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Abstract 

Zhou, Yuan. PhD. The University of Memphis. May, 2018. Efficient Solution of 

Minimum Cost Flow Problems for Large-scale Transportation Networks. Major Professor: Dr. 

Stephanie S. Ivey. 

With the rapid advance of information technology in the transportation industry, of which 

intermodal transportation is one of the most important subfields, the scale and dimension of 

problem sizes and datasets is rising significantly. This trend raises the need for study on 

improving the efficiency, profitability and level of competitiveness of intermodal transportation 

networks while exploiting the rich information of big data related to these networks. Therefore, 

this dissertation aims to investigate intermodal transportation network design problems, 

especially practical optimization problems, and to develop more realistic and effective models 

and solution approaches that will assist network operators and/or decision makers of the 

intermodal transportation system.  

This dissertation focuses on developing a novel strategy for solving the Minimum Cost 

Flow (MCF) problem for large-scale network design problems by adopting a divide-and-conquer 

policy during the optimization process. The main contribution is the development of an 

agglomerative clustering based tiling strategy to significantly reduce the computational and peak 

memory consumption of the MCF model for large-scale networks. The tiling strategy is 

supported by the regional-division theorem and α-approximation regional-division theorem that 

are proposed and proved in this dissertation. The region-division theorem is a sufficient 

condition to exactly guarantee the consistency between the local MCF solution of each sub-

network obtained by the aforementioned tiling strategy and the global MCF solution of the whole 

network. Furthermore, the α-approximation region-division theorem provides worst-case bounds, 
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so that the practical approximation MCF solution closely approximates the optimal solution in 

terms of its “optimal value”.  

A series of experiments are performed to evaluate the utility of the proposed approach of 

solving the large-scale MCF problem. The results indicate that the proposed approach is 

beneficial to save the execution time and peak memory consumption in large-scale MCF 

problems under different circumstances. 
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1 Introduction 

With the globalization of trade and the ensuing rapid growth in freight tonnage 

transported, significant demand has been placed on transportation networks. The complexities 

inherent in freight transport and the drawbacks associated with a unimodal approach gave rise to 

expanded intermodal operations. Intermodal transportation has emerged as an increasingly 

important segment of the global economy, and offers opportunities for developing more efficient, 

reliable and sustainable freight transportation systems (SteadieSeifi et al. 2014). On both the 

regional and national levels, policies have been implemented in recent years to stimulate 

intermodal transport (U.S. Congress 1991; U.S. Congress 1998; European Commission 

Directorate-general for Energy and Transport 2009). As a consequence, research interest in 

intermodal freight transportation problems has accelerated during the last few decades.  

Substantial changes in the spatial organization of supply and distribution networks have 

been introduced due to emerging trends that influence the development of the freight 

transportation system. Among these are (a) geographical expansion of distribution networks, as 

well as increases in long-distance freight transport movements; (b) changes in the size and 

functionality of supply and distribution network nodes, such as the development of break-bulk, 

cross-docking, or transshipment systems, and the development of reverse logistics processes, 

light manufacturing and packaging, and so forth; (c) increases in the development of hub-and-

spoke networks, while concentrating international trade in hub terminals, such as ports and 

airports; and (d) decreases in the size of consignments, while increasing delivery frequency and 

vehicle utilization (Zografos & Regan 2004).  

The aforementioned development trends of the structure and scale of intermodal freight 

transportation networks have stimulated related research in this field. One of the important 
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aspects is with regard to intermodal transport network design. By its nature, the intermodal 

transport network design problem demonstrates an increased complexity due to the use of 

multiple modes of transportation and the involvement of multiple decision makers. Therefore, 

network operators and decision makers who are confronted with long-term decisions on the 

layout of intermodal terminal infrastructure networks and intermodal service networks, as well as 

the design of linkages between these two, will need more theoretical and technical support (Caris 

et al. 2013). 

Along with the rapid development of intermodal transportation, the scale and complexity 

of the intermodal network problem increases dramatically, which brings researchers more 

opportunities and challenges in network programming problems. Many traditional network 

problem algorithms are challenged by large-scale networks and the big size of data inherent to 

them. The operational efficiency and consumption of computing resources of the network 

optimization process become critical issues when the traditional network problem algorithms 

encounter extreme large-scale problem, since the large amount of data may lead to long 

execution time or exceeding available memory. Studies on many network problems with large 

problem scales have been put forward, such as the large-scale minimum spanning tree problem, 

the large-scale shortest path problem, the large-scale set covering problem, the large-scale 

maximum flow problem and so on. 

Therefore, the main objective of this dissertation is to investigate large-scale 

transportation network problems, especially practical optimization problems, mainly focusing on 

large-scale minimum cost flow problems. Then the effort is put on developing models and 

solution approaches to assist network operators and/or decision makers of the intermodal 

transportation system.  



3 

 

Contributions 

 Among the conventional techniques that are applied to solve network problems, the 

Minimum Cost Flow (MCF) model is one of the most widely used, and is a mature and practical 

programming technique. However, as the scale of networks becomes increasingly larger, the 

MCF faces a new problem in terms of computational and memory requirements.  

 Based on an exploration of related network problem technologies, this dissertation 

develops an efficient large-scale MCF problem solving approach that is based on a divide-and-

conquer framework. Specifically, an agglomerative clustering based tiling strategy is developed 

to significantly reduce the computational and memory consumption of the large-scale MCF 

model. In addition, from the theoretical point of view, this dissertation also proposes and proves 

the regional-division theorem and the α-approximation regional-division theorem as the 

theoretical basis of the proposed approach.  

The regional-division theorem is a sufficient condition to exactly guarantee the 

consistency between the local MCF solution of each sub-network obtained by the 

aforementioned tiling strategy and the global MCF solution of the whole network. In addition, 

the α-approximation regional-division theorem gives us the worst-case bounds, so that the 

practical approximation MCF solution closely approximates the optimal one in terms of its 

“optimal value”.  In other words, this dissertation produces a methodology that can solve the 

large-scale network problem without sacrificing much solution accuracy, while greatly 

shortening the execution time and reducing the memory usage. Experimental results demonstrate 

the utility of the proposed approach. 
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Structure of the Manuscript  

The structure of the rest of this dissertation is as follows. Chapter Two presents a 

comprehensive literature review of the related studies. The first subsection of the literature 

review focuses on the research process and achievements with regard to intermodal 

transportation network problems, and then summarizes the issues worthy of concern related to 

these problems. The following subsection further reviews the study of different types of large-

scale network problems, and points out the necessity of further research on the MCF problem for 

large-scale transportation networks. 

Chapter Three discusses the problems associated with large-scale intermodal 

transportation networks, especially the challenge to conventional methods caused by big data 

derived from large-scale networks. After analyzing the problem, two theorems are proposed and 

proved in the following subsections. Then an agglomerative clustering based tiling strategy is 

proposed to deal with this problem. 

Furthermore, six groups of experiments are presented in Chapter Four to measure the 

performance of the proposed methodology for the large-scale minimum cost flow problem from 

different aspects. Related technologies and methods are described in corresponding subsections 

as well. The experiment results are also demonstrated and analyzed. 

Chapter Five provides final conclusions and a general description of ongoing research 

and future work directions.  

In addition, Appendix A provides detailed explanations of the current MATLAB® 

implementation of the algorithm produced in this dissertation. It also outlines preliminary ideas 

about the extension of the study to large-scale multi-commodity minimum-cost flow problems.  
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2 Literature Review 

Development of Intermodal Transportation 

Intermodal transportation research was emerging as a new transportation research field in 

the late 1980s and early 1990s, and moved on to a more mature independent research field 

during the following decades (Bontekoning et al. 2004). Intermodal transportation is regarded as 

a competing mode that can be applied as an alternative to unimodal transportation in practice, as 

depicted in Figure 1.  

 

Figure 1 Demonstration of intermodal transportation. 

Beginning with the Intermodal Surface Transportation Efficiency Act (ISTEA) in 1991, a 

more comprehensive approach to intermodal systems became a focus in the United States. 

ISTEA stated that it is the policy of the United States to develop a National Intermodal 

Transportation system that " ... shall consist of all forms of transportation in a unified, 

interconnected manner, including transportation systems of the future, to reduce energy 

consumption and air pollution while promoting economic development and supporting the 

Nation's preeminent position in international commerce." (U.S. Congress 1991). Several 
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handbooks and reference texts addressing intermodal transportation issues were published during 

the same time (Hayuth 1987; Cambridge Systematics Inc. et al. 1995). After 1990, more 

literature was developed specifically addressing intermodal transportation issues (Min 1991; 

European Conference of Ministers of Transport 1993; Southworth & Peterson 2000; Van Duin & 

Van Ham 1998; Bookbinder & Fox 1998). In the next several years, substantial research has 

been put forward on intermodal network problems. The issues worthy of concern related to this 

field are summarized as follows. 

Intermodal transportation network design Study of various physical topologies of 

intermodal networks is necessary. In many cases, the intermodal network is assumed or designed 

as a hub-and-spoke topology. Research is needed to better understand advancing hub network 

design methods for full logistics costs (regarding coordination costs), as well as the mechanisms 

of collaboration in hub networks. Moreover, terminals with both modal and intermodal transfers 

are an important part of the intermodal transport network and have a strong influence on the 

competitiveness of intermodal freight alternatives. Thus, terminal network design and terminal 

allocation problems need further study. Depending on the real-world application, various 

topologies of intermodal networks also need some attention. For example, a corridor network is 

more appealing in a region with waterway transportation. Furthermore, a reliable intermodal 

network is a network that can recover from any disruption by preventing, absorbing, or 

mitigating its effects. Therefore the flexibility requirement of the intermodal network design is of 

interest. (Caris et al. 2008; SteadieSeifi et al. 2014) 

Cooperation among multiple modes So far, the main attention is given to intermodal 

transport by rail and truck cooperation. But, in regions with an extensive inland waterway 

network, such as Western Europe, intermodal transport including inland navigation is also 
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important. Thus, future research is necessary to improve operations in various combinations of 

barge, rail, truck and air. Further, the modes involved in intermodal transportation have their own 

specific characteristics with respect to infrastructure and load units. Therefore, the design and the 

management of such an intermodal transportation network is restricted by the existing 

transportation infrastructure, location of modal transfer terminals and logistics cost structure. 

Complexity of assignment problems among various modes is also increased due to the large 

variety of load units (type and size), rail wagons and trailer chassis.  

Moreover, due to the limited number and capacity of various modes, and additional 

regulations (e.g. working hour regulations for drivers), simultaneous planning of multiple 

resources (e.g. vehicles plus drivers) should be incorporated. Taking dynamicity and 

stochasticity of the data into account also remains a major research challenge. (Macharis & 

Bontekoning 2004; Ishfaq & Sox 2010; Groothedde et al. 2005; Caris et al. 2008; SteadieSeifi et 

al. 2014). 

Collaboration among sectors of the intermodal transportation system The control of 

the intermodal transportation system has to be organized by a set of actors all of whom are 

responsible for only a part of the whole. The cooperation between actors in the intermodal 

transport chain is a worthwhile research field. Few studies take multiple decision makers into 

account. Most studies assume that the intermodal transportation system is managed centrally and 

only considers the requirements of the operator. Actually, the execution of the plans is largely 

influenced by the interactions and competitions among the carriers. Their collaboration, for 

example, ensures on-time delivery. It is worth considering the development of a cooperation 

mechanism between transport providers and terminal operators. 
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Furthermore, integrating different levels (such as strategic, tactical and operational levels) 

of planning might provide more reliability, flexibility, and more importantly sustainability, 

generating more efficient solutions for the industry, which will need more consideration in the 

collaboration among the sectors of the intermodal transportation system. (Nabais et al. 2015; 

Caris et al. 2008; SteadieSeifi et al. 2014) 

Environmental effect of intermodal transportation Additional considerations related 

to intermodal and sustainable transportation can also be brought forward. Environmental effects 

of transportation should be considered because both traffic congestion and transportation modes 

have a direct effect on exhaust emission of vehicles. Intermodal transportation brings more 

environmental benefits than unimodal transportation. It is worthwhile to quantify those benefits 

into current models, for instance, to add new objectives or constraints related to the 

environmental impact of intermodal transportation. On the other hand, how much environmental 

requirements can influence the development of intermodal transportation systems can also be 

evaluated. (Resat & Turkay 2015; Wang et al. 2016)  

Lack of the efficient solution approach to the complex intermodal transportation 

problems  For all three planning levels (i.e., strategic, tactical and operational), many intermodal 

transportation problems have yet to be tackled by operations research techniques. For instance, a 

tactical planning problem that requires more research attention is the design of the intermodal 

service network. The optimal number of terminals in a service network, location decisions for 

hub-terminals, optimal consolidation strategy, allocation of capacity to jobs and scheduling of 

jobs in terminals, as well as determining truck and chassis fleet size in drayage operations, in 

particular, need further research.  
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Due to the complexity of the problems, solving them is still a challenge in itself. 

Research efforts are needed into the further development of solution methods and the 

comparison of proposed techniques. Some of the approaches have been studied in the reviewed 

literature, such as decomposition and relaxation techniques, Branch-and-Cut algorithms, and 

some metaheuristic algorithms (e.g. the family of Tabu search heuristic). It leaves a great 

opportunity to study other appropriate algorithms for the problems, for example, other families 

of metaheuristic algorithms, and comparisons among their performance.  

Problem size (network scale) and related computational considerations are issues which 

increase the complexity of decision support in intermodal transport. Also, computational times 

required to obtain an optimal solution increase with the size of the instance being solved. In 

addition, parallel computing offers a capability to handle time and memory consuming solution 

algorithms, especially for large and decentralized planning problems. Some more efficient 

solution approaches such as column generation could be applied to solve the problem of larger-

size problem instances. (Ghane-Ezabadi & Vergara 2016; Caris et al. 2008; Caris et al. 2013; 

SteadieSeifi et al. 2014)  

Study on Large-scale Network Problem 

Consequent with the development of intermodal transportation, the growing size and 

complexity of the intermodal network problem brings researchers more opportunities and 

challenges in the study of network programming problems. For many mature network 

programming problems the optimal solution can be easily obtained when the problem size is 

small. However, with the rapid increases in globalization processes, the scale and dimension of 

the practical network (for example, intermodal network) are becoming increasingly larger, which 
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could be troublesome to many traditional network problem algorithms in terms of computational 

and memory requirements.  

The growing interest in large-scale network problems is also fueled by increasing 

pressure on various industries to operate more efficiently. Substantial research devoted to large-

scale network problems provides the basis to assess the current state of the art. Furthermore, the 

experience accumulated through previous research can provide vital input into anticipated 

changes and trends in the study on the solution approaches of various types of large-scale 

network problem. 

The shortest path problem. It is a famous and extensively-studied network problem that 

is also plagued by the issue brought by large-scale networks, with the number of vertices and 

edges ranging from several hundreds of thousands to billions. Many researchers have already put 

effort into related studies during the years.  

Dijkstra (1959) introduced the original idea for solving the shortest path problem, which 

is to construct the tree of minimum total length between n nodes, and to find the path of 

minimum total length between two given nodes. 

Meyer and Sanders (2003) designed the Δ-stepping non-negative edge weights (NSSP) 

algorithm which divides Dijkstra’s algorithm into a number of phases, each of which can be 

paralleled. Their algorithm can be implemented very efficiently in sequential and parallel 

settings for a large class of graphs. 

Crobak (2007)  performed an experimental study on applying the Δ-stepping parallel 

algorithm to the single source shortest path problem with non-negative edge weights on 

largescale graphs. A remarkable parallel speedup is obtained during the implementation, when 

compared with competitive sequential algorithms, for low-diameter sparse graphs. It takes less 
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than ten seconds on 40 processors of the MTA-2 to apply Δ-stepping on a directed scale-free 

graph of 100 million vertices and 1 billion edges with a relative speedup of close to 30. These are 

the first experimental results of solving a shortest path problem on a realistic graph with billions 

of vertices and edges. Their study reveals the enormous potential of dealing with large-scale 

network problems by applying parallel computing with wise algorithm or methodology design. 

Klunder & Post (2006) conducted an extensive computational study on existing shortest 

path algorithms, and describe combinations of them with bidirectional search and heuristic-

estimate technique and a new label correcting techniques utilizing the Euclidean distance and 

landmarks. The test result shows that the combination of their bucket algorithm, bidirectional 

search, and the use of a landmark estimate is the best one-to-one shortest path algorithm of all 

the algorithms they tested in their study.   

Sakumoto et al. (2010) conducted a comparison study on Thorup’s algorithm and 

Dijkstra’s algorithm. Thorup’s algorithm for the single-source shortest path problem with 

computational complexity of O(N), is smaller than that of Dijkstra’s algorithm, which is 

O(NlogN). The test on a large-scale simulated network of both algorithms shows that Thorup’s 

algorithm is slightly faster but has larger memory consuption than Dijkstra’s algorithm. 

