100 research outputs found

    High Speed Test Interface Module Using MEMS Technology

    Get PDF
    With the transient frequency of available CMOS technologies exceeding hundreds of gigahertz and the increasing complexity of Integrated Circuit (IC) designs, it is now apparent that the architecture of current testers needs to be greatly improved to keep up with the formidable challenges ahead. Test requirements for modern integrated circuits are becoming more stringent, complex and costly. These requirements include an increasing number of test channels, higher test-speeds and enhanced measurement accuracy and resolution. In a conventional test configuration, the signal path from Automatic Test Equipment (ATE) to the Device-Under-Test (DUT) includes long traces of wires. At frequencies above a few gigahertz, testing integrated circuits becomes a challenging task. The effects on transmission lines become critical requiring impedance matching to minimize signal reflection. AC resistance due to the skin effect and electromagnetic coupling caused by radiation can also become important factors affecting the test results. In the design of a Device Interface Board (DIB), the greater the physical separation of the DUT and the ATE pin electronics, the greater the distortion and signal degradation. In this work, a new Test Interface Module (TIM) based on MEMS technology is proposed to reduce the distance between the tester and device-under-test by orders of magnitude. The proposed solution increases the bandwidth of test channels and reduces the undesired effects of transmission lines on the test results. The MEMS test interface includes a fixed socket and a removable socket. The removable socket incorporates MEMS contact springs to provide temporary with the DUT pads and the fixed socket contains a bed of micro-pins to establish electrical connections with the ATE pin electronics. The MEMS based contact springs have been modified to implement a high-density wafer level test probes for Through Silicon Vias (TSVs) in three dimensional integrated circuits (3D-IC). Prototypes have been fabricated using Silicon On Insulator SOI wafer. Experimental results indicate that the proposed architectures can operate up to 50 GHz without much loss or distortion. The MEMS probes can also maintain a good elastic performance without any damage or deformation in the test phase

    Signaling in 3-D integrated circuits, benefits and challenges

    Get PDF
    Three-dimensional (3-D) or vertical integration is a design and packaging paradigm that can mitigate many of the increasing challenges related to the design of modern integrated systems. 3-D circuits have recently been at the spotlight, since these circuits provide a potent approach to enhance the performance and integrate diverse functions within amulti-plane stack. Clock networks consume a great portion of the power dissipated in a circuit. Therefore, designing a low-power clock network in synchronous circuits is an important task. This requirement is stricter for 3-D circuits due to the increased power densities. Synchronization issues can be more challenging for 3-D circuits since a clock path can spread across several planes with different physical and electrical characteristics. Consequently, designing low power clock networks for 3-D circuits is an important issue. Resonant clock networks are considered efficient low-power alternatives to conventional clock distribution schemes. These networks utilize additional inductive circuits to reduce power while delivering a full swing clock signal to the sink nodes. In this research, a design method to apply resonant clocking to synthesized clock trees is proposed. Manufacturing processes for 3-D circuits include some additional steps as compared to standard CMOS processes which makes 3-D circuits more susceptible to manufacturing defects and lowers the overall yield of the bonded 3-D stack. Testing is another complicated task for 3-D ICs, where pre-bond test is a prerequisite. Pre-bond testability, in turn, presents new challenges to 3-D clock network design primarily due to the incomplete clock distribution networks prior to the bonding of the planes. A design methodology of resonant 3-D clock networks that support wireless pre-bond testing is introduced. To efficiently address this issue, inductive links are exploited to wirelessly transmit the clock signal to the disjoint resonant clock networks. The inductors comprising the LC tanks are used as the receiver circuit for the links, essentially eliminating the need for additional circuits and/or interconnect resources during pre-bond test. Recent FPGAs are quite complex circuits which provide reconfigurablity at the cost of lower performance and higher power consumption as compared to ASIC circuits. Exploiting a large number of programmable switches, routing structures are mainly responsible for performance degradation in FPAGs. Employing 3-D technology can providemore efficient switches which drastically improve the performance and reduce the power consumption of the FPGA. RRAM switches are one of the most promising candidates to improve the FPGA routing architecture thanks to their low on-resistance and non-volatility. Along with the configurable switches, buffers are the other important element of the FPGAs routing structure. Different characteristics of RRAM switches change the properties of signal paths in RRAM-based FPGAs. The on resistance of RRAMswitches is considerably lower than CMOS pass gate switches which results in lower RC delay for RRAM-based routing paths. This different nature in critical path and signal delay in turn affect the need for intermediate buffers. Thus the buffer allocation should be reconsidered. In the last part of this research, the effect of intermediate buffers on signal propagation delay is studied and a modified buffer allocation scheme for RRAM-based FPGA routing path is proposed

