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Given a set of objects and their pairwise distances, we wish to determine a visual represen-

tation of the data. We use the quartet paradigm to compute a hierarchy of clusters of the

objects. The method is based on an NP-hard graph optimization problem called the Mini-

mum Quartet Tree Cost problem. This paper presents and compares several metaheuristic

approaches to approximate the optimal hierarchy. The performance of the algorithms is

tested through extensive computational experiments and it is shown that the Reduced Vari-

able Neighbourhood Search metaheuristic is the most effective approach to the problem,

obtaining high quality solutions in short computational running times.
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1. Introduction

Hierarchical clustering methods have been employed in many different disciplines, such

as social science, engineering, medicine, biology, planning, management, and even litera-

ture (Kaufman and Rousseeuw, 2005). This paper focusses on the quartet method of hi-

erarchical clustering (Cilibrasi and Vitányi, 2005, 2006) which, given a set of objects to be

classified, produces a hierarchy of the objects according to a specific cost evaluation, without

knowing a priori the number of clusters to be produced. Given n ≥ 4 objects to cluster,

the quartet method of hierarchical clustering accepts as input a distance matrix, which is a

matrix containing the distances, taken pairwise, among the n objects. It is assumed that

the n× n distance matrix is symmetric, with non-negative reals, normalized between 0 and

1, as entries. The value 1 represents the largest distance between two objects. As output,

the quartet method produces a full unrooted binary tree with n ≥ 4 leaves (Diestel, 2000).
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In a full unrooted binary tree, all the internal nodes have degree exactly three and there

is no distinction between parent and child nodes (Furnas, 1984; Diestel, 2000). In order to

visually represent the distance matrix as well as possible, the quartet method of hierarchical

clustering places the n objects to be clustered as leaves of the full unrooted binary tree, such

that objects with a short relative distance will be represented close to each other in the tree.

A full unrooted binary tree with n ≥ 4 leaves will have exactly n − 2 internal nodes, and

consequently will have a total of 2n − 2 nodes. Full unrooted binary trees are of primary

interest in clustering contexts because, of all trees with a fixed number of nodes, they have

the richest internal structure. They are therefore the most sensitive for representing the

structure of a set of objects (Furnas, 1984).

Figure 1: The left part shows an example of a distance matrix in input to the quartet method.
The right part shows the full unrooted binary tree representing the optimal hierarchy.

Figure 1 shows a simple example on how the quartet method by Cilibrasi and Vitányi

(2005, 2006) classifies n = 8 objects from completely different domains by means of a full

unrooted binary tree. The left part of Figure 1 is an example of an input distance matrix

created arbitrarily by the authors, with the optimal hierarchy shown on the full unrooted

binary tree in the right part. The optimal hierarchy is the best representation of the distance

matrix by means of a full unrooted binary tree with the n objects clustered as leaves. The two
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famous bands Metallica and Radiohead form a cluster. Then Kaka, Seedorf, and Ancelotti,

who belong to the same football club (A.C. Milan) form another cluster, with Kaka and

Seedorf closer together as players, and coach Ancelotti further away. The final cluster is that

of Sergio Consoli, Gijs Geleijnse, and Jan Korst, who are co-authors of this paper.

The rest of the paper is organised as follows. In Section 2, the quartet method and the re-

lated literature are described in depth. This method constructs the full unrooted binary tree

approximating the optimal hierarchy according to the input distance matrix. The quartet

method of hierarchical clustering is based on an NP-hard graph optimization problem, called

the Minimum Quartet Tree Cost (MQTC) problem (Cilibrasi and Vitányi, 2005, 2006). In

Section 3, we present details of several metaheuristics which find approximate solutions to

the problem: the heuristic recommended in the literature (the Randomized Hill Climbing

by Cilibrasi and Vitányi (2005, 2006)), and four new approaches that we introduce for the

quartet method (Greedy Randomized Adaptive Search Procedure, Simulated Annealing, Vari-

able Neighbourhood Search, and Reduced Variable Neighbourhood Search). Section 4 includes

the experimental analysis of the evaluation of these metaheuristics, and the paper ends with

some conclusions (Section 5). For a survey on the basic concepts of metaheuristics and

combinatorial optimisation, the reader is referred to (Glover and Kochenberger, 2003).

2. The quartet method of hierarchical clustering

A fundamental problem in computational biology that has been widely studied in recent

years is the construction of evolutionary trees from biological data (Diestel, 2000). These

trees shows the evolutionary relationships between various biological species or other entities

that are believed to have a common ancestor. The compelling need for having efficient

computational tools to solve this biological problem has attracted much attention to the

analysis of the quartet paradigm for inferring evolutionary trees (Felsenstein, 1981). Quartet

methods utilize topological information on sets of four objects to infer an evolutionary tree.

Given a set N of n ≥ 4 objects, the number of sets of four objects from the set N is
(

n
4

)
. For

each set of four objects {a, b, c, d} ⊆ N , there exist exactly three different full unrooted binary

trees with four leaves (i.e. two internal nodes), also known as simple quartet topologies : ab|cd,

ac|bd, ad|bc (Figure 2). The vertical bar in a simple quartet topology divides the two pairs

of objects, where each pair is represented by two leaf nodes, labelled by the corresponding

objects and attached to the same internal node. Thus, considering the set N of n ≥ 4
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Figure 2: The three different simple quartet topologies of the generic set {a, b, c, d} of objects.

objects, the total number of possible simple quartet topologies is 3 · (n
4

)
.

The quartet methods proceed by first estimating the topology of each quartet of objects

and then recombining the inferred simple quartet topologies into an evolutionary tree. A

major difficulty in this approach derives from the fact that quartet methods often make

mistakes that result in the inconsistent inference of simple quartet topologies. These mistakes

are also referred to as quartet errors. An evolutionary tree t is consistent with respect to a

simple quartet topology ab|cd if and only if the path from a to b does not cross the path from

c to d (Felsenstein, 1981). We refer to ab|cd as a simple quartet topology being embedded in

the tree t. For example, the tree in Figure 1 is consistent with the simple quartet topology

Seedorf, Radiohead | Sergio Consoli, Jan Korst. However, it is not consistent with the

quartet topology Ancelotti, Sergio Consoli | Metallica, Jan Korst.

Define Q to be the set of all the possible simple quartet topologies, and Qt to be the set of

consistent simple quartet topologies being embedded in an evolutionary tree t. The problem

of recombining the quartet topologies of Q to form an estimate of the correct evolutionary

tree is naturally formulated as an optimization problem that looks for an evolutionary tree

t maximizing the number of consistent simple quartet topologies Qt (i.e. max Q∩Qt). This

problem, referred to as Maximum Quartet Consistency (MQC) problem, has been shown

to be NP-hard (Steel, 1992). Jiang et al. (2000) proved that the MQC problem admits a

polynomial time approximation scheme by using the technique of smooth integer polynomial

programming and by exploiting the natural denseness of the set Q. However, this scheme

only guarantees an evolutionary tree that may deviate from Q by εn4 quartet topologies for

any small constant ε > 0, where n is the number of objects.

Due to these results, most quartet methods are heuristics that attempt to solve the MQC

problem, or some variants of the MQC problem with weaker optimization requirements. For

example, Strimmer and von Haeseler (1996) formulated the MQC problem as a “tree-puzzling

problem” by providing the simple quartet topologies with a probability value to be inferred.
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Then, a set of simple quartet topologies is selected at random according to these probabil-

ities to form the maximum-likelihood evolutionary tree. Berry et al. (1999) reported an

interesting result. They presented two “quartet cleaning” algorithms for correcting bounded

numbers of quartet errors for many popular quartet methods. Exact approaches to the

MQC problem are presented in (Ben-Dor et al., 1998), where the problem is solved by using

dynamic programming and a geometric algorithm, and in (Weyer-Menkhoff et al., 2005),

where the problem is reformulated as an integer linear programming problem. However,

these approaches are not able to solve problems with more than 15-20 objects.

