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Abstract

As suggested by the title, in this thesis both static and dynamic problems of
Operations Research will be addressed by either designing new procedures or
adapting well-known algorithmic schemes.

Specifically, the first part of the thesis is devoted to the discussion of three
variants of the widely studied Shortest Path Problem, one of which is defined
on dynamic graphs. Namely, first the Reoptimization of Shortest Paths in case
of multiple and generic cost changes is dealt with an exact algorithm whose
performance is compared with Dijkstra’s label setting procedure in order to
detect which approach has to be preferred.

Secondly, the k-Color Shortest Path Problem is tackled. It is a recent problem,
defined on an edge-constrained graph, for which a Dynamic Programming
algorithm is proposed here; its performance is compared with the state of the art
solution approach, namely a Branch & Bound procedure.

Finally, the Resource Constrained Clustered Shortest Path Tree Problem is pre-
sented. It is a newly defined problem for which both a mathematical model and
a Branch & Price procedure are detailed here. Moreover, the performance of this
solution approach is compared with that of CPLEX solver.

Furthermore, in the first part of the manuscript, also the Path Planning in
Urban Air Mobility, is discussed by considering both the definition of the Free-
Space Maps and the computation of the trajectories. For the former purpose,
three different but correlated discretization methods are described; as for the
latter, a two steps resolution, offline and online, of the resulting shortest path
problems is performed. In addition, it is checked whether the reoptimization
algorithm can be used in the online step.

In the second part of this thesis, the recently studied Additive Manufacturing
Machine Scheduling Problem with not identical machines is presented. Specifically,
a Reinforcement Learning Iterated Local Search meta-heuristic featuring a Q-
learning Variable Neighbourhood Search is described to solve this problem and
its performance is compared with the one of CPLEX solver.

It is worthwhile mentioning that, for each of the proposed approaches, a
thorough experimentation is performed and each Chapter is equipped with
a detailed analysis of the results in order to appraise the performance of the
method and to detect its limits.
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CHAPTER 1

Introduction

The topics dealt with in this thesis are the result of a study carried out with
two different approaches: on the one hand, we considered three variants of the
classic Shortest Path Problem (SPP), which find application in extremely actual
contexts. On the other hand, instead, we started from a real-world current
scenario, namely the increasing use of 3D printing technology, and investigated
one of the Scheduling Problems connected to it.

Thus, Part I of this thesis thoroughly describes three variants of SPP, namely
the Reoptimization of Shortest Paths, the k-Color Shortest Path Problem and the
Resource Constrained Clustered Shortest Path Tree Problem; then, Part II is devoted
to the investigation of the Additive Manufacturing Machine Scheduling Problem.
This Chapter features a brief outline of the well-known variants of Shortest Path
Problems (Section 1.1) and the description of background and motivations for
all the above mentioned problems (Sections 1.2 to 1.4).

As a final remark, in the following the term “arcs” will be used when referring
to digraphs, while “edges” will be used for connections in undirected graphs.

1.1 Brief Overview of Shortest Path Problems

The Operations Research community has made a relevant effort to investigate
the Shortest Path Problem since it can model several scenarios. Indeed, due to
its wide applicability, SPP appears as a sub-problem in different Combinatorial
Optimization problems [1].

Given a weighted graph, the objective of the classic SPP is to determine
a minimum cost path from a root node r to a destination node d. A natural
extension of the SPP (referred to as Shortest Path Tree Problem, SPT for short)
consists in finding a shortest path tree, from a given root node, considering as
destination all the other nodes.

While it is well known that both SPPs and SPTs are polynomially solvable,
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Chapter 1. Introduction

more recent streams of research have focused on the solution of either Dy-
namic SPPs [69, 70], namely Shortest Path Problems on perturbed graphs, or
Constrained SPPs (CSPP) [51, 68, 77], by devising both exact and heuristic
techniques. Specifically, the interest of the scientific community in studying the
former relies on the wide variety of applications in logistics [181] and trans-
portation [41, 145] that often require to solve a sequence of SPPs in which two
subsequent instances only slightly differ. Indeed, these differences can be related
to: the perturbation of a subset of arc costs, the variation of the set of nodes/arcs,
the change of the root node of the shortest path, or a combination of them.

Similarly, the significant effort made to investigate Constrained SPPs is
twofold: on the one hand, by including additional constraints in the formulation
of the classic SPP, it is possible to address diverse problems, like transportation
planning in inter-modal networks, guaranty of reliability and robustness for
transmission networks, design of optical networks. On the other hand, most of
these problems are computationally intractable thus motivating the continuous
development of efficient solution methods.

Shortest Path
Problems

Edge
Constrained

Formal
Language

CSPPs

Resource
CSPPs

RC-CluSPT
(Chap. 5)

SPPs on
Colored

Networks

k-CSPP
(Chap. 4)

Dynamic

Nodes/arcs
added or
removed

Multiple arc
cost

changes

Reop-
timization
(Chap. 2)

Root change

Fig. 1.1 Mind map about some of the most studied variants of SPP. Chapter
numbers in parenthesis refer to those addressed in this manuscript.
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Inspired by these streams of research, we have dealt with both kind of variants
of SPP, addressing the Reoptimization of Shortest Paths, the k-Color Shortest Path
Problem (k-CSPP), and the Resource Constrained Clustered Shortest Path Tree
Problem (RC-CluSPT).

The mind map in Fig. 1.1 summarizes the main sub-classes for each variant
and indicates in which Chapter are the ones addressed in this thesis.

1.2 The Reoptimization of Shortest Paths

Given a sequence of slightly different SPPs, the Reoptimization approach is
meant to reduce the computational effort required to get an optimal solution for
each SPP of the sequence; hence, in contrast to solution techniques that solve
each problem ex-novo, this method tries to solve a problem in the sequence by
reusing valuable information gathered in the solution of the previous one.

From a practical perspective, such an approach can be useful, for example,
in drawing up an emergency plan in case of a catastrophe [181]. Instead, in
terms of SPP, the reoptimization approach may be suitable for all the situations
characterized by a particular underlying graph structure. Explicitly, these kinds
of graphs are referred to as dynamic graphs since the set of nodes and/or the set
of arcs as well as the cost function may be subject to change (see Fig. 1.1).

In the scientific literature, the problem of solving a sequence of slightly
different SPPs/SPTs has been addressed from two points of view: one related
to the root change of the shortest path and the other concerning the cost change
for a subset of arcs. Since the former has already been widely investigated, in
Chapter 2 we describe the reoptimization framework focusing on the general
situation of multiple cost changes.

In particular, we present the primal-dual procedure devised by Pallottino and
Scutellà [144], which performs the reoptimization by considering subsets of arcs
in each iteration, in contrast to the deeply studied algorithms that reoptimize
with respect to one arc at a time [see 32]. In Festa et al. [83] we propose an
efficient implementation of this algorithmic framework and conduct an intensive
computational evaluation of it, as reported in Chapter 2. Specifically, a thorough
experimentation is conducted with the aim of detecting which features make an
instance more suitable for the reoptimization.

We investigated scenarios including graphs whose cost functions are affected
by a local change, since, oftentimes, in real world context the perturbation of the
costs affects only a small and structured portion of the network. This model has
several applications, e.g. in transportation and urban traffic management: given
the road network associated to a suburban area of a city and computing the
shortest paths from all the points of that area to the financial district of the city
in regular intervals of time, it comes noteworthy that, during the rush hour, the
perturbation affects a ring-like set of arcs surrounding the district and tightening
around it as time passes (Fig. 1.2) [144].
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(a) Typical traffic at 12 p.m. (b) Typical traffic at 1 p.m.

(c) Typical traffic at 2 p.m. (d) Typical traffic at 3 p.m.

Fig. 1.2 Google Maps typical traffic map around the city centre of Naples. Colors
represent the traffic flow, from fast (green) to slow (red).

1.2.1 Applications in Urban Air Mobility

In Section 1.2, it has been duly noted that the reoptimization approach
might be suitable to solve problems which present an underlying structure of
dynamic graphs. Indeed, this class of problems contains also those for which
the information related to the graph is affected by uncertainty and/or is given
as estimates [137]. In fact, a way to tackle these problems is by considering
as deterministic the available information, in order to obtain a first solution
which is then updated in correspondence of the new estimates. In particular, the
computation of trajectories in the Path Planning for Urban Air Mobility (UAM)
can be placed in this context.

Nowadays, the design of UAM models represents a flourishing field of research
due to the growing awareness that the use of flying vehicles, with or without
driver, could be an efficient way to overcome the barriers imposed by traffic, thus
speeding up the transport service and facilitating rescue operations [170].

Actually, two relevant aspects of the UAM modelling are addressed by the
Path Planning [173]: i) the representation of the obstacle-free 3D space in
which the motion is going to happen, and ii) the computation of the feasible
trajectories. Particularly, this latter issue requires the resolution of SPPs in which
the costs are defined according to specific criteria, which take into account
pollution and noise produced by the aircraft, its fuel consumption and travel
time. Thus, some information related to these cost functions might be available
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only as estimates. Consequently, to compute the shortest paths between different
locations, a suitable approach is the two-steps resolution: the trajectories are
obtained at first offline, i.e. considering the costs as deterministic, and then
online, i.e. the estimates are updated and eventually the solution too. Indeed,
the switching from the offline to the online environment makes the two-steps
resolution similar to the resolution of SPPs on two slightly different graphs.

Thus, with this consideration in mind, we approach the two-steps resolution
with the reoptimization algorithm [83, 144]. Specifically, in Chapter 3 we
address both the issues of the Path Planning in UAM: on the one hand, we focus
on the representation of the obstacle-free 3D city space, by designing three
different but correlated discretization methods. Indeed, these procedures define
plane sections of the 3D space and build a particular graph topology on each
section, before connecting them properly. The graphical representation of the
obtained trajectories highlights that randomness should be avoided both in the
graph topology and in cost function.

Then, we define a problem-specific perturbation to simulate the switching
from the offline to the online environment and compare the reoptimization with
the resolution ex-novo. Actually, the analysis of the results underlines that the
best performing approach is the latter, regardless of the percentage of network
affected by the change.

1.3 Constrained Shortest Path Problems

The Constrained Shortest Path Problems (CSPPs) can be classified into sub-
classes according to the main features of their additional constraints [76]; among
those with edge constraints, the most studied comprise: Formal Language CSPPs,
SPPs on Edge-Colored networks, and Resource CSPPs (see Fig. 1.1).

The Formal Language CSPPs are defined on networks whose edges are given
a label belonging to a finite alphabet Σ, and the aim is to find a shortest path such
that its label belongs to a formal language L(Σ) built over Σ. Also this variant of
CSPP is computationally intractable, even when further assumptions about L(Σ)
are made [13]. Among the other scenarios, the formal language CSPPs could
model the Inter-modal Route Planning Problem. In fact, networks that allow for
several mode choices can be represented by means of an edge-labeled graph,
and Formal Language CSPPs can easily define the problem of finding an optimal
path subject to mode-preference constraints.

A prolific stream of research deals with SPPs on colored networks, i.e. graphs
whose edges are given additional versatile labels, denoted as colors, which allow
to model an elevated number of diverse problems. By way of example, letting
the reload cost ρbc for colors b, c be the amount to be paid if, in a path, an edge
of color c is traversed just after an edge of color b, the Route Planning Problem
could be modeled as a Minimum Reload Cost Problem [5, 93], with reload costs
representing tolls. Besides, among the other applications, there are connectivity
and reliability problems arising in the field of telecommunication [26, 31]. In
the former case, different colors could denote diverse connections between pairs
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of nodes; in the latter case, instead, the same color is chosen to denote links that
could be damaged by a single event happening in the network. In regards to this
latter application, we addressed the problem detailed in Section 1.3.1.

Finally, in the Resource CSPP, in addition to minimizing distances travelled,
solutions are subject to restrictions related to a set of resources which represent
a broad variety of attributes [130, 158]. Indeed, the formulation of these
constraints depends itself on the nature of the resources which could be classified
as numerical and cumulative (e.g. travel time, fuel consumption), numerical and
non-cumulative (e.g. road width, height), and indexed or categorical (e.g., parking
restrictions, type of road) [10, 106]. It is noteworthy that even when a single
resource function is defined, the corresponding Resource CSPP is computationally
intractable [90]. In Section 1.3.2 we outline the characteristics of the Resource
CSPP addressed in Ferone et al. [78].

1.3.1 The k-Color Shortest Path Problem

In the context of transmission network design, Ferone et al. [71] recently
proposed the k-Color Shortest Path Problem (k-CSPP) that is related to the Min-
imum Color Path Problem since it aims to find a shortest path – on a colored
network – that traverses at most k different colors. For example, referring to
the two scenarios depicted in Fig. 1.3 and letting k = 2, the path from r to d in
Fig. 1.3(a) is infeasible while that in Fig. 1.3(b) has to be preferred, though it
could be potentially longer. In particular, also this CSPP has been proved to be
computationally intractable, namely it is NP-hard.

green orange red

(a) (b)

r

d d

r

Fig. 1.3 Two edge-colored paths: (a) with four edges, and traversing three colors,
(b) with five edges, and traversing two colors.

Moreover, since similar variants of CSPPs have already been tackled by means
of the Dynamic Programming framework [51, 52], in Ferone et al. [74] we devise
a Dynamic Programming algorithm based on a path-labeling approach and an
A∗-like exploration strategy. Chapter 4 provides a further description of the
problem and briefly outlines the state of the art procedure, namely a Branch
& Bound method, devised to solve it [71]; additionally, our new algorithmic
proposal is detailed along with the numerical comparison made to appraise
its performance. Specifically, the Dynamic Programming algorithm has been
compared with both the Branch & Bound technique and the solution of the
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mathematical model obtained with CPLEX solver; the results highlight that the
Dynamic Programming algorithm vastly outperformed the other approaches.

1.3.2 The Resource Constrained Clustered SPT

The clustered (or generalized) versions of several classic combinatorial opti-
mization problems have received a great share of attention, due to their wide
range of application [66]. At the same time, the design of realistic optimized
routes in transportation or telecommunication networks generally requires find-
ing optimal paths accounting for assigned link attributes. Consequently, several
real-world problems could be modeled and solved through (Clustered) Resource
CSPPs [107]. For instance, the Clustered Resource CSPP with local resource
constraints could model the hop limited SPT with bandwidth constraints [177].

The optimization problem described in Chapter 5, namely the Resource Con-
strained Clustered Shortest Path Tree Problem (RC-CluSPT) [78], lies at the
intersection between the Clustered SPT and the Resource CSPP. Specifically, the
aim is to determine a shortest path tree respecting the local resource constraints
and inducing connected subgraphs within each cluster. Since the classic Resource
Constrained SPT is NP-hard, the same computational intractability characterizes
the RC-CluSPT too. In Ferone et al. [78] we draw up a path-based formulation
whose intrinsic structure allows for a Dantzig-Wolfe (DW) decomposition [46]
based on Resource CSPP Decomposition. Then, for its resolution, a Branch &
Price algorithm featuring a Column Generation approach with a Multiple Pricing
Scheme is devised.

A thorough description is provided in Chapter 5, along with the detailed
computational experimentation made in Ferone et al. [78] to appraise the ef-
fectiveness of the Branch & Price. Specifically, the comparison between this
technique and the solution of the mathematical model performed by CPLEX
solver reveals that the Branch & Price significantly improves the performance of
CPLEX.

1.4 The Additive Manufacturing Machine Schedul-
ing Problem

Nowadays, the use of Additive Manufacturing (AM) is spreading in the in-
dustry because of the affordable maintenance and the low processing costs of
AM machines [57]. Specifically, the AM comprises several fabrication processes
that exploit a wide variety of materials to create products ranging from medi-
cal implants to structural and aerospace engineering designs [9, 44, 147, 148].
Among the others, the Selective Laser Melting (SLM) technique, developed at the
Fraunhofer Institute for Laser Technology ILT [24, 64], is widely in use since it
enables the manufacturing of metal components layer by layer, according to a 3D
CAD model; moreover it can handle complex geometries without part-specific
tooling or pre-production costs [120].
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Anyway, the optimization problems related to the planning of AM processes
feature two types of operations: nesting and scheduling, where the former refers
to the orientation of parts and their packing; since in the scientific literature
these issues have been tackled both separately [38, 171] and jointly [95], in
Alicastro et al. [3] we focus on the scheduling operations.

Specifically, Kucukkoc [119] proposed the mathematical model of an Additive
Manufacturing Machine Scheduling Problem (AMM-SP) inspired by the SLM
technique: a finite set of parts with several characteristics has to be produced by
a finite set of AM machines, each of which may have different specifications, and
the aim is to regroup parts and allocate them into job batches to be scheduled on
the machines in order to minimize the total completion time, i.e. the makespan.
In particular, in Alicastro et al. [3] we devise a Reinforcement Learning Iterated
Local Search meta-heuristic, based on the implementation of a Q-Learning Variable
Neighbourhood Search; this method has been compared with the results attained
by the CPLEX solver and an Evolutionary Algorithm recently proposed for a
similar problem, and adapted for the AMM-SP.

In Chapter 6, both the mathematical model and the proof of the NP-hardness
of the AMM-SP are given. Furthermore, this Chapter presents a thorough analysis
of the results of the extensive experimentation conducted on a rich variety of
problem instances. These results evidence that the proposed meta-heuristic
obtains statistically significant improvements compared with the state of the art
solution approaches.
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CHAPTER 2

The Reoptimization of Shortest
Paths

The Shortest Path Problem (SPP) is among the most famous operational re-
search problems; this Chapter is addressed to the study of the Shortest Path
Reoptimization Problem. Given a sequence of SPP, in which two subsequent
instances solely differ by a slight change in the graph structure, the goal of the
reoptimization consists in solving the kth SPP of the sequence by reusing valuable
information gathered in the solution of the (k − 1)th one.

In Section 2.1 we present the mathematical formulations of Shortest Path
Tree Problem and its dual, while a brief overview of the reoptimization frame-
work is drawn in Section 2.2. Then, Section 2.3 is devoted to the description
of the algorithmic framework, due to Pallottino and Scutellá [144], that we
implemented by exploiting efficient ad hoc data structures. Finally, in Section 2.4
we detail the extensive numerical evaluation of the performance of this algorithm
[83].

2.1 Mathematical Formulation

In this Section, we describe the mathematical formulation of the Shortest Path
Tree Problem and its dual, since the methodology we will present in Section 2.3
is strongly related to the primal-dual paradigm.

2.1.1 Primal Formulation of the Shortest Path Tree Problem

Let G = (V,A, c) be a directed graph, where |V| = n, |A| = m, and c : A 7→ R is
a cost function assigning a real cost ci j to each arc (i, j) ∈ A. For simplicity, we
suppose that:
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1. G does not have parallel arcs, i.e., for each pair of connected nodes there
is exactly one arc connecting them;

2. G is strongly connected: this is not restrictive, since if there is no arc
(i, j) ∈ A for i, j ∈ V then we can add it to A with ci j = M where M is big
enough.

Given a root node r ∈ V, the Shortest Path Tree problem rooted in r (SPT_r)
consists in finding a directed tree T∗r such that, for each node i ∈ V, the path from
r to i in the tree is a minimum cost path from r to i in G. In order to consider
bounded solutions, we will assume that there are no negative cost cycles in the
graph G nor can they be created.

Recalling the definitions of the forward star of a node i ∈ V as the set FS(i) =
{(i, j) ∈ A| j ∈ V} and the backward star as the set of arcs BS(i) = {( j, i) ∈ A| j ∈ V},
we can formulate SPT_r as the following linear programming problem:

(SPT_r) min
∑

(i, j)∈A

ci jxi j (2.1a)

subject to: ∑
(i, j)∈FS(i)

xi j −
∑

( j,i)∈BS(i)

x ji = n − 1, if i = r (2.1b)∑
(i, j)∈FS(i)

xi j −
∑

( j,i)∈BS(i)

x ji = −1, ∀i ∈ V\{r} (2.1c)

xi j ≥ 0, ∀(i, j) ∈ A. (2.1d)

Though the simplex method can be used to solve SPT_r, the algorithm widely
in use today is the more efficient Dijkstra’s label setting procedure [56].

2.1.2 Dual Formulation of the Shortest Path Tree Problem

Let π = (π1, . . . πn) be the vector of dual variables, where πi is called the
potential of node i; then the dual formulation of SPT_r is the following:

(Dual-SPT_r) max
[
(n − 1)πr −

∑
j,r

π j

]
(2.2a)

subject to:

πi − π j ≤ ci j ∀(i, j) ∈ A, (2.2b)

where constraints (2.2b) are defined as dual feasibility. Indeed, since the reduced
costs of arcs are defined as c̄i j = ci j + π j − πi for each (i, j) ∈ A, given an optimal
solution T∗r = (V,Ar) for SPT_r, the optimality conditions of linear programming
(see. [144]) can be rewritten as

c̄i j ≥ 0, ∀(i, j) ∈ A (2.3a)
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c̄i j = 0, ∀(i, j) ∈ Ar. (2.3b)

In particular, constraints (2.3a) define the dual feasibility conditions while those
(2.3b) state the complementary slackness (CS) conditions.

Computing the dual solution

Given an instance of SPT_r, the corresponding reduced costs could be com-
puted by means of the dual optimal solution of Dual-SPT_r. Indeed, the auction
algorithm [18, 19] could be employed at this purpose. This procedure builds an
optimal path following a primal-dual approach, through successive phases of
path extensions, path contractions and dual price increase.

However, on the one hand, the computational complexity of the auction
algorithm is significant [29, 30]. On the other hand, there exists a link between
the labels dr[·] generated when solving SPT_r via Dijkstra’s algorithm and the
optimal dual solution π.

Lemma 2.1.1 ([19]). Let π be an optimal solution for Dual-SPT_r. It holds that
∀h ∈ V dr[h] = πr − πh.

Proof. Let h be a node in V. If there is an arc (r, h) ∈ A then either (r, h) belongs
to the optimal set of arcs Ar or not.

1. If (r, h) ∈ Ar, then dr[h] = crh. Moreover, from (2.3b), it holds c̄rh = 0, or
equivalently πr − πh = crh.

2. If (r, h) < Ar, the shortest path Prh ⊂ T∗r from the root r to h contains at
least a node i ∈ V\{r, h}, i.e., Prh = (r, i) ∪ (i, j) ∪ · · · ∪ (l, h); hence dr[h] =
cri + ci j + · · · + clh. Since all the arcs of Prh belongs to the optimal solution,
they have zero reduced costs (conditions (2.3b)); also cri = πr −πi from 1.,
then dr[h] = πr − πi + πi − π j + . . . πl − πh = πr − πh.

If there is no arc (r, h) ∈ A, then the strongly connection of G ensures the
existence of at least one directed path from r to h in G; thus, given the shortest
path Prh ⊂ T∗r, the thesis follows as in 2. �

Theorem 2.1.2 ([19]). The vector π̄ ∈ Rn such that π̄h = π̄r − dr[h] ∀h ∈ V\{r} is
an optimal solution for Dual-SPT_r.

Proof. If Prh is a shortest path in the graph from the root r to h, then for ∀i, j
belonging to this path, the subpath Pi j ⊂ Prh is a shortest path from i to j [see 42,
Lemma 24.1]. As a consequence, for any arc (i, j) ∈ A, π̄i − π̄ j = dr[ j]− dr[i] ≤ ci j,
thus π̄ is dual admissible. Moreover, when the arc (i, j) belongs to the shortest
path, ci j = dr[ j] − dr[i] which proves that (2.3b) holds. �

Indeed, πr could be chosen as the maximum label generated by Dijkstra’s
procedure in order to have a non-negative dual solution. In particular, ∀(i, j) ∈ A
it holds that c̄i j = ci j + dr[i] − dr[ j] [see 19].
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2.2 Reoptimization Framework

In several application contexts, it might be necessary to solve a sequence
of SPPs such that the corresponding instances are graphs whose structure may
be affected by some changes [41, 145]. At this purpose, the reoptimization
approach is meant to reduce the computational effort required to get an optimal
solution for each SPP of the sequence; hence, in contrast to solution techniques
that solve each problem ex-novo, this method tries to solve a SPP starting from
the solution of the one that precedes it in the sequence [69, 70]. This approach
may be suitable for all the situations characterized by a particular underlying
graph structure. Explicitly, this kind of graphs are referred to as dynamic graphs
since the set of nodes, the set of arcs or both may be subject to change.

Indeed, due to the interplays among the variants of SPP on dynamic graphs
[see 70, Figure 1], it is always possible to reduce the case of insertion/deletion
of nodes or arcs to that of cost change [138]. Consequently, in the scientific
literature, the problem of solving a sequence of slightly different SPPs/SPTs has
been addressed from two points of view: the first related to the root change of
the shortest path and the second concerning the cost change for a subset of arcs.

Assuming that an optimal tree T∗r rooted in r has been computed, the solution
exhibits some theoretical properties [88]. Specifically, when a root change occurs,
i.e. s , r becomes the new root node, the paths contained in the sub-tree of T∗r,
rooted in s, are still optimal shortest paths from s to its descendants.

Proposition 2.2.1 ([88]). Let T∗r(h) denote the sub-tree of T∗r containing node h
and all its descendants and let d(i, j) denote the cost of the shortest path from i to j.
Then T∗r(s) ⊆ T∗s and d(s, j) = d(r, j) − d(r, s) for any j ∈ T∗r(s).

Thus, storing information about the old solution is an efficient strategy when
reoptimizing, since a consistent part of the previously optimal tree belongs to
the new optimal solution.

It is worth to note that reducing the maximum cost within the graph does
not change the sets of feasible and optimal solutions, as formally stated in
Proposition 2.2.2.

Proposition 2.2.2 ([88]). Consider a vector π ∈ Rn such that

li j = ci j + πi − π j ≥ 0 ∀(i, j) ∈ A. (2.4)

Then, SPT_r with arc lengths ci j is equivalent to the problem of finding a shortest
path tree rooted in r with arc lengths li j given by Equation (2.4).

An improvement of the classic Dial’s implementation of Dijkstra’s algorithm
[54, 55] was derived by exploiting these theoretical results [88].

Remark 1. The reoptimization on dynamic graphs represents a more general
scenario. In fact, also the case of root change is reducible to that of arc cost
change [88]. Let r be the old root and s be the new one, then connect both
with a dummy node o, as showed in Fig. 2.1. Moreover, set cor = 0 and cos = U
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o

r

s

G

Fig. 2.1 Reduction of root change to arc cost change: r is the old root, s the new
one and o is a dummy node added to G.

where U is a large positive integer, namely U ≥ max(i, j)∈Aci j. Indeed, if U is large
enough, a shortest path tree rooted in o differs from T∗r only by arc (o, r). Then,
setting c′or = 2U a new optimal tree rooted in o, will differ from T∗s only for the
arc (o, s) and d(s, h) = d(o, h) −U for any h ∈ V.

Therefore, the problem of finding T∗s given T∗r is equivalent to the problem
of finding, in the extended network, a new SPT, when the length of arc (o, r) is
increased from 0 to 2M. �

2.2.1 State of the Art

In this Section we briefly recall the main state of the art approaches proposed
to address the SPT reoptimization.

Since the first algorithmic proposal [88], many efforts have been made to
derive efficient techniques to handle the case of root change; at this purpose, e.g.,
a modified version of the dual simplex approach was devised in Florian et al. [86].
The most recent advance in this direction has been made by Festa et al. [81]: the
reoptimization paradigm is implemented via a sequence of operations (called
extensions) performed by applying a strongly polynomial auction algorithm,
based on the virtual source concept [29, 30].