Gubichev et al. (2010) determined the actual shortest path (i.e., the real sequence of the 

nodes involved) of large graph problems and proposed a scalable sketch-base index structure to 

compute the shortest-paths and estimate the length of them. They present a technique leading to 

near-exact shortest-path approximations in real world graphs with tens of thousands to millions 

of nodes and edges, while providing several orders of magintude speedup over traditional path 

computation. 
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Maruhashi et al. (2012) were aware of the fact that it is getting harder to efficiently 

estimate the exact length of the shortest path between given pairs of nodes in a graph of real 

world large-scale networks due to the time complexity of the exact algorithms. They propose a 

novel method, EigenSP, that estimates the shortest-path length by using an adjacency matrix 

approximated by a few eigenvalues and eigenvectors. Comparison between their method and the 

landmark-based method shows that EigenSP estimates smaller distances.  

Zhou et al. (2015) concentrated attention on Single-Source Shortest Path (SSSP) which is 

a fundamental graph algorithm for large-scale networks involving millions or even billions of 

vertices and links. Based on the well-known Bellman-Ford algorithm, they designed a single-

FPGA based method to accelerate SSSP for massive networks. During the process, the network 

information is stored in external memory with their proposed optimized data layout to enable 

efficient utilization of external memory bandwidth. This facilitates the single-FPGA based 

method to achieve the maximum data parallelism to concurrently process multiple edges in each 

clock cycle. It is claimed that their design is capable of processing 1.6 billion links per second, 

while achieving a high clock rate of over 200 MHz. 

Xu et al. (2016) studied the high-performance shortest-path query algorithm, which 

normally has two stages: preprocessing and query answering. They put effort on reducing the 

running time of both stages. An efficient shortest-path query algorithm was proposed, which is 

called BBQ, to reduce the preprocessing time over the existing algorithms on large-scale graphs, 

by constructing a distance oracle in a bottom-top-bottom manner. Meanwhile, by traversing the 

decomposed tree instead of executing separate queries, BBQ can answer batch queries in bulk, 

which leads to remarkable acceleration.  



13 

 

Aridhi et al. (2015) investigated the shortest path problem in large-scale real-road 

networks and proposed a MapReduce-based approach. Noticing that it is a time-consuming task 

for the classical shortest path algorithms to construct the distance matrix between each pair of 

nodes on a large-scale network due to its size, they design an efficient MapReduce-based 

approach, of which the objective is to provide high quality solutions in acceptable computational 

time but not to guarantee optimality. Their approach actually follows the popular divide-and-

conquer concept.  Afanasyev et al. (2016) introduced a hybrid architecture approach for solving 

various large-scale graph problems, i.e., the minimum spanning tree and shortest paths problems, 

which  allow using all available resources on both multi-core CPUs and GPUs.  

The maximum flow problem. It is a classical combiniatiorial optimization problem 

which often arises in scientific and engineering application fields. It is also of importance in 

computer science and operational research fields.  Zhang et al. (2011) designed a new method to 

approximately solve the maximum flow problem in complex and large-scale networks by taking 

advantage of granular computing with combining the maximal clique. The experiment result 

indicates the proposed algorithm can obtain the approximate maximum flow in a relatively short 

running time. 

The minimum spanning tree problem. It is one of the most popular network problems, 

which has been applied in various research fields. Given n points in a plane, a minimum 

spanning tree is a set of edges that connects all the points and has a minimum total length. Many 

researchers have worked on finding an efficient method to solve the large-scale minimum 

spanning tree problem for years.  

Lin and Xue (2000) studied on the hexagonal minimum spanning tree problem and 

provided an improved linear time algorithm for computing an optimal layout of this kind of 
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network problem, which is an extension of their earlier achievement on a quadratic time 

algorithm dealing with the same problem.  

Based on a general concept of spanning graphs, which is a natural definition, Zhou et al.  

(2002) designed a framework for minimum spanning tree construction; and provided an 

O(NlogN)  sweep-line algorithm to construct a rectilinear minimum spanning tree. Later, Karloff 

et al. (2010) provided an algorithm for finding the minimum spanning tree of a dense graph by 

adopting the MapReduce model that is designed for computations on terabyte and petabyte 

scales. 

A specific type of minimum spanning tree problem, called a capacitated minimum 

spanning tree problem, has a goal to find a minimum cost spanning tree in a network where 

nodes have specified demands, with additional capacity constraints on the subtrees incident to a 

given source nodes. This is an important sub-problem in many telecommunication network 

design problems.  

Ahuja et al. (2003) combined their previously proposed node-based and tree-based 

neighborhood structure algorithms to provide an advanced composite neighborhood structure for 

solving the large-scale capacitated minimum spanning tree problem, and proposed a dynamic 

programming based exact algorithm for searching the composite neighborhood. 

The set covering problem. It is one of the most studied NP-hard problems. There are 

many relevant practical applications of the set cover problem, such as crew scheduling in airline 

and mass-transit companies, with the objective being to find a set of pairings having minimum-

cost that covers a given set of trips.  

Marchiori and Steenbeek (2000) focused on obtaining the approximated solution of large-

scale set covering problems, mainly arising from crew scheduling. They proposed an adaptive 
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heuristic-based evolutionary algorithm to find covers of good quality in rather short time. The 

main ingredient of the proposed algorithm is selecting a small core subproblem which 

dynamically updates during the excution.  

Zhang et al. (2016) were also aware that since the existing set cover and evolutonary 

algorithms are unable to provide satisfactory efficiency, the growing scale of networks has made 

the scheduling problem more challenging. They proposed a Kuhn-Munkres parallel genetic 

algorithm to solve the set cover problem for large-scale wireless sensor networks. The divide-

and-conquer strategy is used to reduce the dimension, and then the polynomial Kuhn-Munkres 

algorithm is applied to splice the feasible set cover problem solutions of each subarea to enhance 

the search efficiency. 

The dial-a-ride problem. The growing demand on share transportation services with 

flexible routes in many large cities stimulated study on the Dial-a-Ride problem, where a number 

of passengers need to be picked up from and delivered to different locations. The system goal is 

to minimize the routing cost while respecting a set of pre-specified constraints (pickup time, ride 

duration and load per vehicle).  

Muelas et al. (2013) proposed a variable neighborhood search algorithm to solve the 

problem of computing the best routes that a public transportation company could service to 

satisfy a number of passengers’ requests.  After in depth study,  Muelas et al. (2015) designed a 

new distributed algorithm based on the partition of the requests space and the combination of the 

routes, for large-scale problem instance (up to 16,000 requests or 32,000 locations).  

Ordonez et al. (2016) introduced a data summarization which is an essential mechanism 

to accelerate analytic algorithms on large data sets. Then they provided a summarization matrix 

to transform the algorithms to compute linear models to work in two phases: summarization and 



16 

 

iteration. This process can remove main memory limitations of Principal Component Analysis, 

linear regression, and variable selection, and enable parallel processing. 

Minimum Cost Flow (MCF) problem. It is one of the most fundamental problems 

within network flow theory. L.V. Kantorovich (1960) first studied a group of transportation 

problems known as network flow problems. These problems are characterized by a need to 

distribute flow throughout a network in such a way that costs are minimized without violating 

capacity constraints, and can result in complex problem formulations. 

Actually, the maximum flow problem and the shortest path problem address different 

components of the overall minimum cost flow problem. The maximum flow problems consider 

link capacity and the simplest cost structure; the shortest path problems consider link cost but not 

capacity. MCF combines these problem ingredients together (Ahuja et al. 1993). Therefore, 

many algorithms for solving MCF problem combine ingredients of both shortest path and 

maximum flow algorithms. For example, many of the MCF algorithms solve a sequence of 

shortest path problems with respect to maximum the flow. 

Since Minimum Cost Flow problems are pervasive in practice, arising in almost all 

industries, the MCF optimization model is a very important and practical network programming 

technique with applications in transportation, distribution system planning, capacity planning, 

manufacturing, etc. Many strategic decisions can be facilitated by more efficient performance of 

the MCF solving methodology. Therefore, the MCF problem and related algorithms have been 

investigated profoundly during the last few decades. Researchers have developed a number of 

different algorithmic approaches that have led both to theoretical and practical improvements in 

the running time. 
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Tardos (1986) found that there is a small theoretical drawback to the previous polynomial 

algorithms to solve the linear programming problem, which is that the number of arithmetic steps 

depends on the size of the input numbers. The offered a polynomial algorithm for the minimum 

cost flow and multi-commodity flow problems in which the number of arithmetic steps is 

independent of the size of the costs and capacities. But the problem of whether any algorithm has 

a running time that is independent even of the size of the numbers in the constraint matrix 

remains open in this study. 

Orlin (1989) presented a strongly polynomial time algorithm for the un-capacitated 

minimum cost flow problem based on a refinement of the Edmonds-Karp scaling technique. The 

proposed algorithm addresses the un-capacitated minimum cost flow problem as a sequence of 

O(n log n) shortest path problems on networks with n nodes and m arcs and runs in O(n log n (m 

+ n log n)) time. His algorithm yields an attractive running time for solving the minimum cost 

flow problem in parallel.  

Goldberg and Tarjan (1990) introduced a framework for solving the minimum cost flow 

problem that starts by finding an approximate solution then iteratively improves the current 

solution. Their approach measures the quality of a solution by the amount that the 

complementary slackness conditions are violated and extends techniques developed for the 

maximum flow problem to improve the quality of a solution. When the error parameter is small 

enough, the current solution is optimal and the algorithm terminates. 

The algorithms for solving MCF problems may be categorized into several principal 

approaches, such as primal, dual, primal-dual and scaling algorithms (Kelly et al. 1991; 

Bertsekas & Tseng 1988; Ahuja et al. 1993). Some of these include polynomial algorithms, such 

as the interior-point algorithm (Resende & Pardalos 1996), the minimum mean cycle-canceling 
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algorithm (Goldberg & Tarjan 1989) and network simplex algorithms (Kelly et al. 1991). There 

are several mature MCF solvers already published such as Relax IV (Bertsekas & Tseng 1994) 

and LEMON (EGRES 2003). Although the MCF problem has been studied for a long time and 

can theoretically be solved by these aforementioned algorithms, the effect of the problem size 

was not well considered in the design of most existing MCF solving methodologies. This poses a 

significant challenge with the rapid advance of e-commerce, as the network scales of the 

aforementioned domains are becoming larger and larger. For example, there were 17.7 billion 

USD in orders placed on T-mall (a large Chinese business to consumer website) during the 24 

hours of the “TMALL 11.11 Global shopping Festival” (Nov. 11 2016), with rapid shipment and 

delivery expected by consumers. Even worse these large-scale problems sometimes need to be 

resolved very efficiently because in some cases, demands are in real-time. For instance, in the 

field of biologistics, which deals with operations and logistics for temperature and time sensitive 

biologic materials and products, there are strict requirements of time efficiency and quality 

control; otherwise the manufacturer would suffer a complete write-off of the value of their 

products.  

In fact, how to efficiently and effectively deal with the traditional solvable problem on a 

“big network” is becoming a popular research direction (Jarrah et al. 2009; Babonneau et al. 

2006). Therefore, even if the MCF problem is a P problem (i.e., the problem can be solved in 

polynomial time) and we can obtain the optimal solution easily, when the scale of the input 

network exceeds computer hardware capacities, MCF will be problematic in terms of 

computational and memory requirements. In other words, the increasing network scale and data 

volume has opened new possibilities and challenges for MCF applications.  
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Chidananda Gowda and Ravi (1995) introduced the clustering principle of  minimizing 

intra-cluster dissimilarity and maximizing inter-cluster dissimilarity to achieve the clustering of 

numerical vectors. They proposed a hierarchical symbolic clustering algorithm, which makes use 

of both the similarity and the dissimilarity measures. The proposed symbolic clustering 

algorithm works on symbolic objects of complex types instead of simple numeric ones and it 

makes use of both the similarity and the dissimilarity values. 

Literature Review Summary 

After a comprehensive review of the previous research in the intermodal transportation 

field, research performed to date offers insights into the complex relationships in the intermodal 

transportation system as well as the dilemma brought by large-scale intermodal networks. More 

study is needed on improving the efficiency, profitability and level of competitiveness of 

intermodal transportation while exploiting the rich information of big data related to the 

intermodal transportation network.  

As summarized and discussed in detail in the previous sections, there are still many 

problems in this field that deserve more attention. Based on the analysis of the previous sections, 

this dissertation focuses on exploring an effective strategy for solving the large-scale intermodal 

network optimization problem. The following chapters provide the detailed study and related 

experiments of this topic.    
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3 A Novel Strategy for Solving Large-Scale Minimum Cost Flow 

Problems 

As discussed in the literature review, increasing network scale and data volume has 

brought new challenges to the solution of network problem. To address this, an efficient large-

scale MCF problem solving approach (abbreviated as ELS), which is based on a divide-and-

conquer framework, is proposed in this dissertation. The solution uses an agglomerative 

clustering based tiling strategy (called the AC tiling strategy) to partition the whole large-scale 

network into several smaller sub-networks. Then, the MCF in each sub-network is solved 

independently to reduce peak memory consumption and improve efficiency. The optimal 

solutions of all sub-networks are spliced together as the global MCF solution to this large-scale 

network. Figure 2 demonstrates the basic process of this divide-and-conquer approach.  

The AC tiling strategy can provide a practical solution of a large-scale MCF problem that 

closely approximates the optimal solution, while greatly shortening the execution time and 

reducing the peak memory consumption. 
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Figure 2 Demonstration of divide-and-conquer framework. 

The rest of this chapter is organized as follows. The problem definition and analysis is 

articulated first. Then, the regional-division theorem and α-approximation regional-division 

theorem that underlie the AC tiling strategy are proposed and proved successively. Next, the AC 

tiling is designed, and finally the ELS solution approach is proposed and demonstrated. 

Problem Analysis 

To begin our discussion of the MCF problem, it is necessary to state that the key 

information of any network includes: (a) the network topology, (that is, the network node and arc 

structure); and (b) data such as costs, capacities and supplies/demands associated with the 

network’s nodes and arcs (Ahuja et al. 1993). These are referred to as the network features in 

this study. Let G = (N,E) be a directed network with a unit cost 𝑐𝑖𝑗 and a capacity 𝑢𝑖𝑗 associated 

with every arc (𝑖, 𝑗) ∈ 𝐸; and a number 𝑏(𝑖) indicating the supply or demand at every node 𝑖 ∈

𝑁. Let 𝑥𝑖𝑗 represent the flow of arc (𝑖, 𝑗) ∈ 𝐸. Then the MCF problem can be stated as follows: 
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                                         𝑀𝑖𝑛𝑚𝑖𝑧𝑒 ∑ 𝑐𝑖𝑗𝑥𝑖𝑗(𝑖,𝑗)∈𝐸                                                             (3.1) 

subject to 

∑ 𝑥𝑖𝑗{𝑗:(𝑖,𝑗)∈𝐸} − ∑ 𝑥𝑗𝑖{𝑗:(𝑗,𝑖)∈𝐸} = 𝑏(𝑖)       for all 𝑖 ∈ 𝑁,                           (3.2) 

0 ≤ 𝑥𝑖𝑗 ≤ 𝑢𝑖𝑗        for all (𝑖, 𝑗) ∈ 𝐸.                                                (3.3) 

Many researchers have worked on efficient implementation and experimental analysis of 

the MCF problem and have put forward many mature techniques which can exactly solve it 

(Dantzig 1951; Bradley, Gordon H. Gerald 1977; Armstrong et al. 1980; Goldberg 1997; Lobel 

1996; Portugal et al. 2008; Frangioni & Manca 2004; Ahuja et al. 1993; Goldberg & Tarjan 

1989; Kelly et al. 1991; Bertsekas & Tseng 1988). However, when the size of the input network 

exceeds computer hardware capabilities, MCF becomes problematic in terms of computational 

and memory requirements. In other words, when the coefficient matrix of the MCF model 

(Equation (3.2)) is very large, it will severely challenge the computer hardware capabilities. In 

such cases, the large-scale MCF problem cannot be solved as a whole piece. Even if some large 

coefficient matrices can be put into memory, the solution time will be excessively long. Thus 

there is a need for another strategy to solve large-scale MCF problems. This study will focus on 

investigating the large-scale MCF problem, which is described and analyzed in subsequent 

sections. 

Problem Definition and Difficulty Analysis. 

Problem Definition: Given a large-scale network (i.e., the number of nodes and links of 

this network is very large), we design a tiling strategy that can partition the whole network into 

several small-scale sub-networks and guarantee the consistency between the local MCF solution 

of each sub-network and the global MCF solution of the whole network. Then, we can efficiently 
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obtain the optimal solutions of each sub-network using sequential or parallel processing, and 

splice them together as the global MCF solution to this large-scale network. 

Definition 1:  Consistency. The local MCF solutions of each sub-network are consistent 

with the global MCF solution when they are equal to the MCF solution of the same region of the 

whole network obtained from the global processing. 

