −z(i)k + w(i)

k , in which the attack noises are defined

as w(i)
k = w(i)ζk, for all i = 1, 2, 3, where w(1) = 0.5, w(2) = 0.25, w(3) = 0.75, and

{ζk}k≥1 is a standard Gaussian white process. Clearly, these attack noises are correlated

and S(ij)
k = w(i)w(j), i, j = 1, 2, 3. The attacks are considered to be randomly successful or

frustrated and, once the attacks are launched, the available measurements are described
by (3):

y̆(i)k = z(i)k + λ
(i)
k z̆(i)k , k ≥ 1, i = 1, 2, 3,

where the Bernoulli random variables,
{

λ
(i)
k
}

k≥1, i = 1, 2, 3, modeling whether the decep-
tion attacks are actually successful or not, are independent and identically distributed. The
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probability of success is assumed to be time-invariant and to take the same value for the
three sensors, namely, P(λ(i)

k = 1) = λ, k ≥ 1, i = 1, 2, 3.

Observations with random packet dropouts. The observations used for the estimation, y(i)k ,
are described using one of the following two models:

Model I −→ y(i)I
k = γ

(i)
k y̆(i)k +

(
1− γ

(i)
k
)̂̆y(i)I

k/k−1, k ≥ 1, i = 1, 2, 3,

Model II −→ y(i)II
k = γ

(i)
k y̆(i)k +

(
1− γ

(i)
k
)
ẑ(i)II

k/k−1, k ≥ 1, i = 1, 2, 3,

(34)

where the sequences modeling the transmission packet losses,
{

γ
(i)
k
}

k≥1, i = 1, 2, 3, are
independent sequences of independent Bernoulli random variables with time-invariant
packet arrival probabilities, which are the same for the three sensors, P(γ(i)

k = 1) = γ, ∀k ≥
1, i = 1, 2, 3.

A MATLAB program has been developed to obtain the centralized fusion estimators
and the corresponding error variances, and fifty iterations of the estimation algorithms
proposed in Theorems 1 and 2 have been run for the above observation models with
random packet dropouts. The estimation accuracy has been analyzed by examining the

error variances for several probabilities θ
(3)

of the Bernoulli random variables modeling the
missing measurement phenomenon of the third sensor and different values of λ and γ that
determine the probabilities of successful attacks and packet dropouts during the process of
data transmissions, respectively.

Performance of the centralized fusion filtering and fixed-point smoothing estimators. Let us

assume the same value, 0.5, for the probabilities θ
(3)

, λ and γ. First, the error variances
are analyzed to compare the proposed filtering and fixed-point smoothing estimators
considering both observation models—Model I and Model II— given in (34). The results
of this comparison are displayed in Figure 2, which shows, on the one hand, that both
estimators (filter and smoother) present lower error variances under Model I than under
Model II. On the other hand, it is gathered that, for both observation models, the smoothing
error variances are less than the filtering ones. Additionally, it can be inferred that as the
number of available observations increases, the smoothers at each fixed-point k become
more accurate; this fact is more pronounced for N ≤ 5, since the difference is practically
negligible for N > 5.

Influence of the missing measurement probabilities (sensor 3). Let us assume that, as in
Figure 2, the attack and packet arrival probabilities are λ = 0.5 and γ = 0.5, respectively.
Figure 3 displays the filtering and smoothing error variances for both models, considering

several values of the probability θ
(3)

(more precisely, θ
(3)

= 0.3, 0.5, 0.7 and 0.9) to illustrate
the impact of the missing measurement phenomenon in sensor 3. For both models, the error

variances show a similar behavior, and we can draw the conclusion that the probability θ
(3)

that the signal is present in the measured outputs of sensor 3 indeed has an effect on the
estimators’ performance. Actually, as it could be predicted, the estimation error variances
drop as the values of this probability rise; as a result, the filtering and smoothing estimators

perform better when the probability of missing data, 1− θ
(3)