Cilibrasi and Vitányi (2005, 2006) introduced a quartet method for hierarchically clus-

tering data from different domains, not necessarily evolutionary data. They showed that

their quartet method of hierarchical clustering is based on the Minimum Quartet Tree Cost

(MQTC) problem, and provided a Randomized Hill Climbing metaheuristic to obtain ap-

proximate solutions. Several experiments with natural data, like genomic and phylogenetic

data, texts or music, and data of completely different types, were further presented. The

Randomized Hill Climbing produced good approximate solutions for small sets of objects

(up to 40-50 objects), but for larger sets the performance was poor.

2.1. Mathematical formulation

Considering a set N of n ≥ 4 objects, the quartet method of hierarchical clustering associates

a real valued cost with each simple quartet topology by means of a cost function C : Q → <+,

where Q is the set of simple quartet topologies. The cost assigned to each simple quartet

topology is defined as the sum of the distances (taken from the distance matrix) between

each pair of neighbouring leaves (Cilibrasi and Vitányi, 2005, 2006). For example, the cost

associated with the simple quartet topology ab|cd is: Cab|cd = d(a, b) + d(c, d), where d(a, b)

and d(c, d) indicate, respectively, the distances between the two neighbouring objects (a and

b) and (c and d), obtained from the distance matrix.

Consider the set Γ of full unrooted binary trees with 2n−2 nodes (i.e. n leaves and n−2

internal nodes), obtained by placing the n objects to cluster as leaf nodes of the trees. For

each tree t ∈ Γ, precisely one of the three possible simple quartet topologies for any set of

four leaves is consistent. Thus, for each t ∈ Γ, there exist precisely
(

n
4

)
consistent quartet

topologies (one for each set of four objects) embedded in t. Let Qt be the set of such
(

n
4

)

quartet topologies embedded in t. Then, the cost associated with a full unrooted binary tree
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t ∈ Γ is defined as the sum of the costs of its
(

n
4

)
consistent simple quartet topologies, that

is: Ct =
∑

∀{ab|cd}∈Qt
Cab|cd.

In most cases, it is not possible to create a full unrooted binary tree which embeds all the

simple quartet topologies with the minimum cost for all the sets of four objects (especially

for a large number of objects n), due to inconsistency. Thus, it is a matter of making the

most balanced choice of the quartet topologies to embed. This is the goal of the quartet

method of hierarchical clustering: trying to find (or approximate as closely as possible) the

full unrooted binary tree t ∈ Γ with the minimum total cost. This full unrooted binary tree

t will embed the combination of
(

n
4

)
“possible” (consistent) simple quartet topologies of Q

with the minimum costs, with respect to a full unrooted binary tree representation of the

distance matrix. This optimization problem is called Minimum Quartet Tree Cost (MQTC)

problem (Cilibrasi and Vitányi, 2005, 2006), and can be formally defined as follows:

MQTC problem: Given a set N of n ≥ 4 objects to be clustered, and a symmetric
distance matrix n × n containing their pairwise distances, find the full unrooted binary

tree t ∈ Γ with the minimum total cost Ct, i.e. min Ct = min
(∑

∀{ab|cd}∈Qt
Cab|cd

)
.

In a hierarchical clustering context, we do not even have a priori knowledge that certain

simple quartet topologies are objectively true and must be embedded. Thus, the quartet

method of hierarchical clustering assigns a cost value to each simple quartet topology, in

order to express the relative importance of the simple quartet topologies to be embedded

in the full unrooted binary tree having the n objects as leaves. The tree t ∈ Γ with the

minimum cost Ct, produced by the quartet method, balances the importance of embedding

different quartet topologies against others, leading to a full unrooted binary tree that visually

represents the symmetric distance matrix n× n as well as possible.

The MQTC may be normalized as follows (Cilibrasi and Vitányi, 2005, 2006). Consider

the list of all possible four-tuples of n ≥ 4 objects in N under consideration. For each set of

four objects {a, b, c, d} ⊆ N , among the three possible simple quartet topologies, extract the

one with the minimum cost, mabcd = min {Cab|cd, Cac|bd, Cad|bc}, and that with the maximum

cost, Mabcd = max {Cab|cd, Cac|bd, Cad|bc}.
The best (minimal) total cost, m, associated with t ∈ Γ is calculated as the sum of

the
(

n
4

)
minimum costs mabcd of each set of four objects {a, b, c, d} ⊆ N , that is: m =

∑
∀{a,b,c,d}⊆N mabcd. Similarly, the worst (maximal) total cost, M , associated with t ∈ Γ is

the sum of the
(

n
4

)
maximum costs Mabcd of each set of four objects {a, b, c, d} ⊆ N , that is:

M =
∑

∀{a,b,c,d}⊆N Mabcd. In most cases, these cost values m and M can not be really attained
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for any t ∈ Γ (especially with a large number of objects n) and represent, respectively, a lower

bound (m) and an upper bound (M) for the cost function Ct, that is: m ≤ Ct ≤ M, ∀t ∈ Γ.

For a better and more uniform comparison of the costs associated with different full unrooted

binary tree representations of different numbers of objects, the cost function is now rescaled

linearly such that the best (minimal) cost maps to 1, and the worst (maximal) cost maps

to 0. The rescaled cost function is called normalized tree benefit score St, and is defined as

follows:

St =
M − Ct

M −m
∈ [0, 1], ∀t ∈ Γ. (1)

The goal of the quartet method of hierarchical clustering is to find a full unrooted binary

tree t ∈ Γ with a maximum value of St, which is to say, the lowest total cost Ct. In

order to compare uniformly the solutions of instances of the quartet method with different

sizes, the MQTC can be reformulated with respect to the normalized tree benefit score as

follows (Cilibrasi and Vitányi, 2005, 2006):

MQTC problem: Given a set N of n ≥ 4 objects to be clustered, and a symmetric
distance matrix n × n containing their pairwise distances, find the full unrooted binary
tree t ∈ Γ with the maximum normalized tree benefit score St (i.e. max St).

Considering a set N of n ≥ 4 objects, all the possible representations of the distance

matrix by means of a full unrooted binary tree t ∈ Γ will have a best normalized tree benefit

score less than one in most of cases (St < 1, that is Ct > m), especially for a large number

of objects n and noise in the distance matrix. The value (1−St) gives an estimation on how

large is the distortion produced by a full unrooted binary tree representation of the distance

matrix, resulting from the quartet method of hierarchical clustering. Trying to find the full

unrooted binary tree t ∈ Γ with the maximum St value (minimum Ct value) is the goal of the

MQTC problem. This tree t will visually represent the distance matrix n × n as faithfully

as possible by using the quartet method representation. As shown in (Cilibrasi and Vitányi,

2005, 2006), the Minimum Quartet Tree Cost problem is an NP-hard optimization problem

by reduction from the Maximum Quartet Consistency problem (Steel, 1992; Jiang et al.,

2000). Therefore, any practical approach to obtain or approximate the optimal solution

requires heuristics. In the next section, several metaheuristics for the considered problem

are presented and discussed in detail.
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3. Exploited metaheuristics

This section describes the main features of the metaheuristics considered in this paper for

the Minimum Quartet Tree Cost problem. First, the best performing method from the lit-

erature is reported, the Randomized Hill Climbing (RHC) by Cilibrasi and Vitányi (2005,

2006). The remaining heuristics are new approaches to the quartet method of hierarchical

clustering. They are a Greedy Randomized Adaptive Search Procedure (GRASP), a Sim-

ulated Annealing (SA) approach, a Variable Neighbourhood Search (VNS), and a Reduced

Variable Neighbourhood Search (RVNS).