The difficulty of this problem arises from several aspects. To begin with, the main 

purpose of the tiling strategy is to use less memory to pre-process a large-scale network for 

achieving a number of sub-networks with small sizes, so that the time and space complexity of 

the tiling strategy should not be very high. If the time and space complexity of a tiling strategy is 

higher than for the MCF algorithm itself, it will be unwise to use it (because it is worse than 

using the MCF algorithm directly). In addition, whether the MCF optimal solution of each sub-

network is consistent with that of the whole network or not is critical to a tiling strategy. In other 

words, it is necessary to make sure that the MCF solution of each sub-network obtained by a 

tiling strategy is independent of each other sub-network. If the local optimum solution (i.e., the 

optimum solution of the sub-network) is inconsistent with the global one, the optimality of the 

global MCF optimum solution based on this tiling strategy will not be guaranteed. For instance, 

Figure 3(a) shows a global MCF solution, but if the network is segmented from the middle, the 

local MCF optimum solution of each piece will be as shown in Figure 3(b). It can be seen that 

since the MCF solution is decided by the local information, the optimality of the MCF result 

shown in Figure 3(b) is lost. 
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(a) Solution obtained as a whole piece 

 
 

(b) Solution obtained as two sub-networks 

Figure 3 Illustration of the inconsistency of global and local MCF solutions. 

However, not all segmentations lose optimality. For instance, if our segmentation can 

ensure Supply 1 and Demand 1 are in a sub-network, and Demand 2 and Supply 2 are in a sub-

network, the consistency between the local and global MCF results will be guaranteed. In other 

words, if a tiling strategy can ensure that the supply, demand and transshipment nodes that must 

have freight flow linkages under the global situation can be partitioned into one sub-network, 

inconsistency between the local and global MCF results will be avoided. In order to ensure this 

property in a tiling strategy, a sufficient condition (i.e., the regional-division theorem) that can 

exactly guarantee the consistency between the local and global MCF solutions, will be discussed 

in the next section.  

Claim: If a tiling strategy can ensure that the supply, demand and transshipment nodes, 

that must have freight flow linkages under the global situation, can be partitioned into one sub-

network, the local and global MCF results will be consistent with each other. 

Proof: Let the supply, demand and transshipment nodes in a network denoted by 𝑠𝑖, 𝑑𝑗 

and 𝑡𝑟𝑘 respectively, where 𝑖, 𝑗 and 𝑘 are the ordinal indexes. The amount of supply/demand of 



25 

 

𝑠𝑖 and 𝑑𝑗  is denoted by 𝑥𝑠𝑖
 and 𝑦𝑑𝑗

 respectively. Assume that the global optimal MCF solution 

exists. Under this condition, the network flow will connect some of the nodes in the network (an 

example is shown in Figure 4(a)). Furthermore, for simplicity, we assume that the global optimal 

MCF solution is unique (the case of multiple optimal solutions can be easily extended). Now, we 

will use reduction to absurdity to prove our claim.  

We assume that there is a tiling strategy that can ensure that the supply, demand and 

transshipment nodes that must have freight flow linkages under the global situation, are 

partitioned into sub-networks together (an example is shown in Figure 4(b)) for which the MCF 

solution exists, and that the local optimal MCF solution of each sub-network could be obtained. 

It is also assumed that the local optimal MCF solution of each sub-network is not consistent with 

the global optimal one.  

 
 

(a) Global MCF optimal solution. 

 
 

(b) Local MCF optimal solution. 

Figure 4 Example of a network with supply, demand and transshipment nodes. 

Assume that the MCF objective value of the supply, demand and transshipment nodes of 

the mth sub-network under global processing is 𝜃𝑚, and the MCF objective value of the mth sub-

network obtained by local processing is 𝜂𝑚. Because we already assumed that 𝜃𝑚 ≠ 𝜂𝑚, there 

are two possible situations: i) If 𝜃𝑚 is greater than 𝜂𝑚, it means that the global MCF optimal 
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solution is not the optimum because the objective value of the MCF solution of the supply-

demand-transshipment nodes of the mth group can be replaced by 𝜂𝑚 and a better solution will 

be obtained; ii) If 𝜂𝑚 is greater than 𝜃𝑚, it means that the local MCF optimal solution of the mth 

sub-network is not the optimum because the objective value can be replaced by 𝜃𝑚 and a better 

solution will be obtained. Therefore, it will be in contradiction to the notion that the objective 

value of the assumed global and local MCF solution is optimum. Q.E.D. 

The Regional-Division Theorem 

In this section, the regional-division theorem will be proposed and proved. To begin, 

some useful definitions are introduced as follows. 

Definition 2: Balanced area: An area in which the supply of origins and demand of 

destinations are balanced is called a balanced area. 

Definition 3: Region cost of a balanced area: The region cost of a balanced area is the 

maximum value of the minimum unit cost between any two nodes that are in this balanced area, 

i.e., it is the least upper bound of all minimum unit costs between pairs of nodes in this balanced 

area as shown in Equation (3.4). 

𝑅𝑒𝑔𝑖𝑜𝑛𝑐𝑜𝑠𝑡(𝒩) = 𝑠𝑢𝑝 {𝑐(𝑛𝑖 , 𝑛𝑗): 𝑛𝑖 , 𝑛𝑗 ∈ 𝒩}                                  (3.4) 

where 𝒩 denotes a balanced area, 𝑛𝑖, 𝑛𝑗 denote two arbitrary nodes in the balanced area 𝒩, 

𝑐(𝑛𝑖 , 𝑛𝑗) is the minimum unit cost between 𝑛𝑖 and 𝑛𝑗 , and 𝑠𝑢𝑝 {∙} is the least-upper-bound 

operator. 

Definition 4: Cost between two balanced areas: The cost between two balanced areas is 

the minimum value of the minimum unit cost between any two nodes which are in two different 
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balanced areas, i.e., the cost between two balanced areas is the greatest lower bound of all unit 

costs between pairs of nodes in two different balanced areas as shown in Equation (3.5). 

𝐶𝑜𝑠𝑡(𝒩𝑘, 𝒩𝑙) = 𝑖𝑛𝑓 {𝑐(𝑛𝑖 , 𝑛𝑗): 𝑛𝑖 ∈ 𝒩𝑘, 𝑛𝑗 ∈ 𝒩𝑙}                                       (3.5) 

where 𝒩𝑘, 𝒩𝑙 denote two balanced areas, 𝑛𝑖 denotes one arbitrary node in the balanced area 𝒩𝑘, 

𝑛𝑗  denotes one arbitrary node in the balanced area 𝒩𝑙, and 𝑖𝑛𝑓 {∙} is the greatest-lower-bound 

operator. 

In the aforementioned definitions, two terms (i.e., region and area) are introduced that 

need a little more clarification. A region, in the definitions of this study, includes both nodes and 

links, while an area includes only nodes.  

Taking Figure 5 as an example, there are two balanced areas outlined by dashed circles, 

of which the demand (indicated by a negative sign) and supply (indicated by a positive sign) are 

balanced in their own regions, and the value of the numbers indicates the amount of demand or 

supply. In balanced area1, assuming that the value of the minimum unit cost between node +5 

and node -3 is the maximum value of the minimum unit cost between any two nodes in this area, 

then it can be referred to as the region cost of balanced area1, which is shown as region cost1 in 

Figure 5. Then region cost2 is defined in the same way in balanced area2. Assuming that the 

value of the minimum unit cost between node -1 in balanced area1 and node +2 in balanced 

area2 is the minimum value of the minimum unit cost between any two nodes in balanced area1 

and balanced area2 respectively, then it is termed as the cost between these two balanced areas, 

as shown in Figure 5. Based on these definitions, the regional-division theorem is described as 

follows. 
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Figure 5 Illustration of balanced area, region cost of a balanced area and cost between two 

balanced areas. 

The regional-division theorem: For one type of commodity, if the cost between any two 

balanced areas is greater than the region cost of either of them, the optimal MCF solution in both 

balanced areas will be consistent with the global MCF solution, provided the link capacity 

constraints can guarantee the existence of those MCF solutions.  

This regional-division theorem expects to fulfill the demand within each balanced area so 

that it is more economical than that between the balanced areas. Taking Figure 5 as an example, 

if the cost between balanced area1 and balanced area2 is greater than both region cost1 and 

region cost2, the optimal MCF solutions in balanced area1 and balanced area2 will be consistent 

with the global optimal MCF solution (i.e., the optimal MCF solution of the union of balanced 

area1 and balanced area2), under the condition that the existence of the MCF solution within 

each balanced area is guaranteed by the link capacity constraints and consideration of only one 

type of commodity. The regional-division theorem is proved by using reduction to absurdity as 

follows. 
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Proof: Let us postulate that there are k balanced areas satisfying all the requirements of 

the proposed regional-division theorem, so the MCF solutions of each sub-network and the 

whole network exist. Assuming that the regional-division theorem cannot guarantee the 

consistency between the local and global MCF optimal results, in this case, the global MCF 

optimal result must include some network flows that cross the aforementioned k balanced areas. 

Under this condition, if we can find a new feasible global MCF solution whose objective value is 

less than that of the assumed global MCF optimal result, and there is no network flow between 

any two of the assumed k balanced areas in this new solution, the regional-division theorem will 

be proved because it will be in contradiction to the earlier postulate that the objective value of 

the assumed global MCF optimal result is the minimum.  

Assume that the objective value of the global MCF optimal solution of the 𝑘 balanced 

areas is λ, that the region cost of the 𝑖th balanced area is 𝑐𝑖, and that the cost between the 𝑖th and 

the 𝑗th balanced area is 𝑐𝑖,𝑗. The minimum value of 𝑐𝑖,𝑗 over all 𝑗s is denoted by 𝑐𝑖,𝑚𝑖𝑛. Further, 

assume that the total amount of flows (i.e., the absolute value of the network flows, without 

considering the direction of flow) obtained by the MCF model under the global condition 

between the 𝑖th balanced area and other balanced areas is 𝑣𝑖. For example, there are three 

balanced areas in Figure 6, i.e., 𝑘 = 3. For balanced area1, 𝑐𝑖.𝑚𝑖𝑛 is 𝑐1,3 (if 𝑐1,3 < 𝑐1,2), and 𝑣1 is 

the summation of the absolute values of flow1, flow2, flow3, flow4, flow5 and flow6, which is 

equal to 10 units. 
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Figure 6 An example of the regional-division theorem. 

Now, let’s erase all the network flows crossing different balanced areas, (i.e., all the 

network flows between any two different balanced areas are removed) and keep the rest of the 

assumed network flows. In this case, the total cost of the removed network flows is greater than 

or equal to 
1

2
∙ ∑ 𝑐𝑖,𝑚𝑖𝑛 ∙ 𝑣𝑖

𝑘
𝑖=1 ; and a number of unbalanced supplies and demands will be 

generated in each balanced area, since some connections are cut off. Assume that the total 

amount of unbalanced supply and demand in the 𝑖th balanced area is 𝑣𝑖
′. For instance, in Figure 

6, 𝑣1
′  is 10 units, 𝑣2

′  is 6 units and 𝑣3
′  is 4 units.  Because the supply and demand of each balanced 

area should be balanced as described in the definition, these 𝑣i
′ of supply and demand can be 

satisfied within the balanced area by each other, and 𝑣𝑖
′ = 𝑣𝑖. Hence, these 𝑣𝑖

′ supplies and 

demands can be balanced by some new feasible network flows that are exactly inside the 𝑖th 

balanced area, and the cost of these new feasible flows must be less than or equal to 
1

2
∙ 𝑐𝑖 ∙ 𝑣𝑖

′. 

That is to say, there is a new feasible MCF global solution whose objective value is less than or 
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equal to λ −
1

2
∙ ∑ 𝑐𝑖,𝑚𝑖𝑛 ∙ 𝑣𝑖

𝑘
𝑖=1 +

1

2
∙ ∑ 𝑐𝑖 ∙ 𝑣𝑖

′𝑘
𝑖=1 . Furthermore, 𝑐𝑖 < 𝑐𝑖,𝑚𝑖𝑛 which is guaranteed by 

the regional-division theorem. Therefore, 
1

2
∙ ∑ 𝑐𝑖 ∙ 𝑣𝑖

′𝑘
𝑖=1 <

1

2
∙ ∑ 𝑐𝑖,𝑚𝑖𝑛 ∙ 𝑣𝑖

𝑘
𝑖=1 . This means that the 

cost of this new feasible MCF global solution is less than that of the assumed global MCF 

optimal solution, and there is no network flow between any two of the assumed 𝑘 balanced areas 

in this new solution. Therefore, it is in conflict with the assumption that the regional-division 

theorem cannot guarantee the consistency between the local and global optimal solutions of the 

MCF model. Q.E.D. 

It follows that the regional-division theorem gives us a sufficient condition that ensures 

the consistency between the local and global MCF solutions. Since this theorem is proposed to 

divide large-scale regions into small ones by an appropriate means, we name it the regional-

division theorem. It shows that the regional-division theorem takes advantage of the distribution 

of the cost between supply and demand nodes of a network. However, this theorem is data-

dependent, and not all network features of practical networks can fulfill the requirements of the 

regional-division theorem. In other words, if the network features fail to meet the requirements 

of the regional-division theorem naturally, it is difficult to apply this theorem to divide the large 

region. To handle this problem, an updated theorem is proposed and proved in the following 

section. 

The α-Approximation Regional-Division Theorem 

As described in the last section, if the features of the input network do not completely 

satisfy the conditions of the regional-division theorem, the regional-division theorem will not be 

applicable for this network problem. For example, if there is a network in which the values of 

minimum unit cost between any two nodes are similar to each other, it is difficult to find an 
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appropriate division scenario for this network to satisfy the conditions of the regional-division 

theorem. In order to make the regional-division theorem more practical, we propose the 

following α-approximation regional-division theorem. 

The α-approximation regional-division theorem: For one type of commodity, if the cost 

between any two balanced areas is greater than or equal to 
1

α
 (𝛼 ≥ 1) times the region cost of 

each balanced area respectively, the summation of the MCF objective values of each area is 

always less than or equal to α times of the global MCF objective value, provided the link 

capacity constraints can guarantee the existence of those MCF solutions. 

The α-approximation regional-division theorem reduces the requirement of the original 

regional-division theorem so that the input network can always be split by choosing a reasonable 

α (𝛼 ≥ 1). The higher the α is, the lower the requirement is. It is worth mentioning that when α = 

1, the α-approximation regional-division theorem can exactly ensure the consistency between 

local and global MCF solutions. Therefore, the closer the value of α is to one the better from an 

accuracy perspective. Although increasing the value of 𝛼 will decrease the optimality of the final 

MCF solution, it is more practical and can offer us the worst-case bounds, so that the practical 

approximation MCF solution closely approximates the optimal one in terms of its “optimal 

value”. The α-approximation regional-division theorem is proved as follows. 

Proof: Let us postulate that there are 𝑘 balanced areas that satisfy the α-approximation 

regional-division theorem, so the MCF solutions of each sub-network and the whole network 

exist. 𝑐𝑖 is the region cost of the 𝑖th balanced area, and 𝑐𝑖,𝑗 is the cost between the 𝑖th balanced 

area and the 𝑗th balanced area. Moreover, 𝑐𝑖,𝑚𝑖𝑛 denotes the minimum value of 𝑐𝑖,𝑗 over all 𝑗s. In 

addition, assume that the optimal objective value of the global MCF solution of the 𝑘 balanced 

areas is λ, and the summation of the MCF objective solution of each balanced area is λ̂. Further 
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assume that the total amount of flows (i.e., the absolute value of the network flows, without 

considering the direction of flow), that are obtained by the MCF model under the global 

condition between the 𝑖th balanced area and other balanced areas, is 𝑣𝑖. 

Now, let us erase all the network flows crossing different balanced areas, (i.e., all the 

network flows between any two different balanced areas are removed) and keep the rest of the 

assumed MCF network flows. Then assume that the cost of the rest of the MCF network flows in 

the 𝑖th balanced area is 𝑤𝑖. In this case, the cost of the removed network flows should be greater 

than or equal to 
1

2
∙ ∑ 𝑐𝑖,𝑚𝑖𝑛 ∙ 𝑣𝑖

𝑘
𝑖=1 , and a number of unbalanced supply-demands will be 

generated in each balanced area since some network flows are cut off. Further assume that the 

total amount of unsatisfied supply and demand in the 𝑖th balanced-set is 𝑣𝑖
′. As described in the 

definition of balanced area, the supplies and demands of each balanced area are balanced, so that 

these 𝑣𝑖
′ supplies and demands must be balanced, and 𝑣𝑖

′ = 𝑣𝑖. Hence, these 𝑣𝑖
′ supplies and 

demands can be met by some new feasible network flows that are exactly within the 𝑖th balanced 

area, and the cost corresponding to these new feasible flows must be less than or equal to 
1

2
∙ 𝑐𝑖 ∙

𝑣𝑖
′. Then a new feasible MCF solution of the ith balanced area is generated, of which the upper 

bound of the objective value is  
1

2
∙ 𝑐𝑖 ∙ 𝑣𝑖

′ + 𝑤𝑖, (i.e., the optimal MCF solution of the ith 

balanced area should be less than or equal to this value). Furthermore, 𝑐𝑖 ≤ 𝛼 ∙ 𝑐𝑖,𝑚𝑖𝑛 , which is 

guaranteed by the α-approximation regional-division theorem. Therefore, λ̂ ≤
1

2
∙ ∑ (𝑐𝑖 ∙ 𝑣𝑖

′)𝑘
𝑖=1 +

∑ 𝑤𝑖
𝑘
𝑖=1 ≤

1

2
∙ 𝛼 ∙ ∑ (𝑐𝑖,𝑚𝑖𝑛 ∙ 𝑣𝑖)𝑘

𝑖=1 + ∑ 𝑤𝑖
𝑘
𝑖=1 . Because 𝛼 ≥ 1, it is clear that 

1

2
∙ 𝛼 ∙

∑ (𝑐𝑖,𝑚𝑖𝑛 ∙ 𝑣𝑖)𝑘
𝑖=1 + ∑ 𝑤𝑖

𝑘
𝑖=1 ≤ 𝛼 ∙ (

1

2
∙ ∑ (𝑐𝑖,𝑚𝑖𝑛 ∙ 𝑣𝑖)𝑘

𝑖=1 + ∑ 𝑤𝑖
𝑘
𝑖=1 ) ≤ 𝛼 ∙ λ, it follows that λ̂ ≤ 𝛼 ∙

λ. Q.E.D. 
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If a given network satisfies the conditions of the 𝛼-approximation regional-division 

theorem, there will be a division scenario that can ensure that the obtained balanced areas satisfy 

the conditions of the 𝛼-approximation regional-division theorem. Thus, we are ready to take 

advantage of the agglomerative clustering pattern to pursue the division scenario in the next 

section. 