Initially, only the case of perturbations of the same type, namely increase or
decrease, was taken into account. First, Ramalingam and Reps [152] tackled the
reoptimization of SPP in the case of single arc cost increase with an incremental
algorithm devised ad hoc for a version of the grammar problem. Later, Buriol
et al. [27] empirically proved that this algorithm outperformed an optimization
from scratch with Dijkstra’s algorithm. Moreover, employing a technique based
on to the reverse graph representation, it was adapted to cope also with the case
of single arc cost decrease.

However, most of the algorithms, proposed to deal with the case of multiple
cost changes, perform the reoptimization in subsequent phases, by considering a
single arc cost change in each of them [32]. In contrast to this scheme, Pallottino
and Scutellá [144] described a procedure based on the partition of the set of
arcs, whose cost has been modified, in order to reoptimize the current tree
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in subsequent phases, each with respect to a specific subset of arcs, and their
reoptimization paradigm is based on a primal-dual approach.

2.3 Primal-dual Reoptimization Technique

For the sake of completeness and clarity, in this Section, we provide a de-
scription of the primal-dual solution approach devised in Pallottino and Scutellá
[144] and for which we proposed an implementation [83].

Suppose that, after a pair (T∗r, π(r)) of optimal solutions for SPT_r and Dual-
SPT_r has been calculated, a new cost – either lower or higher than the old one –
is assigned to a subset K of the arcs of G. Then c′i j denotes the new integer cost

for the arc (i, j) and c̄′i j = c′i j + π j
(r)
− πi

(r) is its updated reduced cost.
Indeed c′i j = ci j if (i, j) < K hence c̄′i j ≥ 0 ∀(i, j) ∈ A\K and c̄′i j = 0 ∀(i, j) ∈ Ar\K.

Moreover, after the arc costs change, only one of the following cases can occur
for an arc (i, j) ∈ K: 1. c̄′i j < 0 or 2. c̄′i j ≥ 0. The former implies that π(r) is no
more dual feasible; instead, when inequality 2. strictly holds for an arc in the
current solution, that is c̄′i j > 0 for some (i, j) ∈ Ar, then π(r) no longer satisfies
Equation (2.3b) and T∗r is no more an optimal tree.

To update the optimal solutions, the algorithm in [144] partitions K into two
disjoint subsets:

K+ = {(i, j) ∈ K : c̄′i j ≥ 0} and K− = {(i, j) ∈ K : c̄′i j < 0}.

Afterwards, it reoptimizes firstly with respect to the arcs in K+ and then consid-
ering those in K−. If K+ , ∅ and K− = ∅, the dual feasibility of π(r) holds, while
when K− , ∅, the feasibility has to be restored.

We have outlined in Algorithm 1 the operations performed by the above
mentioned algorithm.

Algorithm 1 Reoptimization Procedure

1: procedure REOPT

2: Update the reduced costs.
3: Partition K in K+ and K−.
4: if K+ , ∅ then
5: Dual_Phase . Restore c̄′i j = 0 ∀(i, j) ∈ Ar.
6: if K− = ∅ return. . The current tree is optimal.
7: else
8: while K− , ∅ do
9: Primal_Phase . Restore dual feasibility of π(r).

10: Update the set K−.
11: end while
12: end procedure
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Specifically, if K+ , ∅ (Line 4) then only the cost changes of its arcs are
applied to the graph. At this purpose, the Dual_Phase procedure at Line 5,
described in Algorithm 2, is meant to restore CS and it is executed on the graph
G′ = (N,A, c̄′) having the same sets of nodes and arcs of G and a cost function
that assigns the modified reduced cost to each arc. This phase of reoptimization
can be performed either via a label setting procedure (e.g. Dijkstra’s algorithm)
or with a dual-hanging approach, with the theoretical computational complexity
of the two methods remaining comparable [144]. As a consequence, we chose
to implement the dual phase with the former approach (Line 5, Algorithm 2), so
as to remain consistent with the ongoing investigation.

While K− is nonempty, the Primal_Phase procedure at Line 9, described in
Algorithm 3, runs on the subgraph of G formed by all the arcs with a non-positive
reduced cost, i.e G−0 = (N,A−0 ) where A−0 = {(i, j) ∈ A : c̄′i j ≤ 0}. Clearly, Ar ⊂ A−0
and K− ⊂ A−0 ; in particular, this graph could be either acyclic or at most it could
contain zero reduced cost cycles. In fact, by assumption no negative cost cycle is
created in G after the arc cost changes; anyway each cycle in G−0 can be unfolded
by removing one arc from it.

Through the execution of the primal phases, the set K− is dynamically de-
composed into h disjoint subsets K−j j = 1, . . . h so that the current solution T∗r
is reoptimized – with respect to the arcs in each subset – via a single call to
any implementation of a label setting procedure. Indeed, each K−j induces a
Dijkstrable subgraph, i.e. a subgraph of G−0 verifying the Definition 2.3.1. In
particular, Fig. 2.2 depicts an example of Dijkstrable subgraph.

Definition 2.3.1 ([144]). A subgraph of G−0 is called Dijkstrable if its set of arcs
can be reoptimized via a single call to a Dijkstra’s permanent procedure [see 88].

1
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7

8
-1

0 -1
-2

-3
-2

0

0

Fig. 2.2 Directed graph with eight nodes and eight arcs. Dashed arcs form a
Dijkstrable subgraph.

Algorithm 3 provides the outline of a generic primal phase [see 144]: a
Dijkstrable subgraph is determined and the label of each node is initialized to
zero (Line 2-4); then, the Dijkstrable subgraph is visited in topological order
so as to update the labels of its nodes to a negative value (Line 6). Finally, the
reoptimization is performed via Dijkstra’s Permanent Procedure [see 88] (Line 7),
whose input is represented by the nodes with negative label.

Algorithm 4 outlines the operation of this procedure: Bellman’s optimality
condition (Line 5) is checked for each arc in the forward star of the node with
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Algorithm 2 Dual Phase

1: procedure DUAL_PHASE

2: if c̄′i j = 0 ∀(i, j) ∈ Ar return . Complementary Slackness holds.
3: else
4: Change only the costs of the arcs in K+.
5: Call Dijkstra on G′ = (N,A, c̄′).
6: Update dual vector π(r) and set K−.
7: end procedure

minimum (negative) label. The updating of the label at Line 6 propagates the
negativity of the labels in the graph.
Remark 2. Anytime a reoptimization phase is executed, there occur the updates of
the current optimal solution T∗r and of the corresponding dual vector π(r) (Line 6,
Algorithm 2 and Line 8, Algorithm 3). Indeed, also the reduced costs are adjusted:
as a consequence, at the end of the Dual_Phase procedure, some arcs may have
to be removed from K− (Line 6, Algorithm 2) since their (modified) reduced cost
is no more negative. Moreover, at the end of the jth primal phase, other arcs
apart those of K−j may have to be removed from K− (Line 10, Algorithm 1). �

Algorithm 3 Primal Phase [144]

1: procedure PRIMAL_PHASE

2: G(K−j ) = Dijkstrable. . G(K−j ) = (N(K−j ),A(K−j ))
3: Change the costs of the arcs in K−j = A(K−j ) ∩ K−.
4: Set d[i] = 0 ∀i ∈ N.
5: Visit G(K−j ) in topological order and set
6: d[ j] = min{d[i] + c̄′i j : (i, j) ∈ BS( j) ∩ A(K−j )}.
7: Dijkstra_permanent_procedure.
8: Set π(r)

i = π(r)
i + d[i] ∀i ∈ N. . Update dual vector.

9: end procedure

Remark 3. There exists a family of subgraphs which are indeed Dijkstrable (see
Definition 2.3.2) [144].

Definition 2.3.2 ([144]). A starpath centred at i and j is a subgraphs of G−0
consisting of a directed path from node i to node j plus the following stars:

BS(i) = BS(i) ∩ K− and FS( j) = FS( j) ∩ K−.

Algorithm 5 reports the procedure devised in [144] to build a starpath: a
depth first search (DFS) is performed on the graph G−0 starting from r (Line 2)
until a leaf node of the current optimal tree is reached and there is at least one
arc belonging to K− in the path from the root to that node. Denoting with ( j,u)
the last arc of K− along this path, the centre node i of the starpath is determined
(Line 6) following up the predecessors set up by the DFS. �
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Algorithm 4 Dijkstra Permanent Procedure [88]

1: procedure DIJKSTRA_PERMANENT_PROCEDURE

2: while Q , ∅ do . Q contains nodes with negative label.
3: i =extract_min(Q)
4: for (i, j) ∈ FS(i)
5: if d[i] + c̄′i j < d[ j] then
6: d[ j] = d[i] + c̄′i j
7: pred[ j] = i
8: Q = Q ∪ { j}
9: end while

10: end procedure

Algorithm 5 Build a Dijkstrable subgraph [144]

1: procedure DIJKSTRABLE

2: Depth First Search of G−0 starting from r.
3: if v is a leaf of T∗r then
4: if there is at least one arc of K− in the path from r to v then
5: return
6: Determine the centre node i. . See Definition 2.3.2.
7: end procedure

2.3.1 Computational Complexity

Algorithm 1 is strongly based on “Dijkstra-like” procedures; as a consequence,
the computational complexity resembles that of Dijkstra’s algorithm.

In particular, let Cd denote the perturbation due to the arcs in K+ and let Cp
be the sum of the minimum (negative) labels that can be generated during the
execution of each primal phase. Formally,

Cd = max
{ ∑

(i, j)∈P

c̄′i j|P is a path in T∗r
}

and Cp = −
∑

(i, j)∈K−
c̄′i j.

When using Dial’s implementation [54, 55] the computational complexity
of Dijkstra’s algorithm is O(m + nCmax), with Cmax = max(i, j)∈A ci j. Thus, the
computational complexity of the dual phase is O(m+Cd). Instead, the overall time
complexity of the primal phases is equal to O(|K−|m + Cp) since the construction
of a Dijkstrable subgraph (Algorithm 5) takes O(m) and the number of arcs in
K− is an upper bound for the total number of primal phases.

In conclusion, the overall complexity of Algorithm 1 is O(|K−|m + Cp + Cd).

2.4 Computational Experiments

Since Pallottino and Scutellá [144] only provided a theoretical description of
the primal-dual reoptimization framework, we implemented this algorithm by
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devising ad hoc data structure [see 83]. Besides, we compared the performance
of our proposal with Dijkstra’s well-known algorithm, adopted for solving each
modified problem from scratch.

In this Section, we analyze the behaviour of the reoptimization algorithm
(which we will refer to as Reopt) comparing it with Dijkstra’s label setting
procedure (i.e., Dijkstra) used for a resolution from scratch. This comparison
is performed in order to identify the features which make an instance of SPT
more suitable for the reoptimization than for a classic resolution when a subset
of arcs is given a new cost.

2.4.1 Implementation Details

Both Reopt and Dijkstra algorithms have been coded in C, compiled with
gcc 8.3.0 and tested by using an Intel® core™ i7-5500U, 2.40 GHz, RAM 8.00
GB, under a Ubuntu 19.04 operating system.

The Multi Level Bucket (MLB) structure [39, 40], designed ad hoc for Dijk-
stra’s algorithm, was used in our Dijkstra, since it has been proved to be robust
while the 1-Level Bucket Structure is advisable only for instances with small arc
lengths [92]. Furthermore, due to its features and with the aim of making a
fair comparison among the algorithms, this structure was adapted for the imple-
mentation of both the Dual_Phase and the Dijkstra_Permanent_Procedure in
Reopt.

The MLB is nothing more than a priority queue consisting of l levels, each
containing p =

⌈
C1/l

⌉
buckets, where C is an integer constant related to the

specific problem instance1. In addition, depending on the level to which a bucket
belongs, the labels of the elements, the nodes in our case, in that bucket lie in
a interval of integers. Finally, the elements are stored in double linked list, thus
allowing to perform the insertion and deletion operations in constant time.

Specifically, during the execution of a label setting procedure, an active bucket
is maintained, which consists of the first nonempty bucket at the lowest level
and contains all nodes with the smallest label. Thus, at each iteration, a node
is removed from the active bucket and the labels of its neighbours are updated.
As a consequence, the nodes whose distance has been decreased are reallocated
either in the lowest level or in a higher level bucket. When the active bucket
becomes empty, the algorithm makes active the first nonempty bucket in the first
nonempty level and the expansion of that bucket is performed in constant time,
i.e. its elements are relocated to lower levels until there is a new, nonempty
active bucket at the lowest level.

2.4.2 Test Problems

The instances we generated can be divided in the following five families2:

1We used the maximum arc cost in the graph instance as value for C [see 92].
2The full data-set can be found at https://figshare.com/articles/INSTANCES/10115900.
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1. GTC-instances. Four different typologies of network obtained using the gen-
erator described in Festa and Pallottino [80]: grid, full-grid, cylinder,
torus. They have a skeleton structure consisting of a two dimensional grid
G = (V,A) where the set V = {1, 2, . . . ,n2

} is made of n levels of n nodes.
Each node is connected to those adjacent; in addition, for all typologies
except the grid one, there are supplementary bilateral connections. We
briefly outline the features of these networks, as done in Napoletano [138].
The set of nodes is V = CN ∪ LN ∪ IN where:

CN contains the corner-nodes {1,n,n2
− n + 1,n2

};
LN contains the lateral-nodes, i.e. LN = {v : 1 < v < n,n2

− n + 1 < v < n2,
mod (v,n) = {0, 1}}\CN;

IN contains the inner-nodes which are all the remaining nodes.

In grid networks: |BS(v)| = |FS(v)| = 2 ∀v ∈ CN, |BS(v)| = |FS(v)| = 3
∀v ∈ LN and |BS(v)| = |FS(v)| = 4. ∀v ∈ IN.
The supplementary bilateral connections in full-grid are defined as fol-
lows: i) ∀v ∈ CN, the set A contains the arcs (u, v) where v − u = 0
mod (n + 1) if either v = 1 or v = n2, and v− u = 0 mod (n− 1) otherwise;
ii) ∀v ∈ LN, A contains the arcs (u, v) with v − u = 0 mod (n − 1) and
v − u = 0 mod (n + 1). As a consequence: |BS(v)| = |FS(v)| = 3,∀v ∈ CN;
|BS(v)| = |FS(v)| = 5,∀v ∈ LN; ∀v ∈ IN, |BS(v)| = |FS(v)| = 8.
In cylinder networks, CN = {∅} and LN = {v : 1 < v < n,n2

− n + 1 < v <
n2
}. Besides, the supplementary bilateral arcs are defined for each pair of

nodes u, v ∈ V such that v = u + (n − 1) mod (u,n) = 1.
Finally, for torus networks both CN and LN are empty and the supple-
mentary bilateral arcs are defined ∀u, v ∈ V such that v = n2

− n + u where
1 < u < n. Hence ∀v ∈ V |BS(v)| = |FS(v)| = 4.
Fig. 2.3 provides an example of each topology when n = 3.

The arc costs are chosen independently and uniformly at random in the
set {1, 2, . . .Cmax} where Cmax is given as input. We generated networks
of increasing dimensions setting n = 100, 400, 700 in order to represent
“small”, “medium” and “large” sized instances.

2-3. GRIDGEN-instances. Obtained with Bertsekas’ generator [16, 17], which
allows to create square and rectangular grids, with or without additional
arcs between randomly chosen nodes, where each node is connected to four
neighbours and to two special nodes, source and sink. Grids of increasing
dimensions have been generated to represent “small”, “medium” and “large”
sized instances. They can be grouped as:

SQUARE. Square n × n grids with n ∈ {100, 400, 700}. We generated: the
standard skeleton networks with 6n2 arcs (squaren), the ones with
25% and 50% additional arcs (squaren+25, and squaren+50).

RECT. Rectangular grids with n × 2n nodes with n ∈ {100, 300, 500}. We
generated: the standard skeleton networks with 6(n×2n) arcs (rectn),
those with 25% and 50% additional arcs (rectn+25 and rectn+50).

20



Chapter 2. The Reoptimization of Shortest Paths

CN

LN IN

(a) Partial structure of a 3×3 grid.

CN

LN IN

(b) Partial structure of a 3×3
full-grid.

LN IN

(c) Partial structure of a 3×3 cylinder.

IN

(d) Partial structure of a 3×3 torus.

Fig. 2.3 Example of GTC topologies.

Cmax is the cost of the arcs connecting a node with its four neighbours;
while the other costs are chosen at random in the set {1, 2, . . .Cmax}.

4-5. SPACYC and SPRAND instances. They were obtained using Cherkassky’s
SPACYC and SPRAND generators [39]: the former creates acyclic random
networks, the latter strongly connected random networks.
Since the average cardinality of the forward stars of GTC instances is 4 and
that of the GRIDGEN ones is 6, we generated three typologies of SPACYC
networks and three typologies of SPRAND networks : spacycn-4n and
sprandn-4n with n2 nodes and 4n2 arcs, spacycn-6n and sprandn-6n
with n2 nodes and 6n2 arcs, spacycn-8n and sprandn-8n with n2 nodes
and 8n2 arcs. The tests were carried out setting n = 100, 400, 700 to have
“small”, “medium” and “large” sized instances; the arc costs are chosen
independently and uniformly at random in the set {1, 2, . . .Cmax}.
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2.4.3 Experiments Setup and Evaluation Metrics

We devised two kinds of perturbation for the cost function in order to appraise
the performance of the reoptimization approach both when only the set K+ is
nonempty and when the execution of at least one primal phase is required
to update the current solution. Specifically, the following perturbations were
applied separately on each instance graph:

INCREASE: for each arc (i, j) ∈ K, the modified cost is equal to ci j + D where D is
an integer chosen at random in the set {1, . . . ,Cmax};

DECREASE: for each arc (i, j) ∈ K, the modified cost is equal to R where R is an
integer chosen at random in the set {1, 2, . . . , ci j}.

On the one hand, when the INCREASE is performed, only the execution of
the dual phase is needed. On the other hand, the structure of the DECREASE
modification ensures that K− is nonempty, since its definition allows to consider
a reduction in the range [0, ci j − 1] for the arc cost.

The changes were applied to the arcs in the forward star of k randomly chosen
nodes, where k = 1, 2, . . . 10. Actually, an earlier experimentation was conducted
by perturbing the costs for a given number of randomly chosen arcs. However,
these changes generated instances on which the reoptimization was not needed:
in fact, either the cost increase occurred for arcs not belonging to the current
solution or the cost decrease was not enough to affect the optimality of the
current solution. Instead, the optimal tree is always involved when changing the
cost of the arcs in the forward stars. Furthermore, this choice is motivated also
by practical applications: in general, the changes may be localized only in small
portions of the networks.

For any choice of the number of nodes we generated five instances, one for
each value of Cmax in the set {75, 150, 280, 560, 1125}. As a consequence, we
carried out the testing on 60 GTC instances, 90 GRIDGEN instances, 45 SPACYC and
45 SPRAND instances. Table 2.1 summarizes the total number of test problems.

We considered the time ratio of Reopt (i.e., time-ratio) in order to give a
measure of the performance of the algorithm in comparison with that obtained
with Dijkstra’s approach:

time-ratio =
Reopt running time
Dijkstra running time

. (2.5)

Let us denote with Ix
Cmax the set of instances of typology x with maximum cost

equal to Cmax. Hence, the value in Equation (2.6) is the time-ratio on an
instance l ∈ Ix

Cmax when k ∈ {1, . . . 10} forward stars are affected by the cost
perturbation.

(TRl
Cmax)k. (2.6)

In addition, as k varies from 1 to 10, we calculated the Relative Standard Devia-
tions (RSD) of the values in Equation (2.6) in order to measure the dispersion of
the their probability distribution. When the RSDs confirmed that this dispersion
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Table 2.1 Numbers of INCREASE and DECREASE instances for each family of test
problems and total dimension of the test set.

Family Typology Nodes Arcs #INCR #DECR Tot.

GTC

grid

10k to 490k

40k to 1.96M

150 150

300
full-grid 80k to 3.92M 300
cylinder 40k to 1.96M 300
torus 40k to 1.96M 300
square 60k to 2.94M 300

SQUARE square+25 10k to 490k 75k to 3.67M 150 150 300
square+50 90k to 4.41M 300
rect 120k to 3.00M 300

RECT rect+25 20k to 500k 150k to 3.75M 150 150 300
rect+50 180k to 4.50M 300
spacyc-4n 40k to 1.96M 300

SPACYC spacyc-6n 10k to 490 k 60k to 2.94M 150 150 300
spacyc-8n 80k to 3.92M 300
sprand-4n 40k to 1.96M 300

SPRAND sprand-6n 10k to 490 k 60k to 2.94M 150 150 300
sprand-8n 80k to 3.92M 300

4800

is negligible, we assumed the average over k of (TRl
Cmax)k to be a good indicator

of time-ratio on the instance l ∈ Ix
Cmax.

Finally, as an indicator of the performance trend on a typology x with a given
Cmax, we used the average of the average time ratios (defined in Equation (2.7)),
shortly referred to as “average time-ratio” .

AvgTRx
Cmax =

∑
l∈Ix

Cmax


∑10

k=1(TRl
Cmax)k

10


|Ix

Cmax|
. (2.7)

2.4.4 Results

The results of the computational experiments have been divided according
to the type of perturbation applied to the graph: Tables 2.2 to 2.9 refer to the
INCREASE perturbation and Tables 2.10 to 2.15 refer to the DECREASE one. In
particular, the “AvgTR” values have been computed according to Equation (2.7)
while the field “#Wins” contains the number of instances for which Reopt wins
Dijkstra, namely it presents a lower running time3.

Appendix 2.B reports the average computation times of both the algorithms,
while a graphical representation of the results is presented in Appendix 2.A.

3Data of the executed experiments are available at https://figshare.com/articles/dataset/
RESULTS/10129223.
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Table 2.2 (GTC-INCREASE). Computational results in terms of number of wins
for Reopt, and AvgTR.

Cmax #Wins AvgTR #Wins AvgTR

grid full-grid

75 29/30 0.54 ± 79.0% 30/30 0.44 ± 33.8%
150 28/30 0.70 ± 33.2% 30/30 0.75 ± 5.3%
280 15/30 1.00 ± 20.9% 3/30 1.19 ± 9.6%
560 3/30 1.15 ± 16.6% 2/30 1.51 ± 29.8%
1125 1/30 1.67 ± 20.9% 0/30 2.40 ± 39.3%

cylinder torus
75 30/30 0.55 ± 20.4% 30/30 0.26 ± 51.1%
150 21/30 0.87 ± 28.0% 30/30 0.38 ± 53.5%
280 2/30 1.25 ± 8.9% 28/30 0.57 ± 40.5%
560 4/30 1.20 ± 8.4% 28/30 0.71 ± 28.5%
1125 1/30 1.73 ± 21.3% 1/30 1.15 ± 7.4%

Finally, we performed a further experimentation on a subset of instances
in order to appraise the performance of Dijkstra and Reopt when both the
perturbations occur on the network. We will refer to that kind of change as
RANDOM perturbation.

INCREASE perturbation

B GTC-instances. The computational results are reported in Table 2.2-Table 2.3.
On these networks, the values of time-ratio increase with that of Cmax

i.e. the running time of Reopt becomes comparable with (or even higher than)
the one of Dijkstra. Moreover, as appears clearly from the plot in Fig. 2.7,
the algorithm outperforms Dijkstra on all the four topologies when either
Cmax = 75 or Cmax = 150; this result holds for grid networks if Cmax is
increased to 280 and for torus ones when Cmax = 560.

This inversion of the performance trend depends on the perturbation applied
to the graph and on the specific characteristics of the MLB data structure: in
fact, the running time of Dijkstra’s algorithm with this structure is linked to
Cmax [39]; then, since the INCREASE perturbation affects both the original costs
and the reduced ones, the increase of the maximum reduced cost implies the
presence of a higher number of nonempty buckets to unroll, namely expand,
during the dual phase. These operations, make Dijkstra performing better than
Reopt as Cmax increases. Nevertheless, we point out that a computational effort
is required to check whether the CS hold for all the arcs in the current solution,
after the cost changes.

Since the RSDs for the AvgTR values are relevant for most of the consid-
ered networks, (see Table 2.2), we considered also the average over k of the
time-ratio (Equation (2.6)) for each instance, with the aim of analysing how
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the size of the network influences the performance trend (Table 2.3). This analy-
sis revealed that on torus networks, as the size increases, the greater Cmax is,
the smaller is the effect of its increase on the running time of Reopt. A similar
trend emerges for the other instances of the family only when Cmax ≤ 150.
We relate this somehow regular behaviour to the particular topology of torus
networks.

B GRIDGEN-instances. The computational results are given in Tables 2.4 to 2.7.
Specifically, the first column indicates the value of Cmax considered, the second,
third and forth pair of columns summarize the results obtained.

Actually, the results in Table 2.4 and Table 2.5 and the scatter plots in Fig. 2.8a
and Fig. 2.8b show a similar trend for the AvgTR values. This means that the
“shape” of the grid has no influence on the performance of the two algorithms.

The comparison of the running times revealed that the addition of the 25%
of arcs affects the performance of Dijkstra more significantly; instead, the
50% additional arcs has a major impact on those of Reopt. This is due to the
costs distribution: in the skeleton grids, i.e. those without additional arcs, the
probability of finding an arc with cost equal to Cmax is about 0.70. Therefore,
although we perform a slight perturbation, the presence of arcs in K+ leads to an
elevated number of buckets to unroll for Reopt. In the case of 25% additional
arcs, the reoptimization becomes advisable since for the same Cmax, there are
many more possible values – if compared with those relative to the skeleton
grids – for the labels generated during Dijkstra’s procedure; therefore unrolling
the buckets in Dijkstra takes more time. The performance of Reopt is affected
in a similar way when there is a 50% additional arcs.

Due to the significant RSDs associated to the AvgTR for these networks, also
for them we conducted an analysis by size, given in Tables 2.6 and 2.7: it simply
reveals that the reoptimization is advisable on the small sized instances of the
two families without additional arcs and with a 50% additional arcs.

B SPACYC-instances. The results in Table 2.8 and in Fig. 2.8c prove that when the
density of the graph increases, the performance of Reopt becomes comparable
with (or even worse than) those of Dijkstra. Indeed, also for this family of
problems, there is a threshold value for Cmax indicating when the resolution
from scratch is more efficient. Specifically, it decreases from 280 to 75 as the
density of the networks increases from 1 · 10−4 to 3 · 10−4.

Although the increase in the number of arcs is supposed to influence similarly
the running time of both algorithms, the performance of Reopt is more affected.
In fact, as observed for GTC instances, when the INCREASE perturbation occurs,
the number of nonempty buckets to unroll during the dual phase increases.