Before examining these methods in detail, it is useful to specify the notation used within

the implementations of these algorithms. Given a full unrooted binary tree, its internal nodes

can be classified as terminal nodes, which are internal nodes connected to two leaves and

another internal node, transition nodes, which are internal nodes connected to one leaf node

and two other internal nodes, and cross nodes, which are internal nodes connected to three

other internal nodes (no attached leaf nodes). For example, the full unrooted binary tree in

Figure 1 has three terminal nodes which are connected to pairs of leaves with labels Seedorf

and Kaka, Metallica and Radiohead, Gijs Geleijnse and Jan Korst, two transition nodes

which are connected to the leaves with labels Sergio Consoli and Ancelotti, and one cross

node which is not connected to any leaf. Furthermore, a branch of a full unrooted binary

tree is defined as the subgraph, delimited between one terminal node and one cross node,

containing only transition nodes. For example, the full unrooted binary tree of Figure 1

contains three branches, each one rooted at the only cross node of the tree and finishing

with one of the three terminal nodes. The first branch contains the leaves Metallica and

Radiohead, another contains the leaves Sergio Consoli, Gijs Geleijnse, and Jan Korst, and

the last branch contains the leaves Ancelotti, Seedorf, and Kaka.

3.1. Randomized Hill Climbing (Cilibrasi and Vitányi, 2006)

The Randomized Hill Climbing (RHC) proposed by Cilibrasi and Vitányi (2005, 2006) for

the quartet method of hierarchical clustering combines a basic Hill Climbing heuristic with

randomization by using parallelized Genetic Programming (Glover and Kochenberger, 2003),

where undirected trees evolve in a random walk driven by a prescribed fitness function. The

details of this RHC for the quartet method are specified in Algorithm 1.

The algorithm starts by selecting at random a full unrooted binary trees t ∈ Γ with 2n−2
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Algorithm 1: Randomized Hill Climbing for the quartet method of hierarchical clustering

Input: A symmetric distance matrix d containing the n× n pairwise distances among n ≥ 4 objects;
Output: A full unrooted binary tree t with 2n− 2 nodes;
Initialisation:
- Let Γ be the class of full unrooted binary trees with 2n− 2 nodes (i.e. n leaves and n− 2 internal nodes), obtained by
placing the n ≥ 4 objects to cluster as leaves;
- For each x ∈ Γ, let Sx ∈ [0, 1] be the normalized tree benefit score of x;
- Let t′ ∈ Γ be a full unrooted binary tree used as support solution at each iteration;
begin

Generate the initial full unrooted binary tree t ∈ Γ at random: t ←Generate-At-Random(Γ);
Evaluate the normalized tree benefit score of t: St ←Evaluate(t);
repeat

Set t′ ← t;
Select the number k of simple mutations with fat-tail probability distribution p(k) = c/k(log k)2 where
1/c =

∑∞
k=1 1/k(log k)2;

for i = 1 to k do
Apply a simple mutation to t′: t′ ←Simple-Mutation(t′);
Increase i: i = i + 1;

end
Evaluate the normalized tree benefit score of t′: St′ ←Evaluate(t′);
if St′ > St then

Move t ← t′;
end

until termination conditions ;
⇒ The full unrooted binary tree t ∈ Γ.

end

nodes (i.e. n leaves and n − 2 internal nodes), obtained by placing the n ≥ 4 objects to

cluster as leaves. This tree t is used as basis for further searching. The costs of the consistent

quartet topologies embedded in t are calculated, and then the normalized tree benefit score

St is computed (St ←Evaluate(t)). Afterwards, solution t is assigned to another full unrooted

binary tree t′, which will be used as a support solution at each iteration of the search process.

Then, a number k is picked up by a fat-tail probability distribution p(k):

p(k) =
c

k(log k)2
, where

1

c
=

∞∑

k=1

1

k(log k)2
. (2)

A fat tail probability distribution p(k) with the fattest tail possible has been chosen, in order

to concentrate maximal probability also on the larger values of k, trying to minimize the

likelihood of being trapped at a local minimum. For more details see (Cilibrasi and Vitányi,

2005, 2006).

In order to search for a better solution, a k-mutation is applied to the support solution

t′. A k-mutation is defined as a sequence of k simple mutations, where a simple mutation,

or 1-mutation, is one of three possible operations (Cilibrasi and Vitányi, 2005, 2006):

1. A leaf swap, which consists of randomly choosing two leaf nodes and swapping them;

2. A subtree swap, which consists of randomly choosing two internal nodes and swapping

the subtrees rooted at those nodes;
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3. A subtree transfer, whereby a randomly chosen subtree (possibly a leaf node) is

detached and reattached in another place.

Note that each of these simple mutations keeps the number of leaf nodes and internal

nodes in the tree invariant. Only the structure of the full unrooted binary tree and the

positions of the nodes are changed. Considering the support full unrooted binary tree t′, a

k-mutation is composed by choosing one of the three possible simple mutations with equal

probability. Leaves and internal nodes for each simple mutation are selected completely at

random. Full unrooted binary trees which are close to t′, in terms of number of simple

mutation steps in between, are examined often, intensifying the search process, while full

unrooted binary trees that are far away from the original tree will eventually be examined,

but not very frequently, diversifying the search process.

The normalized tree benefit score of the new solution t′, obtained by the k-mutation, is

evaluated (St′), and is compared to the normalized tree benefit score (St) of the best solution

to date t. If an improved full unrooted binary tree is obtained (St′ > St), the best solution

to date is updated with the new solution (t ← t′), otherwise the search restarts with the

current t. This procedure continues iteratively until the termination conditions imposed by

the user are satisfied and, at the end of the algorithm, the best full unrooted binary tree to

date t ∈ Γ is produced as output of the procedure.

3.2. Greedy Randomized Adaptive Search Process

The GRASP (Greedy Randomized Adaptive Search Procedure) methodology was developed

in the late 1980s, and the acronym was coined by Feo and Resende (1989). Basically, it is

a multi-start two-phase metaheuristic, consisting of a construction phase and a local search

phase. The details are specified in Algorithm 2.

The algorithm starts by selecting at random a full unrooted binary trees t ∈ Γ with 2n−2

nodes, obtained by placing the n ≥ 4 objects to cluster as leaves. The costs of the consistent

quartet topologies embedded in t are evaluated, and then the normalized tree benefit score St

is computed (St ←Evaluate(t)). Then, the Construction phase(t′, RCLα) procedure builds

another full unrooted binary tree t′ ∈ Γ by using a greedy randomized mechanism, whose

randomness allows solutions in different areas of the solution space to be obtained. This

greedy randomized mechanism obtains a full unrooted binary tree t′ by iteratively creating

a candidate list of distances (RCLα: Restricted Candidate List of length α), and then by

randomly selecting a distance from this list and connecting the corresponding objects in t′.
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Algorithm 2: Greedy Randomized Adaptive Search Procedure for the quartet method of hierarchical clustering

Input: A symmetric distance matrix d containing the n× n pairwise distances among n ≥ 4 objects;
Output: A full unrooted binary tree t with 2n− 2 nodes;
Initialisation:
- Let Γ be the class of full unrooted binary trees with 2n− 2 nodes (i.e. n leaves and n− 2 internal nodes), obtained by
placing the n ≥ 4 objects to cluster as leaves;
- For each x ∈ Γ, let Sx ∈ [0, 1] be the normalized tree benefit score of x;
- Let t′ ∈ Γ be a full unrooted binary tree used as support solution at each iteration;
- Let RCLα be the restricted candidate list of length α;
begin

Generate the initial full unrooted binary tree t ∈ Γ at random: t ←Generate-At-Random(Γ);
Evaluate the normalized tree benefit score of t: St ←Evaluate(t);
repeat

Set t′ ← ∅;
Construction phase(t′, RCLα);
Local search(t′);
Evaluate the normalized tree benefit score of t′: St′ ←Evaluate(t′);
if St′ > St then

Move t ← t′;
end

until termination conditions ;
⇒ The full unrooted binary tree t ∈ Γ.

end

The candidate list is created by evaluating the distances between the objects that are not yet

connected within the partial full unrooted binary tree t′, and then by including the shortest

α of such distances in the list. At each iteration one new distance is randomly selected from

RCLα, the corresponding pair of objects are connected within the current full unrooted

binary tree t′, and the candidate list is updated. It is important to make a good tuning

of α in order to obtain an optimal balance between the intensification and diversification

capabilities of the search process. Our experience indicates that 5 ≤ α ≤ 10 produces good

results for the quartet method of hierarchical clustering.