The AC Tiling Strategy 

In this section, a tiling strategy (i.e., the AC tiling strategy) that is based on the α-

approximation regional-division theorem is designed. As discussed in the previous sections, if 

the features of a network satisfy the conditions of the α-approximation regional-division 

theorem, this indicates that a clustering phenomenon exists in the node distribution of this 

network, which is not only referring to the geographic distribution, but also the economic 

distribution involving the unit cost between nodes. Therefore, an agglomerative clustering 

analysis approach could be used to design this AC tiling strategy. The corresponding approach 

framework is introduced in the following section. 

First, each 𝑛𝑜𝑑𝑒𝑖 is considered as a clustering object whose clustering radius is denoted 

as 𝛾𝑖. When the minimum unit flow cost between 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒𝑗 is smaller 

than 
1

α
 𝑚𝑎𝑥(𝛾𝑖, 𝛾𝑗), these two nodes will be clustered together in one area. If all the nodes fulfill 

the clustering termination conditions, the clustering process will stop. These conditions are i) the 

supply and demand of each cluster should be balanced; ii) the clustering radius of each node in a 

cluster should be greater or equal to the region cost of this cluster; iii) the MCF solution of each 

cluster exists. Otherwise, the clustering radii of the node that do not meet the termination 

condition will be increased; and then the nodes will be clustered again. The related pseudo-code 

is shown in Algorithm 1. 
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Algorithm 1 The pseudo-code of the AC tiling strategy framework 

Input: all the nodes and the initialized clustering radii of all the nodes (𝛾𝑖 denotes the cluster 

radius of the ith node.). 

Output: the clustering result of all the nodes. 

1 •UnClustered = all nodes 

2 •n = 1 

3 while UnClustered ≠ Φ 

4 ∀node ∈ UnClustered 

5 •Clustern = Clustern ∪ {node} 

6 •UnClustered = UnClustered –{node} 

7 for i = 1:K                %  K is the number of nodes in Clustern 

8 for j = 1:L                 %  L is the number of nodes not belong to Clustern 

 if minimum unit-cost between nodei and nodej ≤
1

α
 𝑀𝑎𝑥(𝛾𝑖, 𝛾𝑗) 

9                                    % nodei ∈ Clustern , nodej∉ Clustern 

10 •Clustern = Clustern ∪ {nodej} 

11 if nodej∈ UnClustered 

12 •UnClustered = UnClustered –{ nodej } 

13 end if   

14 end if 

15 end for  

16 end for 

17 •n = n+1 

18 end while  

19 for m = 1: N               % N is the total number of the nodes 

20 if nodem does not satisfy the clustering termination condition 

21 •UnClustered = UnClustered ∪ {nodem} 

22 • 𝛾𝑚 = 𝛾𝑚 + ∆𝛾 

23 end if  

24 end for 

25 if  UnClustered ≠ Φ 

26 •Go to step 3 

27 else 

28 •Terminate the clustering process 

29 end if 

 In Algorithm 1, 𝛾𝑖 and ∆𝛾 are parameters defined by users. To begin with, we know that 

each obtained node cluster is supply-demand balanced, i.e., a balanced area. In addition, the 

termination condition of the AC tiling strategy can guarantee that the clustering radius of each 
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node in a cluster is greater than or equal to the region cost of this balanced area. Furthermore, the 

AC tiling strategy can also ensure that the obtained balanced areas must satisfy the α-

approximation regional-division theorem. Since if two clusters are not merged by the AC tiling 

strategy, it indicates that these two clusters are supply-demand balanced, the MCF solution of 

each cluster exists, and the least value of the minimum unit cost between two nodes which are in 

these two different areas will be greater than 1/α times their clustering radii, respectively. 

Because the clustering radius of each node is the region cost of its own cluster, the cost between 

these two clusters will be greater than 1/α times the region cost of each cluster respectively, i.e., 

the requirements of the α-approximation regional-division theorem are satisfied. Therefore, the 

output of Algorithm 1 (i.e., the node cluster) satisfies the α-approximation regional-division 

theorem. It can be seen that a smaller α will offer higher optimality.  

However, this clustering method is data-dependent, and not all network features can 

fulfill the requirement for a small α. If the data itself is not sparse enough, an over-small α will 

cause all the nodes to be clustered in one cluster, i.e., the AC tiling strategy will be useless for 

the large-scale MCF problem. 

Figure 7 uses a simple examvple demonstrating a part of the basic process of Algorithm 

1. Figure 7 (a) includes three nodes having their own clustering radii labeled (𝛾𝑖), and the 

turquoise dashed lines indicate the unit-cost between each pair of nodes (𝑐𝑖𝑗). According to 

Algorithm 1, node 1 and node 2 are clustered together after comparing the unit-cost between 

them (𝑐12) with 𝑚𝑎𝑥 (𝛾1, 𝛾2). Node 3 is not clustered with the other two nodes based on the same 

condition, as shown in Figure 7 (b). Then, the clustering radius of node 3 is increased to 𝛾3 + 𝛥𝛾 

for the next round in the clustering process.  
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(a) Three unclustered nodes (b) Cluster result of first round clustering 

Figure 7 An example of Algorithm 1 application. 

A detailed explanation of the current implementation of Algorithm 1 is provided in the 

Appendices section of this dissertation, including the main data structures, code prototypes with 

their attributes and functionalities (a workflow is produced to demonstrate the detailed steps of 

this algorithm, shown in Figure 43), potential parallelization implementation and code 

maintenance and version control plan. 

In Algorithm 1, calculating the region cost of a cluster and the minimum unit cost 

between two nodes is a time-consuming procedure. The reason for this is that finding the 

minimum unit cost between two nodes requires an expensive algorithm, e.g., the Dijkstra 

algorithm. However, the minimum unit cost between two nodes could be calculated off-line, and 

we can also approximately use the straight-line distance between two nodes instead of their 

minimum flow cost in practice (because, in reality, the minimum flow cost between two nodes is 

usually proportional to their distance).  
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In addition, to determine whether the MCF solution of a balanced area exists, we could 

adopt the arc capacity sensitivity analysis (Ahuja, Magnanti and Orlin, 1993). Since the demand 

and supply is balanced in the balanced area, the only constraint on the existence of the MCF 

solution is the capacity of the link. In practice, the connection and link capacity of a balanced 

area are usually capable of guaranteeing the existence of an MCF feasible solution. Thus, we can 

ignore this termination condition to speed up our algorithm. On the other hand, even if we have 

to consider this termination condition in some circumstances, since the problem size of each sub-

network (i.e., each cluster) is usually far less than that of the global network, the computation of 

this part is acceptable.  

Therefore, based on the aforementioned discussion, the time complexity of Algorithm 1 

is approximately O(𝑁2), where 𝑁 is the number of nodes in the global network. Admittedly, 

there are many mature algorithms dealing with MCF problem, such as minimum-circle canceling 

algorithm (Rader 2010), whose complexity is 𝑂(𝑁4). Since this proposed tiling strategy has 

much lower complexity, to cluster the huge size network before applying (any of) the MCF 

algorithms will save execution time and peak memory. So, it is a profitable tiling strategy for the 

large size MCF problem. 

Based on the proposed AC tiling strategy, the ELS is operated as follows. First, all nodes 

in the original large-scale network are clustered into groups (i.e., sub-networks) using the AC 

tiling strategy. Second, the MCF program is applied to each sub-network either in parallel or in 

sequential computing. Then, the results of local MCF problems are combined together as the 

final global solution.  
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4 Numerical Experiments 

In this chapter, the performance of the efficient large-scale MCF problem solving 

approach (ELS) is tested from different aspects through a series of numerical experiments.  

Experiment Introduction 

Theoretically, the tiling MCF strategy proposed in this study offers a new approach that 

can be combined with any existing of MCF problem solver, such as Relax IV (Bertsekas & 

Tseng 1994), which is the code for solving MCF problems, and LEMON (Kovács 2015; EGRES 

2003) , which is a C++ template library providing efficient implementations of common data 

structures and algorithms with a focus on combinatorial optimization tasks connected mainly 

with graphs and networks. To test the effectiveness of ELS, it is necessary to compare the 

execution time (and/or peak memory consumption) using the same solver to solve the MCF 

problem as a whole as is used to solve each sub-network in the ELS approach. The numerical 

experiments in this chapter are developed on the grounds of this basic train of thought. 

It is also necessary to test the ELS on networks of various scales and characteristics. A 

common method to obtain test problem instances is to generate them with standard random 

generators, such as NETGEN, GRIDGEN, GOTO, and GRIDGRAPH (Kovács 2015). For 

example, LEMON and RELAX IV were both tested using these randomly generated problem 

instances. The common generators, such as GRIDGEN, GOTO and GRIDGRAPH, usually 

produce grid networks as the MCF problem instances for testing, as shown in Figure 8. Nie 

(2010) used grid networks for testing and analyzing his bush-based methods for a traffic 

assignment problem. 
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Figure 8  Grid network example 

Therefore, the proposed MCF tiling strategy is tested on randomly generated grid 

networks with different scales and characteristics by a series of experiments in this chapter. Each 

node in the grid network (as shown in Figure 8) will be randomly assigned n units supply or 

demand. Note that n can be a different integer for each node, and that when n equals zero it 

indicates that the node is a transshipment node. Since each network is generated directly as a 

connected grid network, the connectivity of the network is guaranteed in the experiments. 

Several groups of experiments for the performance measurement of ELS are presented in 

this chapter. The first group of experiments tests the effectiveness of ELS on grid networks with 

binary supply and demand when the scale and characteristics of the networks are changing. The 

second group of experiments aims to measure the performance of ELS on grid networks with 

multiple supplies and demands when the scale and characteristics of the networks are changing. 

The third group of experiments is conducted to compare the ELS performance between serial and 

parallel computing when the scale and characteristics of the networks are changing. The fourth 

group of experiments introduces the greedy-based tiling strategy as a base case to compare with 

the ELS. The fifth and sixth groups of experiments are both tested on realistic networks. The 

fifth experiment is performed on real networks with binary supply and demand simulation, and 
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the sixth experiment includes the performance measure for a real network with multiple supplies 

and demands. 

Experiment One: Effectiveness Testing with Binary Supply and Demand 

The aim of the first experiment is to measure the performance of ELS with binary supply 

and demand (Binary-SD) assigned to the nodes. The statistical execution time and the statistical 

peak memory consumption are compared between the global solution method and ELS using the 

interior-point algorithm which is one of the most famous linear programming algorithms used to 

solve MCF problems (Goldberg & Tarjan 1989; Ahuja et al. 1993; Rader 2010; Resende & 

Pardalos 1996). It is worthwhile mentioning that, in all of the experiments, the MCF problem is 

solved by the interior-point algorithm which is supplied by the MATLAB software. In other 

words, all of the MCF solutions (global and local in ELS) are obtained by means of the ‘canned’ 

program in MATLAB. Therefore, it is appropriate to consider the global MCF solutions as 

credible benchmarks for the application of the ELS strategy. 

Simulation Setting. 

As explained earlier, the test problem instances are generated as grid networks with 

increasing scales from 200 × 200 nodes to 1000 × 1000 nodes with an increment of 200 rows and 

200 columns, and from 1200 × 1200 nodes to 3000 × 3000 nodes with an increment of 400 rows 

and 400 columns. The unit cost of each direct link (i.e., 𝑐𝑖𝑗 in Equation (3.1)) in each network is 

simulated as un-weighted cost in this experiment. For each network scale, the demand and 

supply is randomly assigned on each node with one or zero unit commodity (i.e., +1 indicates 

one unit commodity of supply, -1 indicates one unit of demand, and zero indicates that the node 

is a transshipment node), while the total demand and total supply is balanced. 
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We use the simulation method proposed in (Yu et al. 2011) which is named as ODLS to 

generate the supply and demand nodes for this experiment. This method can generate the grid 

networks with user assigned scale and randomly generate an integer number for each node, it 

fulfilled the requirements of the generated problems instances for the experiment, as discussed in 

the experiment introduction section. In this simulation software, the role of supply and demand 

nodes is similar to the noise of the image (i.e., each noise node can have positive or negative 

value which indicates supply or demand node in this experiment). 

Within each round of the simulation the location of the supply and demand nodes is 

changed. In addition, the number of the supply and demand nodes is inversely proportional to the 

quality of the image, i.e., the better the quality of the image, the less the number of supply and 

demand nodes. Under this setting, we cannot directly control the number of the supply and 

demand nodes, but we can indirectly control them through the expected image-quality parameter 

of ODLS. The parameter is scaled from zero to one, with zero indicating all of the nodes have 

supply or demand, and one indicating none of the nodes has supply or demand. In this 

experiment, 0.7 is selected as the value of the image-quality parameter. Furthermore, the amount 

of supply and demand of each node is controlled by a probability distribution (i.e., 

hypergeometric distribution). During this process, the upper and lower bounds of the amount of 

each supply and demand node can be controlled, but not the percentage of the supply and 

demand nodes. 

When the network scale is smaller than or equal to 1000×1000 nodes, 20 instances of 

supply and demand nodes setting are generated for each scale; and when that is greater than 

1000×1000 node, one instance is generated for each scale. Table 1 shows the statistical 

information of the number of supply and demand nodes with different scales of networks 
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generated for this experiment. Figure 9 shows the supply and demand nodes generation 

information with the scales of networks as well. Figure 10 shows two examples of the supply and 

demand nodes generated for networks of 200×200 nodes and 1000×1000 nodes. In Figure 10 

blue pixels indicate demand nodes, red pixels indicate supply nodes and green pixels indicate 

transshipment nodes. 

Table 1 Number of supply and demand nodes for different scales of networks (Binary SD) 

Network Scale Mean value Min-value Max-value 

200×200 4917 4780 5004 

400×400 19773 19446 20066 

600×600 44607 44096 45098 

800×800 79331 78652 79868 

1000×1000 124027 123374 124863 

1200×1200 452233 - - 

1800×1800 748827 - - 

2200×2200 1118863 - - 

2600×2600 1563355 - - 

3000×3000 2082696 - - 

 

 

Figure 9 Number of supply and demand nodes for different scales of networks (Binary-SD) 
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(a) Supply and demand nodes with network scale of 200×200 nodes 

 
(b) Supply and demand nodes with network scale of 1000×1000 nodes 

Figure 10 Examples of supply and demand nodes generation (Binary-SD) 

Experiment One Process and Results. 

In this experiment, for each scale of simulated grid network, the binary supply or demand 

of each node is randomly generated 20 times by applying ODLS. Each time, the AC tiling 

strategy (i.e., Alg. 1) is applied to obtain the clustering result of all nodes (i.e., the sub-network 
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information) with different assigned-α values, where the minimum unit cost between two nodes 

is approximately substituted by the distance between them (the rationale is described in Chapter 

Three). Then, the actual-α value is calculated to compare with the assigned-α value. To be 

specific, according to the clustering result, the interior-point algorithm is applied to obtain the 

local optimal objective values of the MCF problem of each sub-network. Thus, the actual-α can 

be calculated by dividing the combined optimal objective value, which is the summation of the 

local optimal objective values of all the sub-networks, by the global optimal objective value of 

the entire network which is also obtained by the interior-point algorithm. Several values were 

tested for assigned-α from α = 5 to α = 25. The related testing results (i.e., actual-α, number of 

clusters, peak memory consumption and execution time, and objective value) are shown in Table 

2. It shows that, in this experiment, when assigned-α equals 5, the original network is clustered 

into one cluster, which does not offer benefits over the global solution process. On the other 

hand, when the assigned-α is greater than 20, the clustering results do not change significantly 

compared to assigned-α = 20.  Therefore, in the following part of this experiment, testing is only 

conducted on assigned-α = 15 and assigned-α = 20. 
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Table 2 Assigned-α selection test results (Binary-SD) 

assigned-

α 
Network 

Scale 
Execution 

time (min) 

Peak memory 

consumption (MB) 

Number of 

clusters 

Objective 

value 

5 

200×200 0.46 115.34 1 3223.01 

400×400 0.53 85.49 1 12775.06 

600×600 1.41 200.62 1 28444.16 

800×800 3.73 405.82 1 50664.32 

1000×1000 9.92 722.20 1 79141.56 

15 

200×200 0.26 0.52 1724 3223.01 

400×400 1.01 0.16 6763 12775.06 

600×600 2.55 2.89 15157 28444.16 

800×800 4.86 5.13 26937 50669.04 

1000×1000 8.39 8.01 41953 79144.28 

20 

200×200 0.25 0.15 1724 3223.01 

400×400 1.17 0.14 6763 12775.06 

600×600 2.57 2.89 15158 28444.16 

800×800 4.33 5.13 26938 50669.05 

1000×1000 7.89 8.00 41955 79144.28 

25 

200×200 0.27 0.16 1724 3223.01 

400×400 1.05 1.28 6763 12775.06 

600×600 2.46 2.89 15158 28444.16 

800×800 4.52 5.13 26938 50669.05 

1000×1000 7.48 8.01 41955 79144.28 

 

The values are similar for performance of the ELS with increasing assigned-α as shown 

in Table 2, but this is likely due to the simple geometry of the generated grid structure. The 

differences in performance and efficiency among different assigned-αs are expected to become 

more apparent in more complex test cases. 