Finally we have not included the analysis by size, because the related results
have not added any information to what has already been observed. Probably,
this specific behaviour can be explained by observing that the acyclic networks
are not characterized by a specific structure, unlike the networks considered so
far. It is worth to mention that the RSD of the average time-ratio for SPACYC
instances is on average equal to 8.7%.
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Table 2.4 (SQUARE-INCREASE). Computational results in terms of number of
wins for Reopt, and AvgTR.

square square+25 square+50
Cmax #Wins AvgTR #Wins AvgTR #Wins AvgTR

75 30/30 0.60 ± 28.3% 30/30 0.50 ± 26.7% 30/30 0.52 ± 13.2%
150 20/30 0.96 ± 58.3% 20/30 0.80 ± 29.6% 10/30 1.30 ± 28.7%
280 11/30 1.16 ± 66.2% 29/30 0.80 ± 20.6% 10/30 1.62 ± 69.3%
560 20/30 0.95 ± 85.5% 30/30 0.67 ± 26.4% 30/30 0.52 ± 56.6%
1125 10/30 1.23 ± 50.3% 30/30 0.77 ± 11.8% 10/30 1.12 ± 29.9%

Table 2.5 (RECT-INCREASE). Computational results in terms of number of wins
for Reopt, and AvgTR.

rect rect+25 rect+50
Cmax #Wins AvgTR #Wins AvgTR #Wins AvgTR

75 30/30 0.73 ± 13.0% 30/30 0.48 ± 16.5% 30/30 0.45 ± 12.7%
150 10/30 1.34 ± 38.0% 29/30 0.76 ± 27.8% 9/30 1.29 ± 26.2%
280 10/30 1.33 ± 54.9% 19/30 0.99 ± 24.9% 10/30 1.75 ± 70.5%
560 30/30 0.53 ± 13.7% 30/30 0.51 ± 32.7% 30/30 0.45 ± 39.4%
1125 10/30 1.24 ± 45.1% 29/30 0.89 ± 10.9% 10/30 1.11 ± 22.1%

Table 2.6 (SQUARE-INCREASE). Computational results in terms of number of
wins for Reopt, and AvgTR. Instances classified by size: block n =
100/400/700 refers to “small”/“medium”/“large” instances.

square square+25 square+50
Cmax #Wins AvgTR #Wins AvgTR #Wins AvgTR

n = 100
75 10/10 0.60 ± 5.1% 10/10 0.37 ± 6.8% 10/10 0.47 ± 5.0%
150 10/10 0.55 ± 2.5% 0/10 1.04 ± 1.6% 10/10 0.92 ± 4.9%
280 10/10 0.45 ± 4.2% 9/10 0.95 ± 4.2% 10/10 0.35 ± 1.8%
560 10/10 0.36 ± 6.1% 10/10 0.79 ± 7.6% 10/10 0.26 ± 4%
1125 10/10 0.52 ± 7.0% 10/10 0.84 ± 4.1% 10/10 0.74 ± 4.3%

n = 400
75 10/10 0.77 ± 5.9% 10/10 0.49 ± 6.7% 10/10 0.48 ± 10.0%
150 0/10 1.60 ± 6.2% 10/10 0.58 ± 5.5% 0/10 1.32 ± 4.2%
280 0/10 1.97 ± 4.2% 10/10 0.83 ± 5.0% 0/10 2.02 ± 5.9%
560 10/10 0.61 ± 2.9% 10/10 0.76 ± 10.0% 10/10 0.84 ± 5.5%
1125 0/10 1.53 ± 5.8% 10/10 0.81 ± 6.1% 0/10 1.26 ± 8.8%

n = 700
75 10/10 0.43 ± 3.9% 10/10 0.63 ± 4.6% 10/10 0.59 ± 5.2%
150 10/10 0.73 ± 8.3% 10/10 0.77 ± 6.4% 0/10 1.67 ± 6.9%
280 1/10 1.05 ± 3.7% 10/10 0.62 ± 4.4% 0/10 2.49 ± 3.5%
560 0/10 1.88 ± 6.1% 10/10 0.47 ± 3.3% 10/10 0.47 ± 5.1%
1125 0/10 1.63 ± 5.8% 10/10 0.67 ± 4.5% 0/10 1.37 ± 1.7%
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Table 2.7 (RECT-INCREASE). Computational results in terms of number of wins
for Reopt, and AvgTR. Instances classified by size: block n =
100/300/500 refers to “small”/“medium”/“large” instances.

rect rect+25 rect+50
Cmax #Wins AvgTR #Wins AvgTR #Wins AvgTR

n = 100
75 10/10 0.64 ± 2.8% 10/10 0.40 ± 6.5% 10/10 0.40 ± 6.2%
150 10/10 0.76 ± 1.2% 9/10 0.99 ± 0.6% 9/10 0.93 ± 4.7%
280 10/10 0.49 ± 0.0% 0/10 1.27 ± 3.3% 10/10 0.34 ± 9.9%
560 10/10 0.44 ± 2.4% 10/10 0.32 ± 0.0% 10/10 0.25 ± 1.3%
1125 10/10 0.59 ± 3.3% 9/10 0.98 ± 1.1% 10/10 0.83 ± 4.0%

n = 300
75 10/10 0.74 ± 13.8% 10/10 0.48 ± 9.6% 10/10 0.44 ± 9.2%
150 0/10 1.53 ± 4.4% 10/10 0.58 ± 7.2% 0/10 1.34 ± 10.8%
280 0/10 1.82 ± 3.5% 9/10 0.82 ± 13.1% 0/10 2.54 ± 6.6%
560 10/10 0.57 ± 5.5% 10/10 0.61 ± 9.8% 10/10 0.58 ± 9.8%
1125 0/10 1.54 ± 3.7% 10/10 0.80 ± 6.0% 0/10 1.22 ± 4.5%

n = 500
75 10/10 0.83 ± 5.4% 10/10 0.56 ± 4.9% 10/10 0.51 ± 3.2%
150 0/10 1.72 ± 3.5% 10/10 0.69 ± 4.0% 0/10 1.61 ± 2.9%
280 0/10 1.67 ± 3.0% 10/10 0.87 ± 7.0% 0/10 2.37 ± 1.5%
560 10/10 0.57 ± 1.9% 10/10 0.61 ± 2.2% 10/10 0.52 ± 4.2%
1125 0/10 1.58 ± 3.5% 10/10 0.87 ± 3.9% 0/10 1.28 ± 4.5%

Table 2.8 (SPACYC-INCREASE). Computational results in terms of number of
wins for Reopt, and AvgTR.

spacyc-4n spacyc-6n spacyc-8n
Cmax #Wins AvgTR #Wins AvgTR #Wins AvgTR

75 20/30 0.83 ± 73.5% 13/30 0.97 ± 34.9% 20/30 0.99 ± 28.8%
150 21/30 0.74 ± 60.1% 11/30 1.14 ± 32.4% 6/30 1.29 ± 29.1%
280 19/30 0.86 ± 48.0% 20/30 0.95 ± 9.4% 3/30 1.34 ± 30.5%
560 14/30 0.99 ± 24.9% 11/30 1.18 ± 32.4% 16/30 1.18 ± 32.9%
1125 20/30 0.99 ± 49.5% 7/30 1.29 ± 23.9% 2/30 1.71 ± 30.3%
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Table 2.9 (SPRAND-INCREASE). Computational results in terms of number of
wins for Reopt, and AvgTR.

sprand-4n sprand-6n sprand-8n
Cmax #Wins AvgTR #Wins AvgTR #Wins AvgTR

75 30/30 0.53 ± 35.7% 30/30 0.39 ± 66.6% 30/30 0.47 ± 52.4%
150 30/30 0.47 ± 28.9% 30/30 0.58 ± 5.7% 30/30 0.58 ± 15.3%
280 30/30 0.48 ± 53.8% 29/30 0.67 ± 37.0% 30/30 0.61 ± 47.7%
560 30/30 0.33 ± 26.9% 30/30 0.47 ± 19.8% 28/30 0.60 ± 62.7%
1125 30/30 0.40 ± 29.7% 30/30 0.53 ± 3.4% 30/30 0.43 ± 9.9%

B SPRAND-instances. The computational results are given in Table 2.9 and
Fig. 2.9a: Reopt is more efficient than Dijkstra on the whole sets of problems.

Furthermore, from Fig. 2.9a, it is evident that the time-ratio values only
slightly differ. Actually this means that the increase in the number of arcs affects
the performances of both the algorithms in the same way. Supposedly this is
due to the lack of an intrinsic structure in the graph. Also for this family of test
problems the analysis by size did not reveal any particular trend. Hence we have
decided to not include the related results in this evaluation, though we underline
that the average RSD for the average time-ratio is equal to 6.3%.

Summary of Results

On the basis of the computational results collected, when a a perturbation of
type INCREASE is performed, the following final considerations can be drawn.

For GTC instances the AvgTR values (Equation (2.7)) increase with that of the
maximum cost within the graph. Indeed, for each topology, a threshold value for
Cmax was identified that separates the instances on which the reoptimization
approach is efficient from those that should be solved from scratch.

For SQUARE and RECT networks, we found that the shape of the grid has no
influence on the performance trends. Moreover, Reopt outperforms Dijkstra on
all the grids with 25% additional arcs. Actually, the addition of the 25% of arcs
affects the performance of Dijkstra more significantly; an opposite trend is
observed in the case of 50% additional arcs.

Finally, the performance of the reoptimization procedure have been studied
on random – acyclic and cyclic – networks. The threshold value for Cmax
was detected for the former, while on the latter Reopt showed always the best
behaviour. Probably, these outcomes are due to the absence of an intrinsic
structure in the networks, unlike the other family of test problems.

DECREASE perturbation

When this perturbation is applied, both the sets K+ and K− can be nonempty;
in this case, Reopt has to perform the dual phase and at least one primal phase.
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Table 2.10 (torus-DECREASE). Computational results in terms of number of
wins for Reopt, and AvgTR. Columns n = 400/700 refer to
“medium”/“large” instances.

n = 400 n = 700
Cmax #Wins AvgTR #Wins AvgTR

75 9/10 0.63 ± 47.1% 10/10 0.56 ± 61.2%
150 9/10 0.79 ± 33.7% 10/10 0.59 ± 32.7%

Table 2.11 (SQUARE-DECREASE). Computational results in terms of number of
wins for Reopt, and AvgTR.

square square+25 square+50
Cmax #Wins AvgTR #Wins AvgTR #Wins AvgTR

75 24/30 0.92 ± 9.5% 30/30 0.67 ± 20.0% 30/30 0.74 ± 6.3%
150 10/30 1.26 ± 46.9% 22/30 0.78 ± 33.9% 4/30 1.37 ± 22.3%
280 12/30 1.00 ± 48.6% 28/30 0.71 ± 27.9% 10/30 1.41 ± 66.4%
560 29/30 0.80 ± 18.4% 30/30 0.81 ± 16.3% 20/30 0.93 ± 45.7%
1125 10/30 1.24 ± 45.5% 27/30 0.86 ± 13.8% 10/30 1.22 ± 26.2%

B GTC-instances. The AvgTR values were meaningless for these problems, since
the related RSD value was on average equal to 0.46. Moreover, no regular
trend was observed for the time-ratio values. There is only the evidence that
Reopt outperforms Dijkstra on all the medium and large sized torus instances
with Cmax ≤ 150; Table 2.10 reports the number of wins and the AvgTR values
for these networks.

Comparing the running times of the dual and primal phases, we found that in
82% of cases the execution of latter is the most time consuming. Specifically, we
observed that the computational efforts of each primal phase does not depend on
the graph topology, but on where the perturbation occurs: the further away from
the root are the nodes incident to arcs with negative reduced costs, the higher
the computational time required to build the Dijkstrable subgraph is. Indeed, the
Depth First Search is the most time consuming phase of the procedure adopted
to build the Dijkstrable subgraph.

B GRIDGEN-instances. Comparing the results in Tables 2.11 and 2.12 with the
data in Tables 2.4 and 2.5 (and the relative scatter plots in Figures 2.8a, 2.8b
and 2.9b, 2.9c) it is evident that the trend for the time-ratio values remains
approximately the same. Hence, we analyzed the running times of the dual
and primal phases: for all the considered problems, the execution of the dual
phase is the most time consuming operation, as appears clearly from the average
computation times of Tables 2.24 and 2.25. Therefore, all the observations made
in subsection “INCREASE perturbation” apply also for the DECREASE perturbation.

Actually, the only set of problems on which the reoptimization approach
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Table 2.12 (RECT-DECREASE). Computational results in terms of number of wins
for Reopt, and AvgTR.

rect rect+25 rect+50
Cmax #Wins AvgTR #Wins AvgTR #Wins AvgTR

75 22/30 0.94 ± 9.7% 30/30 0.64 ± 10.6% 30/30 0.62 ± 6.5%
150 10/30 1.38 ± 35.9% 25/30 0.74 ± 29.1% 8/30 1.37 ± 26.0%
280 10/30 1.11 ± 49.4% 20/30 0.86 ± 33.0% 10/30 1.49 ± 66.9%
560 28/30 0.84 ± 5.8% 29/30 0.83 ± 10.1% 20/30 0.94 ± 41.3%
1125 10/30 1.24 ± 46.5% 21/30 0.94 ± 10.4% 9/30 1.27 ± 26.4%

always behaves the best is represented by the grids with 25% additional arcs.
Moreover, the structure of these networks ensures that the Depth First Search is
not affected by the location in the graph of the arcs with negative reduced costs.

Also the analysis by size imitates the one relative to the INCREASE perturba-
tion: the reoptimization approach is convenient on SQUARE and RECT small sized
instances without additional arcs and with a 50% additional arcs. By way of
example, we reported only the data relating to SQUARE family in Table 2.13.

Finally, the average RSD for the average time-ratio is equal to 7% for
SQUARE instances and 7.4% for RECT instances.

B SPACYC-instances. The testing phase revealed the absence of a regular trend
for the performance of Reopt on such test problems. Indeed, in Table 2.14 we
reported the AvgTR values only for spacyc-6n networks, since the other ones
have significant RSD.

As regards the running times of Reopt, an in-depth study revealed that those
of the dual phase are determinant in terms of complexity, as emerges from the
average times in Table 2.26. In particular, the execution of the primal phases is
extremely rapid whatever the modification occurred on the graph. Therefore,
we have concluded that the lack of an intrinsic structure for these networks
implies that the computational effort needed to build a Dijkstrable subgraph is
independent on the position of the arcs with negative reduced costs. Namely,
that running time is not affected by the distance (in terms of number of arcs)
between the root node and the nodes incident to arcs with negative reduced costs.

B SPRAND-instances. The results in Table 2.15 reveal that Reopt outperformes
Dijkstra on the whole set of problems. Moreover, the comparison between
the scatter plots in Figures 2.9a and 2.10 highlights that the AvgTR values only
slightly differ, namely the performance trend is almost the same for both the
perturbations.

This result was determined by the fact that, as for GRIDGEN instances, the
most time consuming phase of Reopt is the dual one. In particular we retain
that the lack of an intrinsic structure for the graph makes the Depth First Search
extremely fast on these networks too.
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Table 2.13 (SQUARE-DECREASE). Computational results in terms of number of
wins for Reopt, and AvgTR. Instances classified by size: block n =
100/400/700 refers to “small”/“medium”/“large” instances.

square square+25 square+50
Cmax #Wins AvgTR #Wins AvgTR #Wins AvgTR

n = 100
75 10/10 0.82 ± 12.4% 10/10 0.59 ± 7.2% 10/10 0.74 ± 8.3%
150 10/10 0.58 ± 12.9% 2/10 1.08 ± 6.9% 4/10 1.02 ± 6.2%
280 10/10 0.51 ± 11.7% 8/10 0.93 ± 8.3% 10/10 0.36 ± 11.6%
560 10/10 0.64 ± 10.2% 10/10 0.94 ± 4.9% 10/10 0.79 ± 5.5%
1125 10/10 0.59 ± 8.1% 8/10 0.98 ± 11.8% 10/10 0.87 ± 7.8%

n = 400
75 6/10 0.96 ± 8.5% 10/10 0.60 ± 20.5% 10/10 0.70 ± 8.2%
150 0/10 1.56 ± 11.2% 10/10 0.58 ± 6.1% 0/10 1.50 ± 6.0%
280 0/10 1.48 ± 5.1% 10/10 0.68 ± 5.3% 0/10 1.70 ± 6.1%
560 10/10 0.81 ± 8.6% 10/10 0.81 ± 4.3% 0/10 1.40 ± 3.5%
1125 0/10 1.52 ± 10.7% 9/10 0.86 ± 7.7% 0/10 1.30 ± 3.6%

n = 700
75 8/10 0.97 ± 3.0% 10/10 0.83 ± 4.8% 10/10 0.79 ± 3.4%
150 0/10 1.65 ± 3.7% 10/10 0.69 ± 6.3% 0/10 1.59 ± 3.8%
280 2/10 1.01 ± 2.5% 10/10 0.54 ± 3.2% 0/10 2.16 ± 3.4%
560 9/10 0.93 ± 11.0% 10/10 0.68 ± 6.3% 10/10 0.59 ± 6.6%
1125 0/10 1.62 ± 2.9% 10/10 0.74 ± 13.3% 0/10 1.49 ± 5.7%

Table 2.14 (SPACYC-DECREASE). Computational results. The AvgTR values are
given only for spacyc-6n instances.

spacyc-4n spacyc-6n spacyc-8n
Cmax #Wins #Wins AvgTR #Wins

75 13/30 3/30 1.67 ± 32.6% 1/30
150 12/30 5/30 1.69 ± 46.1% 0/30
280 10/30 11/30 1.38 ± 32.9% 2/30
560 10/30 8/30 1.59 ± 36.0% 0/30
1125 16/30 7/30 1.57 ± 38.5% 0/30
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Table 2.15 (SPRAND-DECREASE). Computational results in terms of number of
wins for Reopt, and AvgTR.

sprand-4n sprand-6n sprand-8n
Cmax #Wins AvgTR #Wins AvgTR #Wins AvgTR

75 30/30 0.47 ± 36.2% 30/30 0.47 ± 63.8% 28/30 0.52 ± 69.2%
150 30/30 0.57 ± 41.4% 30/30 0.70 ± 15.5% 30/30 0.70 ± 2.3%
280 28/30 0.48 ± 59.2% 29/30 0.65 ± 32.7% 27/30 0.61 ± 55.0%
560 30/30 0.45 ± 38.7% 30/30 0.53 ± 33.2% 23/30 0.62 ± 69.9%
1125 30/30 0.49 ± 41.9% 29/30 0.68 ± 16.5% 30/30 0.64 ± 11.0%

Summary of Results

On the basis of the computational results collected, when the DECREASE
perturbation of is applied, the following final considerations can be drawn.

The computational experiments on GTC instances revealed that a resolution
from scratch has to be preferred. Moreover, the construction of a Dijkstrable
subgraph is the most time consuming operation for Reopt: its running time
strongly depends on the location of the arcs whose cost violates dual feasibility.

The results on SQUARE and RECT problems are similar to those of the INCREASE
perturbation: whatever the value of Cmax, the reoptimization approach is advis-
able on the grids with 25% additional arcs. Moreover, the shape of the grid has
no influence on the performance trend.

Finally, the absence of an intrinsic structure within the random networks,
ensures that the computational effort needed to build a Dijkstrable subgraph
is independent on the depth of the perturbation. Namely, by depth we refer to
the distance – in terms of number of arcs – between the root and the nodes that
are incident to arcs with negative reduced costs. However, on SPACYC networks
no regular trend for the performance was observed, while Reopt overcomes
Dijkstra on all the SPRAND instances.

As a final remark, we underline that the analysis we conducted – by consider-
ing the cost changes of arcs in forward stars – could be equivalently and directly
presented in terms of arcs affected by the perturbation. Indeed, when the AvgTR
values could be used as indicators of the performance trends, it means that the
performance of both Reopt and Dijkstra is independent on the number of arcs
involved in the cost perturbation.

RANDOM perturbation

In order to appraise the performance trends when the arc cost change is
generic, that is both cost increase and decrease may occur, we considered also
the following perturbation:

RANDOM: for each arc (i, j) ∈ K, a coin toss decided whether to apply the
INCREASE or the DECREASE perturbation to its cost.
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Table 2.16 Comparison of results for INCREASE, DECREASE and RANDOM perturba-
tions on the “medium” instances with Cmax = 280. Results presented
in terms of number of wins for Reopt, and AvgTR.

Typology INCREASE DECREASE RANDOM
#Wins AvgTR #Wins AvgTR #Wins AvgTR

grid 10/10 0.76 ± 6.7% 0/10 4.13 ± 59.9% 0/10 3.08 ± 36.0%
full-grid 3/10 1.11 ± 13.6% 0/10 3.14 ± 37.5% 0/10 3.86 ± 46.4%
cylinder 0/10 1.32 ± 6.2% 0/10 3.63 ± 42.8% 0/10 3.70 ± 48.9%
torus 10/10 0.48 ± 10.3% 5/10 1.12 ± 39.7% 5/10 1.31 ± 44.7%

square 0/10 1.97 ± 4.2% 0/10 1.48 ± 5.1% 0/10 1.48 ± 13.5%
square+25 10/10 0.83 ± 5.0% 10/10 0.68 ± 5.3% 10/10 0.71 ± 5.1%
square+50 0/10 2.02 ± 5.9% 0/10 1.70 ± 6.1% 0/10 1.72 ± 13.4%

rect 0/10 1.82 ± 3.5% 0/10 1.42 ± 5.0% 0/10 1.44 ± 9.3%
rect+25 9/10 0.82 ± 13.1% 10/10 0.65 ± 4.8% 10/10 0.67 ± 9.5%
rect+50 0/10 2.54 ± 6.6% 0/10 2.03 ± 7.8% 0/10 2.01 ± 3.8%

spacyc-4n 0/10 1.27 ± 12.7% 0/10 1.36 ± 14.1% 0/10 1.37 ± 8.2%
spacyc-6n 10/10 0.84 ± 11.6% 10/10 0.86 ± 9.1% 10/10 0.83 ± 9.9%
spacyc-8n 0/10 1.80 ± 10.9% 0/10 1.77 ± 7.8% 0/10 1.75 ± 10.7%

sprand-4n 10/10 0.37 ± 5.4% 10/10 0.27 ± 6.5% 10/10 0.29 ± 23.3%
sprand-6n 10/10 0.46 ± 7.4% 10/10 0.44 ± 5.8% 10/10 0.45 ± 16.4%
sprand-8n 10/10 0.67 ± 9.1% 10/10 0.57 ± 9.2% 10/10 0.56 ± 9.5%

As done in the previous sections, the perturbation was applied to the arcs
in the forward stars of k randomly chosen nodes, where k = 1, 2, . . . 10. We
selected the medium sized instances of each family for which Cmax = 280; this
choice is motivated by two aspects that emerged in the previous experimentation:
i) whenever Cmax ≥ 280 the resolution from scratch, via Dijkstra, is always
the best performing approach; ii) the performance is not particularly affected
by the size of the networks, thus the medium sized graphs could be used as
sample graphs. In Table 2.16 the results for RANDOM perturbation are compared
with those of INCREASE and DECREASE perturbations (presented in previous
subsections) so as to identify some analogies.

Summary of Results

We expected to find similarities – in terms of number of wins and performance
trends – between the results relative to DECREASE and RANDOM perturbation; in
fact, in both cases Reopt has to execute at least one primal phase since some
arcs could have a modified negative reduce cost. Indeed, focusing on the last
four columns of Table 2.16, it is easy to find that kind of analogies for the whole
set of considered instances.

In particular, for GTC instances we made a comparison of the running times
of the dual phase and the primal ones: in 75% of cases the primal phases are
those which require the most time effort thus confirming that the Depth First
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Search, necessary to build the Dijkstrable subgraph, is determinant in terms of
complexity.

On GRIDGEN instances, independently on the shape of the grid, the perfor-
mance trends in the case of DECREASE and RANDOM changes are similar to that
of the INCREASE perturbation. Hence, we conducted an analysis of the running
times of the dual and the primal phases: for all the considered problems, the
most time consuming operation of Reopt is the dual phase whose running time
is γ times the total running time of the primal phases, where γ is at least 125 and
at most 1427. As a result, the behaviour of the two algorithms on these networks
is perfectly described by that observed in the case of INCREASE perturbations.

We drawn similar conclusions for SPACYC and SPRAND networks under con-
sideration since, also on these graphs, the analysis of the running times revealed
that the dual phase of Reopt is the most time consuming operation. In particular,
whatever perturbation interests the SPRAND graphs, the reoptimization approach
is always preferable for the medium sized instances with Cmax = 280.

2.4.5 Performance Profiles

This Section provides a further analysis conducted considering the Perfor-
mance Profiles [58] for Reopt and Dijkstra, which give a measure of how much
one of the two algorithms is worse than the other on a set of test problems.

In general, given a set P of np problems and a set S of ns solvers, the
performance ratio rp,s for each p ∈ P and each s ∈ S is defined as the ratio
between the computation time tp,s of solver s on problem p and the best time of
any solver on p [see 58]:

rp,s =
tp,s

min{tp,s : s ∈ S}
.

Furthermore, the Performance Profile is the cumulative distribution function
ρs(·) for the performance ratio of a solver s ∈ S; indeed, for each τ ∈ R, ρs(τ)
measures the probability that for s a performance ratio is within a factor τ of the
best possible ratio:

ρs(τ) =

∣∣∣{p ∈ P : rp,s ≤ τ}
∣∣∣

np
.

Our analysis was conducted on all the families of instances, except the SPRAND
one, since, as observed in Section 2.4.4, Reopt overcomes Dijkstra on the whole
set of test problems.

We selected a set of problems for each kind of perturbation, and to make
them suitably representative, we used the two parameters characterizing each
typology of instances: size and maximum cost. Specifically, we fixed, in turn,
one of them to the average value among those possible and left the other vary.
In this way we selected all the graphs with Cmax = 280 and all the medium ones.
Finally, we applied the INCREASE and DECREASE perturbations, separately, to the
arcs in the forward stars of k = 1, 2, . . . 10 nodes of each selected graph.
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Figures 2.4a to 2.6c depict the representation of the Performance Profiles
obtained with The MathWorks, Inc.MATLAB ® R2018b; in particular, we refer to
them as “PerfPro” .

INCREASE perturbation

The PerfPro in Fig. 2.4a refers to GTC instances: it shows that approximately
half of the considered problems are solved faster by Reopt, being its Performance
Profile value approximately equal to 0.5 when τ = 1. Moreover, with probability
1, when Dijkstra is faster than Reopt, then the time-ratio (Equation (2.5)) is
at most equal to 3.

As regards SQUARE and RECT networks (Fig. 2.4b and Fig. 2.4c), the PerfPros
confirm that the performance of the two algorithms are comparable. In fact,
Reopt is faster than Dijkstra with probability 0.5 and the τ values are approxi-
mately the same. For example, on RECT instances, when an algorithm exhibits
the best running time, then τ for the other one is at most equal to 4.

The PerfPro in Fig. 2.5a confirms that on SPACYC networks, although Reopt is
not competitive with Dijkstra on many instances, the values of τ remain rel-
atively low: the reoptimization approach is not much worse than a resolution
from scratch.

DECREASE perturbation

Fig. 2.5b shows that when Reopt performs also the primal phases, then τ
grows dramatically for GTC problems: we truncated the graphic at τ = 10, but
the maximum value observed was τ = 14, meaning that the running time of
Reopt is up to 14 times worse than the one of Dijkstra.

The PerfPros in Fig. 2.6a and Fig. 2.6b give another proof of the similarity
between the performance trends on SQUARE and RECT instances. Actually, just few
less problems of RECT family, with respect to the SQUARE one, are solved faster by
Reopt. Moreover, Dijkstra presents for both the sets at most τ ≈ 2.5 meaning
that when Reopt is faster, then the minimum time-ratio (Equation (2.5)) is
approximately 1/2.5.

As regards the acyclic networks, the PerfPro in Fig. 2.6c underlines the
resolution from scratch is the best performing approach with probability ≈ 0.78.
In particular, we truncated the graphic in Fig. 2.6c at τ = 4.5, but the maximum
value observed is τ = 22; namely there is at least an SPACYC instance on which
Reopt running time is 1/22 ≈ 0.045 the one of Dijkstra.
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(a) GTC-INCREASE.

(b) SQUARE-INCREASE.

(c) RECT-INCREASE.

Fig. 2.4 PerfPro of Reopt and Dijkstra on GTC, SQUARE, and RECT “medium”
instances and those with Cmax = 280.

37



Chapter 2. The Reoptimization of Shortest Paths

(a) SPACYC-INCREASE.

(b) GTC-DECREASE.

Fig. 2.5 PerfPro of Reopt and Dijkstra on SPACYC and GTC “medium” instances
and those with Cmax = 280.
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(a) SQUARE-DECREASE.

(b) RECT-DECREASE.

(c) SPACYC-DECREASE.