The construction phase stops when a full unrooted binary tree t′ is obtained. The pro-

duced solution t′ is not necessarily locally optimal, so the Local search(t′) procedure tries

to improve it. This phase uses a local search mechanism which, iteratively, tries to replace

the current full unrooted binary tree t′ with a better neighbouring full unrooted binary tree,

until no better solution can be found. Different strategies may be used in order to evaluate

the neighbourhood structure. In our implementation, we consider each internal node and the

neighbouring nodes having Manhattan distance equals to one with respect to the considered

node (one-neighbourhood structure with respect to the Manhattan distance), that is we con-

sider the internal nodes which are directly connected to the considered internal node. Then,

a transformation of each pair of selected internal nodes is performed, aimed at producing

small changes in the topology of the considered tree t′, checking whether these modifications

improve the normalized tree benefit score of t′.
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The internal nodes are selected following a specific order. First, all the terminal nodes

are evaluated in order to improve each single branch of the current full unrooted binary

tree t′. After selecting a terminal node, all the successive transition nodes belonging to the

corresponding branch of the tree are evaluated, starting from the ones that are closer to the

terminal node and stopping when the cross node delimiting the current branch is reached.

For each selected internal node, the algorithm tries to exchange its attached leaf (or leaves

in case of the terminal node) with the leaves attached to the one-neighbouring internal

nodes (according to the Manhattan distance). The exchange of two leaves is retained if the

normalized tree benefit score of t′ improves. After selecting all the terminal nodes and trying

to improve the corresponding branches, the algorithm selects all the remaining cross nodes.

For each cross node, the algorithm tries to move each one-neighbouring terminal node from

the corresponding branch containing the terminal node to the two other branches rooted

at the selected cross node. In the case of another neighbouring cross node, the algorithm

alternatively swaps one branch of one cross node with another branch of the other cross node.

Again, each modification of the tree t′ is retained if it produces a benefit in the normalized

tree benefit score St′ .

After exhausting all the cross nodes, the local search stops because all the internal nodes

have been evaluated (best improvement strategy) and, hopefully, the obtained full unrooted

binary tree t′ will represent an improved solution with respect to the tree previously obtained

by the construction phase. Afterwards, if the normalized tree benefit score of t′ is better

than that of the best full unrooted binary tree to date t (i.e. St′ > St), the best full unrooted

binary tree to date is updated with the new solution (t ← t′). The entire algorithm proceeds

iteratively until the user termination conditions are satisfied, and produces the best full

unrooted binary tree to date t ∈ Γ as output of the procedure.

3.3. Simulated Annealing

Simulated Annealing (SA) is a descent heuristic with non-deterministic search developed

by Kirkpatrick et al. (1983). In contrast to classical descent methods, where only modifica-

tions to the current solution that decrease the cost function value are accepted, modifications

that increase the value of the cost function are allowed in SA.

SA exploits an analogy between the way in which a metal cools and freezes into a mini-

mum energy crystalline structure (the annealing process) and the search for a minimum in

a more general system, forming the basis of an efficient optimisation technique for combina-

12



torial and other problems. SA seeks to minimise an energy function (the cost function); free

variables in SA are like particles in the metal, and “low energy” configurations correspond to

high quality solutions of the problem, obtained by slowly reducing a temperature parameter

(T ) by means of a cooling rule (or cooling schedule). The dependency is such that the current

solution is always replaced by a new one if this modification reduces the cost function value

(downhill move), while a modification increasing the cost function value (uphill move) by

∆ is only accepted with a probability exp(−∆/T ), referred to as Boltzmann function, using

the temperature T as a control parameter. At the beginning of the algorithm, at a high

temperature T , the probability of accepting an increase in the cost function value is high,

allowing many worse moves to be accepted. Conversely, this probability gets lower as the

temperature T is decreased during the search process by means of the cooling rule.

The details of the implementation of our Simulated Annealing for the quartet method

are specified in Algorithm 3. For the considered problem, we implemented a non-monotonic

SA cooling schedule (Osman, 1993), which requires specification of the following: (i) starting

and final temperatures (Ts and Tf); (ii) decrement rule for updating the temperature T after

each iteration; (iii) occasional increment rule for updating the temperature T every Nreset

iterations with a reset temperature Treset (in order to avoid the system being locked at local

optima).

The algorithm starts by selecting at random a full unrooted binary tree t ∈ Γ with

2n − 2 nodes, obtained by placing the n ≥ 4 objects to cluster as leaves, with cost Ct and

normalized tree benefit score St. Then, the starting and final temperatures, Ts and Tf , are set

to the maximum and minimum estimated modifications of the cost function, ∆max and ∆min,

evaluated heuristically by means of the Test-Cycle(t) procedure. This procedure considers

the base moves that each internal node of t can perform with its neighbouring internal nodes

(one-neighbourhood structure with respect to the Manhattan distance). The alterations of

the cost function corresponding to the performed base moves are evaluated, retaining the

maximum and the minimum modifications in ∆max and ∆min.

Given an internal node and its neighbouring internal nodes, the possible base moves that

can be performed depend on the types of internal node pairs. In the case of:

1. two transition nodes → either the attached leaves are exchanged, or they are trans-

formed into one cross node and one terminal node connected to the corresponding leaves;

2. one terminal node and one transition node → the leaf of the transition node is

exchanged with one of the two leaves of the terminal node;
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Algorithm 3: Simulated Annealing for the quartet method of hierarchical clustering

Input: A symmetric distance matrix d containing the n× n pairwise distances among n ≥ 4 objects;
Output: A full unrooted binary tree tbest with 2n− 2 nodes;
Initialisation:
- Let Γ be the class of full unrooted binary trees with 2n− 2 nodes (i.e. n leaves and n− 2 internal nodes), obtained by
placing the n ≥ 4 objects to cluster as leaves;
- For each x ∈ Γ, let Cx be the cost associated with x and Sx ∈ [0, 1] the corresponding normalized tree benefit score;
- Let ∆min and ∆max be the minimum and the maximum estimated modifications of the cost function;
- Let T be the temperature parameter, Ts be the starting temperature value, Tf be the final temperature value, Tbest

be the best temperature value, Treset be the reset temperature value, α be the geometric cooling rate;
- Let i be the number of iterations of the algorithm;

- Let Nreset = 2.5·105

n2 + 200 be the number of reset iterations;
- Let t ∈ Γ be the full unrooted binary tree used at each iteration;
- Let t′ ∈ Γ be a full unrooted binary tree used as support solution at each iteration;
begin

Generate the initial full unrooted binary tree t ∈ Γ at random: t ←Generate-At-Random(Γ);
Evaluate the cost of t and its normalized tree benefit score: (Ct, St) ←Evaluate(t);
Evaluate the minimum and the maximum estimated modifications of the cost function:
(∆min, ∆max) ←Test-Cycle(t);
Move tbest ← t, and set T = Treset = Ts = ∆max, Tf = ∆min, i = 1;
repeat

Move t′ ← t;
Select at random an integer between 0 and n− 2: λ=Random(0, n-2);
for j = 1 to λ do

Perform a base move with respect to t′: t′ ←Base-Move(t′);
Increase j: j = j + 1;

end
Evaluate the cost of t′ and its normalized tree benefit score: (Ct′ , St′ ) ←Evaluate(t′);
if St′ > St then

Move t ← t′;
if St > Stbest then

Move tbest ← t and set Tbest = T ;
end

else
Select at random a real number between 0 and 1: ξ=Random(0, 1);

if ξ < exp
(
−Ct′−Ct

T

)
then

Move t ← t′;
end

end

Geometric decrement rule for the temperature: T = Ts · α(i mod Nreset)/Nreset , where α = Tf/Ts;
if (i mod Nreset) = 0 then

Occasional increment rule for the temperature: Treset = max(Treset/2, Tbest);
Set T = Ts = Treset;

end
Increase the number of iterations: i = i + 1;

until termination conditions ;
⇒ The full unrooted binary tree tbest ∈ Γ.

end

3. one terminal node and one cross node → they are transformed into two transition

nodes with the two leaves of the terminal node attached;

4. one transition node and one cross node → the transition node is moved in one of the

other two branches of the cross node;

5. two cross nodes → one branch of one cross node is swapped with a branch of the other

cross node.

