3,292 research outputs found

    Multifactorial Evolutionary Algorithm For Clustered Minimum Routing Cost Problem

    Full text link
    Minimum Routing Cost Clustered Tree Problem (CluMRCT) is applied in various fields in both theory and application. Because the CluMRCT is NP-Hard, the approximate approaches are suitable to find the solution for this problem. Recently, Multifactorial Evolutionary Algorithm (MFEA) has emerged as one of the most efficient approximation algorithms to deal with many different kinds of problems. Therefore, this paper studies to apply MFEA for solving CluMRCT problems. In the proposed MFEA, we focus on crossover and mutation operators which create a valid solution of CluMRCT problem in two levels: first level constructs spanning trees for graphs in clusters while the second level builds a spanning tree for connecting among clusters. To reduce the consuming resources, we will also introduce a new method of calculating the cost of CluMRCT solution. The proposed algorithm is experimented on numerous types of datasets. The experimental results demonstrate the effectiveness of the proposed algorithm, partially on large instance

    Optimizing and Reoptimizing: tackling static and dynamic combinatorial problems

    Get PDF
    As suggested by the title, in this thesis both static and dynamic problems of Operations Research will be addressed by either designing new procedures or adapting well-known algorithmic schemes. Specifically, the first part of the thesis is devoted to the discussion of three variants of the widely studied Shortest Path Problem, one of which is defined on dynamic graphs. Namely, first the Reoptimization of Shortest Paths in case of multiple and generic cost changes is dealt with an exact algorithm whose performance is compared with Dijkstra's label setting procedure in order to detect which approach has to be preferred. Secondly, the k-Color Shortest Path Problem is tackled. It is a recent problem, defined on an edge-constrained graph, for which a Dynamic Programming algorithm is proposed here; its performance is compared with the state of the art solution approach, namely a Branch & Bound procedure. Finally, the Resource Constrained Clustered Shortest Path Tree Problem is presented. It is a newly defined problem for which both a mathematical model and a Branch & Price procedure are detailed here. Moreover, the performance of this solution approach is compared with that of CPLEX solver. Furthermore, in the first part of the thesis, also the Path Planning in Urban Air Mobility, is discussed by considering both the definition of the Free-Space Maps and the computation of the trajectories. For the former purpose, three different but correlated discretization methods are described; as for the latter, a two steps resolution, offline and online, of the resulting shortest path problems is performed. In addition, it is checked whether the reoptimization algorithm can be used in the online step. In the second part of this thesis, the recently studied Additive Manufacturing Machine Scheduling Problem with not identical machines is presented. Specifically, a Reinforcement Learning Iterated Local Search meta-heuristic featuring a Q-learning Variable Neighbourhood Search is described to solve this problem and its performance is compared with the one of CPLEX solver. It is worthwhile mentioning that, for each of the proposed approaches, a thorough experimentation is performed and each Chapter is equipped with a detailed analysis of the results in order to appraise the performance of the method and to detect its limits

    Efficient Solution of Minimum Cost Flow Problems for Large-scale Transportation Networks

    Get PDF
    With the rapid advance of information technology in the transportation industry, of which intermodal transportation is one of the most important subfields, the scale and dimension of problem sizes and datasets is rising significantly. This trend raises the need for study on improving the efficiency, profitability and level of competitiveness of intermodal transportation networks while exploiting the rich information of big data related to these networks. Therefore, this dissertation aims to investigate intermodal transportation network design problems, especially practical optimization problems, and to develop more realistic and effective models and solution approaches that will assist network operators and/or decision makers of the intermodal transportation system. This dissertation focuses on developing a novel strategy for solving the Minimum Cost Flow (MCF) problem for large-scale network design problems by adopting a divide-and-conquer policy during the optimization process. The main contribution is the development of an agglomerative clustering based tiling strategy to significantly reduce the computational and peak memory consumption of the MCF model for large-scale networks. The tiling strategy is supported by the regional-division theorem and -approximation regional-division theorem that are proposed and proved in this dissertation. The region-division theorem is a sufficient condition to exactly guarantee the consistency between the local MCF solution of each sub-network obtained by the aforementioned tiling strategy and the global MCF solution of the whole network. Furthermore, the -approximation region-division theorem provides worst-case bounds, so that the practical approximation MCF solution closely approximates the optimal solution in terms of its optimal value. A series of experiments are performed to evaluate the utility of the proposed approach of solving the large-scale MCF problem. The results indicate that the proposed approach is beneficial to save the execution time and peak memory consumption in large-scale MCF problems under different circumstances

    A Review of Wireless Sensor Networks with Cognitive Radio Techniques and Applications

    Get PDF
    The advent of Wireless Sensor Networks (WSNs) has inspired various sciences and telecommunication with its applications, there is a growing demand for robust methodologies that can ensure extended lifetime. Sensor nodes are small equipment which may hold less electrical energy and preserve it until they reach the destination of the network. The main concern is supposed to carry out sensor routing process along with transferring information. Choosing the best route for transmission in a sensor node is necessary to reach the destination and conserve energy. Clustering in the network is considered to be an effective method for gathering of data and routing through the nodes in wireless sensor networks. The primary requirement is to extend network lifetime by minimizing the consumption of energy. Further integrating cognitive radio technique into sensor networks, that can make smart choices based on knowledge acquisition, reasoning, and information sharing may support the network's complete purposes amid the presence of several limitations and optimal targets. This examination focuses on routing and clustering using metaheuristic techniques and machine learning because these characteristics have a detrimental impact on cognitive radio wireless sensor node lifetime
    corecore