Fig. 2.6 PerfPro of Reopt and Dijkstra on SQUARE, RECT, and SPACYC “medium”
instances and those with Cmax = 280.
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2.5 Conclusions

This Chapter describes the framework of the reoptimization of shortest paths
problem along with a methodological primal-dual approach devised ad hoc in
Pallottino and Scutellá [144] to deal with the most general scenario, namely the
case when any subset of arcs of the input graph is given a new cost, which can
be either lower or higher than the old one.

Indeed, in Festa et al. [83] we exploited the features of the Multi Level Bucket
data structure devised by Cherkassky et al. [40] to implement this approach,
since to the best of our knowledge any implementation had been proposed so far.
Moreover, we conducted several experiments on a heterogeneous set of instances,
with the aim of detecting when the reoptimization is preferable to the classic
resolution from scratch, performed with the well known Dijkstra’s algorithm.

The considered instances mainly differ for their underlying graph structure,
according to which they can be classified as: a. graphs with specific topologies
(torus, cylinder and grid); b. grids with additional random connections; c. fully
random graphs (acyclic and not). Furthermore, to mimic the occurrences of arc
costs increase and decrease, we defined two kinds of perturbation for the cost
function, namely INCREASE and DECREASE, which we performed both separately
and jointly. On the test problems a., in case of arc cost decrease, we determined
that the resolution from scratch is always preferable. In fact, due to the intrinsic
structure of these networks, the location of the arcs whose cost is decreased,
strongly affects the performance of the reoptimization algorithm. On the contrary,
we detected that the absence of an intrinsic structure in the network is beneficial
for the reoptimization. In fact, it is to be preferred when the perturbed graph is
fully random, independently from the kind of perturbation.

In conclusion, we were able to trace out a border – in terms of cost, topology
and size – separating the set of instances for which the reoptimization approach
is more suitable than a standard resolution.

With these results in mind, our future research is twofold. On the one hand,
we would like to compare the considered algorithm with other reoptimization
approaches. On the other hand, we would investigate the applicability of the
reoptimization paradigm to problems arising in different fields.
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Appendix

Appendix 2.A Scatter Plots

This Section presents the scatter plots related to the results of the test-
ing phase. All the graphics are obtained with The MathWorks, Inc.MATLAB ®
R2018b; moreover, the AvgTR values are given on the y-axis while the different
Cmax values are reported on the x-axis.

Fig. 2.7 (GTC-INCREASE). Average time-ratio for each typology of networks.
Solid red line represents Dijkstra’s AvgTR, equal to 1.
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(a) SQUARE-INCREASE.

(b) RECT-INCREASE.

(c) SPACYC-INCREASE.

Fig. 2.8 (SQUARE, RECT, SPACYC). Average time-ratio for each typology of net-
works. Solid red line represents Dijkstra’s AvgTR, equal to 1.

42



Appendix 2. The Reoptimization of Shortest Paths

(a) SPRAND-INCREASE.

(b) SQUARE-DECREASE.

(c) RECT-DECREASE.

Fig. 2.9 (SPRAND, SQUARE, RECT). Average time-ratio for each typology of net-
works. Solid red line represents Dijkstra’s AvgTR, equal to 1.
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Fig. 2.10 (SPRAND-DECREASE). Average time-ratio for each typology of net-
works. Solid red line represents Dijkstra’s AvgTR, equal to 1.

Appendix 2.B Time Results

This Section summarizes the computation times registered during the experi-
mentation4. Specifically, we computed their average over the number of forward
stars affected by the cost perturbation.

Tables 2.17 to 2.21 refer to the INCREASE perturbation and contain the
average computation times of Reopt and Dijkstra. Tables 2.22 to 2.27, instead,
refer to the DECREASE perturbation: for each instance, the average computation
times of both the dual and the primal phases along with the total (average)
running time of Reopt is given. All the times are expressed in seconds while the
lowest computation times are reported in bold.

4Data of the executed experiments are available at https://figshare.com/articles/dataset/
RESULTS/10129223.
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Appendix 2. The Reoptimization of Shortest Paths

Ta
bl

e
2.

21
(S
P
R
A
N
D
-
I
N
C
R
E
A
S
E
).

C
om

pu
ta

ti
on

al
re

su
lt

s
in

te
rm

s
of

av
er

ag
e

ti
m

es
.

C
m

ax
In

st
an

ce
R
e
o
p
t

D
i
j
k
s
t
r
a

C
m

ax
In

st
an

ce
R
e
o
p
t

D
i
j
k
s
t
r
a

75
s
p
r
a
n
d
-
4
n
1
0
0

0
.0
4
0
±

8
.2

%
0.

14
9
±

3.
3%

28
0
s
p
r
a
n
d
-
6
n
7
0
0

1
4
9
5
.9
2
1
±

7
.1

%
15

89
.0

39
±

6.
1%

75
s
p
r
a
n
d
-
4
n
4
0
0

2
8
.4
3
1
±

5
.6

%
60
.8

98
±

3.
5%

28
0
s
p
r
a
n
d
-
8
n
1
0
0

0
.1
5
7
±

2
.6

%
0.

17
9
±

3.
8%

75
s
p
r
a
n
d
-
4
n
7
0
0

4
7
8
.3
9
6
±

6
.4

%
18

50
.7

52
±

8.
7%

28
0
s
p
r
a
n
d
-
8
n
4
0
0

1
4
6
.5
3
5
±

7
.8

%
22

9.
75

5
±

5.
3%

75
s
p
r
a
n
d
-
6
n
1
0
0

0
.0
7
2
±

4
.7

%
0.

27
4
±

3.
0%

28
0
s
p
r
a
n
d
-
8
n
7
0
0

2
2
6
9
.3
7
2
±

4
.1

%
74

81
.9

25
±

5.
1%

75
s
p
r
a
n
d
-
6
n
4
0
0

5
6
.6
8
5
±

3
.6

%
81
.3

31
±

5.
2%

56
0
s
p
r
a
n
d
-
4
n
1
0
0

0
.0
4
0
±

8
.3

%
0.

09
5
±

4.
8%

75
s
p
r
a
n
d
-
6
n
7
0
0

8
7
3
.3
3
3
±

6
.1

%
39

26
.3

79
±

5.
4%

56
0
s
p
r
a
n
d
-
4
n
4
0
0

3
0
.5
4
9
±

6
.3

%
12

4.
35

8
±

4.
8%

75
s
p
r
a
n
d
-
8
n
1
0
0

0
.1
2
2
±

2
.8

%
0.

16
5
±

4.
2%

56
0
s
p
r
a
n
d
-
4
n
7
0
0

5
1
1
.3
8
9
±

4
.1

%
15

76
.3

55
±

5.
9%

75
s
p
r
a
n
d
-
8
n
4
0
0

9
2
.7
2
9
±

3
.8

%
32

7.
88

8
±

7.
5%

56
0
s
p
r
a
n
d
-
6
n
1
0
0

0
.0
8
3
±

4
.9

%
0.

15
6
±

4.
5%

75
s
p
r
a
n
d
-
8
n
7
0
0

1
3
6
9
.7
5
1
±

7
.0

%
37

00
.4

96
±

4.
4%

56
0
s
p
r
a
n
d
-
6
n
4
0
0

6
8
.5
8
1
±

7
.7

%
18

9.
61

2
±

5.
6%

15
0
s
p
r
a
n
d
-
4
n
1
0
0

0
.0
6
1
±

6
.2

%
0.

10
4
±

3.
1%

56
0
s
p
r
a
n
d
-
6
n
7
0
0

1
0
4
5
.3
4
9
±

2
.8

%
20

30
.7

18
±

5.
0%

15
0
s
p
r
a
n
d
-
4
n
4
0
0

4
2
.2
4
9
±

5
.8

%
87
.0

88
±

8.
8%

56
0
s
p
r
a
n
d
-
8
n
1
0
0

0
.1
2
1
±

4
.9

%
0.

12
4
±

2.
5%

15
0
s
p
r
a
n
d
-
4
n
7
0
0

7
1
8
.3
1
5
±

7
.3

%
22

43
.6

18
±

5.
7%

56
0
s
p
r
a
n
d
-
8
n
4
0
0

1
0
3
.8
1
1
±

4
.4

%
17

3.
81

6
±

5.
1%

15
0
s
p
r
a
n
d
-
6
n
1
0
0

0
.1
0
9
±

5
.4

%
0.

17
8
±

4.
1%

56
0
s
p
r
a
n
d
-
8
n
7
0
0

1
6
1
0
.5
0
8
±

2
.5

%
72

33
.7

87
±

2.
1%

15
0
s
p
r
a
n
d
-
6
n
4
0
0

8
5
.8
3
8
±

7
.9

%
15

9.
79

1
±

9.
3%

11
25

s
p
r
a
n
d
-
4
n
1
0
0

0
.0
7
2
±

1
0
.6

%
0.

13
5
±

5.
3%

15
0
s
p
r
a
n
d
-
6
n
7
0
0

1
3
8
0
.7
9
9
±

8
.4

%
24

03
.4

60
±

6.
4%

11
25

s
p
r
a
n
d
-
4
n
4
0
0

4
8
.0
4
2
±

1
3
.1

%
16

2.
33

0
±

14
.8

%
15

0
s
p
r
a
n
d
-
8
n
1
0
0

0
.1
4
0
±

3
.5

%
0.

29
1
±

2.
0%

11
25

s
p
r
a
n
d
-
4
n
7
0
0

7
0
5
.0
2
3
±

1
3
.6

%
18

88
.7

49
±

4.
8%

15
0
s
p
r
a
n
d
-
8
n
4
0
0

1
2
2
.9
1
4
±

8
.7

%
19

1.
14

6
±

6.
7%

11
25

s
p
r
a
n
d
-
6
n
1
0
0

0
.1
2
0
±

4
.6

%
0.

21
9
±

2.
8%

15
0
s
p
r
a
n
d
-
8
n
7
0
0

1
8
5
0
.9
1
6
±

5
.8

%
29

90
.5

40
±

2.
5%

11
25

s
p
r
a
n
d
-
6
n
4
0
0

8
0
.7
2
7
±

6
.3

%
15

0.
36

6
±

3.
7%

28
0
s
p
r
a
n
d
-
4
n
1
0
0

0
.0
5
5
±

7
.0

%
0.

07
2
±

3.
7%

11
25

s
p
r
a
n
d
-
6
n
7
0
0

1
3
1
3
.0
0
6
±

1
4
.3

%
25

55
.9

07
±

10
.9

%
28

0
s
p
r
a
n
d
-
4
n
4
0
0

3
8
.6
2
2
±

3
.7

%
13

1.
06

8
±

3.
1%

11
25

s
p
r
a
n
d
-
8
n
1
0
0

0
.1
4
8
±

4
.1

%
0.

34
1
±

3.
7%

28
0
s
p
r
a
n
d
-
4
n
7
0
0

6
4
2
.4
0
0
±

6
.1

%
17

48
.0

46
±

7.
1%

11
25

s
p
r
a
n
d
-
8
n
4
0
0

1
0
4
.6
7
5
±

2
.7

%
22

1.
25

2
±

4.
4%

28
0
s
p
r
a
n
d
-
6
n
1
0
0

0
.1
1
8
±

3
.7

%
0.

19
3
±

4.
1%

11
25

s
p
r
a
n
d
-
8
n
7
0
0

1
6
6
6
.4
8
4
±

5
.1

%
42

85
.4

18
±

4.
1%

28
0
s
p
r
a
n
d
-
6
n
4
0
0

8
5
.4
5
1
±

4
.3

%
18

7.
74

2
±

4.
6%

49



Appendix 2. The Reoptimization of Shortest Paths

Table 2.22 (GTC-DECREASE). Computational results in terms of average times on
instances with Cmax ∈ {75, 150, 280}. Reopt and Dijkstra average
computation times in last two columns.

Cmax Instance Reopt Dijkstra
Dual Primal Total

75 grid100 0.008 ± 39.9% 0.019 ± 65.8% 0.026 ± 51.4% 0.008± 38.1%
75 grid400 0.224 ± 35.8% 3.084 ± 95.9% 3.309 ± 90.3% 0.562± 34.0%
75 grid700 1.334 ± 33.7% 57.778 ± 65.0% 59.112 ± 63.9% 3.222± 33.2%
75 full-grid100 0.011 ± 39.0% 0.030 ± 74.8% 0.041 ± 59.5% 0.018± 35.0%
75 full-grid400 0.614 ± 41.4% 5.878 ± 70.2% 6.492 ± 65.1% 1.772± 33.5%
75 full-grid700 4.527 ± 34.2% 325.382 ± 101.0% 329.909 ± 99.7% 12.376± 33.5%
75 cylinder100 0.007 ± 39.6% 0.018 ± 64.5% 0.025 ± 52.6% 0.008± 43.5%
75 cylinder400 0.239 ± 36.0% 1.284 ± 69.5% 1.523 ± 61.0% 0.593± 34.1%
75 cylinder700 1.545 ± 34.3% 66.691 ± 54.9% 68.236 ± 54.0% 3.691± 33.9%
75 torus100 0.008 ± 39.4% 0.017 ± 69.6% 0.025 ± 53.2% 0.015± 36.2%
75 torus400 0.234 ± 35.7% 0.651 ± 76.0% 0.884± 61.1% 1.399 ± 34.8%
75 torus700 1.111 ± 34.8% 4.575 ± 86.9% 5.686± 72.6% 10.191 ± 33.4%

150 grid100 0.005 ± 33.6% 0.017 ± 66.7% 0.022 ± 55.4% 0.006± 36.9%
150 grid400 0.202 ± 33.3% 1.545 ± 77.1% 1.747 ± 69.9% 0.368± 33.2%
150 grid700 1.013 ± 34.7% 8.643 ± 64.5% 9.656 ± 59.3% 2.405± 34.5%
150 full-grid100 0.010 ± 33.7% 0.022 ± 78.0% 0.033 ± 59.3% 0.013± 33.3%
150 full-grid400 0.888 ± 33.6% 3.216 ± 74.2% 4.104 ± 61.1% 1.249± 33.2%
150 full-grid700 6.098 ± 34.1% 35.743 ± 83.0% 41.842 ± 72.3% 8.942± 34.8%
150 cylinder100 0.007 ± 37.8% 0.017 ± 67.7% 0.023 ± 53.3% 0.006± 33.2%
150 cylinder400 0.328 ± 33.5% 0.889 ± 70.9% 1.217 ± 57.1% 0.424± 33.2%
150 cylinder700 1.505 ± 33.6% 5.001 ± 71.8% 6.506 ± 59.2% 2.638± 33.3%
150 torus100 0.006 ± 34.2% 0.015 ± 71.4% 0.021 ± 56.9% 0.009± 33.3%
150 torus400 0.255 ± 33.4% 0.485 ± 63.0% 0.739± 48.6% 0.937 ± 33.2%
150 torus700 1.377 ± 41.2% 2.415 ± 62.4% 3.882± 46.7% 6.636 ± 33.5%
280 grid100 0.007 ± 40.9% 0.024 ± 74.3% 0.031 ± 63.0% 0.007± 39.7%
280 grid400 0.231 ± 37.2% 1.004 ± 91.6% 1.234 ± 79.2% 0.289± 35.7%
280 grid700 1.813 ± 34.1% 7.210 ± 65.6% 9.022 ± 55.8% 1.679± 33.9%
280 full-grid100 0.014 ± 38.7% 0.028 ± 85.0% 0.042 ± 63.5% 0.012± 39.7%
280 full-grid400 1.055 ± 34.0% 1.877 ± 68.7% 2.932 ± 51.7% 0.930± 33.8%
280 full-grid700 7.851 ± 33.5% 13.502 ± 73.7% 21.353 ± 53.4% 5.949± 33.7%
280 cylinder100 0.008 ± 42.5% 0.023 ± 74.7% 0.031 ± 62.3% 0.007± 44.9%
280 cylinder400 0.399 ± 34.2% 0.751 ± 73.1% 1.151 ± 54.6% 0.320± 34.4%
280 cylinder700 2.477 ± 33.5% 5.910 ± 80.7% 8.387 ± 62.3% 1.952± 33.5%
280 torus100 0.008 ± 38.2% 0.019 ± 71.2% 0.027 ± 54.4% 0.011± 37.6%
280 torus400 0.310 ± 35.6% 0.441 ± 75.0% 0.752 ± 52.7% 0.675± 34.0%
280 torus700 1.927 ± 33.6% 2.893 ± 81.4% 4.820 ± 55.8% 4.705± 34.0%
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Appendix 2. The Reoptimization of Shortest Paths

Table 2.23 (GTC-DECREASE). Computational results in terms of average times
on instances with Cmax ∈ {560, 1125}. Reopt and Dijkstra average
computation times in last two columns.

Cmax Instance Reopt Dijkstra
Dual Primal Total

560 grid100 0.006 ± 45.4% 0.021 ± 58.0% 0.028 ± 49.5% 0.006± 43.7%
560 grid400 0.012 ± 40.3% 0.025 ± 62.8% 0.037 ± 48.8% 0.010± 41.3%
560 grid700 0.007 ± 46.2% 0.019 ± 61.5% 0.026 ± 51.8% 0.007± 41.4%
560 full-grid100 0.008 ± 44.0% 0.017 ± 61.4% 0.025 ± 49.2% 0.007± 41.0%
560 full-grid400 0.200 ± 36.0% 0.826 ± 65.5% 1.026 ± 55.2% 0.202± 35.2%
560 full-grid700 0.762 ± 34.2% 0.977 ± 81.7% 1.740 ± 55.6% 0.576± 38.5%
560 cylinder100 0.280 ± 36.1% 0.729 ± 69.0% 1.009 ± 55.7% 0.236± 35.7%
560 cylinder400 0.254 ± 35.0% 0.534 ± 75.8% 0.789 ± 58.5% 0.415± 35.9%
560 cylinder700 1.338 ± 40.2% 5.725 ± 87.6% 7.064 ± 74.0% 1.077± 34.6%
560 torus100 6.802 ± 34.4% 13.518 ± 64.8% 20.321 ± 50.0% 3.582± 34.9%
560 torus400 1.416 ± 33.6% 4.653 ± 85.3% 6.069 ± 68.8% 1.212± 34.5%
560 torus700 1.415 ± 33.4% 2.140 ± 66.8% 3.555 ± 47.8% 2.573± 33.8%
1125 grid100 0.007 ± 39.1% 0.019 ± 67.7% 0.026 ± 54.5% 0.006± 41.5%
1125 grid400 0.266 ± 34.4% 0.876 ± 67.4% 1.142 ± 56.7% 0.149± 36.5%
1125 grid700 1.122 ± 34.2% 6.312 ± 72.7% 7.434 ± 64.2% 0.661± 35.6%
1125 full-grid100 0.012 ± 40.2% 0.028 ± 76.2% 0.039 ± 60.3% 0.010± 39.4%
1125 full-grid400 0.931 ± 35.1% 1.335 ± 70.9% 2.267 ± 52.4% 0.366± 35.2%
1125 full-grid700 6.139 ± 34.0% 9.494 ± 71.5% 15.633 ± 52.5% 2.095± 34.1%
1125 cylinder100 0.007 ± 42.0% 0.020 ± 61.4% 0.027 ± 50.6% 0.006± 40.7%
1125 cylinder400 0.289 ± 34.3% 0.673 ± 69.8% 0.962 ± 55.2% 0.159± 38.5%
1125 cylinder700 1.384 ± 34.7% 5.340 ± 69.0% 6.724 ± 58.9% 0.739± 34.1%
1125 torus100 0.008 ± 37.5% 0.019 ± 69.9% 0.027 ± 56.5% 0.008± 37.0%
1125 torus400 0.297 ± 34.6% 0.455 ± 65.8% 0.752 ± 47.7% 0.278± 36.4%
1125 torus700 1.622 ± 33.7% 1.854 ± 64.3% 3.476 ± 44.2% 1.550± 33.8%
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Table 2.24 (SQUARE-DECREASE). Computational results in terms of average times.
Reopt and Dijkstra average computation times in last two columns.

Cmax Instance Reopt Dijkstra
Dual Primal Total

75 square100 0.110 ± 35.2% 0.013 ± 78.8% 0.123± 35.8% 0.151 ± 33.5%
75 square400 94.336 ± 33.9% 0.316 ± 74.1% 94.652± 33.9% 98.673 ± 33.6%
75 square700 1310.012 ± 33.3% 0.979 ± 72.0% 1310.991± 33.3% 1350.614 ± 33.2%
75 square100+25 0.133 ± 33.4% 0.018 ± 81.5% 0.151± 33.9% 0.258 ± 33.2%
75 square400+25 105.815 ± 34.6% 0.352 ± 72.7% 106.167± 34.7% 179.233 ± 35.4%
75 square700+25 1685.317 ± 33.3% 1.447 ± 59.1% 1686.764± 33.3% 2040.346 ± 33.3%
75 square100+50 0.146 ± 33.3% 0.021 ± 75.3% 0.168± 34.3% 0.228 ± 33.2%
75 square400+50 126.525 ± 33.7% 0.511 ± 69.5% 127.036± 33.7% 181.520 ± 33.5%
75 square700+50 1921.924 ± 33.2% 1.897 ± 58.1% 1923.822± 33.2% 2425.638 ± 33.3%

150 square100 0.103 ± 33.5% 0.017 ± 72.5% 0.120± 35.1% 0.207 ± 34.1%
150 square400 87.280 ± 40.3% 0.288 ± 67.7% 87.568 ± 40.3% 55.767± 35.4%
150 square700 1265.065 ± 35.2% 0.937 ± 57.2% 1266.002 ± 35.2% 766.663± 35.0%
150 square100+25 0.144 ± 33.2% 0.020 ± 69.9% 0.164 ± 33.9% 0.151± 33.2%
150 square400+25 113.603 ± 33.4% 0.384 ± 77.9% 113.987± 33.4% 198.140 ± 33.5%
150 square700+25 1894.349 ± 33.5% 1.490 ± 74.0% 1895.839± 33.5% 2736.094 ± 33.4%
150 square100+50 0.188 ± 33.7% 0.023 ± 70.2% 0.211 ± 33.8% 0.206± 33.2%
150 square400+50 167.526 ± 33.5% 0.470 ± 71.3% 167.995 ± 33.5% 112.214± 33.5%
150 square700+50 2549.935 ± 34.1% 1.646 ± 69.0% 2551.581 ± 34.1% 1601.081± 34.0%
280 square100 0.067 ± 33.7% 0.019 ± 71.8% 0.086± 35.7% 0.169 ± 33.2%
280 square400 53.082 ± 33.5% 0.286 ± 60.3% 53.368 ± 33.5% 36.086± 33.4%
280 square700 819.157 ± 33.2% 0.860 ± 75.7% 820.018 ± 33.2% 811.631± 33.2%
280 square100+25 0.100 ± 33.5% 0.016 ± 68.5% 0.116± 34.3% 0.125 ± 33.2%
280 square400+25 88.232 ± 33.4% 0.413 ± 74.1% 88.645± 33.4% 130.988 ± 33.4%
280 square700+25 1356.643 ± 33.3% 1.431 ± 63.8% 1358.074± 33.3% 2535.271 ± 33.2%
280 square100+50 0.182 ± 34.1% 0.030 ± 86.8% 0.212± 34.3% 0.592 ± 34.2%
280 square400+50 133.883 ± 34.3% 0.446 ± 74.6% 134.330 ± 34.2% 79.113± 34.2%
280 square700+50 1833.194 ± 33.3% 1.680 ± 82.0% 1834.874 ± 33.3% 849.244± 33.2%
560 square100 0.123 ± 35.4% 0.019 ± 78.3% 0.142± 36.3% 0.221 ± 33.5%
560 square400 94.471 ± 34.2% 0.361 ± 83.5% 94.832± 34.1% 117.201 ± 34.1%
560 square700 1252.269 ± 35.2% 0.865 ± 68.0% 1253.134± 35.3% 1346.157 ± 34.1%
560 square100+25 0.104 ± 33.8% 0.021 ± 62.7% 0.125± 33.7% 0.132 ± 33.2%
560 square400+25 108.512 ± 33.6% 0.423 ± 71.4% 108.935± 33.7% 135.549 ± 33.3%
560 square700+25 1658.935 ± 35.5% 1.347 ± 55.5% 1660.282± 35.5% 2444.339 ± 34.3%
560 square100+50 0.132 ± 33.8% 0.021 ± 65.1% 0.153± 33.6% 0.195 ± 33.2%
560 square400+50 110.319 ± 33.3% 0.556 ± 66.7% 110.875 ± 33.3% 79.134± 33.3%
560 square700+50 1797.606 ± 33.4% 1.624 ± 73.2% 1799.230± 33.4% 3052.267 ± 33.4%

1125 square100 0.125 ± 33.8% 0.020 ± 73.1% 0.145± 34.3% 0.244 ± 33.3%
1125 square400 114.302 ± 33.7% 0.391 ± 66.9% 114.693 ± 33.7% 76.322± 34.8%
1125 square700 1333.036 ± 33.2% 1.038 ± 72.8% 1334.074 ± 33.2% 825.741± 33.3%
1125 square100+25 0.191 ± 35.5% 0.025 ± 100.2% 0.216± 39.0% 0.219 ± 33.9%
1125 square400+25 142.635 ± 35.0% 0.428 ± 73.0% 143.063± 35.1% 166.493 ± 33.4%
1125 square700+25 2188.806 ± 35.6% 1.558 ± 60.0% 2190.364± 35.6% 2965.140 ± 34.6%
1125 square100+50 0.234 ± 33.5% 0.021 ± 72.9% 0.255± 34.1% 0.293 ± 33.2%
1125 square400+50 166.484 ± 33.7% 0.464 ± 75.0% 166.948 ± 33.7% 128.334± 33.5%
1125 square700+50 2504.124 ± 33.4% 1.711 ± 64.5% 2505.835 ± 33.4% 1680.483± 33.4%
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Table 2.25 (RECT-DECREASE). Computational results in terms of average times.
Reopt and Dijkstra average computation times in last two columns.