When Tf and Ts are evaluated, the algorithm continues by assigning the value of Ts to

the current temperature T and to the reset temperature Treset, and by making a copy of t
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to another full unrooted binary tree t′ that will be modified by means of a random move.

A random move is defined as a set of consecutive base moves, whose number is a random

integer λ selected between 0 and n − 2. The random move starts by selecting a random

internal node and one of its neighbouring internal nodes, and performing a base move with

this pair of nodes. Then, to perform the successive base move, the algorithm selects one

of the two considered internal nodes, and another neighbouring internal node that must be

different from the two already considered internal nodes. The procedure continues until λ

consecutive base moves are produced.

The cost and the normalized tree benefit score of the new full unrooted binary tree t′ are

evaluated, (Ct′ , St′) ←Evaluate(t′). If St′ > St, the solution t is assigned to the tree t′, storing

the best solution to date in tbest, and the temperature at which this full unrooted binary

tree is obtained in Tbest. Otherwise, if the new full unrooted binary tree t′ is worse than

t (St′ < St), the algorithm moves to t′ with a probability that depends on the Boltzmann

function exp(−∆/T ) = exp(−(Ct′ − Ct)/T ).

The non-monotonic SA cooling schedule that we use for the quartet method, decreases,

at each iteration i of the algorithm, the temperature T according to the following geometric

cooling rule: T = Ts · α(i mod Nreset)/Nreset , where α = Tf/Ts < 1, and where (i mod Nreset)

represents the arithmetic remainder of the integer division between the number of iterations

i and the number of reset iterations Nreset. Every Nreset iterations (i.e. when (i mod Nreset) =

0) the temperature T and the starting temperature Ts are reset to a larger value, Treset, to

allow the algorithm to escape from local optima (T = Ts = Treset). Treset is chosen as the

maximum value between Treset/2 and Tbest, while Nreset is a user defined parameter (our

experience indicates that the value Nreset = (2.5 · 105)/n2 +200 produces good results). This

cooling schedule and its implementation is in contrast to classical SA schemes. From our

experience, the considered non-monotonic cooling schedule outperformed other different SA

cooling schedules for the quartet method. Note that the importance of non-monotonic search

has been widely discussed in (Glover, 1986) as a basic feature of Tabu Search methods.

Subsequently, the algorithm restarts with the same procedure by setting t′ ← t, contin-

uing iteratively until the user termination conditions are satisfied. At the end, the best full

unrooted binary tree to date, Tbest, is produced as the output of the SA algorithm.
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3.4. Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is a recent metaheuristic for solving combinatorial

optimization problems based on dynamically changing neighbourhood structures during the

search process (Hansen and Mladenović, 2003). VNS does not follow a trajectory, but it

searches for new solutions in increasingly distant neighbourhoods of the current solution,

jumping only if a better solution than the current best solution is found. The proposed VNS

for the quartet method of hierarchical clustering is specified in Algorithm 4.

Algorithm 4: Variable Neighbourhood Search for the quartet method of hierarchical clustering

Input: A symmetric distance matrix d containing the n× n pairwise distances among n ≥ 4 objects;
Output: A full unrooted binary tree t with 2n− 2 nodes;
Initialisation:
- Let Γ be the class of full unrooted binary trees with 2n− 2 nodes (i.e. n leaves and n− 2 internal nodes), obtained by
placing the n ≥ 4 objects to cluster as leaves;
- For each x ∈ Γ, let Sx ∈ [0, 1] be the normalized tree benefit score of x;
- Let t′ ∈ Γ be a full unrooted binary tree used as support solution at each iteration;
- Let k be the current size of the shaking phase, and kmax be the maximum size of the shaking phase;
- Let i be the number of iterations between two successive improvements;

- Let iupdate = 1.25·105

n2 + 50 be the number of update iterations for kmax;

begin
Generate the initial full unrooted binary tree t ∈ Γ at random: t ←Generate-At-Random(Γ);
Evaluate the normalized tree benefit score of t: St ←Evaluate(t);
Set i = 0 and kmax = 2;
repeat

Set k = 1;
while k < kmax do

Move t′ ← t;
for j = 1 to k do

Shake t′ by performing a base move: t′ ←Base-Move(t′);
Increase j: j = j + 1;

end
Local search(t′);
Evaluate the normalized tree benefit score of t′: St′ ←Evaluate(t′);
if St′ > St then

Restart with the first neighbourhood structure: k = 1;
Move t ← t′;
Set i = 0;

else
Increase the current size of the shaking phase: k = k + 1;
Increase the number of iterations between two successive improvements: i = i + 1;

end

end
if i >= iupdate then

Increase the maximum size of the shaking phase: kmax = kmax + 1;
Set i = 0;

end
until termination conditions ;
⇒ The full unrooted binary tree t ∈ Γ.

end

At the starting point, a full unrooted binary tree t ∈ Γ with 2n − 2 nodes, obtained

by placing the n ≥ 4 objects to cluster as leaves, is generated at random. Then, the

shaking phase, which represents the core idea of VNS, is applied to t. A shaking phase

of size k consists of the random selection of another full unrooted binary tree t′ within
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the neighbourhood Nk(t) of the current solution t. To obtain t′ from Nk(t), the algorithm

performs k consecutive base moves, already defined in Section 3.3. The first base move is

performed to a randomly selected internal node and one of its neighbouring internal nodes

(one-neighbourhood structure with respect to the Manhattan distance). Then, to perform

the successive base move, the algorithm selects one of the two considered internal nodes, and

another neighbouring internal node that must be different from the two already considered

internal nodes, and so on. The procedure is repeated until k consecutive base moves are

performed.

The shaking phase aims to change the neighbourhood structure when the algorithm is

trapped at a local optimum. The solution t′ is generated at random in order to avoid

cycling, which might occur if a deterministic rule is used. Suitable neighbourhood structures

need to be defined for the shaking phase. The simplest and most common choice consists

of neighbourhoods with increasing cardinality: |N1(·)| < |N2(·)| < ... < |Nkmax(·)|, where

kmax represents the maximum size of the shaking phase. Let k be the current size of the

shaking phase. The algorithm starts by selecting the first neighbourhood (k = 1) and, at each

iteration, it increases the parameter k if a better solution is not obtained (k = k+1), until the

largest neighbourhood is reached (k = kmax). The process of changing neighbourhoods when

no improvement occurs diversifies the search. In particular, the choice of neighbourhoods of

increasing cardinality yields a progressive diversification of the search process.

The full unrooted binary tree t′ produced by the shaking phase, represents the starting

point for the successive local search phase, which tries to improve, if possible, the solution t′.

The considered local search (Local search(t′)) is a first improvement strategy. It considers

each internal node of t′ and each of its neighbouring internal nodes, and computes all the

base moves that can be performed with the selected pair of nodes (as with the shaking phase,

the local search phase uses a one-neighbourhood structure with respect to the Manhattan

distance for the selection of the neighbouring internal nodes). The local search stops either

when a base move which improves the normalized tree benefit cost of t′, St′ , is produced, or

when all the internal nodes of t′ have been evaluated without having improved St′ .

If an improved full unrooted binary tree t′ is produced by the shaking and the local

search phases (St′ > St), it becomes the best solution to date (t ← t′) and the algorithm

restarts from the first neighbourhood (k = 1) of the best solution t. Otherwise, if no

improvements are obtained (St′ < St), the neighbourhood structure is increased (k = k + 1)

giving a progressive diversification of the search process. Parameter k is increased until
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the maximum size of the shaking phase, kmax, is reached. When this happen, k is re-

initialized to the first neighbourhood (k = 1). The correct setting of kmax is an important

user task. For the quartet method, a simple reactive schema for the efficient tuning of

kmax has been implemented (Battiti et al., 2008). At the starting point, kmax is set to a

small value (kmax = 2) and is increased (kmax = kmax + 1) every iupdate iterations between

two consecutive improvements. Our experience indicates that the value iupdate = (1.25 ·
105)/n2 + 50 produces good results. For more details on reactive search techniques, the

reader is referred to (Battiti et al., 2008). The algorithm proceeds iteratively until the user

termination conditions are satisfied, producing the best full unrooted binary tree to date, t,

as the output of the procedure.