For each assigned-α, while running the test 20 times on each scale of network, the value 

of each actual-α is documented. In this experiment, it is assumed that the value of actual-α has an 

approximate normal distribution. Therefore, according to the results of the 20 replicates, 

statistical results of actual-α are produced in Table 3, in which the mean actual-α with the 

minimum and maximum value of the actual-αs are listed corresponding to each scale of network. 
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The 95-percent confidence interval for the mean actual-α of each scale of network is provided in 

Table 3 as well. This is obtained by applying the method introduced by Ledolter and Hogg 

(2009). Figure 11 displays the statistical results of actual-α with increasing network scales. From 

Table 3 and Figure 11 we can see that, although the assigned-α are 15 or 20, the actual-α is not 

far from one, even when the network scale as large as 3000×3000; and the actual-α value tends 

to be stable when the network scale is larger than 1200×1200  in this experiment. Figure 12 

shows the number of clusters obtained by different assigned-αs while network scale is 

increasing, which is approximately linear. 

Table 3 Statistical results of actual-α (Binary-SD) 

assigned-α 
Network 

Scale 

Mean 

value 
Min-value Max-value 95% Confidence Interval 

15 

200×200 1.0001492 1.0000010 1.0006370 [1.0000345,1.0002640] 

400×400 1.0000632 1.0000016 1.0002756 [1.0000257,1.0001007] 

600×600 1.0000393 1.0000019 1.0002105 [1.0000144,1.0000724] 

800×800 1.0000384 1.0000022 1.0001207 [1.0000222,1.0000625] 

1000×1000 1.0000382 1.0000024 1.0001025 [1.0000272,1.0000571] 

1200×1200 1.0001813  - - - 

1800×1800 1.0001550  - - - 

2200×2200 1.0001688  - - - 

2600×2600 1.0001629  - - - 

3000×3000 1.0001666  - - - 

20 

200×200 1.0001492 1.0000010 1.0006370 [1.0000345,1.0002640] 

400×400 1.0000632 1.0000016 1.0002756 [1.0000257,1.0001007] 

600×600 1.0000428 1.0000019 1.0002105 [1.0000164,1.0000692] 

800×800 1.0000463 1.0000022 1.0001207 [1.0000272,1.0000654] 

1000×1000 1.0000465 1.0000024 1.0001038 [1.0000315,1.0000614] 

1200×1200 1.0001813  - - - 

1800×1800 1.0001550  - - - 

2200×2200 1.0001688  - - - 

2600×2600 1.0001641  - - - 

3000×3000 1.0001684  - - - 
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Figure 11 The statistical result of actual-α (Binary-SD) 

 

Figure 12 The number of clusters obtained by different assigned-αs (Binary-SD) 

During this experiment, for each assigned-α, the execution time and peak memory 

consumption of the global MCF algorithm and that for when the ELS is applied (corresponding 

to each scale of the testing network) is recorded. The ELS execution time is recorded as the 
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summation of the solution times for all clusters and the time of the clustering process. According 

to the results of the 20 replicates, results of the ELS execution time and peak memory 

consumption is produced in Table 4 and Table 5, as well as the results for the execution time and 

peak memory consumption of the global MCF algorithm (which solves the MCF problem of the 

entire network as one piece). 

Table 4 Execution time of serial computing (Binary-SD) (min) 

assigned-α 
Network 

Scale 

Mean 

value 
Min-value Max-value 95% Confidence Interval 

15 

200×200 0.25  0.24  0.26  [0.25,0.25] 

400×400 1.06  0.97  1.18  [1.02,1.09] 

600×600 2.61  2.49  2.74  [2.57,2.65] 

800×800 4.55  4.29  5.38  [4.39,4.70] 

1000×1000 8.43  7.41  9.63  [8.12,8.74] 

1200×1200 22.51  - - - 

1800×1800 52.09  - - - 

2200×2200 104.06  - - - 

2600×2600 184.25  - - - 

3000×3000 333.56  - - - 

20 

200×200 0.28  0.24  0.30  [0.27,0.29] 

400×400 1.11  0.97  1.17  [1.08,1.13] 

600×600 2.53  2.29  2.64  [2.48,2.57] 

800×800 4.68  4.27  4.98  [4.57,4.80] 

1000×1000 7.97  7.01  8.82  [7.69,8.24] 

1200×1200 23.13  - - - 

1800×1800 51.73  - - - 

2200×2200 103.33  - - - 

2600×2600 183.77  - - - 

3000×3000 332.85  - - - 

Global 

200×200 0.07  0.05  0.33  [0.04,0.11] 

400×400 0.44  0.31  1.78  [0.28,0.59] 

600×600 0.83  0.81  1.05  [0.81,0.86] 

800×800 2.32  1.88  10.01  [1.47,3.17] 

1000×1000 6.94  4.34  15.60  [5.05,8.82] 

1200×1200 20.16  - - - 

1800×1800 136.54  - - - 

2200×2200 337.67  - - - 

2600×2600 495.49  - - - 

3000×3000 743.20  - - - 
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Table 5 Peak memory consumption of serial computing (Binary-SD) (MB) 

assigned-α 
Network 

Scale 

Mean 

value 
Min-value Max-value 95% Confidence Interval 

15 

200×200 0.33  0.13  1.18  [0.17,0.48] 

400×400 0.37  0.14  1.28  [0.22,0.52] 

600×600 2.88  2.88  2.89  [2.88,2.89] 

800×800 5.13  5.13  5.13  [5.13,5.13] 

1000×1000 8.01  8.01  8.01  [8.01,8.01] 

1200×1200 15.70  - - - 

1800×1800 27.25  - - - 

2200×2200 40.34  - - - 

2600×2600 54.17  - - - 

3000×3000 72.90  - - - 

20 

200×200 0.16  0.10  0.26  [0.14,0.18] 

400×400 0.20  0.13  0.53  [0.14,0.27] 

600×600 2.89  2.88  2.89  [2.89,2.89] 

800×800 5.13  5.13  5.13  [5.13,5.13] 

1000×1000 8.01  8.00  8.01  [8.00,8.01] 

1200×1200 15.96  - - - 

1800×1800 25.96  - - - 

2200×2200 39.31  - - - 

2600×2600 54.17  - - - 

3000×3000 72.90  - - - 

Global 200×200 36.71  15.90  329.20  [2.86,70.56] 

400×400 171.47  85.48  545.95  [89.07,253.86] 

600×600 200.62  200.62  200.62  [200.62,200.62] 

800×800 492.94  405.82  2146.32  [310.81,675.08] 

1000×1000 984.79  721.67  2032.82  [733.19,1236.40] 

1200×1200 1477.58  - - - 

1800×1800 7197.88  - - - 

2200×2200 9325.27  - - - 

2600×2600 15676.92  - - - 

3000×3000 20889.42  - - - 

 

Figure 13 shows the execution time and peak memory consumption comparison between 

ELS with different assigned-αs and global MCF algorithm. Figures 13 (a) and (b) are the 

execution time comparison, while Figures 13 (c) and (d) are the peak memory comparison. 

Figure 13 (a) indicates that when the network scale is smaller than 1000×1000 nodes in this 

experiment, ELS uses longer execution time to obtain the MCF optimal solution of the entire 

network than global MCF algorithm. However, when the network scale is larger than 1200×1200 
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nodes, in Figure 13 (b), it shows that ELS starts to save execution time. As to the peak memory 

consumption, regardless of whether the network scale is smaller than 1000×1000 nodes (shown 

in Figure 13 (c)) or larger than 1000×1000 nodes (shown in Figure 13 (d)), ELS always performs 

better than the global MCF algorithm. 

  

(a) Execution time comparison (less than 

1000×1000 nodes) 

 

(b) Execution time comparison (greater than 

1000×1000 nodes) 

   

(c) Peak memory consumption comparison 

(less than 1000×1000 nodes) 

(d) Peak memory consumption comparison 

(greater than 1000×1000 nodes) 

Figure 13 Performance comparison between ELS and global MCF (Binary-SD) 
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The flow cost of the entire network obtained from the objective function value of ELS is 

recorded in Table 6, as well as the flow cost directly obtained from the objective function of the 

global MCF algorithm. Since this experiment is conducted on simulated networks, the flow cost 

can be generalized cost with corresponding cost unit (i.e., unit of currency or unit of time). The 

comparison between the objective value obtained by ELS and the global MCF algorithm is 

shown in Figure 14. From the results shown in Table 6 and Figure 14, we can tell that when 

assigned-α is equal to 15 or 20, the objective values obtained by ELS are very close to the global 

objective value, which indicates that the ELS does not sacrifice much accuracy in this 

experiment.  
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Table 6 The flow cost of the entire network (Binary-SD) 

Assigned-α Network scale 

ELS objective value 

Mean value Min-value Max-value 

15 

200×200 3157  3022  3239  

400×400 12639  12348  12853  

600×600 28501  28102  28857  

800×800 50647  50107  51077  

1000×1000 79135  78719  79572  

1200×1200 983328  - - 

1800×1800 1626493  - - 

2200×2200 2427373  - - 

2600×2600 3394014  - - 

3000×3000 4518181  - - 

20 

200×200 3157  3022  3239  

400×400 12639  12348  12853  

600×600 28501  28102  28857  

800×800 50647  50107  51077  

1000×1000 79135  78724  79572  

1200×1200 983328  - - 

1800×1800 1626493  - - 

2200×2200 2427373  - - 

2600×2600 3394018  - - 

3000×3000 4518188  - - 

 

Network scale 

Global objective value 

Mean value Min-value Max-value 

200×200 3156 3022 3238 

400×400 12638 12348 12851 

600×600 28500 28102 28851 

800×800 50645 50107 51075 

1000×1000 79132 78719 79566 

1200×1200 983150  - - 

1800×1800 1626241  - - 

2200×2200 2426964  - - 

2600×2600 3393461  - - 

3000×3000 4517428  - - 
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Figure 14 The flow cost of the entire network comparison (Binary-SD) 

Since the package of the interior-point algorithm in MATLAB is applied to obtain the 

global MCF solution, the global objective value as well as the corresponding execution time and 

peak memory consumption are treated as benchmarks in this experiment. This experiment is 

conducted on a grid network with binary SD setting rather than a realistic dataset; the 

performance between different assigned-αs could be more apparent in a noisier test case. 

Experiment Two: Effectiveness Testing with Multiple Supplies and Demands 

The aim of the second experiment is to measure the performance of ELS with multiple 

supplies and demands (Multi-SD) assigned to the nodes of the network. The execution time and 

the peak memory consumption are compared between the global solution method and ELS.  

Simulation Setting. 

The general idea of the second experiment is similar to the first one but the n units of 

demand and supply are randomly assigned to nodes, while the total demand and total supply of 

the entire network is balanced. The test problem instances are generated as grid networks with 
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increasing scales (i.e., the network scale is from 200 × 200 to 1000 × 1000 with an increment of 

200 rows and 200 columns), during this experiment. The unit cost of each direct link (i.e., 𝑐𝑖𝑗 in 

Equation (3.1)) in each network is simulated as an un-weighted cost in this experiment as well. 

For each scale of the network, the demand and supply is randomly assigned on each node with n 

units commodity (i.e., +n indicates n units of supply, -n indicates n units of demand, and zero 

indicates the node is a transshipment node), while the total demand and total supply is balanced.  

The ODLS software is applied to generate the supply and demand nodes of different 

scales of networks in this experiment as well. Table 7 shows the number of supply and demand 

nodes for the different scales of networks generated for this experiment in the multiple supplies 

and demands setting. Figure 15 demonstrates the supply and demand of nodes generation 

information with the scales of networks. Figure 16 shows two examples of supply and demand of 

nodes corresponding to difference network scales, which are 200×200 nodes and 1000×1000 

nodes displayed in (a) and (b) respectively. In Figure 16, as displayed by the color bar, pixels 

with warm color (positive integers) indicate supply nodes, pixels with cold color (negative 

integers) indicate demand nodes and the green pixels indicate transshipment nodes. The 

maximum absolute value of demand or supply amount can be chosen as a certain integer number 

as the boundary value in ODLS. 

Table 7 Number of supply and demand nodes for different scales of networks (Multi-SD) 

Network Scale Mean value Min-value Max-value 

200×200 4793 1380 9305 

400×400 19417 5817 37285 

600×600 43695 13218 84020 

800×800 77615 23639 149105 

1000×1000 121115 37100 232530 
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Figure 15 Number of supply and demand nodes for difference scales of networks (Multi-SD) 
 

 
(a) supply and demand of nodes with network scale 200×200 
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(b) supply and demand of nodes with network scale 1000×1000 

Figure 16 Examples of supply and demand of nodes (Multi-SD) 

Experiment Two Process and Results. 

In this experiment, for each scale of simulated grid network, multiple supplies or 

demands for each node are randomly generated 20 times. The range of allowance value is set as 

0~4. Each time, the AC tiling strategy is applied to obtain the clustering result of all the nodes 

(i.e., sub-network information) with different assigned-α values from α = 20 to α = 45, where the 

minimum unit cost between two nodes is approximately substituted by the distance between the 

pair of nodes. Then, the actual-α value is calculated to compare with the assigned-α value, 

through the same process as described in the first experiment. The results are summarized in 

Table 8. When assigned-α equals 20, the original network is clustered into one cluster, which 

provides no benefit over the global solution approach. On the other hand, when the assigned-α is 

greater than 40, the clustering results change little compared to assigned-α = 40. Therefore, in the 
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subsequent part of this experiment, testing was only conducted on assigned-α=35 and assigned-

α=40. 

Table 8 Assigned-α selection test results (Multi-SD) 

assigned-

α 

Network 

Scale 

Execution 

time (min) 

Peak memory 

consumption (MB) 

Number of 

clusters 

Objective 

value 

20 

200×200 0.14 17.13 1 6753 

400×400 0.88 85.48 1 27582 

600×600 3.00 200.61 1 61720 

800×800 8.83 405.82 1 109461 

1000×1000 26.10 722.21 1 170705 

35 

200×200 0.36 0.15 1962 6756 

400×400 1.57 0.16 8030 27591 

600×600 3.88 4.33 17954 61732 

800×800 7.98 7.70 31712 109483 

1000×1000 21.41 12.03 49243 170705 

40 

200×200 0.36 0.19 1962 6756 

400×400 1.55 0.68 8030 27591 

600×600 3.81 4.33 17954 61732 

800×800 8.17 7.70 31712 109483 

1000×1000 16.14 12.02 49243 170747 

45 

200×200 0.36 0.15 1962 6756 

400×400 1.50 0.78 8030 27591 

600×600 4.03 4.33 17954 61732 

800×800 8.48 7.69 31712 109483 

1000×1000 16.95 12.02 49270 170749 

In Table 8, the values are similar for performance of the ELS with increasing assigned-α 

as in experiment one. This is likely due to the simple geometry of the generated grid structure. 

The differences in performance and efficiency are expected to become more apparent in realistic 

test cases. 

For each assigned-α, after running the test 20 times on each scale of network, the value of 

each actual-α is documented. In this experiment, it is assumed that the value of actual-α has an 

approximate normal distribution. Therefore, according to the results of the 20 replicates, 

statistical results of actual-α are produced in Table 9. From Table 9 and Figure 17 we can see 
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that, although the assigned-α are 35 or 40, the actual-α is not much bigger than one. Figure 18 

shows the number of clusters obtained with the different assigned-αs. 