Cmax Instance Reopt Dijkstra
Dual Primal Total

75 rect100 0.495 ± 34.1% 0.035 ± 74.1% 0.530± 33.9% 0.626 ± 34.1%
75 rect300 118.452 ± 34.4% 0.355 ± 75.5% 118.807± 34.4% 124.939 ± 34.2%
75 rect500 1524.745 ± 36.1% 1.362 ± 66.6% 1526.107 ± 36.1% 1474.774± 35.0%
75 rect100+25 0.589 ± 33.2% 0.037 ± 75.7% 0.626± 33.4% 1.098 ± 33.2%
75 rect300+25 145.361 ± 35.8% 0.458 ± 71.1% 145.819± 35.8% 227.536 ± 34.1%
75 rect500+25 1694.583 ± 33.5% 1.484 ± 74.1% 1696.067± 33.5% 2410.733 ± 33.4%
75 rect100+50 0.704 ± 33.7% 0.043 ± 76.4% 0.748± 34.1% 1.273 ± 33.2%
75 rect300+50 192.566 ± 33.9% 0.602 ± 74.2% 193.168± 33.9% 319.656 ± 33.8%
75 rect500+50 1894.340 ± 33.5% 1.673 ± 61.4% 1896.013± 33.5% 2860.115 ± 33.4%
150 rect100 0.488 ± 36.6% 0.032 ± 75.3% 0.520± 36.9% 0.639 ± 34.3%
150 rect300 123.501 ± 35.0% 0.378 ± 70.8% 123.878 ± 35.0% 73.088± 34.5%
150 rect500 1305.529 ± 34.6% 1.076 ± 76.6% 1306.605 ± 34.6% 804.255± 33.8%
150 rect100+25 0.638 ± 33.2% 0.038 ± 64.4% 0.676± 33.3% 0.681 ± 33.2%
150 rect300+25 161.098 ± 35.3% 0.454 ± 82.0% 161.552± 35.3% 269.797 ± 34.7%
150 rect500+25 1956.525 ± 33.3% 1.371 ± 64.1% 1957.895± 33.3% 3056.855 ± 34.3%
150 rect100+50 0.889 ± 33.5% 0.047 ± 83.7% 0.936± 33.6% 0.977 ± 33.4%
150 rect300+50 259.283 ± 35.0% 0.586 ± 54.9% 259.869 ± 35.0% 165.204± 35.6%
150 rect500+50 2558.590 ± 34.2% 1.735 ± 73.0% 2560.324 ± 34.2% 1636.379± 34.3%
280 rect100 0.321 ± 35.5% 0.033 ± 82.6% 0.354± 35.3% 0.742 ± 33.3%
280 rect300 78.139 ± 33.9% 0.357 ± 67.6% 78.496 ± 34.0% 55.322± 33.7%
280 rect500 845.569 ± 33.2% 1.081 ± 65.9% 846.650 ± 33.2% 591.691± 33.3%
280 rect100+25 0.493 ± 33.5% 0.039 ± 80.2% 0.531 ± 33.4% 0.448± 33.6%
280 rect300+25 127.084 ± 36.5% 0.459 ± 74.9% 127.543± 36.4% 196.244 ± 38.0%
280 rect500+25 1432.206 ± 33.5% 1.444 ± 70.0% 1433.650± 33.5% 1912.192 ± 33.5%
280 rect100+50 0.718 ± 34.5% 0.069 ± 71.6% 0.788± 34.0% 2.328 ± 33.6%
280 rect300+50 167.615 ± 34.3% 0.507 ± 63.9% 168.122 ± 34.3% 82.953± 33.3%
280 rect500+50 1948.265 ± 33.3% 1.680 ± 63.5% 1949.945 ± 33.3% 928.307± 33.3%
560 rect100 0.550 ± 33.6% 0.046 ± 73.1% 0.596± 34.2% 0.761 ± 33.9%
560 rect300 148.208 ± 40.3% 0.321 ± 86.6% 148.529± 40.2% 170.018 ± 36.0%
560 rect500 1233.865 ± 33.6% 0.995 ± 66.3% 1234.860± 33.6% 1446.891 ± 33.3%
560 rect100+25 0.524 ± 37.2% 0.044 ± 88.2% 0.567± 37.9% 0.650 ± 39.0%
560 rect300+25 127.868 ± 34.8% 0.421 ± 54.9% 128.289 ± 34.8% 100.050± 45.8%
560 rect500+25 1724.029 ± 35.8% 1.191 ± 57.8% 1725.220± 35.8% 1964.684 ± 34.1%
560 rect100+50 0.596 ± 33.2% 0.052 ± 66.6% 0.648± 33.5% 0.851 ± 33.2%
560 rect300+50 146.031 ± 33.3% 0.542 ± 71.9% 146.573 ± 33.3% 105.584± 33.3%
560 rect500+50 2140.742 ± 35.7% 2.136 ± 74.7% 2142.878± 35.7% 3172.148 ± 33.9%

1125 rect100 0.639 ± 35.1% 0.056 ± 65.8% 0.695± 35.9% 1.207 ± 34.5%
1125 rect300 185.873 ± 37.3% 0.532 ± 68.0% 186.405 ± 37.3% 122.081± 36.9%
1125 rect500 1452.069 ± 33.7% 1.071 ± 68.0% 1453.140 ± 33.7% 902.778± 33.7%
1125 rect100+25 0.956 ± 35.0% 0.059 ± 56.8% 1.015 ± 34.3% 0.972± 33.9%
1125 rect300+25 238.028 ± 39.7% 0.548 ± 60.3% 238.576± 39.7% 280.047 ± 38.8%
1125 rect500+25 1963.700 ± 33.4% 1.237 ± 77.3% 1964.937± 33.5% 2147.710 ± 33.3%
1125 rect100+50 1.153 ± 34.3% 0.064 ± 86.1% 1.217± 35.0% 1.358 ± 33.8%
1125 rect300+50 264.949 ± 35.4% 0.548 ± 69.7% 265.498 ± 35.4% 193.905± 34.7%
1125 rect500+50 3006.409 ± 34.2% 1.641 ± 63.3% 3008.049 ± 34.2% 1952.012± 34.0%
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Table 2.26 (SPACYC-DECREASE). Computational results in terms of average times.
Reopt and Dijkstra average computation times in last two columns.

Cmax Instance Reopt Dijkstra
Dual Primal Total

75 spacyc-4n100 0.018 ± 33.6% 0.026 ± 82.0% 0.044 ± 55.9% 0.023± 33.8%
75 spacyc-4n400 7.623 ± 44.5% 0.695 ± 104.0% 8.318 ± 45.1% 6.540± 39.4%
75 spacyc-4n700 59.192 ± 35.2% 1.230 ± 80.0% 60.422± 34.8% 80.617 ± 38.3%
75 spacyc-6n100 0.050 ± 34.7% 0.018 ± 72.8% 0.069 ± 36.1% 0.036± 35.0%
75 spacyc-6n400 8.118 ± 33.5% 0.528 ± 80.6% 8.646 ± 34.0% 8.303± 33.6%
75 spacyc-6n700 262.037 ± 37.5% 1.515 ± 71.9% 263.551 ± 37.3% 129.927± 36.4%
75 spacyc-8n100 0.063 ± 34.1% 0.032 ± 75.7% 0.095 ± 42.8% 0.064± 34.9%
75 spacyc-8n400 22.373 ± 37.5% 0.625 ± 83.3% 22.998 ± 37.7% 15.756± 46.1%
75 spacyc-8n700 486.422 ± 33.3% 1.689 ± 58.7% 488.111 ± 33.3% 196.415± 33.9%

150 spacyc-4n100 0.017 ± 33.7% 0.026 ± 55.2% 0.044 ± 42.7% 0.024± 33.8%
150 spacyc-4n400 5.214 ± 54.8% 0.542 ± 72.3% 5.757 ± 51.7% 5.425± 35.9%
150 spacyc-4n700 43.884 ± 33.5% 1.256 ± 74.0% 45.140± 33.5% 55.922 ± 33.7%
150 spacyc-6n100 0.043 ± 34.5% 0.032 ± 71.4% 0.076 ± 45.0% 0.030± 35.9%
150 spacyc-6n400 7.235 ± 33.8% 0.546 ± 71.2% 7.781± 34.1% 7.954 ± 33.6%
150 spacyc-6n700 176.223 ± 33.2% 1.506 ± 64.6% 177.730 ± 33.2% 113.561± 33.5%
150 spacyc-8n100 0.073 ± 33.6% 0.040 ± 83.2% 0.112 ± 41.9% 0.063± 33.5%
150 spacyc-8n400 18.603 ± 34.8% 0.452 ± 61.7% 19.055 ± 34.5% 13.420± 35.2%
150 spacyc-8n700 426.102 ± 33.7% 1.666 ± 65.4% 427.768 ± 33.7% 202.384± 33.8%
280 spacyc-4n100 0.017 ± 33.4% 0.026 ± 70.6% 0.043 ± 50.5% 0.020± 33.3%
280 spacyc-4n400 5.951 ± 36.1% 0.381 ± 82.2% 6.332 ± 36.6% 4.660± 33.6%
280 spacyc-4n700 42.935 ± 34.4% 1.160 ± 62.6% 44.095± 34.5% 50.703 ± 34.0%
280 spacyc-6n100 0.045 ± 33.3% 0.024 ± 58.2% 0.070 ± 37.4% 0.044± 33.6%
280 spacyc-6n400 5.958 ± 33.9% 0.506 ± 65.5% 6.463± 34.5% 7.498 ± 33.6%
280 spacyc-6n700 184.378 ± 33.5% 1.641 ± 62.3% 186.019 ± 33.4% 109.308± 33.2%
280 spacyc-8n100 0.062 ± 33.7% 0.031 ± 84.9% 0.093 ± 43.7% 0.065± 33.4%
280 spacyc-8n400 16.022 ± 34.6% 0.609 ± 74.1% 16.632 ± 34.3% 9.383± 33.5%
280 spacyc-8n700 374.677 ± 33.5% 1.383 ± 79.2% 376.060 ± 33.5% 145.232± 33.2%
560 spacyc-4n100 0.018 ± 33.4% 0.027 ± 64.9% 0.045 ± 47.2% 0.025± 33.3%
560 spacyc-4n400 6.308 ± 33.3% 0.443 ± 67.2% 6.750 ± 33.4% 5.824± 33.3%
560 spacyc-4n700 38.932 ± 50.6% 1.168 ± 79.5% 40.101± 50.8% 61.262 ± 34.1%
560 spacyc-6n100 0.049 ± 35.2% 0.019 ± 64.5% 0.069 ± 39.0% 0.038± 35.8%
560 spacyc-6n400 8.576 ± 38.1% 0.733 ± 80.2% 9.309± 39.6% 9.874 ± 39.6%
560 spacyc-6n700 242.868 ± 33.5% 1.381 ± 58.4% 244.249 ± 33.5% 119.785± 33.3%
560 spacyc-8n100 0.060 ± 33.9% 0.026 ± 56.7% 0.086 ± 35.7% 0.050± 35.3%
560 spacyc-8n400 16.226 ± 33.4% 0.485 ± 68.6% 16.711 ± 33.5% 12.979± 33.9%
560 spacyc-8n700 490.081 ± 33.2% 1.764 ± 70.6% 491.845 ± 33.2% 214.433± 33.3%

1125 spacyc-4n100 0.015 ± 49.6% 0.027 ± 69.1% 0.042 ± 57.1% 0.024± 33.2%
1125 spacyc-4n400 5.015 ± 53.3% 0.500 ± 84.1% 5.515 ± 52.6% 5.432± 36.0%
1125 spacyc-4n700 38.677 ± 34.3% 1.347 ± 70.1% 40.024± 34.4% 54.455 ± 35.0%
1125 spacyc-6n100 0.059 ± 39.6% 0.032 ± 66.5% 0.091 ± 45.1% 0.043± 42.5%
1125 spacyc-6n400 10.770 ± 37.2% 0.768 ± 68.4% 11.538± 35.7% 12.500 ± 37.4%
1125 spacyc-6n700 212.261 ± 35.7% 1.414 ± 73.4% 213.675 ± 35.6% 130.887± 38.0%
1125 spacyc-8n100 0.074 ± 33.5% 0.049 ± 76.0% 0.123 ± 43.3% 0.070± 33.5%
1125 spacyc-8n400 17.283 ± 33.5% 0.496 ± 70.4% 17.779 ± 33.6% 11.438± 33.2%
1125 spacyc-8n700 538.547 ± 33.6% 1.763 ± 87.1% 540.310 ± 33.6% 236.424± 34.0%
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Table 2.27 (SPRAND-DECREASE). Computational results in terms of average times.
Reopt and Dijkstra average computation times in last two columns.

Cmax Instance Reopt Dijkstra
Dual Primal Total

75 sprand-4n100 0.050 ± 35.8% 0.016 ± 62.2% 0.066± 36.6% 0.145 ± 34.4%
75 sprand-4n400 40.792 ± 42.7% 0.334 ± 72.6% 41.126± 42.4% 69.538 ± 44.2%
75 sprand-4n700 468.952 ± 50.1% 1.148 ± 66.9% 470.100± 50.0% 1689.737 ± 33.3%
75 sprand-6n100 0.076 ± 34.7% 0.022 ± 64.6% 0.098± 34.9% 0.254 ± 33.5%
75 sprand-6n400 57.238 ± 35.6% 0.353 ± 97.1% 57.591± 35.5% 72.376 ± 33.6%
75 sprand-6n700 828.797 ± 50.5% 1.543 ± 73.3% 830.341± 50.5% 3809.134 ± 33.8%
75 sprand-8n100 0.094 ± 33.4% 0.024 ± 83.6% 0.118± 37.1% 0.126 ± 33.3%
75 sprand-8n400 78.212 ± 33.3% 0.479 ± 69.7% 78.691± 33.3% 319.044 ± 37.3%
75 sprand-8n700 1301.797 ± 33.5% 1.697 ± 59.0% 1303.494± 33.5% 3404.807 ± 33.4%

150 sprand-4n100 0.059 ± 33.6% 0.017 ± 62.8% 0.075± 35.1% 0.091 ± 33.4%
150 sprand-4n400 39.436 ± 33.4% 0.297 ± 81.5% 39.734± 33.5% 74.084 ± 34.0%
150 sprand-4n700 733.781 ± 33.2% 1.268 ± 60.9% 735.049± 33.2% 2060.019 ± 33.4%
150 sprand-6n100 0.115 ± 33.6% 0.017 ± 61.1% 0.132± 33.8% 0.160 ± 33.5%
150 sprand-6n400 89.647 ± 33.9% 0.360 ± 73.8% 90.006± 33.9% 140.657 ± 34.6%
150 sprand-6n700 1450.732 ± 33.8% 1.465 ± 70.3% 1452.197± 33.8% 2299.779 ± 33.4%
150 sprand-8n100 0.171 ± 40.3% 0.024 ± 71.1% 0.195± 38.4% 0.283 ± 34.0%
150 sprand-8n400 141.811 ± 34.1% 0.519 ± 67.9% 142.330± 34.1% 208.749 ± 33.9%
150 sprand-8n700 2226.395 ± 37.1% 2.216 ± 79.9% 2228.611± 37.2% 3110.290 ± 35.4%
280 sprand-4n100 0.040 ± 50.2% 0.012 ± 90.1% 0.052± 50.9% 0.066 ± 33.4%
280 sprand-4n400 31.417 ± 33.3% 0.305 ± 58.2% 31.722± 33.2% 119.886 ± 33.7%
280 sprand-4n700 599.852 ± 33.5% 1.144 ± 74.1% 600.996± 33.5% 1628.262 ± 33.5%
280 sprand-6n100 0.094 ± 33.3% 0.016 ± 64.0% 0.110± 34.7% 0.171 ± 33.5%
280 sprand-6n400 73.607 ± 33.7% 0.416 ± 68.2% 74.023± 33.7% 168.366 ± 33.9%
280 sprand-6n700 1337.212 ± 34.5% 1.634 ± 80.2% 1338.846± 34.5% 1561.865 ± 35.0%
280 sprand-8n100 0.136 ± 33.4% 0.023 ± 66.9% 0.159± 34.7% 0.166 ± 33.6%
280 sprand-8n400 126.243 ± 35.3% 0.478 ± 68.2% 126.721± 35.2% 223.062 ± 34.8%
280 sprand-8n700 2194.818 ± 33.6% 2.196 ± 71.8% 2197.014± 33.6% 7500.313 ± 33.4%
560 sprand-4n100 0.040 ± 50.0% 0.016 ± 56.3% 0.055± 48.9% 0.086 ± 33.5%
560 sprand-4n400 32.983 ± 33.9% 0.360 ± 68.1% 33.342± 33.8% 112.501 ± 33.6%
560 sprand-4n700 567.419 ± 33.8% 0.968 ± 80.8% 568.386± 33.8% 1377.740 ± 33.5%
560 sprand-6n100 0.076 ± 33.4% 0.020 ± 67.0% 0.096± 35.0% 0.135 ± 33.5%
560 sprand-6n400 61.269 ± 34.0% 0.383 ± 77.1% 61.651± 34.0% 170.567 ± 34.3%
560 sprand-6n700 977.168 ± 33.8% 1.408 ± 62.9% 978.576± 33.8% 1928.951 ± 33.4%
560 sprand-8n100 0.098 ± 33.5% 0.022 ± 77.2% 0.120 ± 36.5% 0.111± 33.2%
560 sprand-8n400 87.648 ± 33.4% 0.431 ± 81.2% 88.079± 33.5% 153.147 ± 33.7%
560 sprand-8n700 1526.437 ± 33.3% 1.947 ± 83.1% 1528.384± 33.3% 7140.586 ± 33.3%
1125 sprand-4n100 0.055 ± 33.8% 0.015 ± 72.9% 0.071± 36.0% 0.098 ± 33.4%
1125 sprand-4n400 39.822 ± 33.3% 0.361 ± 68.9% 40.183± 33.3% 124.969 ± 34.2%
1125 sprand-4n700 746.223 ± 33.3% 1.254 ± 83.1% 747.477± 33.3% 1763.083 ± 33.5%
1125 sprand-6n100 0.107 ± 33.7% 0.020 ± 90.7% 0.127± 37.8% 0.158 ± 33.4%
1125 sprand-6n400 76.868 ± 33.4% 0.478 ± 72.1% 77.346± 33.4% 132.561 ± 34.6%
1125 sprand-6n700 1484.569 ± 34.7% 1.453 ± 72.6% 1486.022± 34.7% 2264.907 ± 33.8%
1125 sprand-8n100 0.155 ± 34.3% 0.026 ± 77.8% 0.180± 36.6% 0.264 ± 34.8%
1125 sprand-8n400 134.701 ± 35.3% 0.503 ± 64.2% 135.204± 35.3% 200.561 ± 34.9%
1125 sprand-8n700 2379.289 ± 33.3% 1.656 ± 80.3% 2380.945± 33.3% 4270.195 ± 33.3%
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CHAPTER 3

The Reoptimization of Shortest
Paths in Urban Air Mobility

In this Chapter we address both the design of models for Urban Air Mobility
and the resolution of the corresponding Shortest Path Problems. Indeed, in
Fugaro [87] we devised three different discretization approaches to give a graph
structure to the 3D space in which the motion is supposed to happen. Then,
the two-steps resolution of SPPs is tackled by exploiting the Reoptimization
algorithm presented in Chapter 2.

In Section 3.1 we outline the main aspects of designing and solving models
in Urban Air Mobility while the three discretization approaches are presented in
Section 3.2. Then, a complete presentation of the computational experiments is
given in Section 3.3 and Appendix 3.B. In addition, Section 3.4 is devoted to the
presentation of the trajectories related to the discretization approaches.

3.1 Urban Air Mobility: Motivations and Design of
Models

“Urban Air Mobility (UAM) presents an opportunity to decongest road traffic,
improve mobility, give back time to those trapped in daily traffic, and unlock
the potential of cities worldwide.” 1 Indeed, it could be employed also for emer-
gency medical evacuations, rescue operations, humanitarian missions, weather
monitoring [170]. Therefore, the development of UAM represents a flourishing
stream of research: companies are adapting to this trend for the transportation
as well as for delivery purposes, e.g. Amazon® has announced the launching of
Amazon Prime Air, a fast delivery service with drones.

1https://www.uber.com/us/en/elevate/uberair/
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However, the development of efficient systems, capable to exploit the benefits
of UAM, is very challenging: among the others [2], one of the principal issues
to address is the realization of well suited – electrical/hybrid – vehicles whose
use in air traffic might have the lowest possible impact, in terms of pollution and
noise [116]. Anyway, the most relevant and challenging aspect to consider when
designing models for UAM, consists in the Path Planning [15, 173].

Specifically, this procedure consists in two phases: i) the discretization of the
obstacle-free 3D space in which the aircraft is going to fly, and ii) the definition
of the admissible trajectories. On the one hand, different strategies exist to
detect and depict the available space from the map of the buildings in the city
[11]; consequently, different environments results from different assumptions.
On the other hand, though trajectories are generally computed as shortest paths
according to specific cost criteria, the definition of the cost functions is rather
than simple. In fact, they should take into account the energy consumption
as well as penalty factors related to the pollution and noise produced by the
aircraft, but also to the atmospheric conditions which may favor or hinder the
motion of vehicles [114]. Additionally, due the complex nature of these cost
functions, some of the information characterizing them might be available only
as estimates.

In this scenario, the resolution of the shortest path problems related to the
computation of the best trajectories is significantly complicated. However, a
suitable approach consists in the two-steps resolution: at first, the shortest paths
are computed offline, i.e. considering as deterministic the initial information, and
then there is the switch to the online environment, updating the information and
eventually the solution too. In particular, this approach shares similarities with
the reoptimization framework depicted in Chapter 2: in fact, the discretization
defines an underlying graph structure for the obstacle-free space; then, switching
from the offline to the online environment yields to two slightly different graphs
on which the same problem has to be solved.

With these considerations in mind, in Fugaro [87] we address both the issues
related to the Path Planning in UAM modelling. Specifically, we design three
discretization approaches which discretize the 3D space proceeding by layers,
i.e. plane sections, and defining a particular graph topology, grid or random, on
each layer, before connecting them appropriately (Section 3.2). Furthermore,
we test whether the reoptimization algorithmic framework [83, 144] might be
advisable for the computation of the best routes or the resolution from scratch
in the online step has to be preferred (Section 3.3). In the remaining of this
Chapter, the terms aircraft and “VTOL” i.e. vertical take-off and landing aircraft
will be used as synonyms.

3.2 Discretization Approaches

This Section is devoted to thoroughly describe the three discretization ap-
proaches we propose to address the first phase of Path Planning in UAM [87].

In order to compute the aircraft trajectories, it is above all necessary to have
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a detailed representation of the 3D space in which the aircraft can fly. As for
the motion planning, several approaches have been employed in the scientific
literature [36, 102, 140]; indeed, the 3D space representations can be classified
in the following four categories [11]:

Object Oriented Maps. The obstacles are represented with polygons (in 2D) or
polyhedrons (in 3D) in order to specify which regions should be avoided,
due to the presence of obstacles.

Free-Space Maps. A graph is used to represent the environment and nodes are
assigned to the free of obstacles regions, thus supporting the navigation
from one free space node to another.

Composite-Space Maps. The space is represented through a grid with rectan-
gular cells, each marked as “obstacle” or “non-obstacle” .

Paths Maps. The routes are computed with a set of predefined paths.

The three discretization methods proposed in Fugaro [87] are Free-Space
Maps obtained by defining: i) a vertical sectioning of the 3D space, and ii) a
graph structure on each plane section.

Specifically, the 3D map of the city is inserted in a three dimensional Cartesian
coordinate system, with origin O and axis lines X, Y and Z; then, the buildings
are enclosed in parallelepipeds whose base faces are parallel to the (X,Y) plane.

Remark 4. In order to approximate the structure of a building with a paral-
lelepiped, the polygonal base of the building in the (X,Y) plane is considered:
given its n vertices (xi, yi)i=1,...n, those of the base of the parallelepiped in the same
plane, namely (x̄i, ȳi)i=1,...4, are obtained by picking the minimum and maximum
values for each vertices coordinates and combining them [87]. �

Additionally, before defining the vertical sections, a further pre-processing
operation is performed; in fact, for safety reasons, the aircraft must maintain
a specific safe distance from the side and top faces of buildings. Thus, two
parallelepipeds, i.e. two bounded buildings, are merged whenever the free space
between them does not allow the aircraft to fly safely. In order to obtain different
configurations, the pre-processing operations are performed according to one of
the following strategies [87].

1. Parallelepipeds are merged independently of the value of the difference
between their heights. The height of the resulting parallelepiped is that of
the highest of the two buildings.

2. Parallelepipeds are merged only if the value of the difference between their
heights is less than the double sum of the aircraft height and the vertical
safety distance.

Finally, the discretization is performed according to one of the methods
described in the remaining of this Section. Specifically, the first two approaches,
namely the Discretization via Grids (Section 3.2.1) and the Discretization via
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Random Graphs (Section 3.2.2), differ in the type of topology chosen for the
graphs built on plane sections, while the One-Layer Discretization (Section 3.2.3),
consists in the construction of random graph on a single plane section which
is then properly connected with the the source and destination nodes of the
shortest paths.

3.2.1 The Discretization via Grids

This method constructs the Free-Space Map of the city by first discretizing
the whole 3D space and then performing a post-processing phase in order to
remove areas occupied by the buildings. In this way, the overall structure of the
obstacle-free space resembles that of a layered graph.

Specifically, a grid graph is built on each layer, where the grid topology is
analogous to the one described in Section 2.4.2. Then, nodes and arcs falling
inside the plane sections of parallelepipeds are removed from the obtained
environment. Finally, all the layers are connected together, both upward and
downward, by defining arcs between each node and the corresponding on the
upper level.

3.2.2 The Discretization via Random Graphs

This method constructs the Free-Space Map of the city similarly to the one of
Section 3.2.1: indeed, a random graph is built on each layer from the skeleton
structure of a grid, by defining the connections randomly.

Specifically, for each node the cardinality of the forward star is set to the one
it would have had in the grid, and the arcs are defined by connecting the node
with randomly chosen nodes. Then, apart from removing nodes and arcs within
the plane sections of the parallelepipeds, a feasibility check of the set of arcs on
each layer is executed to remove the arcs crossing these plane sections. Further
details on the adopted procedure are given in Appendix 3.A. Finally, the layers
are connected upward and downward.

3.2.3 The One-Layer Discretization

The idea behind this discretization method is to let the aircraft fly above the
highest buildings. Consequently, the Free-Space Map of the city consists in a
discretization of the plane section above the tallest of buildings.

In particular, the graph topology is defined as done for the method in Sec-
tion 3.2.2 while origins and destinations of the routes – located on the roof
of some buildings – are connected with the corresponding nodes on the plane
section with upward vertical arcs.
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3.3 Computational Experiments

As thoroughly motivated in Section 3.1, the computation of the most promis-
ing trajectories is rather than simple. In Fugaro [87], we addressed this issue
with the two-steps resolution; specifically, once the shortest paths have been
computed, we apply a local perturbation to the graph cost function to simulate
the effects of switching from offline to online. Then, we perform a computational
experimentation to determine whether the reoptimization approach (see Chap-
ter 2) is advisable to update the current solutions or the modified problems have
to be solved from scratch. Indeed, the aim of this experimentation is twofold,
since it is also meant to determine which of the discretization methods presented
in Section 3.2 produces the most realistic environment.

3.3.1 Test Problems

Since for the study conducted in Fugaro [87] high-level real world data
were not available, the three discretization approaches of Section 3.2 have been
tested on a toy city created ad hoc. Specifically, Fig. 3.1 shows its plan, while
Fig. 3.2 shows the 3D plan obtained once that building have been enclosed in
parallelepipeds (cfr. Section 3.2).

Fig. 3.1 Plan of the toy city. Numbers inside blue polygons represent floors of
the corresponding building.

In order to compute the routes it is necessary to define the location of skyports
which are the take-off and landing points. To ensure that passengers or goods
are loaded on board the aircraft, these skyports are generally located on the roof
of buildings. Thus, in order to depict different scenarios, we consider six couples
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Fig. 3.2 3D plan of the toy city. Gray parallelepipeds represent the bounding
boxes of buildings.

of skyports: (A,R), (B,R), (B,S), (F,S), (G,P) and (P,I).
In particular, the position of the skyports determines the height of the first

and the last plane sections: in fact, the first layer is fixed in correspondence of
the lowest height h̄ between those of the skyports. Then, to define the remaining
plane sections, we consider the vector h = (h1, h2, . . . ht) such that: a) hi ≥ h̄ for
all i ≤ t; b) hi , h j for all i, j ≤ t, i , j; c) hi ≤ hi+1 for all i ≤ t − 1 and set a layer
i.e. a plane section at height hi + δ whenever hi − hi−1 > δ, where δ is constant
including the VTOL height and the vertical safety distance.

Finally, the pre-processing operations have been performed with both the
strategies described in Section 3.2 in order to depict different configurations.

With these assumptions and applying the procedures of Section 3.2, the
following four data-sets have been obtained. In particular, the different types of
graph on each layer were built adapting the generator described in Festa and
Pallottino [80].

1-2. RAND-GRID instances; RAND-instances. The former were generated with the
approach of Section 3.2.1, the latter with the approach of Section 3.2.2.
The cost function takes into account energy/fuel consumption, travel time
and maximum distance covered by the VTOL. In particular, it assigns
random integer cost from the set {1, 2, . . .Cmax} to the arcs of each layer
and cost equal to Cmax times the difference in altitude between two
successive sections to the vertical arcs, i.e. those connecting the layers.
This choice aims to discourage a high variation of altitudes (in order to
reduce the energy consumption).