3.5. Reduced Variable Neighbourhood Search

Reduced Variable Neighbourhood Search (RVNS) is a variant of the basic VNS algorithm,

that has been shown to be successful for many combinatorial problems where local optima

with respect to one or several neighbourhoods are relatively close to each other (Hansen and

Mladenović, 2003). The Reduced Variable Neighbourhood Search is obtained from VNS,

where random solutions are selected from the neighbourhoods Nk(·) of the current solution,

but without being followed by a local search phase. Therefore, it is a typical example of a

pure stochastic heuristic. In practice, RVNS is akin to a classic Monte-Carlo method, but is

a more systematic approach (Mladenović et al., 2003). It is useful especially for very large

problem instances for which the local search of the basic VNS is costly, as in the case of the

quartet method of hierarchical clustering.

RVNS starts by selecting at random a full unrooted binary trees t ∈ Γ with 2n−2 nodes,

obtained by placing the n ≥ 4 objects to cluster as leaves, with normalized tree benefit score

St. Then, the same shaking phase of the VNS specified in Algorithm 4 is applied. It selects

at random another full unrooted binary tree t′ from the neighbourhood Nk(t) of the current

solution t, by performing k consecutive base moves. Again, a one-neighbourhood structure

with respect to the Manhattan distance, for the selection of the internal nodes, is used. At the

beginning, the first neighbourhood (k = 1) is selected and, at each iteration, the parameter k

is increased (k = k+1) whenever the solution obtained is not an improvement to the current

best solution, until the maximum size of the shaking phase (kmax) is reached. Hansen and

Mladenović (2003) observed that, in RVNS, the best values for the maximum size of the

shaking phase are often small values. Thus, parameter kmax is set arbitrarily by the user
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through computational experience (say kmax = 2 or 3). As already stated, no local search

phase is applied after the shaking phase. Throughout the execution of the algorithm, the

best solution to date is stored as the full unrooted binary tree t, which will be produced as

output of the algorithm when the user termination conditions are met.

4. Experimental results

In this section, the metaheuristics proposed for the quartet method of hierarchical clustering

are compared in terms of solution quality and computational running time. We identify the

metaheuristics with the abbreviations: RHC (Randomized Hill Climbing), GRASP (Greedy

Randomized Adaptive Search Procedure), SA (Simulated Annealing), VNS (Variable Neigh-

bourhood Search), RVNS (Reduced Variable Neighbourhood Search). All the algorithms

that we propose have been implemented using the C++ programming language (Microsoft

Visual C++ 2005). For the Randomized Hill Climbing, we have used the open-source soft-

ware released in the public domain by the authors (Cilibrasi, 2007). All the computations

have been made on a Pentium Centrino microprocessor at 2.0 GHz with 512 MB RAM.

In our experiments, we considered 26 different datasets with a number of objects to

cluster (n) from 10 up to 224. Data from different fields have been considered in order to

evaluate how the algorithms are influenced by the nature of the objects. First we considered

data without inconsistency, that is data for which the exact solution is known and have a

normalized tree benefit score equals to one, in order to test the accuracy of the quartet-

based tree reconstruction. These data were produced artificially as described in Section 4.1.

Then, in Section 4.2 we considered some examples from nature obtained from (Cilibrasi,

2007), concerning a study in genomics with DNA sequences of different placental mammalian

species. Section 4.3 contains data with real geographic distances between famous cities,

while Section 4.4 contains data obtained by mining of the WWW through an automatic web

information extraction method by Geleijnse et al. (2006). Specifically, we have focussed on

data concerning musical artists. All the instances of the problem are available online from

the authors (Consoli, 2008).

For each dataset, given a full unrooted binary tree t produced by the quartet method,

solution quality is evaluated by means of its normalized tree benefit score St ∈ [0, 1]. The

quartet method of hierarchical clustering tries to find the solution which maximizes the St

value, which is to say, the lowest total cost Ct. A maximum allowed CPU time (max-CPU-
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time), determined with respect to the dimension of the problem instance, is chosen as the

stopping condition for all the metaheuristics. Experimentally, for problem instances with

a number of objects n ≤ 100, we set max-CPU-time to one hour. For larger instances

(n ≥ 100), max-CPU-time is set to 10 hours. Selection of the maximum allowed CPU time

as the stopping criterion is made in order to have a direct comparison of the metaheuristics

with respect to the quality of their solutions.

Our results are reported in Tables 1 - 4. In each table, the first column shows the

number of objects of the considered datasets (n), while the kind of data determines the

different tables. Last row shows the averages, respectively, of the normalized tree benefits

score and of the computational running times among the considered group of data instances.

All the metaheuristics run for max-CPU-time and, in each case, the normalized tree benefit

score of the best solution is recorded. The computational times reported in the tables are the

times at which the best solutions are obtained. The reported times have precision of ±1 sec.

Analysing the performance of the considered algorithms, for a single dataset a metaheuristic

should be considered better than another if either it obtains a larger normalized tree benefit

score, or an equal normalized tree benefit score but in a smaller computational running time.

4.1. Testing the quartet-based tree reconstruction

In this section, we test whether the quartet-based tree reconstruction heuristic is reliable

and accurate on clean consistent data with known solutions. We used the same procedure

by Cilibrasi and Vitányi (2005, 2006) to generate data instances with corresponding optimal

full unrooted binary trees t having normalized tree benefit score equal to one, St = 1. To

obtain these data, we used the “rand” pseudo-random number generator from the C++ pro-

gramming language (Microsoft Visual C++ 2005), and derived a metric from it by defining

the distance, d(x, y), between two objects x and y, as follows:

d(x, y) =

{
L(x, y) + 1

n
if x 6= y,

0 otherwise,
(3)

where L(x, y) is the length of the path from x to y, expressed by the number of edges

which connect the leaves of the full unrooted binary tree where the two objects are assigned.

Obviously, the entries in the diagonal of the distance matrix are all zeros, since d(x, y) = 0

if x = y. All the full unrooted binary trees t constructed artificially with this procedure

have optimal score St = 1. We generated data instances with a number of objects n from
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10 to 100, setting the max-CPU-time for the heuristics to one hour. Computational results,

reporting the normalized tree benefit scores found by the heuristics and the corresponding

computational times, are presented in Table 1.

Table 1: Computational results for artificial data with optimal normalized tree benefit score
equals to one

Normalized tree benefit score
n RHC GRASP SA VNS RVNS
10 1 1 1 1 1
20 1 1 1 1 1
30 0.99441 1 1 1 1
40 0.98297 0.99234 1 1 1
50 0.92642 0.99641 1 1 1
60 0.75907 0.99308 1 1 1
70 0.71672 0.99956 1 1 1
80 0.58044 0.99289 1 1 1
90 0.45588 0.98964 1 1 1
100 0.39074 0.98332 1 1 1

Average: 0.78066 0.99472 1 1 1

Computational running times (sec)
n RHC GRASP SA VNS RVNS
10 4.81 0.21 0.31 0.24 0.04
20 666.37 11.18 1.71 7.48 0.42
30 2749.09 1.12 7.93 9.95 0.86
40 3272.73 100.32 24.66 39.01 8.41
50 3331.79 663.61 42.62 187.35 10.61
60 3411.07 517.13 181.30 180.9 38.72
70 3569.81 838.13 115.68 272.49 38.86
80 3524.89 266.56 248.79 723.59 66.88
90 3419.11 871.79 255.65 570.28 101.51
100 3492.53 978.05 3491.96 932.67 115.013

Average: 2744.22 424.81 437.06 292.396 38.13

Looking at this table, for n = 10 and n = 20 all the heuristics obtained the exact solu-

tion (St = 1). However, RHC was considerably slower than the other metaheuristics. For

n > 20, the performance of RHC was extremely poor, obtaining solutions with extremely

low quality in very high computational running times. SA, VNS, and RVNS always pro-

duced the exact solutions (St = 1) for all the considered instances of Table 1, in very short

computational times. In particular, RVNS was always faster than the other heuristics among

all the datasets, indicating an optimal tuning between intensification and diversification of
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the search process, while SA was extremely slow for the instance n = 100 with a time of

3491.96 sec. The performance of GRASP is between the poor performing RHC and the high

performing SA, VNS, RVNS. Solution quality of GRASP decreases as the problem instance

increases, but not as bad as for RHC, while computational times are comparable with those

of SA. Summarizing, the average values of the normalized tree benefit score of the meta-

heuristics among the instances of Table 1, ranking from the best to the worst performing

algorithm, are: RVNS = 1, VNS = 1, SA = 1, GRASP = 0.99472, RHC = 0.78066 (in case

of ties in the average normalized tree benefit scores, an algorithm is considered better than

another if it has a smaller average computational time).