 

Figure 17 The statistical result of actual-α (Multi-SD) 

 

Table 9 Statistical results of actual-α (Multi-SD) 

assigned-α Network Scale Mean value Min-value Max-value 95% Confidence Interval 

35 

200×200 1.000458  1.000000  1.000779  [1.000227,1.000574] 

400×400 1.000223  1.000000  1.000321  [1.000127,1.000271] 

600×600 1.000268  1.000000  1.000196  [1.000154,1.000325] 

800×800 1.000198  1.000000  1.000269  [1.000108,1.000244] 

1000×1000 1.000156  1.000000  1.000265  [1.000085,1.000191] 

40 

200×200 1.000458  1.000000  1.000779  [1.000227,1.000574] 

400×400 1.000223  1.000000  1.000321  [1.000127,1.000271] 

600×600 1.000268  1.000000  1.000196  [1.000154,1.000325] 

800×800 1.000198  1.000000  1.000269  [1.000108,1.000244] 

1000×1000 1.000182  1.000000  1.000265  [1.000094,1.000226] 
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Figure 18 The statistical result of number of clusters (Multi-SD) 

During the process of this experiment, for each assigned-α, the execution time and peak 

memory consumption of the global MCF algorithm and of the ELS, at each scale of the testing 

network are recorded. These results are provided in Tables 10 and 11. 
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Table 10 Execution time of serial computing (Multi-SD) (min) 

assigned-α Network Scale Mean value Min-value Max-value 95% Confidence Interval 

35 

200×200 0.25 0.11 0.37 [0.20,0.29] 

400×400 1.02 0.44 1.58 [0.81,1.22] 

600×600 2.45 1.00 3.92 [1.93,2.98] 

800×800 5.06 2.02 8.48 [3.91,6.21] 

1000×1000 9.16 3.59 16.01 [6.93,11.39] 

40 

200×200 0.25 0.11 0.40 [0.20,0.30] 

400×400 1.01 0.44 1.55 [0.80,1.21] 

600×600 2.43 0.99 3.81 [1.91,2.94] 

800×800 5.02 1.96 8.19 [3.89,6.15] 

1000×1000 9.47 3.48 16.14 [7.25,1.70] 

Global 

200×200 0.12  0.05  0.49  [0.06,0.17] 

400×400 0.54  0.29  1.31  [0.37,0.71] 

600×600 1.54  0.76  7.11  [0.81,2.28] 

800×800 2.96  1.84  7.98  [2.07,3.85] 

1000×1000 6.69  4.14  15.66  [5.04,8.34] 
 

Table 11 Peak memory consumption of serial computing (Multi-SD) (MB) 

assigned-α Network Scale Mean value Min-value Max-value 95% Confidence Interval 

35 

200×200 0.16 0.14 0.18 [0.15,0.16] 

400×400 0.20 0.15 0.52 [0.14,0.25] 

600×600 4.33 4.33 4.33 [4.33,4.33] 

800×800 7.70 7.69 7.70 [7.70,7.70] 

1000×1000 12.02 12.01 12.02 [12.02,12.02] 

40 

200×200 0.15 0.15 1.96 [0.20,0.72] 

400×400 0.14 0.14 1.46 [0.39,0.76] 

600×600 4.33 4.33 4.33 [4.33,4.33] 

800×800 7.69 7.69 7.70 [7.70,7.70] 

1000×1000 12.01 12.01 12.02 [12.02,12.02] 

Global 

200×200 32.10  15.90  282.64  [3.96,60.24]  

400×400 171.46  85.30  504.65  [103.71,239.20]  

600×600 298.24  200.62  688.87  [204.49,392.00]  

800×800 532.79  405.81  1252.55  [387.65,677.93]  

1000×1000 1123.45  722.02  3505.01  [761.02,1485.88]  
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Figure 19 shows the execution time and peak memory consumption comparison between 

ELS with different assigned-αs and the global MCF algorithm. Figure 19 (a) indicates that ELS 

uses longer execution time to obtain the MCF optimal solution of the entire network than the 

global MCF algorithm. However, as to the peak memory consumption shown in Figure 19 (b), it 

indicates that ELS performs better than the global MCF algorithm.   

 

 

Figure 19  Performance comparison between ELS and global MCF (Multi-SD) 
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The flow cost of the entire network obtained from the objective function value of ELS is 

recorded in Table 12, as well as the flow cost directly obtained from the objective function of the 

global MCF algorithm (i.e., the interior-point algorithm). Since this experiment is conducted on 

simulated networks, the flow cost can be generalized cost with corresponding cost unit (i.e., unit 

of currency or unit of time). The comparison between the objective value obtained by ELS and 

global MCF algorithm is shown in Figure 20. From the results shown in Table 12 and Figure 20, 

we can tell that when assigned-α equals to 35 or 40, the objective values obtained by ELS are 

very close to the global objective value, which indicates that the ELS does not sacrifice much 

accuracy in this experiment.  

Table 12 The flow cost of the entire network (Multi-SD) 

Assigned-α Network scale 

ELS objective value 

Mean value Min-value Max-value 

35 

200×200 3239 831 6914 

400×400 13071 3469 27591 

600×600 29392 7928 61981 

800×800 52179 14133 110330 

1000×1000 81471 22222 172190 

40 

200×200 3239 831 69144 

400×400 13071 3469 27591 

600×600 29392 7928 61981 

800×800 52179 14133 110330 

1000×1000 81473 22222 172190 

 

Network scale 

Global objective value 

Mean value Min-value Max-value 

200×200 3237 831 6909 

400×400 13069 3469 27582 

600×600 29384 7928 61969 

800×800 52168 14133 110300 

1000×1000 81458 22222 172140 
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Figure 20 The flow cost of the entire network comparison (Multi-SD) 

 

Experiment Three: Performance Examination of Parallel Computing 

Application 

The first and second experiments are both performed in a serial computing environment. 

It is worth mentioning that one of the merits brought by the AC tiling strategy is offering the 

opportunity to utilize parallel computing in the large-scale problem solving process. Therefore, 

the third experiment is conducted to compare the performance between serial and parallel 

computing for the large-scale MCF problem.  

Experiment Setting. 

This parallel computing performance experiment is performed by utilizing the ‘parfor’ 

loop. A ‘parfor’-loop in MATLAB executes a series of statements in the loop body in parallel. 

The MATLAB client issues the ‘parfor’ command and coordinates with MATLAB workers to 
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execute the loop iterations in parallel on the workers in a parallel pool. The client sends the 

necessary data on which ‘parfor’ operates to workers, where most of the computation is 

executed. The results are sent back to the client and assembled. A ‘parfor’-loop can provide 

significantly better performance than its analogous for-loop, because several MATLAB workers 

can compute simultaneously on the same loop. Each execution of the body of a ‘parfor’-loop is 

an iteration. MATLAB workers evaluate iterations in no particular order and independently of 

each other. Because each iteration is independent, there is no guarantee that the iterations are 

synchronized in any way, nor is there any need for this. If the number of workers is equal to the 

number of loop iterations, each worker performs one iteration of the loop. If there are more 

iterations than workers, some workers perform more than one loop iteration. In this case, a 

worker might receive multiple iterations at once to reduce communication time. It can be seen 

that ‘parfor’ only can be applied on the data structure that can be totally parallelized. Therefore 

in this experiment, the ‘parfor’ is applied on the MCF problem solving step after the original 

network has been clustered by AC tiling strategy. The parallel computing process of this 

experiment proceeds on a workstation with 12 cores, 3.4- GHz CPU frequency, 64 bit operating 

system, 128G memory. 

Experiment Three Process and Result. 

The first part of this experiment is conducted under the binary supply and demand 

setting. Table 13 presents the parallel computing execution time by applying different values of 

assigned-α (i.e., assigned-α = 15 and assigned-α = 20), with increasing sizes of network, which 

have the same input information as that of the previous serial computing experiment. Table 14 

presents the peak memory consumption of parallel computing with different assigned-α, 

corresponding to increasing network scales. 
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Table 13 Execution time of parallel computing (Binary-SD)  (min)  

assigned-α Network Scale Mean value Min-value Max-value 95% Confidence Interval 

15 

200×200 0.34 0.33 0.35 [0.34,0.34] 

400×400 0.52 0.51 0.53 [0.52,0.52] 

600×600 0.87 0.86 0.89 [0.86,0.87] 

800×800 1.56 1.52 1.78 [1.53,1.59] 

1000×1000 2.79 2.62 3.16 [2.7,2.89] 

20 

200×200 0.34 0.34 0.39 [0.34,0.35] 

400×400 0.57 0.52 0.61 [0.56,0.59] 

600×600 0.90 0.89 0.91 [0.90,0.90] 

800×800 1.60 1.56 1.79 [1.58,1.62] 

1000×1000 2.83 2.67 3.58 [2.71,2.96] 

 

Table 14 Peak memory consumption of parallel computing (Binary-SD) (MB) 

assigned-α Network Scale Mean value Min-value Max-value 95% Confidence Interval 

15 

200×200 0.77 0.21 1.97 [5.34,9.97] 

400×400 1.00 0.21 1.29 [8.34,11.70] 

600×600 2.89 2.88 2.89 [28.85,28.88] 

800×800 5.13 5.12 5.13 [51.27,51.29] 

1000×1000 8.00 7.95 8.02 [79.97,80.13] 

20 

200×200 4.39 2.74 144.14 [2.39,6.38] 

400×400 1.27 3.73 26.26 [1.03,1.50] 

600×600 3.52 28.84 103.38 [2.73,4.30] 

800×800 5.12 50.50 51.28 [5.11,5.13] 

1000×1000 8.16 80.08 109.24 [7.85,8.46] 

Figure 21 displays the performance comparison between serial and parallel computing. 

Figure 21 (a) compares the execution time between serial computing and parallel computing with 

different assigned-α values while the network scale is increasing, as well as the global MCF 

execution process as a base case. It shows that when the network scale is small, (i.e., 200×200 

nodes) parallel computing has longer execution time than serial computing. The possible reason 

for this phenomena is the data communication between ‘workers’ and data initialization take 

much time for the parallel computing compared to serial computing. As the network scale gets 

larger, parallel computing shows its advantage on saving execution time. Comparing to the 

global MCF process, parallel computing shows its advantage on saving execution time when the 

network scale is greater than 600×600 nodes. 
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Figure 21 (b) compares the peak memory consumption between serial computing and 

parallel computing with different assigned-α while the network scale is increasing. It shows that 

the parallel computing is not stable when the network scale is small (i.e., 200×200 nodes in this 

experiment), which may be due to the computation resource initialization. It is also noticed that 

in this experiment the serial computing has less or similar peak memory consumption compared 

to the parallel computing. Figure 21 (c) added the peak memory consumption of serial global 

execution to compare with both serial and parallel computing. It shows that both serial and 

parallel computing has less peak memory consumption than serial global MCF process. 
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 (c) Peak memory consumption comparison (including serial global execution) 

Figure 21  Comparison between serial and parallel computing (Binary-SD) 

To demonstrate the performance difference between serial and parallel computing, Figure 

22 shows the performance ratios of them, when assigned-α = 15. The blue line is the ratio of the 

difference between the parallel and serial computing peak memory consumption to the serial 

computing peak memory consumption, while the red line is the ratio of the difference between 
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the serial and parallel computing execution time to the serial computing execution time. When 

the network scale is equal to or greater than 600×600 nodes the performance ratio between 

parallel computing and serial computing becomes stable. 

 

Figure 22 The performance ratio between serial computing and parallel computing (Binary-SD) 

Figure 23 shows the performance ratio between parallel computing and serial global 

MCF process (refer to Function X.1 in Appendices). The trend indicates that when the network 

scale is equal to or greater than 600×600 nodes, parallel computing uses much less execution 

time compared to global MCF process. 
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Figure 23 The performance ratio between parallel computing and serial global execution (Binary-SD) 

The second part of this experiment is conducted under the multiple supplies and demands 

setting. Table 15 presents the parallel computing execution time by applying different values of 

assigned-α (i.e., assigned-α = 35 and assigned-α = 40), with increasing scales of network, which 

have the same input information as for the previous serial computing experiment. Table 16 

presents the peak memory consumption of parallel computing with different assigned-α, 

corresponding to increasing network scales. 
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Table 15 Execution time of parallel computing (Multi-SD)  (min)  

assigned-α Network Scale Mean value Min-value Max-value 95% Confidence Interval 

35 

200×200 0.29  0.26  0.32  [0.28,0.30] 

400×400 0.42  0.32  0.55  [0.38,0.46] 

600×600 1.10  0.63  1.72  [0.89,1.30] 

800×800 2.33  1.04  4.07  [1.78,2.88] 

1000×1000 4.56  1.75  8.88  [3.29,5.82] 

40 

200×200 0.30  0.27  0.33  [0.29,0.31] 

400×400 0.45  0.32  0.63  [0.40,0.50] 

600×600 1.11  0.65  1.73  [0.92,1.31] 

800×800 2.35  1.06  4.08  [1.80,2.89] 

1000×1000 4.94  1.86  9.05  [3.65,6.24] 

 

Table 16 Peak memory consumption of parallel computing (Multi-SD) (MB) 

assigned-α Network Scale Mean value Min-value Max-value 95% Confidence Interval 

35 

200×200 1.11 0.76 1.54 [1.03,1.19] 

400×400 1.37 1.29 1.52 [1.34,1.39] 

600×600 5.87 5.72 6.41 [5.80,5.95] 

800×800 10.34 10.21 10.57 [10.29,10.39] 

1000×1000 16.05 15.96 16.14 [16.01,16.08] 

40 

200×200 2.54 0.93 8.41 [1.67,3.41] 

400×400 2.56 1.29 7.00 [1.77,3.34] 

600×600 5.81 5.71 5.93 [5.78,5.85] 

800×800 10.32 10.22 10.57 [10.27,10.37] 

1000×1000 16.12 15.98 16.19 [16.07,16.16] 

Figure 24 displays the performance comparison between serial and parallel computing. 

Figure 24(a) compares the execution time between serial computing and parallel computing with 

different assigned-α while the network scale is increasing. The execution time of global MCF 

program is also displayed in Figure 24 (a) as a base case. Parallel computing shows its advantage 

on saving execution time in this experiment result. Figure 24 (b) compares the peak memory 

consumption between serial computing and parallel computing with different assigned-αs while 

the network scale is increasing. It shows that serial computing has less peak memory 
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consumption in this experiment. Figure 24 (c) added the peak memory consumption of serial 

global execution to compare with both serial and parallel computing. It shows that both serial 

and parallel computing have less peak memory consumption than global MCF process. 
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(c) Peak memory consumption comparison (including serial global execution) 

Figure 24 Comparison between serial and parallel computing (Multi-SD) 

Figure 25 shows the performance ratios of the difference between serial and parallel 

computing relative to serial computing (assigned-α = 35). The blue line is the ratio of the 

difference between the parallel and serial computing peak memory consumption to the serial 

computing peak memory consumption, while the red line is the ratio of the difference between 

the serial and parallel computing execution time to the serial computing execution time. It shows 

that when the network scale is equal to or greater than 600×600 nodes, the performance ratio 

between parallel computing and serial computing becomes stable. 

 

 



74 

 

 

Figure 25 The performance ratio between serial computing and parallel computing (Multi-SD) 

Figure 26 shows the performance ratio between parallel computing and serial global 

MCF process (refer to Function X.1 in Appendices). The trend indicates that when the network 

scale is equal to or greater than 400×400 nodes, the parallel computing uses much less execution 

time compared to the global MCF process. 

 

Figure 26 The performance ratio between parallel computing and serial global execution (Multi-SD) 
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Experiment Four: Comparison with Greedy-based Tiling Strategy  

Since there is no current tiling strategy applied in solving large-scale MCF problems, this 

experiment is performed to compare ELS with a greedy-based tiling strategy. If there is no 

corresponding published existing algorithm or solution method, it is a common and basic 

criterion that a new algorithm or solution method is compared with the greedy-based algorithm 

or solution method design. The reason is that greedy-based algorithms or solution methods are 

straightforward algorithms or solution methods that are typically convenient to implement, and 

also are commonly used heuristics (Willianmson & Shmoys 2010). Carballo (2000) provides a 

greedy-based tiling strategy applied in the image processing field. In this experiment, the two-

step greedy-based tiling strategy (GTS), which is a refined method for transportation 

applications, is utilized to perform the comparison. The detailed description of GTS follows. 

 The GTS is performed to compare with the proposed tiling strategy in this experiment. 

Specifically, in the first step, GTS evenly divides the input grid network into fixed-size and 

rectangular tiles (the size of each tile is chosen by the user). Then the MCF solution of each sub-

network can be calculated within each tile. Note that the supply and demand in each sub-network 

may not be balanced since the original network is ‘crudely’ divided using proximity alone. We 

can achieve the MCF solution of each tile in step one by introducing a ‘ground point’ 

temporarily, i.e., allowing the supply and demand of each sub-network get satisfied as much as 

possible, while the unsatisfied part is temporarily fulfilled by the ‘ground point’. The node with 

unsatisfied supply or demand in step one is called a residual supply or demand node. Figure 27 

demonstrates the functionality of the ground point, using binary supply/demand as an example, 

which is also applicable to multiple supply and demand situations.  
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After the first step, we may have a number of residual supply or demand nodes from 

some of the sub-networks. In the second step, the residual supply or demand nodes are balanced 

by a simple star topology network, in which the central node of the original network will be 

connected with each of the residual supply or demand nodes by the shortest path. Then, the MCF 

solution of the residual nodes network is obtained. Figure 28 shows an example of the step two 

process. The MCF solutions of each sub-network in the first step and of the residual nodes 

network are combined together to achieve the MCF solution of the entire network. 

 

 

Figure 27 Demonstration of the ground point functionality 
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Figure 28 Demonstration of balancing residual supply/demand nodes 

Simulation Setting. 

Since this experiment proceeds to compare the proposed MCF tiling strategy with GTS, 

the same scales of networks as in the first experiment are used as the test problem, as well as the 

demand and supply assignment setting for each scale of the grid network. The unit cost of each 

direct link (i.e., 𝑐𝑖𝑗 in Equation (3.1)) in each network is simulated as an un-weighted cost in this 

experiment. 