3. DIST-instances. They were generated with a refinement of the Discretization
via Random Graphs (Section 3.2.2): on the one hand, the density of the
random graph on each layer is increased; on the other hand, a distance-
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dependent cost function is defined. Specifically, we set cardinality CARD =
4, 8, 20 for the forward star of the inner nodes; the corresponding instances
are indicated with prefixes 4-dist, 8-dist and 20-dist. Additionally, the
cost of an arc (i, j) is proportional to the product of the Euclidean distance
between i and j in the (X,Y) plane.

4. ONE-LAYER instances. They were obtained with the approach of Section 3.2.3,
by letting cardinality for the forward star of the inner nodes vary from 4
to 20. The corresponding instances are indicated with prefixes 4-ol, 8-ol
and 20-ol. The cost function assigns cost ci j to an arc (i, j) which is the
Euclidean distance between i and j in the (X,Y) plane.

Table 3.1 Details of the data-sets RAND-GRID and RAND.

RAND-GRID RAND
Instance Layers Nodes Arcs Instance Layers Nodes Arcs

heights-AR 11 104313 405346 rand-heights-AR 11 104313 301833
heights-NC-AR 11 104313 404746 rand-heights-NC-AR 11 104313 301408
AR 7 66381 254982 rand-AR 7 66381 196548
NC-AR 7 66381 254622 rand-NC-AR 7 66381 196505
heights-BR 12 113796 441434 rand-heights-BR 12 113796 322308
heights-NC-BR 12 113796 440834 rand-heights-NC-BR 12 113796 321675
BR 8 75864 290731 rand-BR 8 75864 218992
NC-BR 8 75864 290371 rand-NC-BR 8 75864 218031
heights-BS 12 113796 441070 rand-heights-BS 12 113796 318102
heights-NC-BS 12 113796 440636 rand-heights-NC-BS 12 113796 317848
BS 8 75864 288845 rand-BS 8 75864 216930
NC-BS 8 75864 288605 rand-NC-BS 8 75864 216476
heights-FS 11 104313 405412 rand-heights-FS 11 104313 300311
heights-NC-FS 11 104313 404978 rand-heights-NC-FS 11 104313 300217
FS 8 75864 286076 rand-FS 8 75864 217899
NC-FS 8 75864 285912 rand-NC-FS 8 75864 217818
heights-GP 7 66381 259834 rand-heights-GP 7 66381 243892
heights-NC-GP 7 66381 259704 rand-heights-NC-GP 7 66381 243519
GP 5 47415 183650 rand-GP 5 47415 175669
NC-GP 5 47415 183572 rand-NC-GP 5 47415 175856
heights-PI 6 56898 222975 rand-heights-PI 6 56898 217247
heights-NC-PI 6 56898 222831 rand-heights-NC-PI 6 56898 217103
PI 4 37932 147136 rand-PI 4 37932 147627
NC-PI 4 37932 147064 rand-NC-PI 4 37932 147465

Indeed, a preliminary testing revealed that some of the layered graphs of
data-sets 1., 2. and 3. were not connected; thus, all the data-sets have been
further enriched with discretized environments in which the landing skyport is
connected with all the layers above the building on which it is situated. The
details about data-sets RAND-GRID and RAND are given in Table 3.1. In particular,
the “-heights” instances have been obtained with the second pre-processing
strategy while the “NC-” instances are those in which the destination skyport
is not connected with all the remaining layers. Finally, we mention that the
average construction time is equal to 0.32 seconds for the former data-set and
0.02 seconds for the latter.
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3.3.2 Experiments Setup

In order to simulate the update of the cost information when switching from
the offline to the online environment, in Fugaro [87] we devised two types of
perturbation for the cost function.

Specifically, PERTURBATION 1 simulates a generic change of the cost informa-
tion and was applied on each instance of RAND-GRID, RAND and DIST data-sets.

PERTURBATION 1: for each chosen arc (i, j) with cost ci j, a coin toss decides
whether to increase or decrease its cost. In the first case, the modified
cost is equal to ci j + D where D is an integer chosen at random in the set
{1, . . . ,Cmax}; otherwise, the modified cost is equal to R where R is an
integer chosen at random in the set {1, 2, . . . , ci j}.

The changes were applied to the arcs in the forward star of k randomly chosen
nodes, where k = 10, 25, 50, 75, 100; as explained in Section 2.4.3 this choice
depends on both practical and theoretical motivations. Actually, in general, the
changes may be localized only in small portions of the networks and when the
cost change affects random points of the network it is typically not necessary to
update the current trajectories. Table 3.2 summarizes the total number of test
problems.

Table 3.2 Test problems obtained applying PERTURBATION 1.

Data-set Rule #Problems #Mod Tot.

RAND-GRID 1 12 60
2 12 60 120

RAND 1 12 60
2 12 60 120

DIST 1 36 180
2 36 180 360

600

Later on, in order to investigate a specific scenario, we left the cost perturba-
tion model a local change in the network due to atmospheric factors, specifically
the wind that affects a given area of the city. This topic is of great interest when
the STOL vehicles i.e. “short takeoff and landing” air-crafts are employed: due
to their short runway requirements for takeoff and landing, they are particularly
susceptible to both crosswinds and gusting winds [114].

At this purpose, the experimentation was conducted on ONE-LAYER data-set:
due to the random nature of the connections in these networks, PERTURBATION 1
is not suitable to simulate the above mentioned scenario, since it could potentially
affect points that are extremely far. Consequently, letting x be the centre of the
skeleton grid, and N2r(x) be a square neighbourhood of x with side 2r, we set
r = 2 + 5k with k = 1, 2, . . . 8. Then, for each value of r the following cost
perturbation was applied to the graph.
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PERTURBATION 2: the cost ci j of all the arcs (i, j) such that i, j ∈ N2r(x) are
modified: ci j is decreased (increased) of a value equal to ci j/2 whenever
the direction of the arc is equal (inverse) to that of the wind.

In particular, the specific change defining PERTURBATION 2 was meant to take
into account both the distance between i and j and the direction of the wind.
Table 3.3 summarizes the total number of test problems obtained considering
two opposite directions for the wind, namely West to East and East to West.

Table 3.3 Test problems obtained applying PERTURBATION 2.

Data-set Wind #Prob

ONE-LAYER
West-East 162
East-West 162

324

3.3.3 Results

In this Section we present and discuss the results of the computational
experiments conducted in Fugaro [87] in order to determine whether the reopti-
mization approach is advisable to update the solution when switching from the
offline to the online environment.

At this purpose, the reoptimization is performed with the algorithm Reopt
thoroughly described in Chapter 2, while Dijkstra’s well-known label setting
procedure [56] – namely Dijkstra– is adopted for the resolution from scratch
of the online problem. Both Reopt and Dijkstra algorithms have been coded
in C, compiled with gcc 8.3.0 and tested by using an Intel® core™ i7-5500U,
2.40 GHz, RAM 8.00 GB, under a Ubuntu 19.10 operating system.

The results have been divided according to the type of perturbation applied
to the graph: Tables 3.4 - 3.7 refer to PERTURBATION 1; instead, Tables 3.8 - 3.13
refer to the PERTURBATION 2. All the times are expressed in seconds while the
lowest computation times are reported in bold.

PERTURBATION 1

The computational results presented in Tables 3.4-3.7 are given in terms of
average computation times registered as the number of arcs affected by the cost
perturbation varies. In particular, we observed that, independently from the
graph dimensions, topology and density, and from the number of arcs affected
by the cost change, the resolution from scratch is always the best performing
approach. In fact, the average time-ratio (Equation (2.5)) is ≈ 5.52 for RAND
instances, ≈ 8.38 for RAND-GRID instances, and ≈ 5.44 for DIST. However, a
complete presentation of the computational results is given in Fugaro [87].
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Table 3.4 (RAND-GRID - PERTURBATION 1). Computational results. Reopt and
Dijkstra computation times in last two columns.

Instance Reopt Dijkstra
Dual Primal Total

heights-AR 0.204 ± 11.4% 0.811 ± 61.2% 1.016 ± 49.9% 0.131± 5.4%
heights-NC-AR 0.094 ± 8.1% 0.397 ± 81.5% 0.491 ± 67.1% 0.065± 6.6%
AR 0.208 ± 11.8% 0.827 ± 59.4% 1.036 ± 48.5% 0.128± 5.1%
NC-AR 0.095 ± 5.2% 0.421 ± 76.0% 0.516 ± 62.8% 0.062± 4.2%
heights-BR 0.223 ± 23.2% 0.830 ± 64.1% 1.053 ± 54.2% 0.157± 7.3%
heights-NC-BR 0.099 ± 9.9% 0.649 ± 77.1% 0.748 ± 67.9% 0.084± 9.8%
BR 0.244 ± 39.0% 0.960 ± 81.2% 1.204 ± 71.9% 0.156± 4.3%
NC-BR 0.101 ± 16.0% 0.627 ± 73.0% 0.728 ± 64.9% 0.084± 4.4%
heights-BS 0.213 ± 11.4% 0.750 ± 54.8% 0.963 ± 44.4% 0.163± 13.1%
heights-NC-BS 0.101 ± 13.8% 0.657 ± 63.7% 0.758 ± 55.5% 0.074± 4.4%
BS 0.221 ± 32.1% 0.811 ± 60.0% 1.032 ± 52.4% 0.157± 13.0%
NC-BS 0.096 ± 9.0% 0.620 ± 60.3% 0.716 ± 52.4% 0.077± 6.2%
heights-FS 0.193 ± 18.0% 0.747 ± 60.4% 0.940 ± 51.3% 0.135± 10.1%
heights-NC-FS 0.093 ± 6.3% 0.840 ± 60.7% 0.933 ± 54.7% 0.077± 6.3%
FS 0.192 ± 13.9% 0.816 ± 61.2% 1.008 ± 51.6% 0.133± 10.2%
NC-FS 0.091 ± 6.8% 0.795 ± 59.0% 0.885 ± 52.4% 0.078± 14.0%
heights-GP 0.075 ± 18.1% 0.561 ± 63.4% 0.636 ± 57.2% 0.085± 25.8%
heights-NC-GP 0.044 ± 11.8% 0.313 ± 73.4% 0.357 ± 65.0% 0.043± 18.5%
GP 0.076 ± 19.3% 0.521 ± 64.2% 0.597 ± 58.0% 0.075± 12.7%
NC-GP 0.040 ± 6.4% 0.307 ± 76.0% 0.348 ± 67.9% 0.047± 24.2%
heights-PI 0.066 ± 8.8% 0.443 ± 53.1% 0.509 ± 45.5% 0.059± 1.8%
heights-NC-PI 0.032 ± 7.9% 0.258 ± 68.9% 0.290 ± 61.9% 0.032± 14.0%
PI 0.060 ± 12.5% 0.445 ± 50.2% 0.505 ± 43.8% 0.060± 3.6%
NC-PI 0.034 ± 13.3% 0.278 ± 62.7% 0.312 ± 56.6% 0.032± 7.0%

As a final remark, we point out that, in general the reoptimization approach
has good performance on random graphs, as observed in Section 2.4.4; how-
ever, though a certain randomness affects the considered graphs, their layered
structure makes the resolution from scratch much more efficient.
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Table 3.5 (RAND-PERTURBATION 1). Computational results. Reopt and
Dijkstra computation times in last two columns.

Instance Reopt Dijkstra
Dual Primal Total

rand-heights-AR 2.400 ± 7.2% 0.535 ± 64.9% 2.935 ± 11.8% 0.515± 6.2%
rand-heights-NC-AR 2.158 ± 8.8% 0.534 ± 74.7% 2.692 ± 12.3% 0.454± 3.9%
rand-AR 0.814 ± 3.8% 0.340 ± 62.3% 1.154 ± 16.4% 0.325± 1.6%
rand-NC-AR 0.789 ± 8.6% 0.416 ± 76.9% 1.205 ± 24.7% 0.332± 1.9%
rand-heights-BR 3.318 ± 9.1% 0.590 ± 53.7% 3.909 ± 14.2% 0.476± 3.6%
rand-heights-NC-BR 3.521 ± 6.5% 0.501 ± 75.7% 4.022 ± 9.3% 0.474± 3.6%
rand-BR 1.486 ± 9.7% 0.425 ± 80.2% 1.910 ± 25.2% 0.318± 2.4%
rand-NC-BR 1.242 ± 4.1% 0.384 ± 60.4% 1.626 ± 15.3% 0.336± 3.4%
rand-heights-BS 1.898 ± 5.4% 0.553 ± 75.6% 2.451 ± 14.4% 0.444± 5.2%
rand-heights-NC-BS 4.130 ± 8.7% 0.729 ± 105.2% 4.858 ± 17.8% 0.458± 13.9%
rand-BS 1.123 ± 5.7% 0.353 ± 79.4% 1.476 ± 18.0% 0.340± 5.0%
rand-NC-BS 1.296 ± 6.5% 0.327 ± 72.7% 1.623 ± 13.2% 0.289± 1.8%
rand-heights-FS 3.294 ± 5.9% 0.537 ± 83.0% 3.832 ± 10.2% 0.517± 4.5%
rand-heights-NC-FS 3.097 ± 6.7% 0.602 ± 88.3% 3.699 ± 12.4% 0.432± 3.3%
rand-FS 1.262 ± 2.8% 0.382 ± 77.4% 1.644 ± 16.4% 0.321± 2.5%
rand-NC-FS 1.311 ± 3.2% 0.360 ± 67.0% 1.672 ± 16.0% 0.335± 2.8%
rand-heights-GP 1.918 ± 9.4% 0.386 ± 74.7% 2.304 ± 10.4% 0.540± 5.1%
rand-heights-NC-GP 2.612 ± 7.5% 0.401 ± 61.5% 3.013 ± 5.9% 0.537± 5.2%
rand-GP 0.988 ± 3.4% 0.288 ± 74.0% 1.276 ± 17.3% 0.380± 2.2%
rand-NC-GP 1.292 ± 2.8% 0.251 ± 66.4% 1.543 ± 10.0% 0.368± 4.0%
rand-heights-PI 1.533 ± 1.5% 0.922 ± 159.9% 2.455 ± 59.3% 0.522± 3.5%
rand-heights-NC-PI 2.021 ± 4.4% 0.591 ± 122.2% 2.612 ± 26.6% 0.503± 2.9%
rand-PI 0.819 ± 2.2% 0.302 ± 96.5% 1.121 ± 26.2% 0.366± 5.0%
rand-NC-PI 0.800 ± 2.2% 0.396 ± 114.0% 1.196 ± 37.8% 0.329± 7.7%

66



Chapter 3. Path Planning in Urban Air Mobility

Table 3.6 (DIST-PERTURBATION 1). Computational results on 4-dist and
8-dist (Part 1) instances.

Instance Reopt Dijkstra
Dual Primal Total

4-dist-heights-AR 0.952 ± 9.6% 0.588 ± 81.3% 1.540 ± 28.4% 0.455± 10.2%
4-dist-heights-NC-AR 4.738 ± 28.0% 0.734 ± 60.1% 5.472 ± 22.0% 0.649± 16.4%
4-dist-AR 1.529 ± 42.2% 0.934 ± 111.7% 2.463 ± 53.2% 0.454± 30.4%
4-dist-NC-AR 3.610 ± 26.6% 0.995 ± 74.8% 4.606 ± 27.6% 0.657± 13.2%
4-dist-heights-BR 0.872 ± 3.1% 0.560 ± 79.6% 1.432 ± 33.0% 0.463± 6.0%
4-dist-heights-NC-BR 3.428 ± 7.6% 0.671 ± 75.6% 4.099 ± 18.1% 0.429± 11.8%
4-dist-BR 1.228 ± 14.7% 0.432 ± 62.7% 1.660 ± 22.7% 0.569± 7.4%
4-dist-NC-BR 3.945 ± 14.5% 0.697 ± 65.3% 4.641 ± 21.7% 0.438± 3.5%
4-dist-heights-BS 1.170 ± 16.0% 1.090 ± 138.1% 2.260 ± 62.4% 0.411± 12.0%
4-dist-heights-NC-BS 2.539 ± 21.9% 0.733 ± 54.5% 3.272 ± 9.5% 0.769± 13.6%
4-dist-BS 1.493 ± 27.6% 0.408 ± 53.4% 1.901 ± 11.4% 0.262± 22.4%
4-dist-NC-BS 4.166 ± 32.7% 0.682 ± 75.6% 4.848 ± 23.2% 0.429± 12.8%
4-dist-heights-FS 1.008 ± 3.4% 0.423 ± 67.8% 1.431 ± 20.5% 0.374± 1.3%
4-dist-heights-NC-FS 1.663 ± 2.5% 0.575 ± 82.0% 2.238 ± 22.0% 0.590± 4.3%
4-dist-FS 0.916 ± 3.6% 0.421 ± 66.4% 1.337 ± 21.9% 0.388± 2.6%
4-dist-NC-FS 1.921 ± 5.1% 0.628 ± 62.8% 2.549 ± 19.0% 0.573± 2.7%
4-dist-heights-GP 0.632 ± 9.4% 0.329 ± 66.3% 0.962 ± 26.2% 0.365± 4.7%
4-dist-heights-NC-GP 1.063 ± 3.0% 0.463 ± 75.9% 1.526 ± 24.4% 0.654± 3.9%
4-dist-GP 0.910 ± 19.1% 0.442 ± 81.3% 1.351 ± 38.2% 0.515± 23.6%
4-dist-NC-GP 1.555 ± 16.7% 0.515 ± 86.4% 2.069 ± 33.6% 0.667± 4.1%
4-dist-heights-PI 1.595 ± 20.5% 0.792 ± 137.8% 2.387 ± 59.1% 0.670± 17.6%
4-dist-heights-NC-PI 2.026 ± 31.7% 0.628 ± 146.4% 2.654 ± 32.7% 0.599± 13.3%
4-dist-PI 0.735 ± 9.9% 0.486 ± 116.6% 1.221 ± 51.1% 0.506± 21.9%
4-dist-NC-PI 0.777 ± 19.6% 1.078 ± 170.7% 1.856 ± 100.9% 0.501± 21.4%
8-rand-heights-AR 2.701 ± 6.0% 0.564 ± 66.2% 3.265 ± 15.1% 1.096± 5.2%
8-rand-heights-NC-AR 9.066 ± 24.3% 1.047 ± 70.4% 10.113 ± 28.3% 1.531± 2.7%
8-rand-AR 2.844 ± 10.3% 0.794 ± 107.1% 3.638 ± 29.4% 0.601± 11.5%
8-rand-NC-AR 8.652 ± 15.3% 0.969 ± 77.7% 9.621 ± 17.7% 1.385± 8.1%
8-rand-heights-BR 2.853 ± 5.3% 0.576 ± 66.5% 3.429 ± 10.3% 0.650± 5.5%
8-rand-heights-NC-BR 8.261 ± 13.4% 0.934 ± 69.8% 9.195 ± 5.9% 0.927± 7.4%
8-rand-BR 3.774 ± 15.4% 1.976 ± 176.6% 5.750 ± 56.1% 0.983± 15.7%
8-rand-NC-BR 9.282 ± 12.4% 1.840 ± 144.3% 11.122 ± 23.0% 1.227± 12.9%
8-rand-heights-BS 2.825 ± 5.1% 0.979 ± 84.0% 3.804 ± 21.4% 0.795± 18.7%
8-rand-heights-NC-BS 5.061 ± 4.7% 0.843 ± 70.2% 5.903 ± 7.8% 0.979± 3.8%
8-rand-BS 3.011 ± 3.3% 2.520 ± 127.1% 5.532 ± 56.9% 0.889± 22.1%
8-rand-NC-BS 7.134 ± 7.3% 1.046 ± 93.3% 8.180 ± 7.7% 1.065± 14.3%
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Table 3.7 (DIST-PERTURBATION 1). Computational results on 8-dist (Part 2)
and 20-dist instances.

Instance Reopt Dijkstra
Dual Primal Total

8-rand-heights-FS 2.599 ± 2.6% 0.544 ± 70.5% 3.143 ± 14.1% 1.147± 2.3%
8-rand-heights-NC-FS 4.983 ± 3.3% 1.269 ± 106.9% 6.252 ± 24.2% 1.325± 6.7%
8-rand-FS 2.326 ± 4.9% 0.560 ± 72.8% 2.886 ± 11.1% 1.064± 1.4%
8-rand-NC-FS 4.702 ± 5.5% 2.167 ± 160.4% 6.869 ± 54.4% 1.239± 3.7%
8-rand-heights-GP 1.663 ± 4.5% 0.444 ± 67.8% 2.107 ± 16.2% 0.744± 3.3%
8-rand-heights-NC-GP 1.672 ± 2.4% 0.560 ± 64.1% 2.232 ± 15.7% 1.374± 3.8%
8-rand-GP 1.541 ± 2.8% 0.459 ± 68.6% 2.000 ± 15.0% 0.816± 3.2%
8-rand-NC-GP 3.982 ± 2.8% 0.661 ± 70.4% 4.643 ± 9.8% 1.368± 3.0%
8-rand-heights-PI 2.249 ± 3.5% 0.590 ± 71.1% 2.839 ± 13.5% 1.500± 4.3%
8-rand-heights-NC-PI 2.251 ± 4.5% 0.537 ± 60.1% 2.788 ± 13.3% 1.716± 1.0%
8-rand-PI 1.308 ± 3.9% 0.348 ± 65.5% 1.655 ± 14.0% 0.832± 3.3%
8-rand-NC-PI 1.654 ± 1.7% 0.871 ± 148.1% 2.525 ± 52.1% 0.902± 23.0%
20-rand-heights-AR 4.987 ± 4.1% 2.532 ± 72.5% 7.520 ± 23.0% 1.482± 23.2%
20-rand-heights-NC-AR 17.278 ± 13.3% 1.600 ± 64.1% 18.878 ± 14.3% 2.926± 3.4%
20-rand-AR 5.393 ± 3.6% 0.840 ± 54.0% 6.234 ± 5.2% 0.986± 4.5%
20-rand-NC-AR 22.341 ± 9.7% 1.337 ± 59.7% 23.678 ± 7.3% 2.222± 3.5%
20-rand-heights-BR 3.779 ± 19.8% 10.946 ± 206.9% 14.725 ± 152.9% 1.915± 7.1%
20-rand-heights-NC-BR 18.264 ± 12.0% 1.584 ± 79.0% 19.848 ± 5.8% 2.580± 14.5%
20-rand-BR 6.916 ± 13.5% 0.873 ± 53.1% 7.789 ± 7.3% 1.296± 9.3%
20-rand-NC-BR 21.831 ± 17.1% 2.552 ± 132.2% 24.383 ± 16.3% 2.496± 27.0%
20-rand-heights-BS 5.626 ± 6.6% 16.151 ± 189.9% 21.777 ± 140.2% 1.194± 17.1%
20-rand-heights-NC-BS 13.285 ± 6.3% 1.181 ± 73.9% 14.466 ± 10.9% 1.731± 3.7%
20-rand-BS 5.849 ± 4.3% 5.271 ± 126.4% 11.120 ± 60.8% 1.154± 3.0%
20-rand-NC-BS 21.805 ± 5.5% 3.644 ± 163.2% 25.448 ± 21.8% 2.392± 2.7%
20-rand-heights-FS 4.066 ± 2.5% 0.870 ± 61.2% 4.935 ± 11.4% 1.825± 2.4%
20-rand-heights-NC-FS 16.388 ± 4.5% 1.171 ± 58.7% 17.559 ± 7.4% 2.015± 5.0%
20-rand-FS 4.912 ± 3.0% 2.154 ± 127.1% 7.065 ± 38.6% 1.874± 3.5%
20-rand-NC-FS 14.469 ± 4.8% 1.229 ± 60.2% 15.698 ± 6.7% 1.985± 3.3%
20-rand-heights-GP 2.951 ± 6.8% 0.777 ± 62.5% 3.728 ± 18.3% 1.655± 2.7%
20-rand-heights-NC-GP 5.750 ± 1.7% 0.917 ± 59.3% 6.667 ± 9.1% 2.271± 0.5%
20-rand-GP 3.369 ± 3.0% 1.284 ± 110.0% 4.652 ± 31.1% 0.986± 3.9%
20-rand-NC-GP 9.630 ± 8.0% 1.095 ± 66.3% 10.725 ± 12.7% 2.123± 3.6%
20-rand-heights-PI 7.238 ± 35.9% 0.948 ± 55.3% 8.186 ± 34.5% 1.447± 7.3%
20-rand-heights-NC-PI 6.521 ± 25.5% 5.060 ± 192.5% 11.581 ± 87.1% 2.237± 7.0%
20-rand-PI 1.913 ± 7.6% 2.320 ± 170.0% 4.234 ± 94.9% 1.545± 6.7%
20-rand-NC-PI 2.977 ± 21.7% 0.720 ± 67.6% 3.697 ± 30.3% 1.532± 10.1%
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PERTURBATION 2

As explained in Section 3.3.2, this perturbation was applied by simulating
the effects of the wind blowing in two different directions. Thus, Tables 3.8 -
3.10 report the results of the computational experiments relative to the wind
from East to West; instead, the data in Tables 3.11 - 3.13 refer to the wind from
West to East. These Tables are presented in Appendix 3.B.

Analyzing the computational times of the algorithms, it is noteworthy that,
independently from the direction of the wind:

• on 4-ol problems, Reopt is competitive with Dijkstra until r ≤ 17, i.e.
when at most 1000 nodes are affected by the perturbation.

• on 8-ol problems, the change in the performance trends occurs when
r ≥ 12 though Reopt is still advisable when r = 27, 32, 37 on 8-ol-PI
network. A similar trend emerges also for 20-ol instances.

In particular, the inversion in the performance trends depends on the increase of
the number of arcs with negative reduced cost, namely those arcs whose cost
has been decreased. In fact, when this event occurs, a greater number of primal
phases needs to be executed. This explains also the behaviour of the algorithm
on 8-ol-PI and 20-ol-PI instances: the number of primal phases executed by
Reopt on them is lower than that relative to the other networks [87].

Additionally, the observed trends are also influenced by the density of the
network: as the density of the network increases, a greater number of arcs is
affected by the cost perturbation in correspondence to the same value of r. For
example, for an inner node at most: 799 cost changes occurs in 4-ol instances,
973 in the 8-ol ones and 1512 in the 20-ol ones.

3.4 Trajectories

In this Section we propose a graphical representation of the trajectories
obtained in Section 3.3 with the aim of determining which discretization method
produces the most realistic scenarios.

It is worth to mention that the trajectories obtained from the resolution of
the SPPs are however subject to a post-processing that serves to make them
smoother. Therefore, the main purpose of this representation is to understand
which approach allows to define reasonable routes i.e. without zig-zags or
sudden changes in altitude that would make the flight uncomfortable and more
expensive in terms of fuel/energy consumption.

The graphics are obtained with The MathWorks, Inc.MATLAB ® R2018b;
by way of example, we report only the trajectories relative to the couple (G,P)
of skyports.2. Specifically, Fig. 3.3-3.4 refer to RAND-GRID and RAND instances,
respectively; instead, Fig. 3.5 depicts the trajectories on 4-ol-GP instance as

2The whole set of figures is available at https://figshare.com/articles/figure/
TRAJECTORIES/13333799/2
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r varies, and with wind blowing from East to West. All the Figures show the
3D plan of the toy city where the red boxes denote the parallelepipeds i.e. the
buildings on which the skyports are situated.