    Enabling Technologies for 3D ICs: TSV Modeling and Analysis

    Get PDF
    Through silicon via (TSV) based three-dimensional (3D) integrated circuit (IC) aims to stack and interconnect dies or wafers vertically. This emerging technology offers a promising near-term solution for further miniaturization and the performance improvement of electronic systems and follows a more than Moore strategy. Along with the need for low-cost and high-yield process technology, the successful application of TSV technology requires further optimization of the TSV electrical modeling and design. In the millimeter wave (mmW) frequency range, the root mean square (rms) height of the TSV sidewall roughness is comparable to the skin depth and hence becomes a critical factor for TSV modeling and analysis. The impact of TSV sidewall roughness on electrical performance, such as the loss and impedance alteration in the mmW frequency range, is examined and analyzed following the second order small perturbation method. Then, an accurate and efficient electrical model for TSVs has been proposed considering the TSV sidewall roughness effect, the skin effect, and the metal oxide semiconductor (MOS) effect. However, the emerging application of 3D integration involves an advanced bio-inspired computing system which is currently experiencing an explosion of interest. In neuromorphic computing, the high density membrane capacitor plays a key role in the synaptic signaling process, especially in a spike firing analog implementation of neurons. We proposed a novel 3D neuromorphic design architecture in which the redundant and dummy TSVs are reconfigured as membrane capacitors. This modification has been achieved by taking advantage of the metal insulator semiconductor (MIS) structure along the sidewall, strategically engineering the fixed oxide charges in depletion region surrounding the TSVs, and the addition of oxide layer around the bump without changing any process technology. Without increasing the circuit area, these reconfiguration of TSVs can result in substantial power consumption reduction and a significant boost to chip performance and efficiency. Also, depending on the availability of the TSVs, we proposed a novel CAD framework for TSV assignments based on the force-directed optimization and linear perturbation

    Low-Dimensional Materials for Disruptive Microwave Antennas Design

    Get PDF
    This chapter is devoted to a complete analysis of remarkable electromagnetic properties of nanomaterials suitable for antenna design miniaturization. After a review of state of the art mesoscopic scale modeling tools and characterization techniques in microwave domain, new approaches based on wideband material parameters identification (complex permittivity and conductivity) will be described from impedance equivalence formulation achievement by de-embedding techniques applicable in integrated technology or in free space. A focus on performances of 1D materials such as vertically aligned multi-wall carbon nanotube (VA-MWCNT) bundles, from theory to technology, will be presented as a disruptive demonstration for defense and civil applications as in radar systems

    Study of the impact of lithography techniques and the current fabrication processes on the design rules of tridimensional fabrication technologies

    Get PDF
    Working for the photolithography tool manufacturer leader sometimes gives me the impression of how complex and specific is the sector I am working on. This master thesis topic came with the goal of getting the overall picture of the state-of-the-art: stepping out and trying to get a helicopter view usually helps to understand where a process is in the productive chain, or what other firms and markets are doing to continue improvingUniversidad de sevilla.Måster Universitario en Microelectrónica: Diseño y Aplicaciones de Sistemas Micro/Nanométrico

    Piin lÀpivientien luotettavuus ja elinikÀ termisessÀ rasituksessa

    Get PDF
    Through-silicon via (TSV) is one of the key technologies for three-dimensional (3D) integrated circuits (ICs). TSVs enable vertical electrical connections between components which greatly reduces interconnection lengths. Regardless of all the promise the technique has shown, there are still major obstacles surrounding reliability and the cost of fabrication of the TSV structure. The first part of the thesis is a literature survey that focuses on different failure mechanisms of TSVs. In addition, different fabrication and design choices of TSVs are presented with the focus being on their effect on reliability. The experimental part of the thesis presents reliability and lifetime assessment of tapered partially copper-filled blind TSVs under thermal cycling. The reliability test was carried out with nine samples. Six of them had 420 vias and three of them had 1400 vias in a daisy chain structure. Finite element method (FEM) was used to predict the critical failure locations of the TSV structure. Lifetime was predicted by Weibull analysis. The cross-sections of the test samples were prepared by molding, mechanical grinding and polishing and analyzed by scanning electron microscope (SEM). Electrical measurements showed almost constant resistance increase in the samples before failures were noticed. The first failed sample was noticed after 200 cycles and the last at 4000 cycles. Lifetime of TSVs under thermal cycling was proven to be acceptable with used failure criterion. According to Weibull analysis, about 10 % of the samples with 420 vias will break after 1000 cycles. Sample preparation for imaging was deemed sufficient although the grinding caused artifacts. The simulation results were compared with SEM micrographs. The images showed that the failures were located at the maximum stress areas, identified with FEM simulations, at the bottom of the via. From the SEM images, it was deduced that the defects initiated from the fabrication process and propagated due to maximum localized stress.Piin lÀpivienti -rakenteet ovat keskeisessÀ osassa kolmiulotteisten integroitujen piirien kehityksessÀ. Piin lÀpiviennit mahdollistavat komponenttien vertikaalin yhdistÀmisen toisiinsa, mikÀ lyhentÀÀ huomattavasti niiden vÀlistÀ etÀisyyttÀ. Kaikista hyvistÀ puolista huolimatta tekniikalla on vielÀ haasteita edessÀÀn. NiistÀ suurimmat liittyvÀt rakenteen luotettavuuteen ja valmistuskustannuksiin. Diplomityön kirjallisessa osuudessa keskitytÀÀn piin lÀpivientien erilaisiin vauriomekanismeihin. Sen lisÀksi tutkitaan valmistus- ja suunnitteluratkaisujen vaikutusta lÀpivientien luotettavuuteen. Kokeellisen osan tarkoituksena on osittain kuparitÀytettyjen kaventuvien piin lÀpivientien luotettavuuden ja eliniÀn mÀÀrittÀminen termisessÀ syklaustestissÀ. Luotettavuustestaus suoritettiin yhdeksÀllÀ nÀytteellÀ, joista kuudessa oli 420 lÀpivientiÀ ja kolmessa 1400 lÀpivientiÀ ketjurakenteessa. Elementtimallintamisen avulla mÀÀritettiin kriittiset vauriokohdat lÀpivientirakenteessa ja elinikÀ mÀÀritettiin Weibull-analyysillÀ. NÀytteiden poikkileikkauksien valmistamiseen kÀytettiin muovaamista, mekaanista hiomista ja kiillotusta ja analysointi suoritettiin pyyhkÀisyelektronimikroskoopilla. NÀytteiden resistanssi nousi tasaisesti ennen rikkoutumisten havaitsemista. EnsimmÀinen rikkoutuminen huomattiin 200 syklin jÀlkeen ja viimeinen 4000 syklin kohdalla. NÀytteiden luotettavuus osoittautui hyvÀksi kÀytetyillÀ kriteereillÀ. Weibull-analyysin mukaan 10 % 420 lÀpiviennin nÀytteistÀ rikkoutuu 1000 syklin jÀlkeen. Karkea arvio voidaan tehdÀ, ettÀ satunnainen lÀpivienti rikkoutuu 0,024 % todennÀköisyydellÀ 1000 syklin jÀlkeen. PyyhkÀisyelektronimikroskoopin kuvien perusteella havaittiin, ettÀ nÀytteet rikkoutuivat maksimaalisen rasituksen alueella lÀpivientien alaosassa. Kuvien perusteella pÀÀdyttiin johtopÀÀtökseen, ettÀ nÀytteiden rikkoutumisen aiheuttivat virheet, jotka ovat perÀisin valmistusprosessista ja jotka etenivÀt rakenteessa termisen rasituksen vaikutuksesta