Experiment Four Process and Results. 

In this experiment, the binary supply and demand situation is representatively performed 

on GTS for comparison. With each scale of simulated grid network, the same 20 settings of 

binary demand and supply of each node as the first experiment are used as the input of the GTS. 

Consequently, the input information of this experiment is the same as the first one. 
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The execution time and the peak memory consumption (details are shown in Table 17 

and Table 18) of applying GTS for solving the MCF problem of networks with different scales 

are all obtained during the experiment process, which are used as a base case for comparison. 

Table 17 GTS execution time (min) (Binary-SD) 

Network Scale Mean value Min-value Max-value Confidence Interval 

200×200 0.03 0.029 0.032 [0.030,0.031] 

400×400 0.09 0.078 0.094 [0.084,0.087] 

600×600 0.23 0.183 0.292 [0.219,0.242] 

800×800 0.37 0.314 0.418 [0.360,0.387] 

1000×1000 0.70 0.599 0.804 [0.671,0.722] 
 

Table 18 GTS Peak Memory consumption (MB) (Binary-SD) 

Network Scale Mean value Min-value Max-value Confidence Interval 

200×200 0.44 0.13 2.10 [0.22,0.67] 

400×400 1.29 1.29 1.29 [1.29,1.29] 

600×600 3.60 2.89 5.82 [3.33,3.87] 

800×800 8.26 5.14 11.39 [7.22,9.30] 

1000×1000 12.39 8.02 13.85 [11.34,13.43] 

Figure 29 shows the performance comparison between ELS and GTS. Figure 29 (a) 

demonstrates the execution time of ELS with different assigned-αs and the one of GTS. It shows 

that GTS uses much less execution time than ELS because GTS conducts a very straightforward 

tiling strategy to cluster the original network. Figure 29 (b) displays the peak memory 

consumption of ELS with different assigned-αs and the one of GTS. It indicates that GTS has 

higher peak memory consumption than ELS. 
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Figure 29 Performance comparison between ELS and GTS (Binary-SD) 

The statistical actual-α obtained by GTS is shown in Table 19. The comparison of the 

actual-α obtained by GTS and ELS with different assigned-αs is shown in Figure 30. It is clearly 

shown that ELS has much smaller actual-α values as compared to GTS. 
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Table 19 The GTS statistical result of actual-α (Binary-SD) 

Network Scale Mean value Min-value Max-value 95% Confidence Interval 

200×200 6.0899 5.8825 6.3440 [6.0331,6.1467] 

400×400 6.0499 5.9379 6.1522 [6.0215,6.0783] 

600×600 6.0331 5.9504 6.1233 [6.0110,6.0552] 

800×800 6.0240 5.9669 6.0889 [6.0063,6.0417] 

1000×1000 5.9977 5.9417 6.0596 [5.9822,6.0133] 

 

 

Figure 30 The statistical result of actual-α (GTS) (Binary-SD) 

The objective function value obtained by GTS and ELS with different assigned-αs, as 

well as the one obtained by global MCF algorithm is displayed in Table 20 and Figure 31. Since 

this experiment is conducted on simulated networks, the flow cost can be generalized cost with 

corresponding cost unit (i.e., unit of currency or unit of time).  It shows that ELS obtains results 

much closer to the global MCF as compared to the GTS. 
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Table 20 The flow cost of the entire network (Binary-SD) 

Assigned-α Network scale 

ELS objective value 

Mean value Min-value Max-value 

15 

200×200 3157  3022  3239  

400×400 12639  12348  12853  

600×600 28501  28102  28857  

800×800 50647  50107  51077  

1000×1000 79135  78719  79572  

20 

200×200 3157  3022  3239  

400×400 12639  12348  12853  

600×600 28501  28102  28857  

800×800 50647  50107  51077  

1000×1000 79135  78724  79572  

 

Network scale 

GTS objective value 

Mean value Min-value Max-value 

200×200 19218 18711 19764 

400×400 76454 75357 77298 

600×600 171940 170570 174630 

800×800 305080 302990 307930 

1000×1000 474600 471590 478560 

 

 
Figure 31  The objective function value comparison between GTS and ELS 
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Experiment Five: Performance Tests on a Real Network with Binary Demand 

and Supply 

The previous experiments test the performance of ELS based on randomly generated grid 

networks. The fifth experiment aims to test the performance of ELS on real networks with binary 

supply and demand assigned. The first test analyzes the effect of the assigned-α value on the 

clustering results of the AC tilling strategy and measures the accuracy of the ELS. The second 

test analyzes the performance of the ELS when applied to a big scale practical network with 

simulated binary supply and demand.  

Effectiveness Testing on Small Real Network. 

This test is performed based on the network of Friedrichshain which is a district within 

Berlin, Germany. The data is obtained from a network repository of Ben Stabler’s GitHub for 

transportation research (Stabler 2016). This small network is used to test the effectiveness of 

ELS with different values of assigned-α.  

Simulation Setting. The input data for this test are the coordinates of each node and the 

given unit cost of links of the network. The network we tested in this experiment includes 224 

nodes and 523 links according to the database (Stabler 2016). The capacity of each link is 

assumed to be infinite. Assuming that the supply and demand of all the nodes within the network 

are balanced, we randomly assign each node to be a supply or demand node. For the sake of 

simplicity, each demand node is allocated one unit commodity and each supply node is allocated 

one unit commodity as well; and the number of demand nodes equals the number of supply 

nodes. In this case, the summation of all the demand and supply is zero, and there are no 

transshipment nodes in this experiment, so the network is balanced. Figure 32 shows an example 

of this simulation setting, in which the red pentacles represent the demand nodes and the black 
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asterisks represent the supply nodes. In Figure 32, the coordinates are normalized to range of [-

100, 100]. 

 

Figure 32 Demonstration of supply and demand nodes setting of Friedrichshain network. 

Result. In this test, we randomly generated the supply or demand of each node on the 

Friedrichshain network 50 times. Each time, the AC tiling strategy (i.e., Alg. 1) is applied to 

obtain the clustering result of all the nodes (i.e., sub-network information) with different 

assigned-α values (assigned-α is from 30 to 70 with an increment of 10), where the minimum 

unit cost between two nodes is approximately substituted by the distance between them,. (The 

rationale of using the distance between two nodes instead of the minimum unit cost is explained 

in the AC tiling strategy section of Chapter Three.) Then, the actual-α value is calculated to 

compare with the assigned-α value.  

Figure 33 amplifies two of the clustering results of the original network shown in Figure 

31 with different assigned-αs (i.e., assigned-α = 30 in Figure 33 (a) and assigned-α = 70 in 

Figure 33 (b)). In each sub-figure of Figure 33, the numbers indicate the cluster index of each 
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node; that is to say, the nodes with same number belong to the same sub-network. From Figure 

33, it can be seen that the number of sub-networks increases as the value of assigned-α grows.  

  
(a)  (b)  

Figure 33 Clustering results of Friedrichshain network with different assigned-αs. 

Table 21 shows the mean actual-α values of the 50 tests corresponding to different 

assigned-αs with corresponding standard deviations. It suggests that the value of actual-α is 

growing with the assigned-α. Interestingly, it also can be seen that even though the assigned-α 

value is large, the actual-α is very close to one. As mentioned in Chapter Three, when the actual-

α value is closer to one, this indicates greater guarantee of the consistency between the local and 

global optimal objective values. Hence, it is safe to state that the accuracy of the ELS is reliable 

in practice, which means the combined local optimal objective value of the network is close to 

the global optimal objective value. 

Table 21 Comparison of assigned-α and actual-α. 

Assigned-α 30 40 50 60 70 

Mean of Actual-α 1.2501 1.5622 1.7734 1.9335 1.9468 

 
Standard deviation 0.2266 0.3258 0.3158 0.3137 0.3093 
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Figure 34 shows the comparison between assigned-α and mean actual-α. The mean 

actual-α increases with the assigned-α, but the tendency indicates that the actual-α is non-

sensitive to the value of assigned-α. 

 
Figure 34 The comparison between assigned-α and mean actual-α 

Effectiveness Testing on Large Real Network. 

To test the effectiveness of the proposed model on a large-scale network, this test is 

performed based on the network of Mitte, Prenzlauer Berg and Friedrichshain (MPBF), which 

are three portions of Berlin, Germany. The data source is the same as for the previous test, but 

involves a larger region of Berlin City.  

Simulation Setting. As with the previous test, the input data are the coordinates of each 

node and the given cost of links of the network. The network includes 975 nodes and 2184 links 

(Stabler 2016). The capacity of each link is assumed to be infinite. Since this is a much larger 

network than the one in the previous test, a modified scenario is applied for this simulation 

setting. Twenty percent of the nodes are randomly selected from all the nodes of the entire 

network as supply or demand nodes, while the remaining nodes are treated as transshipment 

nodes which have zero supply or demand. For the sake of generality and simplicity, each 

selected node is randomly assigned to be a supply or demand node; each demand node is 

0

0.5

1

1.5

2

2.5

20 30 40 50 60 70 80

M
ea

n
 o

f 
A

ct
u
al

-α

Assigned-α



86 

 

allocated one unit commodity and each supply node is allocated one unit commodity. It is still 

required that the supply and demand should be balanced within the entire network, so the number 

of supply nodes is equal to the number of demand nodes.  

Figure 35 demonstrates the node distribution of the network in this experiment, in which 

the red pentacles represent the demand nodes, the black asterisks represent the supply nodes and 

the green dots represent the transshipment nodes. In Figure 35, the coordinates are normalized to 

a range of [-500,500]. 

 

Figure 35  Demonstration of supply and demand nodes setting of Mitte, Prenzlauer Berg and 

Friedrichshain network. 

Result. According to the simulation setting process, the supply and demand nodes were 

selected from the network of Mitte, Prenzlauer Berg and Friedrichshain. The AC tiling strategy 

(i.e., Alg. 1) was applied to obtain the clustering result of all the nodes (i.e., sub-network 

information) with different assigned-α values (α is once again assigned from 30 to 70 with an 

increment of 10). During the process the minimum unit cost between two nodes is approximately 
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substituted by the distance between them. Based on the clustering result, the MCF program is 

applied to each sub-network to obtain the local optimal solution. Then the value of actual-α is 

calculated to compare with the assigned-αs.  

Table 22 and Figure 36 shows the actual-α values corresponding to different assigned-α 

values. It indicates that the actual-α value is increasing as the assigned-α value grows. But even 

if the assigned-α value is big, the actual-α is still not far from one, indicating that the combined 

local optimal objective value is a good approximation of the global optimal objective value. 

Furthermore, Table 23 shows the performance comparison among different assigned-αs and 

global execution. It shows the benefits over the global MCF solving process when the assigned-α 

increases.  

Table 22  Comparison of assigned-α and actual-α (MPBF). 

Assigned-α 30 40 50 60 70 

Actual-α 1.0459 1.1414 1.6221 2.1448 2.7168 

 

 
Figure 36 The comparison between assigned-α and mean actual-α (MPBF). 
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Experiment Six: Performance Test on a Real Network with Multiple Demand 

and Supply 

Background. 

MCF is widely applied in the image processing domain (Ghiglia & Pritt 1998; Yu & Lan 

2016). Therefore, one such MCF application, i.e., multi-baseline (MB) synthetic aperture radar 

interferometry (InSAR) image processing, is used to validate the ELS in this experiment. MB 

InSAR is used to produce a digital elevation model (DEM) from synthetic aperture radar data 

(For more detailed information please refer to Appendix D, which offers a brief primer on MB 

InSAR and explanations on related concepts). For example, Figure 37(a) is the interferogram, 

and Figure 37(b) is the related Google-earth image. In MB InSAR image processing, there is one 

processing step called phase unwrapping (PU). In the PU step, researchers first generate residues 

from the input InSAR image, or so-called interferogram. Residues can be positive or negative. In 

this experiment, the positive residues are considered as supply nodes, and the negative residues 

as demand nodes. The purpose of the PU step is to use the MCF model to balance the supply and 

demand, then obtain the final InSAR product, which is the digital elevation model (DEM) 

(Ghiglia & Pritt 1998; Yu & Lan 2016).  

Table 23 Performance comparison among different assigned-αs (MPBF).  

Execution time (min) Peak Memory consumption (MB) 

Global MCF 

 

ELS Global MCF 

 

ELS 

α =30 α =50 α =70 α =30 α =50 α =70 

8.80 8.46 3.24 2.33 36.31 34.32 17.45 8.57 
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(a) Interferogram 

 
(b) Google-earth image corresponding to (a) 

Figure 37 MB InSAR Image processing example 

Data Set Introduction. 

In the following section, real MB InSAR data sets are used to test the performance of the 

ELS. Figure 38(a) shows the Google Earth image of the real MB InSAR data set used in this 

experiment, which is the Himalayan mountain area, and whose center latitude and longitude are 

around 30.85° and 94.47°. Figure 38(b) and Figure 38(c) are the interferograms with different 

baseline lengths. Figure 38(d) is the residue distribution that is obtained from Figure 38(b) and 

Figure 38(c). There are 152,970 residues (i.e., supply and demand nodes) with the 

demand/supply range from -5 to +5.  
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(a) Google Earth image of Himalayan Mountain area (b) Interfergram 1 of (a) 

  
(c) Interfergram 2 of (a) (d) Residue distribution of (a) 

 

 

(e) Global MCF processing result   

Figure 38 Himalayan Mountain area image data setting and benchmark result 
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Figure 38(e) is the global MCF based PU processing result obtained by the method 

available in  the GAMMA remote sensing software, which is the mature InSAR signal 

processing software (GAMMA 1995). Figure 38(e) can be considered as the ground-truth (i.e., 

benchmark) in this experiment. The physical meaning of Figure 38(e) is the DEM with a scaling 

factor and its MCF objective value is 252,807 (GAMMA 1995).    

Parameter Selection Strategy.  

Parameter selection is one of the common problems in the algorithm design domain. For 

example, the parameter k of the k-mean algorithm and the step size of the interior-point 

algorithm are both user-defined parameters (Han & Kamber 2006; Williamson & Shmoys 2011; 

Koutroumbas & Konstantinos 2008; Webb 2003). Similarly, assigned-α is a user-defined 

parameter of the ELS. 

In the ELS, we need to assign a value to α. In the following, an empirical parameter 

selection strategy is designed. First, a very large value of α, such as 2000, is applied to run the 

clustering algorithm. A clustering result will be obtained with a number of clusters (i.e., 

balanced-areas) of relatively small size. Based on this clustering result, the average region cost of 

the balanced-areas and the average cost between the balanced-areas can be calculated. Then, we 

conversely apply the α-approximation regional-division theorem to obtain one value of assigned-

α, i.e., dividing the average cost between balanced-areas by the average region cost of the 

balanced-areas. Taking Figure 38(d) as an example, when the value 2000 is applied, the obtained 

value of α is 148.6. Under this condition, we suggest the value of α be around 150. To verify this 

parameter selection strategy, in the following experiment 50, 150, 250, 350 and 450 are used as 

values of assigned-α to test the ELS. 
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Experiment Results. 

As described in the previous section, the data sets of Figure 38(d) are used as the input of 

this experiment. According to the parameter selection strategy, different values are assigned to α 

to test the ELS. Figures 39(a)-(e) are the clustering results with α-values of 50, 150, 250, 350 and 

450, in which nodes with same color are clustered in the same balanced-area. The number of the 

clusters corresponding to the assigned-αs are shown in Table 24.  

  

(a) assigned-α = 50 (b) assigned-α = 150 

  
(c) assigned-α = 250 (d) assigned-α = 350 
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(e) assigned-α = 450  

Figure 39 Cluster results corresponding to different assigned-αs 

 

Table 24 The number of clusters corresponding to different assigned-αs 

assigned-α 50 150 250 350 450 

Number of clusters 1 3576 3676 4082 4111 

The results show that when assigned-α equals 50, the nodes are clustered in one 

balanced-area. This clustering result will not provide any benefit on saving peak memory 

consumption and execution time. The number of clusters increases as the value of assigned-α 

increases. It is worthwhile mentioning that in Figures 39(a)-(e) the cluster number is not 

continuous due to the numbering process during the clustering process, therefore the maximum 

number of the color bar is greater than the number of clusters corresponding to different 

assigned-αs. The ELS results corresponding to different values of assigned-α are shown in 

Figures 40 (a)-(e), whose objective values are shown in Table 25 with the corresponding actual-

αs calculated as well (i.e., the actual-α is calculated by dividing the ELS MCF solution by the 

Global MCF solution). 
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(a) assigned-α = 50 (b) assigned-α = 150 

  
(c) assigned-α = 250 (d) assigned-α = 350 

  

(e) assigned-α = 450 (f) Global MCF solution 

Figure 40  MCF processing result obtained by ELS solution figures with different assigned-αs 

 

Table 25 MCF objective values with different assigned-αs 

assigned-α 50 150 250 350 450 Global MCF solution  

ELS MCF solution 252807 253447 253463 253788 253790 252807 

actual-α 1 1.0025 1.0026 1.0039 1.0039 - 
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 Figures 41 (a)-(d) are the differences between Figure 40 (f) and Figures 40 (b)-(e), which 

are the differences between the global MCF solution (i.e., the DEM with a scaling factor) and the 

solutions obtained by ELS with different assigned-αs. When assigned-α equals 50, all of the 

nodes are clustered together in this experiment, and there is no difference between the global and 

ELS MCF solutions. Thus, Figure 41 does not include the comparison between them. The peak 

memory consumption and execution time corresponding to different assigned-αs are tabulated in 

Table 26, as well as the root-mean-square-errors of Figures 41(a)-(d) (comparing to the global 

MCF solution).  