As we could expect, the most realistic trajectories are obtained when the Free-
Space Map is given by the Discretization via Grids (Section 3.2.1). In particular,
when both the connections in the graph and the cost function are characterized
by randomness, the trajectories of the VTOL get odd (see Fig. 3.4). Finally, as
regards ONE-LAYER instances, we can observe that none of the trajectories is
affected by the perturbation and that in general, though the arcs are still defined
at random, the oddness of the trajectories is smoothed by using the Euclidean
distance function to define costs.
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3.5 Conclusions

The topics addressed in this Chapter are located in the framework of Path
Planning in Urban Air Mobility. Specifically, in Fugaro [87] two issues have been
considered: i) the representation of the 3D space designated for the motion and
ii) the computation of the trajectories.

On the one hand, three different but correlated discretization approaches are
proposed, which allow to define Free-Space Maps; in particular, the analysis of
the aircraft trajectories obtained in these different environments highlights that
total randomness should be avoided. Thus, to depict more realistic scenarios, the
graph representations should contain a structured topology and the definition of
the cost function should account for the Euclidean distances.

On the other hand, the computation of the trajectories is addressed with the
two-steps resolution: the shortest paths are computed firstly by considering as
deterministic the initial cost information, and then updating this information
along with the corresponding solution. Indeed, this scenario resembles the
resolution of two slightly different shortest path problems described in Chapter 2;
consequently, it could be addressed with the Reoptimization algorithm studied
in Festa et al. [83]. At this purpose, a thorough experimentation is conducted in
Fugaro [87] to determine whether reoptimizing is advisable or not; the obtained
results underline that, except for some cases, a resolution from scratch should
be preferred regardless of the percentage of the network affected by the change
and the extent of the change itself.
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Appendix

Appendix 3.A Intersection of Segments

The purpose of this Section is to describe a theoretical geometry result that
was used in the post-processing operations needed by the One-Layer Discretiza-
tion (Section 3.2.3). In fact, when this method is adopted, it is necessary to
perform the feasibility check of the set of arcs on each layer to remove arcs cross-
ing the buildings and the following property allows to find out if two segments
in the plane intersect.

Given a two dimensional Cartesian coordinate system, with origin O and
axis lines X and Y, we consider two segments, 12 and 34, whose endpoints
have coordinates (xi, yi)i=1,2 and (xi, yi)i=3,4, respectively. Suppose that these two
segments intersect in a point P = (x̄, ȳ), and draw appropriate segments, parallel
to the X axis from the endpoints 1, 3 and from P and parallel to the Y axis from
the endpoints 2, 4 and from P, as depicted in Fig. 3.6.

1

2

3

4

P

A B

P’

D C

Fig. 3.6 Intersection between two segments.

Then, the rectangular triangles 1AP and 12B are similar; thus their sides are
proportional according to a positive factor kA ≤ 1. Similarly, the rectangular
triangles 3CP and 34D are similar too; thus their sides are proportional according
to a positive factor kB ≤ 1.
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Consequently, the coordinates of the intersection point P can be rewritten as
Equations (3.1a)-(3.1d).

x̄ = x1 + |1A| = x1+kA|1B| = x1 + kA(x2 − x1), (3.1a)

x̄ = x3 + |3C| = x3+kB|3D| = x3 + kB(x4 − x3), (3.1b)

ȳ = y1 + |AP| = y1+kA|2B| = y1 + kA(y2 − y1), (3.1c)

ȳ = y3 + |CP| = y3+kB|4D| = y3 + kB(y4 − y3). (3.1d)

In particular, by comparing (3.1a) with (3.1c), and (3.1b) with (3.1d) we obtain
the linear system (3.2).x1 + kA(x2 − x1) = x3 + kB(x4 − x3)

y1 + kA(y2 − y1) = y3 + kB(y4 − y3)
(3.2)

The solutions of this system allow to express the constants kA and kB as a function
of the coordinates of the endpoints of 12 and 34, as shown in (3.3).

kA =
(y1 − y3)(x4 − x3) − (y4 − y3)(x1 − x3)
(y4 − y3)(x2 − x1) − (x4 − x3)(y2 − y1)

,

kB =
(y1 − y3)(x2 − x1) − (y2 − y1)(x1 − x3)
(y4 − y3)(x2 − x1) − (x4 − x3)(y2 − y1)

.

(3.3)

Proposition 3.A.1. In a two dimensional Cartesian coordinate system, consider the
segments 12 and 34, whose endpoints have coordinates (xi, yi)i=1,2 and (xi, yi)i=3,4,
respectively. Then, these segments do not intersect if the denominators in Equa-
tion (3.3) is null. Otherwise, there exists an intersection point if and only if both
the numerators in Equation (3.3) belong to [0, 1].

Appendix 3.B Results on the ONE-LAYER data-set

In this Section we report the data relative to the experiments conducted
on the ONE-LAYER data-set (see Section 3.3). Specifically, Tables 3.8-3.10 refer
to experimentation conducted simulating an East to West wind, while Tables
3.11-3.13 to that relative to a West to East wind. All the computational times are
given in seconds while the lower times are reported in bold.
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Appendix 3. Path Planning in Urban Air Mobility
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Appendix 3. Path Planning in Urban Air Mobility
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Appendix 3. Path Planning in Urban Air Mobility
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CHAPTER 4

The k -Color Shortest Path
Problem

The k-Color Shortest Path Problem (k-CSPP) is an NP-hard problem recently
proposed by Ferone et al. [71]: given a weighted, edge-colored, undirected
graph, it aims at finding a shortest path from source to destination traversing at
most k colors. Since only a Branch & Bound procedure has been proposed for
k-CSPP [71], we devised an ad hoc Dynamic Programming algorithm for it in
Ferone et al. [74].

In Section 4.1 we outline the motivations that led us to further investigate this
problem, pointing out the novelty with respect to other Shortest Path Problems
on edge-colored graphs. The mathematical formulation of k-CSPP is presented
in Section 4.2. Then, in Section 4.3 we briefly describe the existing solution
approach proposed in [71]; moreover, we detail our algorithmic proposal [74].
Finally, the remaining of the Chapter is devoted to the presentation of the
results of the computational study conducted to appraise the performance of our
proposal (Section 4.4).

4.1 Background and Motivations

The aim of this Section is to depict the background in which k-CSPP is
located; moreover, we thoroughly detail its broad applicability in the design of
transmission networks in order to point out the reasons that motivated our study.

Edge-colored networks received a fair share of attention in the scientific
literature, given their aptness for the depiction of complex and diverse relations
among nodes. This feature proved to be beneficial in a wide variety of application
fields, such as computational biology [60], telecommunications [179], as well as
in the analysis of transportation networks [5], and conflicts resolution [175].
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Chapter 4. The k-Color Shortest Path Problem

In the study of edge-colored graphs, many works – of both theoretical and
experimental interest – are concerned with the investigation of specific properly-
colored edge structures, where a coloring is said to be proper whenever any two
adjacent edges differ in color. These structures include for example: paths, trails,
trees and cycles [see e.g. 94]. On the other hand, some classic optimization
problems – such as the Minimum Spanning Tree (MST), the Traveling Salesman
Problem (TSP), and the Longest Path Problem (LPP) – have all been extended to
the case of edge-colored graphs, taking labels (i.e. colors) into account either in
the objective function or in their constraints.

At this purpose, e.g. the Minimum Label Spanning Tree was defined in Chang
and Shing-Jiuan [34] as a variant of the classic MST in which the cost of the
spanning tree is given by the number of different edge-colors used; moreover,
a strictly related generalization, namely the k-Labeled Spanning Forest Problem,
was studied by Cerulli et al. [31]. Then, Jozefowiez et al. [113] conducted an
in-depth analysis of the Minimum Label Hamiltonian Cycle Problem (MLHCP)
consisting in determining a Hamiltonian cycle that presents the minimum total
number of different edge-labels used. Moreover, they also introduced the MLHCP
with length constraints and the TSP with label constraints (LCTSP). Actually, the
aim of LCTSP is to minimize the length of the tour – as in the classic TSP – while
constraining the maximum number of different colors that can be used. Finally,
Carrabs et al. [28] recently studied a special case of LPP on edge-colored graphs,
the Orderly Colored Longest Path Problem.

The main ground of interest for the k-CSPP arises in the field of telecommu-
nications. While designing transmission networks, reliability is a crucial matter
to ensure good performances and prevent data loss. Actually, the robustness
of a path-routed communication network can be achieved by means of path
protection schemes, which make use of backup paths to ensure reachability in the
case of single link failures [178, 179]. The backup path and the primary path
are link-disjoint, and share the same source and destination. To prevent traffic
loss, the backup path is activated whenever the primary path fails.

On the other hand, often a single happening can cause the simultaneous
failure of several links in the network. For instance, in WDM networks it is
customary to bundle multiple fiber links in the same conduit. Consequently, even
if these links are disjoint in the network layer, a damage to the conduit will cause
the failure of all the links there bundled. The fibers sharing a common risk factor
are said to be in the same Shared Risk Link Group, and are modeled with arcs of
the same color (Fig. 4.1).

Yuan et al. [179] addressed the Failure Minimization Problem as a Minimum-
Color Path Problem, in which each path is associated with one or more colors
and each color is related to a given failure event. Then, minimizing the number
k of different colors traversed in the path, could consequently minimize its
probability of failure. Indeed, assuming that the color failures events are mutually
independent and equiprobable – with probability p ∈ [0, 1] –, then the reliability
of the path can be computed as (1 − p)k. Consequently, an upper bound on
the number of different colors allows to have a probabilistic estimate on the
reliability of the network. A similar argument can be repeated in the case of
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v3 u3
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Fig. 4.1 Multiple fibers bundled in the same conduit modelled as arcs sharing
the same color.

independent failure events with different probabilities.
However, while the arguments proposed in Yuan et al. [179] handled different

edge-labels, they did not include lengths in the comparison of different paths.
With in mind a similar network reliability scenario, the k-CSPP handles risk
adversity as a strict requirement, while optimizing path length. Hence, the
mathematical model introduced in Section 4.2 includes distances in the objective
function, while encompassing the use of few colors in a problem constraint.

4.1.1 k-CSPP vs SPP on Edge-colored Graphs

In this Subsection we provide a brief description of two variants of Shortest
Path Problem that include edge constraints, with the aim of pointing out their
differences with the k-CSPP.

Notably, the Resource Constrained Shortest Path Problems (Resource CSPPs)
[14, 51] represent one of the most broad classes of constrained SPPs. Specifically,
each instance of Resource CSPP is characterized by a (un-)directed weighted
graph along with a L-dimensional vector of resources R. Essentially, each resource
is related to relevant link attributes that need to be accounted in the planning
of the path. Accordingly, a path is optimal whenever it is minimal with respect
to the weight function and satisfies the restrictions enforced on the resources
associated to each arc (edge).

The fundamental difference between the k-CSPP and Resource CSPPs lies in
the fact that the k-CSPP does not restricts the sets of colors a priori; additionally,
there is a strong interdependence among edges. In our scenario, indeed, the cost
of a color as a resource is not constant during the exploration of the solution
space: once that an edge with a certain color is traversed, all other edges sharing
the same colors turn free and thus can be inserted in the solution without placing
additional burden on the color constraint.

Another variant of Shortest Path on edge-colored graphs comprises the use of
reload costs which are defined, for each couple of colors b and c, as the amount
to be paid if in the path an arc (edge) of color c is traversed after an arc of color
b. At this purpose, Gourvès et al. [93] studied the Minimum Reload Cost Problem
on walks, trails and paths, deriving the resulting computational complexities. On
the other hand, Amaldi et al. [5] considered a general form of objective function
that includes both distances and reload costs.
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However, aside from their presence in the objective function rather than
in the constraints, the main difference between reload costs and the modeling
paradigm of the k-CSPP is that reload costs are fixed, and have to be taken
into account any given time there is a change from a color to another. On the
contrary, bounding the maximum number of different colors, as required in the
k-CSPP, means to count just once a transition to a specific color, regardless of
the preceding color (if any).

4.2 Mathematical Formulation

In this Section, we provide the mathematical formulation of k-CSPP, as
described by Ferone et al. [71]. At this purpose, we consider an undirected
weighted and colored graph G = (V,E,w,C), where:

1. w : E −→ R+
0 is a function that assigns a non-negative distance wi j to each

edge [i, j] ∈ E,

2. C : E −→N is a labeling function that assigns a color to each [i, j] ∈ E.

In the following, we will refer to G as an edge-colored graph. Additionally, let C(Ê)
be the set of different colors appearing in any subset Ê ⊆ E, and c(Ê) =

∣∣∣C(Ê)
∣∣∣;

thus c(E) is the total number of colors used to label the edges of G. Moreover,
letting Eh, ∀h ∈ {1, . . .C(E)}, be the set of all the edges labeled with the color h,
the set of edges E can be partitioned as

⋃C(E)
h=1 Eh.

Given a source node s and a target node t, s, t ∈ V, s , t, the k-Color Shortest
Path Problem (k-CSPP) aims at finding a minimum distance path P∗ from s to t,
consisting of edges of at most k different colors.

A solution for this problem can be modelled through the introduction of a
Boolean decision variable xi j for each edge [i, j] ∈ E such that

xi j =

1, if
[
i, j

]
belongs to P∗;

0, otherwise.

Then, for each possible color h, a Boolean decision variable yh is necessary, with

yh =

1, if color h is traversed in P∗;
0, otherwise.

Then, as done in [71], the k-CSPP is formally described as the following
integer linear program:

(k-CSPP) min
∑

[i, j]∈E
wi jxi j (4.1a)

subject to: ∑
{ j : [i, j]∈E}

x ji −
∑

{ j : [i, j]∈E}

xi j = bi, ∀i ∈ V (4.1b)
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xi j ≤ yh, ∀[i, j] ∈ Eh, h ≤ C(E) (4.1c)
C(E)∑
h=1

yh ≤ k (4.1d)

xi j ∈ {0, 1},
[
i, j

]
∈ E (4.1e)

yh ∈ {0, 1}, ∀h = 1, . . . ,C(E) (4.1f)

with bi = −1 for i = s, bi = 1 for i = t, and bi = 0 otherwise.

The objective function (4.1a) minimizes the total distance of the path. Con-
straints (4.1b) are classic flow-balancing restrictions; those (4.1c) connect edge
traversal and color selection, while constraints (4.1d) limit the maximum number
of different colors that can be used in the solution. Finally, the Boolean nature of
the decision variables is expressed by (4.1e) and (4.1f).

4.2.1 Computational Complexity

In order to state the intractability of k-CSPP, we recall that in Broersma et al.
[25], it is proved that finding a simple path P̄ from s to t in an edge-colored
graph, such that c(P̄) ≤ k with a given k, is an NP-complete problem.

As a consequence of this computational complexity result, we have the
following claim:

Lemma 4.2.1. There does not exist a polynomial-time algorithm A to find a
feasible solution for an arbitrary instance I of the k-CSPP, unless P = NP.

Since approximation algorithms find feasible solutions with provable guaran-
tees on solution quality, a polynomial-time approximation algorithm would find –
if existing – a feasible solution in polynomial time. Consequently, Corollary 4.2.2
follows from Lemma 4.2.1.

Corollary 4.2.2. There does not exist a polynomial-time approximation algorithm
for the k-CSPP, unless P = NP.

Remark 5. In Broersma et al. [25], it is proved that to find a path from a
source node s to a destination node t with maximum k colors is an NP-complete
problem, by reduction from the 3-SAT problem. We observe how any instance
of the decision problem of finding an s − t path with at most k colors can be
represented as an instance of k-CSPP, where each edge has null cost. Therefore, a
polynomial algorithm for the k-CSPP would efficiently solve the decision problem
described in Broersma et al. [25]. Consequently, k-CSPP is NP-hard. �

4.3 Solution Approaches

The aim of this Section is twofold: on the one hand, we briefly describe the
first approach proposed in literature for k-CSPP [71], i.e. a Branch & Bound based

87



Chapter 4. The k-Color Shortest Path Problem

algorithm; on the other hand, we thoroughly detail the Dynamic Programming
method we devised in Ferone et al. [74] to tackle this problem.

The Branch & Bound is an algorithmic paradigm characterised by a procedure
that implicitly enumerates all possible solutions to the problem under consider-
ation. At this purpose, the partial solutions i.e. the sub-problems, are stored in
a tree data structure whose exploration is carried out through two operations:
branching and bounding. The former is meant to partition the solution space in
smaller regions while the latter is used to prune off regions that are provably
sub-optimal. The procedure terminates when the whole tree has been explored
and the best found solution is given in output [135]. The Branch & Bound
presented in Ferone et al. [71] for k-CSPP– namely, B&B – is briefly described in
Section 4.3.1.

On the other hand, like the Branch & Bound, the Dynamic Programming is an
exact algorithmic paradigm which constructs an optimal solution for the problem
at hand by combining those of its sub-problems. Anyway, in contrast with the
Branch & Bound, it divides – rather than partitioning – the original problem in
not-independent sub-problems and solves them recursively. Indeed, this approach
is suitable for all the problems P featuring the following characteristics [42]:

1. P has an optimal sub-structure;

2. P can be partitioned in not-independent sub-problems.

Indeed, 1. allows to define an optimal solution for P as a combination of the
optimal solutions of its elementary sub-problems; 2., instead, speeds up the
solution procedure allowing to solve each sub-problem exactly once. A thorough
description of the Dynamic Programming approach we proposed in Ferone
et al. [74] is given in Section 4.3.2. In particular, the design of this Dynamic
Programming algorithm (DP) has been encouraged by the successful results that
this family of solution framework gathered in the field of Constrained Shortest
Path Problems [52, 150, 156].

4.3.1 Branch & Bound

The Branch & Bound algorithm proposed in Ferone et al. [71] is based on the
observation that relaxing the color constraints (4.1d), the problem can be solved
very efficiently by a classic shortest path algorithm.

Consequently, at each node of the branching tree, a Shortest Path Problem is
solved on a given edge-colored graph G′ = (V,E′) obtained with the branching
operation. If P̂ is the incumbent solution, P∗G′ denotes the optimal solution
obtained, d(P∗G′ ) and c(P∗G′ ) the total distance of the path and the number of
different colors traversed by P∗G′ , respectively, then only four cases can occur:

1. d(P∗G′ ) = +∞: there is no path from s to t, the feasible region is empty, and
the branching node becomes a leaf;

2. d(P∗G′ ) ≥ d(P̂): the branching node is fathomed due to the bounding crite-
rion;
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3. c(P∗G′ ) ≤ k: the solution is feasible for the original problem, and the
incumbent is updated if necessary;

4. c(P∗G′ ) = l > k: the solution is not feasible for the original problem.

Indeed, the branching operation is performed only when case 4. occurs; at
this purpose, letting C(P∗G′ ) = {c1, c2, . . . cl} be the colors used by P∗G′ , for each
i = 1, . . . , l a new branching node is generated on the graph G′′ = (V,E′′), where
E′′ = E′ r

{
[v,w] ∈ E′ : C([v,w]) = ci

}
.

Remark 6. For the seek of completeness, we report that the branching tree is
explored with a Depth First strategy while colors are excluded according to their
absolute frequencies in P∗G′ i.e. the lesser used the color, the earlier it is excluded
from G′. Ferone et al. [71] pointed out that these choices were made aiming at
obtaining a feasible solution as quick as possible, in order exploit the bounding
operation as much as possible. �

4.3.2 Dynamic Programming

The optimal solutions of the sub-problems solved by the Dynamic Program-
ming algorithm (DP) devised in Ferone et al. [74] are subpaths, to which a certain
label is assigned. Specifically, let Psi be a path in G connecting the source s with
a generic node i, and let

Li = (di,Ci,Psi) (4.2)

be the label associated to Psi, where di and Ci are the total distance of the path
and the set of different colors traversed by Psi, respectively. The source node s is
given an initial label Ls = (0, ∅, 〈s〉).

Following the general scheme of a Label Correcting technique, DP explores
the solution space to extend the paths under construction by analyzing the set
of their labels. Given a path Psi, the result of path extension operation is a path
Psh obtained concatenating Psi and [i, h] ∈ E r Psi, and denoted as 〈Psi, [i, h]〉.
Then, starting from a generic label Li = (di,Ci,Psi), for each node j ∈ V such
that [i, j] ∈ E, new labels L j are generated. In particular, the distance of the
path Psj =

〈
Psi, [i, j]

〉
is defined as d j = di + wi j, and the set of colors traversed is

C j = Ci∪{C([i, j])}. Then, their evaluation is mainly based upon two fundamental
concepts: feasibility and dominance.

Definition 4.3.1 (Feasibility). A generated label L j is feasible if
∣∣∣C j

∣∣∣ ≤ k.

Definition 4.3.2 (Dominance). Given two labels Li and L̂i associated with the
same node i ∈ V, Li is said to dominate L̂i if the following conditions hold:

di ≤ d̂i;

Ci ⊆ Ĉi,

and at least one of such conditions is strict.
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Thus, the generated labels – and the corresponding paths – are discarded if
they are either associated with infeasible paths or dominated by other labels.

Theorem 4.3.3. Let Li and L̂i be the labels associated to the paths Psi and P̂si,
respectively. If Li dominates L̂i, then, for any feasible extension

〈
P̂si, [i, h]

〉
, there

exists at least a feasible path P from s to h such that:

1. P is not longer than
〈
P̂si, [i, h]

〉
;

2. C(P) ⊆ C
(〈

P̂si, [i, h]
〉)

.

Proof. Let P̂ =
〈
P̂si, [i, h]

〉
be a feasible extension of the path P̂si and let P′ =

〈Psi, [i, h]〉 be the extension obtained by substituting path P̂si with path Psi.
For path P′ two cases can occur: either it is a feasible extension too or it

is an infeasible extension due to the presence of a cycle. In the former case
(Fig. 4.2), given the dominance of Li over L̂i, the extension P′ verifies conditions
1. and 2. In fact, according to Definition 4.3.2, path feasibility is preserved (since
C(P′) = Ci ∪ {C([i, h])} ⊆ Ĉi ∪ {C([i, h])} = C(P̂)) while, the distance of Psi being
not greater than that of P̂si – i.e. di ≤ d̂i – ensures that distance-wise P′ is not
less favorable with respect to P̂. Hence, P = P′.

s i h

Psi

P̂si

Fig. 4.2 Feasible concatenation of a “dominant” path (curved) with the extension
(dashed) of a “dominated” path (normal).

In the latter case, a cycle in the extension P′ occurs when the node h is visited
by the dominant path Psi, as depicted in Fig. 4.3.

s i h

Psi

P̂si

Fig. 4.3 Concatenation of a “dominant” path (curved) with the extension
(dashed) of a “dominated” path (normal) containing a cycle.

Thus, given that Psh ⊂ Psi and P̂si ⊂ P̂, the dominance of Li over L̂i ensures
that C(Psh) ⊆ C(Psi) ⊆ C(P̂si) ⊆ C(P̂) while the distance of Psh being not greater
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than the distance of P̂. As a consequence, the subpath Psh is a path from s to h
which verifies conditions 1 and 2, i.e. P = Psh.
In conclusion, extending a dominated path yields to the construction of a domi-
nated path. �

With the aim of pruning the space of solutions from those unfavourable, the
Dynamic Programming algorithm collects only feasible and non-dominated labels
in sets D(i), which are the sets of all the labels Li associated with the different
paths connecting s to i, ∀ i ∈ V.

Remark 7. It is duly noted how this approach preserves optimality, since there
exists at least one optimal solution associated to a feasible and non-dominated
label. In fact, if P∗ is an optimal path associated to a dominated label, then
there exists another feasible s-t path P∗∗ such that C(P∗∗) ⊆ C(P∗), and P∗∗ is not
longer than P∗. Since P∗ is optimal, P∗∗ and P∗ have the same length, in terms of
distance, and thus P∗∗ is an optimal solution. �

The DP algorithm is summarized in Algorithm 6. Let Λ be the cost of the
current incumbent. Lines from 2 to 4 initialize the first label, the list of labels L,
the lists D( j), ∀ j ∈ V and the cost Λ. While L is nonempty, the algorithm extracts
a non-dominated feasible label Li from L (Line 6). Then, if the total distance
related to Li is less than Λ, the incumbent is updated whenever i = t. Otherwise,
the labels of each node j ∈ V such that [i, j] ∈ E are generated and added to
the list L by means of the procedure AddLabel at Line 14 (see Algorithm 7). In
particular, given a certain label L j, this label-adding procedure includes L j in L
and D( j) if it is feasible and non-dominated.

Algorithm 6 Dynamic Programming algorithm.

1: procedure DP
2: Ls = (0, ∅, 〈s〉)
3: L = {Ls}; D(s) = {Ls}; D( j) = ∅, ∀ j ∈ V, j , s.
4: best = Nil; Λ = +∞.
5: while j ∈ V, j , s do
6: Li = Extract(L); L← L r {Li}.
7: if di < Λ then
8: if i = t then
9: Λ = di

10: best = Li
11: else
12: for j ∈ V : [i, j] ∈ E
13: L j = (di + wi j,Ci ∪ {C([i, j])},

〈
Psi, [i, j]

〉
)

14: AddLabel.
15: end while
16: return best
17: end procedure

Finally, DP returns the best found solution corresponding to the optimal one.
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Algorithm 7 Label Adding procedure.

1: procedure AddLabel
2: if L j is feasible then
3: if L j is not dominated by any label L′j ∈ D( j) then
4: remove from D( j) and L all labels L′j dominated by L j

5: L = L ∪ {L j}

6: D( j) = D( j) ∪ {L j}

7: end procedure

Label Extraction Policy

In a Dynamic Programming technique, the choice of a well-performing label
extraction policy (Algorithm 6, Line 6) can be a determining factor in favoring
the fast convergence to good quality solutions, that combined with the pruning
of dominated labels can increase the performance of the algorithm.

The following list briefly introduces some of the best-known strategies that
can guide the label-extraction operations, in the case of DP.

Dijkstra-like Rule (DR): the label with the smallest distance is extracted;

First-In First-Out (FIFO): the label that has been in the queue for the longest
time is extracted;

Last-In First-Out (LIFO): the last inserted label is the first extracted;

Small-Label-First (SLF) [20]: the extraction is performed from the top of the
list L. Moreover, when a new label L j has to be added to L, if its total
distance is less than the distance of the currently top label of L, label L j is
entered at the top of L; otherwise L j is entered at the bottom of L;

A*: the label that presents the smallest value of the sum between the distance di
and the distance of the simple shortest path from the current node i to the
target node t is extracted.

Remark 8. Interestingly enough, we observe that the function used in the A*
strategy, to evaluate the length of the path from the current node i to the target
node t, gives a lower bound on the cost of the optimal path from i to t. In fact, that
minimum cost path is computed without taking into account constraints (4.1d).

As reported in Hart et al. [98], A* finds an optimal solution whenever the
length of the path from the current node to the target one is estimated with
a lower bound. As a consequence, the first feasible solution found by the A*
strategy is indeed optimal, thus allowing to prune all the remaining labels.

Remark 9. As a last observation, we note how the computational effort related
to the execution of a Dynamic Programming algorithm is related to the number
of explored labels. Without assuming the use of a specific extraction policy, in
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the worst possible case the number of explored labels is equal to the number of
feasible k-colored paths from s to any node i ∈ V.

Assuming the use of A∗ as extraction policy, let N(k) be the total number of
combinations without repetitions of l elements of C(E), with l = 1, . . . , k, i.e.

N(k) =

k∑
l=1

(
C(E)

l

)
. (4.3)

The number of labels extracted for each node v ∈ V r {s, t} is bounded by
N(k), since for each feasible combination of colors, the A∗ strategy extracts only
the most favorable path that dominates others characterized by the same set of
colors. As a consequence of this, the number of iterations of the DP algorithm
is bounded by (|V| − 2) · N(k). Each one of the operations executed in a single
iteration can be carried out in O(1), except for the AddLabel operation (line 14),
whose complexity is linear in the size of D( j). The size of D( j) can be estimated
by N(k), since for each feasible combination of colors, only the dominating path
is kept in memory. Therefore, an upper bound for the complexity of DP with the
A∗ strategy is O((|V| − 2) ·N(k)2). �

4.4 Computational Experiments

In this Section, we describe the computational experiments designed in
Ferone et al. [74] to appraise the performances of DP when compared with two
other different solution approaches, namely the Branch & Bound (B&B) algorithm
[71] described in Section 4.3.1, and the direct solution of the mathematical
model (Section 4.2) obtained by means of the ILOG CPLEX solver.