, decreases. As in Figure 2, this
figure also shows that the error variances corresponding to the smoothers for both models
are lower than those of the filters and that the smoother with lag N = 3 performs better
than the smoother with lag N = 1.
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Figure 2. Error variance comparison of the centralized fusion filtering and smoothing estimators
considering observations from Model I and Model II.
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Figure 3. Centralized fusion filtering and smoothing error variances for θ
(3)

= 0.3, 0.5, 0.7, 0.9 under
Model I and Model II.
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Effect of the successful deception attack probabilities. We examine the impact of the de-

ception attacks on the estimation accuracy considering, as in Figure 2, θ
(3)

= 0.5 and
γ = 0.5. For this purpose, we compare the filtering error variances for several values of
the successful attack probability of the three sensors, λ. Under Model I, Figure 4a shows
the filtering error variances for λ= 0.1 to 0.9; it can be seen from this figure that the filter
performance is indeed affected by this probability, showing—as expected—a deterioration
when the attack probability, λ, rises (similar results are obtained under Model II). Taking
into account that, from k = 25 onwards, the behavior of the error variances is analogous in
all the iterations, Figure 4b only displays the filtering error variances at iteration k = 50,
versus λ, to better illustrate this decreasing trend for both Model I and Model II. Similar
outcomes, and hence the same conclusions, are drawn for the smoothing error variances.
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Figure 4. Centralized fusion filtering error variances: (a) under Model I when λ = 0.1 to 0.9;
(b) under Model I and Model II at k = 50 versus λ.

Influence of the transmission loss probabilities. For θ
(3)

= 0.5 and λ = 0.5, different values
for the probability γ of the Bernoulli variables modeling the packet loss phenomenon
have been considered to analyze their influence on the filter performance. Under Model I,
Figure 5a compares the filtering error variances for γ ranging from 0.1 to 0.9. This figure
leads to the conclusion that the error variances decrease as γ increases, meaning that, as
expected, better estimations are obtained when the probability of packet dropouts during
transmission decreases. Similar results—and, consequently, analogous conclusions—are
obtained in all the considered scenarios when assuming different packet arrival probabilities
and comparing the error variances for Model II. As in Figure 4b, Figure 5b only displays
the filtering error variances at iteration k = 50, versus γ, to better visualize the decreasing
trend of such error variances under both Model I and Model II. Similar outcomes, and
hence the same conclusions, are drawn for the smoothing error variances.
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Figure 5. Centralized fusion filtering error variances: (a) under Model I when γ = 0.1 to 0.9;
(b) under Model I and Model II at k = 50, versus γ.

5. Conclusions

Recursive algorithms for the centralized fusion optimal linear filtering and fixed-point
smoothing estimation problems are proposed from multi-sensor measurements perturbed
by random parameter matrices, time-correlated additive noises and random deception
attacks. Under the assumption that some data packets may be randomly lost during
the transmission process from the sensors to the processing center, two compensation
scenarios—both on the basis of the prediction compensation methodology—are analyzed.
The first one consists of using the prediction estimator of the lost measurement (i.e., the
one transmitted by the sensor after the attack is launched) as a compensator, whereas the
second one uses the prediction estimator of the actual output measured by the sensor before
the attack is launched. Both scenarios are compared by some numerical results, which show
the performance of the proposed estimators and illustrates how the theoretical system
model under consideration covers some common networked-induced phenomena (namely,
missing measurements and fading measurements). Furthermore, the influence of the
missing measurement probabilities, the effect of the deception attack success probabilities
and the impact of the transmission dropout probabilities on the estimation accuracy are
also analyzed in the context of the numerical results.

An interesting task to be considered in the future would be the theoretical study of the
influence of the successful attack probabilities and the transmission loss probabilities on
the estimation accuracy. In addition, the theoretical and experimental comparison between
the proposed compensation models and some other compensation schemes—such as the
zero-input or the hold-input schemes—could be considered. The design of quadratic or
polynomial estimation algorithms that outperform the widely used linear ones is also an
interesting further research topic.
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