  

(a) assigned-α = 150 (b) assigned-α = 250 

  

(c) assigned-α = 350 (d) assigned-α = 450 

 Figure 41 Differences between the global MCF solution and the solutions obtained by ELS 

with different assigned-αs 
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Table 26 Performance comparison among different assigned-αs 

assigned-α 
Peak memory 

consumption（MB） 
Total execution time 

(min) 
root-mean-square-error 

150 122392 15.3 0.4262 

250 122396 15.2 0.4302 

350 122396 16.1 0.7119 

450 122400 15.3 0.7137 

Global 3117292 158.40  

From the results of this experiment, we can tell that when the value of α is assigned as 

150 or 250, the difference between global MCF solution (Figure 40 (f)) and ELS solution (Figure 

40 (b)) are very small; the root-mean-square-error is 0.4262 (assigned-α =150) or 0.4302 

(assigned-α = 250). From Figure 41 and Table 26, it can be seen that when the assigned-α is 

increasing, the differences between the global and ELS solutions become larger (Table 26), but 

the peak memory consumption and execution time does not change very much. Based on the 

analysis of the experiment results, 150 is a reasonable value for assigned-α for this data set, and 

any assigned-α value between 150 and 250 could be reasonable as well.  

In Figure 42, the histograms demonstrate the distribution of the big clusters (i.e., big 

cluster refers to clusters that include more than 2000 nodes in this experiment) of the clustering 

result corresponding to different assigned-αs respectively.  
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Figure 42 Demostration of the distribution of the big clusters of the clustering results 

The peak memory consumption and execution time of ELS is closely related to the 

number and size of the largest clusters of the clustering result. From Figure 42, we notice that the 

numbers and the sizes of the largest clusters obtained by AC tiling strategy with different 

assigned-αs in this experiment are close to each other, which is decided by the features of this 

input network (refer to Chapter 3). Therefore, the peak memory consumption and execution time 

savings of the different assigned-αs in this experiment (shown in Table 26) are also relatively 

close to each other. 

Furthermore, based on the results shown in Tables 25 and 26, compared to the global 

MCF execution process, ELS shows its advantage in saving peak memory consumption and 

execution time (i.e., ELS just uses around 3.9% peak memory consumption and 9.7% execution 
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time of global MCF execution process), while keeping acceptable accuracy of the objective 

value. 

Therefore, based on the results obtained by this experiment, we can conclude that i) ELS 

is beneficial for realistic large-scale MB InSAR (which is a large-scale MCF problem) in saving 

peak memory consumption and execution time; ii) a reasonable approach to parameter selection 

is proposed (which is using a very large value of α to obtain an initial clustering result by AC 

tiling strategy, then conversely applying the α-approximation regional-division theorem to obtain 

one value of assigned-α) and tested in this experiment. 

Conclusions 

In this chapter, six groups of experiments are carried out to measure the performance of 

ELS from various aspects.  

The first and second group of experiments tests the effectiveness of ELS on grid 

networks with binary and multiple supplies and demands when the scale and characteristics of 

the networks are changing. The actual-αs obtained in these experiments indicate that the 

performance of ELS is not sensitive to the assigned-α. The results indicate that ELS always uses 

less peak memory consumption as compared to global MCF execution (i.e., solving the same 

MCF problem as a whole piece), however, the advantage of ELS is only revealed when the 

network scale is larger than 1000×1000 nodes.  

The results of the third group of experiments show that the application of parallel 

computing facilitated by ELS can further shorten the execution time of solving the large-scale 

MCF problem. Notice that, when the network scale is not large, serial computing with ELS uses 

more execution time than the global MCF process, while parallel computing with ELS uses less 

execution time than the global MCF process.  
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The result of the comparison tests with GTS in the fourth experiment reveals that 

although ELS consumes longer execution time than GTS, ELS offers more accurate solution of 

the large-scale MCF problem. Finally, the results of the fifth and sixth experiments demonstrate 

the utility of the ELS on realistic networks under different circumstances. The parameter 

selection strategy of assigned-α is also demonstrated and tested in the sixth experiment.   
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5 Conclusion and Future Research 

Summary and Conclusions 

Intermodal transportation systems have experienced enormous evolution throughout the 

years since the late 1980s. As the cooperation between various transportation modes increases 

with rapidly growing demand of regional and/or global actors, the intermodal transportation 

network must be examined so as to meet contemporary and future demand.  

The consideration of large-scale problems is attracting more interest in various fields. 

One of the important reasons is that as technologies continue to mature and advance, the 

availability of massive amounts of data and increased computational capacities open the door for 

new avenues of research and exploration. Therefore, this dissertation has focused on large-scale 

network programming to explore some new opportunities in this field. Specifically, this 

dissertation concentrated on the large-scale MCF problem by adopting a divide-and-conquer 

policy during the optimization process.  

The regional-division theorem and the α-approximation regional-division theorem were 

first proposed and proved. The regional-division theorem offers a sufficient condition to 

guarantee the consistency between the local and global MCF solutions, while the α-

approximation regional-division theorem provides the worst-case bounds for the practical 

approximation MCF solution. Based on these two theorems, an agglomerative clustering based 

tiling strategy was proposed for decomposing the input network into sub-networks and further 

solving the MCF in each sub-network independently. The AC tiling strategy aims to reduce peak 

memory consumption and improve efficiency.  

A series of experiments was carried out and the results showed that the ELS, which is 

designed according to the proposed AC tiling strategy, is reliable in practice and significantly 
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saved execution time and/or peak memory consumption in large-scale networks without losing 

much accuracy under different circumstances. However, so far the ELS is proposed and designed 

only for single commodity situations, which limits the application range of ELS. And the α-

approximation regional-division theorem is designed for deterministic MCF problems. Therefore 

it has limitation when dealing with the dynamic MCF problem (i.e., OD information is changing 

over time).   

Avenues for future work 

The number of experiments involving a performance comparison with an alternative 

approach is limited in the experiment section for ELS due to insufficient suitable data sets. In 

terms of future research, the collection of suitable data sets for numerical experimentation will be 

beneficial to make the performance of ELS more convincing. Due to the limitation of 

computational resources, even though the performance of the ELS was already tested from 

various aspects, it is still not a very comprehensive test.  Experiments on a gigantic network 

could show more potential of ELS, when the computational resources are available in the future.  

The proposed theorems and methodology in Chapter Three are concentrated on a single 

commodity situation, which may limit the range of application. It is worthwhile to extend the 

theorems and algorithm to a multi-commodity situation. (In the appendices section of this 

dissertation, a sketch of the extension study on large-scale multi-commodity minimum cost flow 

problems is provided.)  

The performance of comprehensive intermodal transportation network design models will 

be impacted by the formulation and related parameters of the relevant cost functions. When 

applying the ELS in this dissertation, it is assumed that the cost of the links in the network is 

comparable to the Euclidean distance, which is just a simplified formulation of cost. Therefore, 



102 

 

study on developing a corresponding approach to formulate more practical cost functions will be 

of interest in future work. Further consideration about how this approximation affects the 

approximation theorem is also worthy of study. 

To make the proposed theorems more applicable from other perspectives, it will be a 

good extension to study modified versions of them applicable to other types of network problems 

confronted by the large-scale situation.  

An in-depth study of the relation between the tendency of mean actual-α and the network 

features will be beneficial to the ELS application. 
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Appendices 

Appendix A, Overview of the Algorithm 1 implementation 

Algorithm 1 proposed in Chapter Three in this dissertation is implemented in a 

MATLAB® environment. A detailed explanation of the current implementation is provided in 

this section. 

The main data structures in Algorithm 1. 

The main data objects needed in this algorithm are array and cell array. Array is applied 

to store the nodes with their related information and the cell array is applied to the cluster 

manipulation. 

Code prototypes and their attributes and functionalities. 

The problem which is studied in this dissertation is closely related to graph theory. In this 

field, the main information is usually stored in a matrix (i.e., adjacency matrix). Therefore, the 

information about the graph (i.e., coordinate of nodes, links, and cost of links) is stored in 2-D 

arrays (i.e., matrix) in my code. It is convenient to search, retrieve and update the information 

through the array index. In addition, with regard to the information of clusters and the cluster 

elements (index of the nodes), since the number of the elements within each cluster is different 

and cannot be known in advance, we cannot store this information in the array. Then the cell 

array is adopted to deal with this kind of information. 

The main functions in the current implementation.  

The main function of the current implementation of Algorithm 1 is the clustering 

function.  The input data of this algorithm are the coordinates of the nodes which are stored in 

array ‘XY’ (double) and the cost information of all links which is stored in arrays ‘aa’ (single), 

‘bb’(single) and ‘cc’(double) indicating the starting node, ending node and the cost of each link, 
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respectively. Another form of the input of link cost information is the costmatrix which stores the 

unit cost information of all links. 

For simulation, this algorithm generates the demand or supply for each node, then the 

input node information is stored in the array ‘InputNodes’(double), including the coordinates and 

demand or supply of each node. If the actual demand and supply data is provided, we can 

directly input the data into the ‘InputNodes’ array. The output of the clustering function is the 

cell array called ‘Cluster’ (cell) where each cell keeps the indices of the nodes included in the 

same cluster. 

Within the main function, since it is intended to test the influence of the value of different 

assigned-α on Algorithm 1, a ‘for loop’ is embedded for increasing the value of assigned-α while 

applying the cluster process. Actually, for the final application version of this algorithm, this part 

could be simplified, since we could just choose one proper value as the assigned-α and apply it in 

the algorithm.  

To test the accuracy of this algorithm, a function for calculating the global minimum-

cost-flow (MCF) optimal solution of the entire network is also embedded in the main function. 

This part could be omitted in the application version of this code, since there is no need to 

calculate it in the final application version. And a similar function also is applied on each sub-

network after the clustering stage is completed. The input data of this MCF optimal solution 

function is the information of the nodes (‘InputNodes’) and the information of the clusters 

(‘Cluster’) which is the output of the clustering function. And the output of this function should 

be the MCF optimal solution of the input network. The parameter handling in those functions is 

by reference. 
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The pseudo-code of Algorithm 1 is provided in section 4.5. To clearly describe this 

algorithm, a workflow is produced to demonstrate the detailed steps of this algorithm, shown in 

Figure 43. 
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Figure 43 The workflow of the Algorithm 1. 
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memory consumption). Based on the α-approximation regional-division theory proposed and 

proved in this dissertation, which was applied in the partition procedure of this algorithm, the 

optimal solutions of the sub-networks are independent of each other. Therefore, parallel 

computing can be applied to calculate the MCF optimal solutions of the sub-networks. 

For the network partition stage (clustering stage), in reality, the processing speed 

achieved by parallel computing will not be significantly higher. Since the time and space 

complexity of the algorithm of the clustering stage is approximately linear, the efficiency of this 

algorithm is high enough without applying parallel computing. 

Code maintenance and version control plan. 

For the sake of the code maintenance and version control, the detailed description of the 

program for each version of the code will be record in chronological order. And clear code 

comments also need to be documented for each version of the code.  
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Appendix B, Large-Scale Multi-Commodity Minimum-Cost Flows 

Problem  

The proposed theorems and methodology in Chapter Three are concentrated on a single 

commodity situation, which may limit the range of application. It is worthwhile to extend the 

theorems and algorithm to a multi-commodity situation. The following is the preliminary ideas 

about the extension of the theorems. Further detailed proof is still needed. 

Definition 1: Comprehensive balanced area: An area in which, for each type of 

commodity, the supply of origins and demand of destinations are balanced is called a 

comprehensive balanced area. 

Definition 2: Region cost vector of a comprehensive balanced area: The kth element of 

the region cost vector of a comprehensive balanced area corresponds to the region cost of a 

comprehensive balanced area of the kth type of commodity. For the kth type of commodity, the 

region cost of a comprehensive balanced area is the maximum value of the minimum unit cost 

between any two nodes that are in this comprehensive balanced area. 

Definition 3: Cost vector between two comprehensive balanced areas: The kth element 

of the cost vector between two comprehensive balanced areas corresponds to the cost between 

two comprehensive balanced areas of the kth type of commodity. For the kth type of commodity, 

the cost between two comprehensive balanced areas is the minimum value of the minimum unit 

cost between any two nodes that are in two different comprehensive balanced areas. 

Multi-commodity regional-division theorem. 

For all elements of a cost vector between any two comprehensive balanced areas, in 

which the link capacity constraints can guarantee the existence of the MCF solution of each 

comprehensive balanced area, if the kth element of the cost vector between any two 
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comprehensive balanced areas is greater than the kth element of the region cost vector of each of 

them respectively, the optimal multi-commodity MCF solution in any comprehensive balanced 

area will be consistent with the global multi-commodity MCF solution. 

α-approximation multi-commodity regional-division theorem. 

 For elements of a cost vector between any two comprehensive balanced areas, in which 

the link capacity constraints can guarantee the existence of the MCF solution of each 

comprehensive balanced area, if the kth element of the cost vector between any two 

comprehensive balanced areas is greater than or equal to 1/α  (α≥1) times the kth element of the 

region cost vector of each comprehensive balanced area, respectively, the summation of the 

multi-commodity MCF objective value of each area is always less than or equal to a factor α of 

the global multi-commodity MCF objective value. 
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Appendix C, Referred Functions 

Parallel performance ratio function 

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 =  
𝑔𝑙𝑜𝑏𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑔𝑙𝑜𝑏𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
            (X.1) 

The link generalized cost function utilized in the six experiments of the numerical 

experiment chapter is introduced from Stabler (2016): 

𝑡𝑙 =  𝑡𝑓𝑓  × (1 + 𝐵 × (
𝑓

𝐶
)

𝑝

)                                                          (X.2) 

𝑐𝑙𝑖𝑛𝑘 = 𝑡𝑙 + 𝑡𝑜𝑙𝑙𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑡𝑜𝑙𝑙 + 𝑑𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑑                                       (X.3) 

where 𝑡𝑙 indicates link travel time, 𝑡𝑓𝑓 indicates free flow time, 𝑓 is the link flow, C is the link 

capacity, 𝑐𝑙𝑖𝑛𝑘 is link generalized cost, d is the distance, 𝑡𝑜𝑙𝑙 is the number of tolls, and 

𝑡𝑜𝑙𝑙𝑓𝑎𝑐𝑡𝑜𝑟, 𝑑𝑓𝑎𝑐𝑡𝑜𝑟, B and p are related parameters. 
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Appendix D, Brief Primer on MB InSAR Phase-Unwrapping and Related 

Concepts 

The frameworks of single-baseline (SB) phase unwrapping (PU) and multi-baseline (MB) 

PU can be demonstrated through the following: i) estimate the gradient of the absolute phase; ii) 

compute the residues; iii) distribute branch-cuts; iv) obtain the absolute phase through using an 

integration process. However, the biggest difference between SB PU and MB PU is on step 1 

(SB PU is an ill-posed problem but MB PU is well-posed), in which SB PU uses a phase 

continuity assumption to estimate the absolute phase gradient, but MB PU uses the Chinese 

remainder theorem (CRT). Due to this difference, the residue polarities on SB and MB PUs are 

different. In SB PU, the residue polarity can only be ±1, but can be ±𝑛, 𝑛 ∈ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 in MB PU. 

The residue is the minimum loop-integration value of the phase gradients of any 2×2 neighboring 

pixels. Theoretically, the 2-D estimated gradient field should be irrotational so that the 

integration is independent of the integration path. However, because of the existence of the phase 

noise, the 2-D estimated gradient field is not irrotational, i.e., the integration path will affect the 

PU result. The meaningfulness of the residue is that, if and only if, all the positive and negative 

residues are connected by lines (called branch-cuts) and the integration path does not pass 

through any branch-cut, the integration result is independent of the integration path (like the 

residue in a Complex Function textbook). If we consider the positive residue as a supply-node 

and the negative residue as a demand-node, the flow paths obtained by the MCF will be branch-

cuts. The residue polarities are the supply and demand (residue polarity does not have a physical 

unit) in this MCF network. From this view point, the MB PU problem is more similar to a 

transportation problem, because MB residue polarity is ±𝑛, but that of SB residue is just ±1. In 

addition, the unit cost between two neighboring points (they could be supply, demand or transit 
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point) is set at one unit (again, there is no special physical meaning on this unit). In other words, 

the MCF network in the PU problem is an unweighted network. After we distribute branch-cuts 

obtained by the MCF solution, we can easily obtain the absolute phase by a flood-filling process 

(i.e., 2-D integration process). 

In Experiment 6, the residue is computed by GAMMA remote sensing software 

(GAMMA 1995), so the input of ELS is produced by a ‘canned’ software. Then, the branch-cut 

information is obtained by ELS. Finally, the absolute phase is computed by GAMMA again with 

the branch-cut information provided by the ELS result. For more detailed information, the reader 

should refer to (Ghiglia & Pritt 1998). 
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