4.2. Testing on examples from nature

In evolutionary biology the timing and origin of the major extant placental clades (groups

of organisms that have evolved from a common ancestor) continues to fuel debate and re-

search (Rokas et al., 2003). As the complete genomes of various species become available, it

has become possible to do whole genome phylogeny (Felsenstein, 1981; Ben-Dor et al., 1998).

Traditional phylogenetic methods on individual genes depended on multiple alignment of the

related proteins and on the model of evolution of individual amino acids. Neither of these

is practically applicable to the genome level. In absence of such models, a method which

can compute the shared information between two sequences is useful because biological se-

quences encode information, and the occurrence of evolutionary events (such as insertions,

deletions, point mutations, rearrangements, and inversions) separating two sequences sharing

a common ancestor will result in the loss of their shared information (Rokas et al., 2003).

This section considers a study in genomics with DNA sequences of different placental

mammalian species, obtained from (Cilibrasi, 2007). The distance matrices from the genomic

data were computed by using the automated software method by Cilibrasi and Vitányi (2005,

2006), who downloaded the whole mitochondrial genomes of the placental mammalian species

from the GenBank Database on the World Wide Web. Three sets of data with n = 10,

n = 24, and n = 34 were considered, with a max-CPU-time for the heuristics of one hour.

Computational results are reported in Table 2.

Looking at the table, all the heuristics obtained almost the same normalized tree benefit

scores. However, as in the previous set of instances, RHC was considerably slower than

the other metaheuristics, showing limited intensification and diversification capabilities of

the search process. The average values of the normalized tree benefit scores, ranking from
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Table 2: Computational results for examples from nature

Normalized tree benefit score
n RHC GRASP SA VNS RVNS
10 0.99979 0.99979 0.99979 0.99979 0.99979
24 0.99575 0.99588 0.99588 0.99588 0.99588
34 0.98488 0.98782 0.98792 0.98792 0.98792

Average: 0.99347 0.99450 0.99453 0.99453 0.99453

Computational running times (sec)
n RHC GRASP SA VNS RVNS
10 6.72 0.078 1.84 0.172 0.00
24 934.42 16.56 6.69 4.48 2.08
34 3352.01 228.702 32.78 65.28 10.61

Average: 1431.05 81.78 13.77 23.31 4.23

the best to the worst performing algorithm, are: RVNS = 0.99453, VNS = 0.99453, SA =

0.99453, GRASP = 0.99450, RHC = 0.99347 (again, in case of ties in the average normalized

tree benefit scores, an algorithm is considered better than another if it has a shorter average

computational time). RHC obtains the worst average normalized tree benefit score, and the

worst average computational running time (1431.05 sec). The best performance in terms of

solution quality and computational running time is obtained again by RVNS. Figure 3 shows

Figure 3: The full unrooted binary tree t obtained by RVNS for the instance with n = 24
mammals, with a normalized tree benefit score of St = 0.99588 obtained in 2.08 sec.
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the full unrooted binary tree t obtained by RVNS for the instance with n = 24 placental

mammals, with a normalized tree benefit score of St = 0.99588 obtained in just 2.08 sec.

The interpretation is that objects in a given subtree are pairwise closer (more similar) to

each other than any of those objects in a disjoint subtree. Roughly, it is possible to iden-

tify the following groups among the considered placental mammals: Primates (Chimpanzee,

Pygmy Chimpanzee, Human, Gorilla, Orangutan, Sumatran Orangutan, Gibbon); Ferun-

gulates (Grey Seal, Harbor Seal, Brown Bear, Polar Bear, Cat, Horse, White Rhino, Cow,

Finback Whale, Blue Whale); Marsupionta (Wallaroo, Opossum, Platypus, Echidna, House

Mouse, Rat, Carp).

4.3. Testing on geographic distances

In this section, the metaheuristics were compared by considering some famous cities as

objects to cluster. Thus, the distances between the objects are real geographic distances

between the considered cities, normalized in the interval [0, 1]. We considered data instances

with a number of objects n from 13 to 37, setting the max-CPU-time for the heuristics to

one hour. Computational results are presented in Table 3.

Table 3: Computational results for geographic distances between cities

Normalized tree benefit score
n RHC GRASP SA VNS RVNS
13 0.96843 0.96843 0.96843 0.96843 0.96843
22 0.93507 0.93507 0.93507 0.93507 0.93507
24 0.92459 0.92429 0.92459 0.92459 0.92459
25 0.98760 0.98760 0.98760 0.98760 0.98760
35 0.98203 0.94395 0.98367 0.98367 0.98367
37 0.90552 0.88094 0.91973 0.91973 0.91973

Average: 0.95054 0.94004 0.95318 0.95318 0.95318

Computational running times (sec)
n RHC GRASP SA VNS RVNS
13 67.46 6.21 5.42 0.55 0.27
22 1365.22 198.49 15.42 17.26 3.14
24 803.61 311.80 15.46 17.61 3.29
25 1752.89 25.36 8.98 52.81 2.84
35 2686.73 996.63 89.72 43.27 10.75
37 3434.06 1480.82 74.94 53.53 32.94

Average: 1684.99 503.22 34.99 30.84 8.87
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Figure 4: The full unrooted binary tree t with St = 0.91973 obtained by RVNS in 32.94 sec
for the instance with n = 37 European cities.
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We observe as the normalized tree benefit score obtained by the heuristics deteriorates by

increasing the size of the problem instance to cluster (n), as a result of a higher inconsistency

produced by the full unrooted binary tree representation of the distance matrices used by

the quartet method. The average values of the normalized tree benefit scores, ranking from

the best to the worst performing algorithm, are: RVNS = 0.95318, VNS = 0.95318, SA

= 0.95318, RHC = 0.95054, GRASP = 0.94004 (as in the previous sections, in case of

ties in the average normalized tree benefit scores, an algorithm is considered better than

another if it has a shorter average computational time). Again, the best performance are

obtained by RVNS, VNS, and SA, which obtain the largest normalized tree benefit scores

in the shortest computational running times. In particular, the best performing heuristic

is again RVNS, which is considerable faster (average computational time: 8.87 sec) than

VNS and SA (average computational times: 30.84 sec and 34.99 sec, respectively). The

performance of RHC and GRASP are quite poor. RHC is considerably slower than all the

other metaheuristics (average computational time: 1684.99 sec), but it produces slightly

better solutions with respect to GRASP in terms of normalized tree benefit score. For these

data instances, GRASP produces solutions of poor quality although being faster than RHC,

as a result of a poor diversification capability and an excessive intensification capability

which sometimes do not allow the search process to escape from local optima.

In Figure 4, the full unrooted binary tree t obtained by RVNS for the instance with

n = 37, which contains the distances among some famous European cities, is illustrated.