    An On-chip PVT Resilient Short Time Measurement Technique

    Get PDF
    As the CMOS technology nodes continue to shrink, the challenges of developing manufacturing tests for integrated circuits become more difficult to address. To detect parametric faults of new generation of integrated circuits such as 3D ICs, on-chip short-time intervals have to be accurately measured. The accuracy of an on-chip time measurement module is heavily affected by Process, supply Voltage, and Temperature (PVT) variations. This work presents a new on-chip time measurement scheme where the undesired effects of PVT variations are attenuated significantly. To overcome the effects of PVT variations on short-time measurement, phase locking methodology is utilized to implement a robust Vernier delay line. A prototype Time-to-Digital Converter (TDC) has been fabricated using TSMC 0.180 ”m CMOS technology and experimental measurements have been carried out to verify the performance parameters of the TDC. The measurement results indicate that the proposed solution reduces the effects of PVT variations by more than tenfold compared to a conventional on-chip TDC. A coarse-fine time interval measurement scheme which is resilient to the PVT variations is also proposed. In this approach, two Delay Locked Loops (DLLs) are utilized to minimize the effects of PVT on the measured time intervals. The proposed scheme has been implemented using CMOS 65nm technology. Simulation results using Advanced Design System (ADS) indicate that the measurement resolution varies by less than 0.1ps with ±15% variations of the supply voltage. The proposed method also presents a robust performance against process and temperature variations. The measurement accuracy changes by a maximum of 0.05ps from slow to fast corners. The implemented TDC presents a robust performance against temperature variations too and its measurement accuracy varies a few femto-seconds from -40 ÂșC to +100 ÂșC. The principle of robust short-time measurement was used in practice to design and implement a state-of-the-art Coordinate Measuring Machine (CMM) for an industry partner to measure geometrical features of transmission parts with micrometer resolution. The solution developed for the industry partner has resulted in a patent and a product in the market. The on-chip short-time measurement technology has also been utilized to develop a solution to detect Hardware Trojans

    Test Chip Design for Process Variation Characterization in 3D Integrated Circuits

    Get PDF
    A test chip design is presented for the characterization of process variations and Through Silicon Via (TSV) induced mechanical stress in 3D integrated circuits. The chip was de- signed, layed-out, and taped-out for fabrication in a 130nm Tezzaron/GlobalFoundries process through CMC microsystems. The test chip takes advantage of the architecture of 3D ICs to split its test structure onto the two tiers of the 3D IC, achieving a device array density of 40.94 m2 per device. The design also has a high spatial resolution and measurement delity compared to similar 2D variation characterization test structures. Background leakage subtraction and radial ltering are two techniques that are ap- plied to the chip's measurements to reduce its error further for subthreshold device current measurements and stress-induced mobility measurements, respectively. Experimental mea- surements are be taken from the chip using a custom PCB measurement setup once the chip has returned from fabrication
    • 

    corecore