The normalized tree benefit score of this example is St = 0.91973, obtained by RVNS in

32.94 sec. Figure 4 represents an intuitive visual example of the way of clustering data

hierarchically by means of the quartet method. Cities that have short relative distances

are assigned to close positions of the full unrooted binary tree. For instance, the Italian

cities of Rome, Naples, Venice, Genoa, are placed in close positions of t, followed by Nice

(that belongs to France but is extremely close to the Italian border) and Turin, and then

Milan. Similarly, the Netherlands cities of Amsterdam, The Hague, Rotterdam, Antwerp,

and Brussels belongs to the same group, and so on.

4.4. Testing on data extracted from the World Wide Web

In this section, we consider data obtained by mining of the WWW through an automatic

web information extraction method by Geleijnse et al. (2006). Specifically, we have focussed
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on data concerning musical artists, in order to easily show subjective artist categories such

as genre of the music that they produce.

Geleijnse et al. (2006) use the assumption that related artists often share the same cate-

gory (working hypothesis). Alternatively, if two artists are both known for the same category

(e.g. romantic music), it is expected that they would occur often in the same context within

the World Wide Web. To obtain a metric which expresses the similarity between each pair

of artists a and b, selected from a given set of artists A, Geleijnse et al. (2006) count the

number of co-occurrences of a and b, co(a, b), within the WWW by means of, either a Page-

count-based mapping (PCM), a Pattern-based mapping (PM), or a Document-based mapping

(DM). In this paper a PCM is used, where the number of co-occurrences of a pair of artists

(a, b) ∈ A is the number of Google hits for queries “a′′, “b′′. Geleijnse notes that the estimated

numbers of Google hits can fluctuate which may lead to unexpected results.

After having collected the number of co-occurrences for each pair of artists in A, Geleijnse

derives a similarity metric among the artists by defining a scoring function, T (a, b), between

two artists (a, b) ∈ A, as follows:

T (a, b) =
co(a, b)

1 +
∑

y∈A,y 6=a co(a, y) ·∑x∈A,x6=b co(x, b)
. (4)

This similarity metric is inspired by the theory of “pointwise mutual information” (for more

details see (Manning and Schütze, 1999)). It is symmetric and lies between 0 and 1. The

value 1 represents the highest similarity measure between two artists; as the metric between

two objects approaches zero, the less the similarity between the two artists. All the elements

in the diagonal of the distance matrix are equal to 1. For each (a, b) ∈ A, the similarity metric

T (a, b) is converted into a distance metric d(a, b) = 1 − T (a, b). In this way, a symmetric

distance matrix, suitable input for the quartet method, is produced.

Our results are presented in Table 4, which considers data instances with number of

artists n from 15 to 224. For small problem instances (n ≤ 100), max-CPU-time for the

heuristics is set to one hour, while for the last two large instances with n > 100, (i.e. n = 150

and n = 224), a max-CPU-time of 10 hours is imposed. The average values of the normalized

tree benefit scores, ranking from the best to the worst performing algorithm, are: RVNS =

0.88990, SA = 0.88788, VNS = 0.88689, GRASP = 0.84860, RHC = 0.64829; while the

average computational running times, from the fastest to the slowest, are (in sec): GRASP

= 6524.97, RVNS = 9019.74, SA = 10278.07, VNS = 10442.23, RHC = 10767.61.
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Table 4: Computational results for data concerning distances between musical artists ex-
tracted from the World Wide Web

Normalized tree benefit score
n RHC GRASP SA VNS RVNS
15 0.95273 0.95273 0.95273 0.95273 0.95273
25 0.92218 0.92080 0.92218 0.92190 0.92218
50 0.75077 0.90511 0.92244 0.92244 0.92252
100 0.43476 0.85988 0.88736 0.88212 0.88731
150 0.42591 0.74047 0.84214 0.84132 0.84614
224 0.40341 0.71262 0.80045 0.80080 0.80849

Average: 0.64829 0.84860 0.88788 0.88689 0.88990

Computational running times (sec)
n RHC GRASP SA VNS RVNS
15 41.21 1.25 1.63 0.78 0.25
25 1107.81 12.68 13.13 19.13 2.34
50 3469.89 103.51 65.79 112.19 35.37
100 3525.28 94.91 3033.53 2735.55 884.31
150 34809.11 4580.45 34261.51 24425.52 17896.95
224 21652.34 34357.02 24292.81 35360.20 35299.22

Average: 10767.61 6524.97 10278.07 10442.23 9019.74

As in the previous experimental analysis, the table shows approximately the same relative

behaviour for all the considered metaheuristics. RVNS obtains the solutions with the best

normalized tree benefit scores, followed by SA and VNS, then GRASP, and finally RHC,

which produces extremely poor results (average normalized tree benefit score: 0.64829). In

addition, the computational running times (average computational time: 10767.61 sec) are

poor. For the data instances considered in this section, GRASP is on average faster than

the other algorithms, because it converges prematurely to local optima from where it is not

able to escape, producing solutions of poor quality. SA and VNS produce results close to

those of RVNS in terms of solution quality and computational running times, indicating

an optimal tuning between intensification and diversification of the search process, which

evidently is not obtained by GRASP and RHC. VNS obtains slightly worse solutions than

those obtained by SA, perhaps lacking a bit in terms of exploration of the search space

with respect to the SA approach. As in Section 4.3, it is interesting to note the effect of

the data inconsistency in the normalized tree benefit score obtained by the heuristics as n

becomes larger. For example, for n = 224, it is not possible to produce a solution having

normalized tree benefit score larger than 0.80849, that is obtained by RVNS in a very high
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computational time (35299.22 sec)! This further analysis underlines the limit of the quartet

method to process data instances larger than, approximately, n = 100 objects to cluster. For

n > 100, the heuristics often produce results with inadequate normalized tree benefit scores

in very high computational running times.

Summarizing, for all the considered problem instances containing objects to cluster of

different nature, analysed in Sections 4.1 - 4.4, all the metaheuristics that we propose (RVNS,

VNS, SA, GRASP) clearly outperformed the Randomized Hill Climbing by Cilibrasi and

Vitányi (2005, 2006), the heuristic recommended in the literature for the quartet method of

hierarchical clustering. In particular, the best performance in terms of normalized tree benefit

score and computational running time were obtained by RVNS. This is the most effective

heuristic for the Minimum Quartet Tree Cost problem. As shown in our experiments, RVNS

is able to produce the most accurate full unrooted binary trees, capable of representing

the symmetric distance matrices. From our analysis, it has been shown that our Reduced

Variable Neighbourhood Search is fast and particularly effective for the quartet method of

hierarchical clustering.

5. Conclusions

In this paper we considered the quartet method of hierarchical clustering which, given a set of

objects to be classified and a symmetric distance matrix containing their pairwise distances,

produces an optimal hierarchy of the objects without knowing a priori the number of clusters

to be produced. The optimal hierarchy produced by the quartet method is visualized by

means of a full unrooted binary tree, which visually represents the distance matrix as closely

as possible, according to a specified cost evaluation.

In order to produce the optimal hierarchy through a full unrooted binary tree, the quartet

method of hierarchical clustering needs to solve a graph optimization problem, called the

Minimum Quartet Tree Cost problem. A Greedy Randomized Adaptive Search Procedure, a

Simulated Annealing approach, a Variable Neighbourhood Search, and a Reduced Variable

Neighbourhood Search have been presented for this problem. Considering a wide range of

problem instances, we compared these metaheuristics with the Randomized Hill Climbing

by Cilibrasi and Vitányi (2005, 2006), the most popular heuristic in the literature for the

quartet method of hierarchical clustering. Based on this experimental analysis, all the pro-

posed procedures clearly outperformed the Randomized Hill Climbing and, in particular,
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the best performance was obtained by Reduced Variable Neighbourhood Search. Reduced

Variable Neighbourhood Search was shown to be a fast, simple, and particularly effective

metaheuristic for the quartet method of hierarchical clustering, obtaining high-quality solu-

tions in short computational running times. This analysis provides further evidence of the

ability of variable neighbourhood heuristics to deal with NP-hard combinatorial problems.
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