4.4.1 Test Problems

The experimentation has been conducted on two data-sets1 – namely A and
B – whose characteristics are summarized in Tables 4.1 and 4.2.

The set A consists of the networks described in Ferone et al. [71]. These in-
stances were obtained by adapting the generator presented in Festa and Pallottino
[80]; specifically, they can be divided in two classes:

Fully random graphs. The number n of nodes for these graphs varies in the
set {75000, 100000, 125000}, while the number m of edges is set equal to
10 · n, 15 · n and 20 · n. Then, the total number of colors for each instance is
p ·m with p ∈ {0.15, 0.20}.

Grid graphs. Their underlying structure is analogous to that of grid instances
described in Section 2.4.2. Indeed, we generated both square and rectan-
gular grids with size n × n and n × 2n, where n = 100, 250, 500. The total

1The full data-set is available at https://figshare.com/articles/Instances_for_the_
k-color_shortest_path_problem/11762163.
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number of colors for each instance is p · m with p ∈ {0.15, 0.20}, where m
denotes the number of edges.

Finally, in order to avoid instance-triviality, the value for k has been deter-
mined solving a Shortest Path problem on each instance G. In particular, if P∗ is
a shortest path connecting s and t in G, and C∗ is the number of different colors
traversed by P∗, then k is selected as C∗ − 2.

Letting {R1, . . . ,R9,G1, . . . ,G6} be the set of possible combinations of graph
size and number of colors, we have that each of them characterizes a collection
of similar instances. Indeed, each collection contains ten different instances of
the same type thus resulting in 300 instances. The characteristics of the data-set
are summarized in Table 4.1.

Table 4.1 Instance parameters for data-set A.

Fully random graphs Grid graphs
Combo p Nodes Arcs Colors Combo p Size Colors

R1 0.15 75000 750000 112500 G1 0.15 100 × 100 5940
R1 0.20 75000 750000 150000 G1 0.20 100 × 100 7920
R2 0.15 75000 112500 168750 G2 0.15 100 × 200 11910
R2 0.20 75000 112500 225000 G2 0.20 100 × 200 15880
R3 0.15 75000 150000 225000 G3 0.15 250 × 250 37350
R3 0.20 75000 150000 300000 G3 0.20 250 × 250 49800
R4 0.15 100000 1000000 150000 G4 0.15 250 × 500 74775
R4 0.20 100000 1000000 200000 G4 0.20 250 × 500 99700
R5 0.15 100000 1500000 225000 G5 0.15 500 × 500 149700
R5 0.20 100000 1500000 300000 G5 0.20 500 × 500 199600
R6 0.15 100000 2000000 300000 G6 0.15 500 × 1000 299550
R6 0.20 100000 2000000 400000 G6 0.20 500 × 1000 399400
R7 0.15 125000 1250000 187500
R7 0.20 125000 1250000 250000
R8 0.15 125000 1875000 281250
R8 0.20 125000 1875000 375000
R9 0.15 125000 2500000 375000
R9 0.20 125000 2500000 500000

Moreover, in order to better analyze how the performances of the algorithms
are affected by a variation in the number of colors, we generated a second set
of instances, namely B. This data-set replicates the graph sizes of set A, but p
ranges in {0.01, 0.02} meaning that the total number of colors in the networks
has been reduced. The characteristics are summarized in Table 4.2.

4.4.2 Implementation Details

All the compared algorithms have been coded in C++ using the flags
-std=c++17 -O3 and compiled with g++ 8.2. The experiments were run on
a INTEL i5-6400@2.70 GHz processor with 8GB of RAM. Finally, version 12.9 of
ILOG CPLEX has been used. A time limit of 10 minutes has been used for each
solution method.
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Table 4.2 Instance parameters of data-set B.

Fully random graphs Grid graphs
Combo p Nodes Arcs Colors Combo p Size Colors

R1 0.01 75000 750000 7500 G1 0.01 100 × 100 396
R1 0.02 75000 750000 15000 G1 0.02 100 × 100 792
R2 0.01 75000 112500 11250 G2 0.01 100 × 200 794
R2 0.02 75000 112500 22500 G2 0.02 100 × 200 1588
R3 0.01 75000 150000 15000 G3 0.01 250 × 250 2490
R3 0.02 75000 150000 30000 G3 0.02 250 × 250 4980
R4 0.01 100000 1000000 10000 G4 0.01 250 × 500 4985
R4 0.02 100000 1000000 20000 G4 0.02 250 × 500 9970
R5 0.01 100000 1500000 15000 G5 0.01 500 × 500 9980
R5 0.02 100000 1500000 30000 G5 0.02 500 × 500 19960
R6 0.01 100000 2000000 20000 G6 0.01 500 × 1000 19970
R6 0.02 100000 2000000 40000 G6 0.02 500 × 1000 39940
R7 0.01 125000 1250000 1250
R7 0.02 125000 1250000 25000
R8 0.01 125000 1875000 18750
R8 0.02 125000 1875000 37500
R9 0.01 125000 2500000 25000
R9 0.02 125000 2500000 50000

In particular, in this Section we presented the results of a preliminary study
performed to detect the best performing label extraction policy for DP and the
best branching rule for B&B [see 74]. In fact, as pointed out in Section 4.3.2,
the choice of the label extraction policy is crucial when designing a Dynamic
Programming algorithm, since it can strongly affect its performance – in terms
of speed of convergence and quality of the solutions –. In the same way, the
performance of a Branch & Bound method – in terms of computation time and
memory used – strongly depends on the adopted branching strategy [135].

Finally, the best versions of both the algorithms are compared in Section 4.4.3.

Analysis of the Extraction Policies

This analysis aims to appraise how the computational performance of DP is
affected by the different label selection policies. At this purpose, we randomly
selected 2 out of 10 instances of each type from data-set A and left DP – with
one of the extraction policies, in turn – run with a time limit of 10 minutes.

The results are given in Tables 4.8 and 4.9 in Appendix 4.A. They point out
that the best performing strategy is A*, both in terms of number of optimal
solutions found and running times. This behaviour depends on the criterion used
for the selection of the label Li to be extracted: the value of the path from node i
to the target t is an estimation (i.e. a lower bound) of the final cost that can be
obtained starting from the path associated with Li.

As a consequence, the convergence to a feasible – indeed optimal – solution
is more rapid with respect to the other strategies and a significant number of
opened labels can be pruned when the optimum is found (see Remark 8).
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Analysis of the Branching Strategies

The analysis presented in this Section is meant to determine which strategy of
exploration of the branching tree is advisable for the Branch & Bound algorithm
in Ferone et al. [71]. At this purpose, we compared the following two widely
used strategies.

Best-First (BF). The branching node is selected as the node corresponding to
the sub-problem whose relaxed solution has the highest cost.

Depth-First (DF). The branching node is chosen as the most recently generated
sub-problem i.e. a node from the deepest level is used as branching node.

The results are collected in Tables 4.10 and 4.11 in Appendix 4.B. Indeed,
though none of the two strategies outperforms the other one, we observe that BF
presents slightly lower computational times and is able to find an extra optimal
solution (compared with DF) for the grid graphs.

4.4.3 Comparison of Algorithms

The analyses conducted in Section 4.4.2 highlight that A* is the best perform-
ing extraction policy for the proposed solution approach while the Branch &
Bound method in Ferone et al. [71] has slightly better performance when the
best first branching strategy is adopted. Thus, the last experimentation compares
DP with A* extraction strategy, B&B with BF branching strategy, and the solution
of the mathematical model performed with CPLEX.

The results relative to the instances of data-set A are collected in Tables 4.3
and 4.4, while those relative to the instances of data-set B are given in Tables 4.5
and 4.6. For each instance type, the average running time (“avg(time)”) in
seconds, the number “O” of optimal solutions found within the limit and the
number “F” of feasible – i.e. not optimal – solutions found within the time limit,
are presented. Lowest running times and the corresponding O and F numbers
are reported in bold.

Results on data-set A

The analysis of the performance achieved by the algorithms on the fully
random instances (Table 4.3), highlights that DP presents sensibly smaller average
computational times, being at least an order of magnitude lower with respect
to those achieved by B&B and CPLEX. Additionally, the number of optimal
solutions detected – within the time limit – by our novel method, i.e. 176/180 =
97.78%, almost doubles the number of optimal solutions found by the second
best algorithm, i.e., 93/180 = 51.67% optima found by B&B.

As regards the resolution of k-CSPP on grid graphs, the obtained results
(Table 4.4) underline that, in general, they are more challenging for both B&B
and DP. In fact, in contrast with the CPLEX solver, both the algorithms require on
average higher computational times compared with those reported in Table 4.3.
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Table 4.3 (Fully random graphs - data-setA). Computational results in terms of
average time, and number of optimal (O) and feasible (F) solutions
found by each method within the 10 minutes time limit.

B&B BF CPLEX DP
Instance p avg(time) O+F avg(time) O+F avg(time) O+F

R1 0.15 301.44 5 + 2 92.43 10 + 0 1.56 10 + 0
R1 0.20 301.98 5 + 4 89.12 9 + 0 2.35 9 + 0
R2 0.15 182.08 7 + 2 158.54 9 + 0 60.24 9 + 0
R2 0.20 182.09 7 + 2 163.05 9 + 0 60.24 9 + 0
R3 0.15 304.27 5 + 5 521.92 2 + 0 0.47 10 + 0
R3 0.20 304.21 5 + 5 513.47 2 + 0 0.49 10 + 0
R4 0.15 300.18 5 + 3 123.57 10 + 0 0.65 10 + 0
R4 0.20 258.91 6 + 1 218.52 8 + 0 3.95 9 + 0
R5 0.15 360.18 4 + 6 600 0 + 0 0.47 10 + 0
R5 0.20 360.18 4 + 6 600 0 + 0 0.50 10 + 0
R6 0.15 120.36 8 + 2 600 0 + 0 0.49 10 + 0
R6 0.20 120.36 8 + 2 600 0 + 0 0.50 10 + 0
R7 0.15 379.21 4 + 5 600 0 + 0 0.43 10 + 0
R7 0.20 379.44 4 + 5 512.84 2 + 0 0.43 10 + 0
R8 0.15 420.31 3 + 5 600 0 + 0 0.63 10 + 0
R8 0.20 420.26 3 + 5 600 0 + 0 0.64 10 + 0
R9 0.15 305.46 5 + 5 600 0 + 0 0.71 10 + 0
R9 0.20 304.75 5 + 5 600 0 + 0 0.72 10 + 0

Average 294.76 432.97 7.53
Sum 93 + 70 61 + 0 176 + 0

Table 4.4 (Grid graphs - data-set A). Computational results in terms of average
time, and number of optimal (O) and feasible (F) solutions found by
each method within the 10 minutes time limit.

B&B BF CPLEX DP
Instance p avg(time) O+F avg(time) O+F avg(time) O+F

G1 0.15 422.02 3 + 6 41.05 10 + 0 0.92 10 + 0
G1 0.20 420.95 3 + 6 42.16 10 + 0 60.81 9 + 0
G2 0.15 483.70 2 + 6 200.71 10 + 0 3.81 10 + 0
G2 0.20 498.76 2 + 6 225.43 9 + 0 12.69 10 + 0
G3 0.15 575.96 1 + 9 596.76 1 + 7 130.83 8 + 0
G3 0.20 544.83 1 + 9 587.55 2 + 7 130.01 8 + 0
G4 0.15 434.49 4 + 6 602.28 0 + 10 64.99 9 + 0
G4 0.20 421.90 4 + 6 602.36 0 + 10 62.00 9 + 0
G5 0.15 540.04 1 + 9 607.63 0 + 9 367.50 4 + 0
G5 0.20 486.18 2 + 8 607.07 0 + 10 362.37 4 + 0
G6 0.15 540.11 1 + 9 600.00 0 + 0 232.51 7 + 0
G6 0.20 540.10 1 + 9 600.00 0 + 0 275.19 6 + 0

Average 492.42 442.75 141.97
Sum 25 + 89 42 + 53 94 + 0
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Moreover, from this comparison it is possible to note a sensible decrease in the
number of optimally solved instances, for all the solution techniques here consid-
ered. This behaviour can be attributed to the specific topology characterizing
grids. In fact, such graphs are much sparser than the random networks of R1-R9,
and the search for a shortest path coupled with a color restriction represents a
harder task. Nonetheless, both the number of optimal solutions and the average
computational times exhibited by DP outperform its two competitors.

Finally, we observe that on both the typology of networks, DP either converges
to the optimal solution in the time-limit or is not able to find a feasible solution.
Such an outcome is strongly dependent on the considered extraction policy
(recall Remark 8). On the contrary, B&B is able to encounter feasible solutions in
almost the totality of the tackled instances (277/300 = 92.33%).

Indeed, it is properly noted how the average times alone are not sufficient to
grasp the performances achieved by the algorithms. This is clear, for example,
when considering the distribution of computational times spent by the algorithms
on G1 instances with p = 0.20, reported in the bar-chart of Fig. 4.4.
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Fig. 4.4 Distribution of computational times on G1 instances with p = 0.20.

Among the three methods, it is evident how DP reaches the optimal solution
in less than 1 second on 9 graphs, while on a single instance it is not able to
find a feasible solution within the given time limit (600 seconds). The resulting
average time of 60 seconds (Table 4.11) can not be clearly compared with the
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one achieved by CPLEX, equal to 42 seconds, resulting from generally higher
times with smaller variance.

As a consequence, we conducted a study of the distribution of computational
times on the whole data-set (Fig. 4.5). It shows that DP is often extremely fast
in the construction of an optimal solution, and in few cases struggles in the
pursuit of a feasible solution. On the contrary, for B&B and CPLEX, the number
of instances requiring the whole allotted time limit, or in general times greater
than few seconds, is sensibly higher.
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Fig. 4.5 Distribution of computational times on the whole data-set A.

Results on data-set B

In order to study the performance while varying the number of colors, we
executed the three algorithms on the instances of data-set B. The results are
given in Table 4.5 and Table 4.6, respectively.

When analysing these data, it is immediately evident how well DP performs
in comparison with the other two methods on the whole data-set. In fact, it
finds the optima for all the instances and the average computational times are
between one and two orders of magnitude lower than those of B&B and CPLEX.

The results on data-sets A and B are compared to understand how the
overall behaviours are affected by the number of colors. Table 4.7 reports this
summarized comparison.
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Table 4.5 (Fully random graphs - data-set B). Computational results in terms of
average time, and number of optimal (O) and feasible (F) solutions
found by each method within the 10 minutes time limit.

B&B BF CPLEX DP
Instance p avg(time) O+F avg(time) O+F avg(time) O+F

R1 0.01 361.88 4 + 4 151.50 10 + 0 0.28 10 + 0
R1 0.02 361.89 4 + 4 98.44 10 + 0 0.29 10 + 0
R2 0.01 313.24 5 + 5 200.60 10 + 0 0.29 10 + 0
R2 0.02 312.99 5 + 5 142.71 10 + 0 0.29 10 + 0
R3 0.01 370.50 4 + 4 600.00 0 + 0 0.91 10 + 0
R3 0.02 370.58 4 + 4 560.25 1 + 0 1.01 10 + 0
R4 0.01 260.80 6 + 2 393.65 5 + 0 0.32 10 + 0
R4 0.02 199.88 7 + 1 363.72 5 + 0 0.31 10 + 0
R5 0.01 360.19 4 + 6 600.00 0 + 0 0.40 10 + 0
R5 0.02 360.19 4 + 6 600.00 0 + 0 0.40 10 + 0
R6 0.01 360.21 4 + 5 600.00 0 + 0 0.80 10 + 0
R6 0.02 360.21 4 + 5 600.00 0 + 0 0.84 10 + 0
R7 0.01 378.94 4 + 5 429.33 5 + 0 0.45 10 + 0
R7 0.02 378.89 4 + 5 391.06 5 + 0 0.47 10 + 0
R8 0.01 420.26 3 + 6 600.00 0 + 0 1.01 10 + 0
R8 0.02 420.25 3 + 6 600.00 0 + 0 1.16 10 + 0
R9 0.01 446.22 3 + 5 600.00 0 + 0 0.81 10 + 0
R9 0.02 446.08 3 + 5 600.00 0 + 0 0.82 10 + 0

Average 360.18 451.74 0.60
Sum 75 + 83 61 + 0 180 + 0

Table 4.6 (Grid graphs - data-set B). Computational results in terms of average
time, and number of optimal (O) and feasible (F) solutions found by
each method within the 10 minutes time limit.

B&B BF CPLEX DP
Instance p avg(time) O+F avg(time) O+F avg(time) O+F

G1 0.01 228.44 7 + 3 25.36 10 + 0 0.03 10 + 0
G1 0.02 365.88 4 + 6 34.44 10 + 0 0.07 10 + 0
G2 0.02 360.74 4 + 5 110.25 10 + 0 0.11 10 + 0
G2 0.01 296.94 6 + 4 122.44 10 + 0 0.09 10 + 0
G3 0.01 445.39 3 + 7 600.62 0 + 0 0.92 10 + 0
G3 0.02 426.04 3 + 7 559.21 4 + 5 0.79 10 + 0
G4 0.01 414.45 4 + 6 601.25 0 + 0 1.01 10 + 0
G4 0.02 432.01 3 + 7 601.22 0 + 10 2.41 10 + 0
G5 0.01 369.38 4 + 6 600.00 0 + 0 50.67 10 + 0
G5 0.02 371.41 4 + 6 600.00 0 + 0 18.37 10 + 0
G6 0.01 425.70 3 + 7 600.00 0 + 0 46.33 10 + 0
G6 0.02 481.60 2 + 8 600.00 0 + 0 69.49 10 + 0

Average 384.83 421.23 15.86
Sum 47 + 72 44 + 15 120 + 0
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Table 4.7 Comparison for data-sets A and B. Results are in terms of average
time, and number of optimal (O) and feasible (F) solutions found by
each method within the 10 minutes time limit.

B&B BF CPLEX DP
data-set Topology avg(time) O+F avg(time) O+F avg(time) O+F

A Random 294.76 93 + 70 432.97 61 + 0 7.53 176 + 0
A Grid 492.42 25 + 89 442.75 42 + 53 141.97 94 + 0

B Random 360.18 75 + 83 451.74 61 + 0 0.60 180 + 0
B Grid 384.83 47 + 72 421.23 44 + 15 15.86 120 + 0

The results highlight that the efficiency of DP is strongly affected by the
number of colors. In fact, for DP the ratio between the average computational
time on B over computational time on A is equal to 0.07 and 0.11 for fully
random graphs, and for grid graphs, respectively. This behaviour was expected,
since the lower the number of colors, the lower the number of feasible non-
dominated labels (see Remark 9).

On the contrary, it is not possible to identify a clear trend in the performance
of B&B and CPLEX at varying the number of colors. On the one hand, on grid
graphs, the computational times tend to decrease when lowering the number of
colors. On the contrary, the trend appears to be inverse on fully random graphs.
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4.5 Conclusions

The topics addressed in this Chapter are located in the framework of Con-
strained Shortest Path Problems (CSPP). Specifically, the Chapter is devoted to
the discussion of a recent variant of CSPP proposed in Ferone et al. [71], i.e.
the k-Colored Shortest Path (k-CSPP). At this purpose, both the differences with
similar CSPPs on colored graphs and the existing solution approach have been
briefly outlined.

Additionally, we thoroughly described a novel solution framework devised
in Ferone et al. [74] which consists of a Dynamic Programming (DP) algorithm
based on a path-labeling approach and an A∗-like exploration strategy.

With the aim of validating this approach, we compared the performances
of DP with those achieved by two alternative methods: the direct solution
of the mathematical model obtained with CPLEX solver, and the Branch &
Bound method described in Ferone et al. [71]. Moreover, these three techniques
have been tested on two data-sets comprising two different graph topologies:
fully random and grid. The experimental results show that DP outperforms its
two competitors both in terms of computational times and number of optimal
solutions found within the given time limit. Specifically, due to the features of
the label extraction policy, either it converges to an optimum or it is not able
to determine a feasible solution within the time limit. Moreover, our algorithm
shows average computational times between one and two orders of magnitude
lower than those of the other two approaches. Finally, we were also able to
observe an improvement of the performance of DP related to a lower number of
possible colors.

Due to the computational intractability of the problem and considering the
obtained results, the future research streams will be mainly focused on the design
of efficient heuristic approaches with the aim of solving large size instances in
short computational time. Moreover, in order to properly model the complexity
of real-world networks, different failure probabilities pc, for each color c ∈ C(E),
could be considered; then the resulting bi-objective problem could be solved
through a sim-heuristic approach [72, 82].
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Appendix

Appendix 4.A Comparison of Label Extraction Poli-
cies

This Section provides the results of the analysis conducted in Ferone et al.
[74] in order to detect the best performing extraction policy for DP, among those
widely used for a Dynamic Programming algorithm (see Section 4.3.2).

Specifically, Tables 4.8 and 4.9 report, for each instance type and each
extraction policy, the average running time (“avg(time)”) in seconds and the
number “O” of optimal solutions found by DP within the time limit. Lowest
average times and its corresponding “O” number are reported in bold.

Table 4.8 (Fully random graphs). Comparison of Dijkstra-like, First-In First-Out,
Last-In First-Out, Small-Label-First and A* extraction policies.

DR FIFO LIFO SLF A*
Instance p avg(time) O avg(time) O avg(time) O avg(time) O avg(time) O

R1 0.15 300.23 1 1.70 2 3.68 2 0.86 2 0.30 2
R1 0.20 301.37 1 1.04 2 10.99 2 1.97 2 0.32 2
R2 0.15 300.75 1 300.22 1 305.07 1 300.45 1 300.20 1
R2 0.20 9.20 2 1.75 2 5.05 2 2.77 2 0.36 2
R3 0.15 307.33 1 5.20 2 11.10 2 2.85 2 0.81 2
R3 0.20 600.00 0 302.06 1 2.92 2 14.08 2 0.53 2
R4 0.15 1.49 2 0.58 2 6.41 2 2.04 2 0.34 2
R4 0.20 301.41 1 3.28 2 17.60 2 6.64 2 0.36 2
R5 0.15 600.00 0 4.20 2 16.43 2 302.31 1 1.10 2
R5 0.20 600.00 0 302.01 1 25.24 2 5.61 2 0.71 2
R6 0.15 4.36 2 3.17 2 304.80 1 9.49 2 0.51 2
R6 0.20 301.12 1 302.83 1 326.87 1 303.83 1 0.51 2
R7 0.15 301.49 1 300.79 1 306.41 1 1.23 2 0.50 2
R7 0.20 6.57 2 300.32 1 12.95 2 4.69 2 0.52 2
R8 0.15 13.84 2 2.24 2 17.78 2 3.56 2 0.59 2
R8 0.20 301.24 1 11.94 2 14.14 2 7.79 2 0.93 2
R9 0.15 303.51 1 300.75 1 32.45 2 301.13 1 0.82 2
R9 0.20 600.00 0 301.07 1 331.79 1 302.31 1 0.83 2

Average 286.33 135.84 97.32 87.42 17.24
Sum 19 28 31 31 35
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Table 4.9 (Grid graphs). Comparison of Dijkstra-like, First-In First-Out, Last-In
First-Out, Small-Label-First and A* extraction policies.

DR FIFO LIFO SLF A*
Instance p avg(time) O avg(time) O avg(time) O avg(time) O avg(time) O

G1 0.15 600 0 600 0 600 0 600 0 0.20 2
G1 0.20 600 0 600 0 600 0 600 0 0.19 2
G2 0.15 600 0 600 0 600 0 600 0 12.33 2
G2 0.20 600 0 600 0 600 0 600 0 0.10 2
G3 0.15 600 0 600 0 600 0 600 0 0.70 2
G3 0.20 600 0 600 0 600 0 600 0 3.59 2
G4 0.15 600 0 600 0 600 0 600 0 3.33 2
G4 0.20 600 0 600 0 600 0 600 0 1.62 2
G5 0.15 600 0 600 0 600 0 600 0 600.00 0
G5 0.20 600 0 600 0 600 0 600 0 9.38 2
G6 0.15 600 0 600 0 600 0 600 0 120.21 2
G6 0.20 600 0 600 0 600 0 600 0 101.83 2

Average 600 600 600 600 71.12
Sum 0 0 0 0 22

Appendix 4.B Comparison of Branching Strategies

This Section provides the results of the analysis conducted in Ferone et al.
[74] to detect the best performing branching strategy (best first vs depth first)
for the Branch & Bound described in Ferone et al. [71].

Specifically, the results are collected in Tables 4.10 and 4.11 which report: the
average time for the resolution of instances of the reference type (“avg(time)”),
the number “O” of optimal solutions found within the time limit and the number
“F” of feasible (not optimal) solutions found within the time limit.
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Table 4.10 (Fully random graphs). Comparison of best first (BF) and depth first
(DF) branching strategy.

BF DF
Instance p avg.time O + F avg. time O + F

R1 0.15 0.19 2 + 0 1.17 2 + 0
R1 0.20 9.52 2 + 0 40.55 2 + 0
R2 0.15 300.39 1 + 0 302.18 1 + 0
R2 0.20 300.13 1 + 1 300.74 1 + 1
R3 0.15 600.00 0 + 2 600.01 0 + 2
R3 0.20 314.10 1 + 1 378.88 1 + 1
R4 0.15 0.30 2 + 0 1.06 2 + 0
R4 0.20 0.28 2 + 0 1.09 2 + 0
R5 0.15 600.00 0 + 2 600.00 0 + 2
R5 0.20 600.00 0 + 2 600.00 0 + 2
R6 0.15 0.41 2 + 0 1.18 2 + 0
R6 0.20 0.41 2 + 0 2.07 2 + 0
R7 0.15 300.49 1 + 1 300.61 1 + 1
R7 0.20 394.25 1 + 1 420.85 1 + 1
R8 0.15 300.27 1 + 1 300.32 1 + 1
R8 0.20 600.00 0 + 2 600.00 0 + 2
R9 0.15 309.33 1 + 1 311.26 1 + 1
R9 0.20 313.93 1 + 1 316.92 1 + 1

Average 274.67 282.16
Sum 20 + 15 20 + 15

Table 4.11 (Grid graphs). Comparison of best first (BF) and depth first (DF)
branching strategy.

BF DF
Instance p avg.time O + F avg. time O + F

G1 0.15 600.00 0 + 2 600.00 0 + 2
G1 0.20 300.00 1 + 1 300.01 1 + 1
G2 0.15 600.00 0 + 1 600.82 0 + 1
G2 0.20 362.58 1 + 0 600.02 0 + 2
G3 0.15 462.39 1 + 1 493.50 1 + 1
G3 0.20 600.00 0 + 2 600.00 0 + 2
G4 0.15 116.79 2 + 0 589.58 1 + 1
G4 0.20 600.00 0 + 2 379.91 1 + 1
G5 0.15 600.00 0 + 2 600.28 0 + 2
G5 0.20 300.21 1 + 1 300.77 1 + 1
G6 0.15 300.49 1 + 1 301.51 1 + 1
G6 0.20 300.48 1 + 1 302.12 1 + 1

Average 428.58 472.38
Sum 8 + 14 7 + 16
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CHAPTER 5

The Resource Constrained
Clustered Shortest Path Tree

Problem

The Resource Constrained Shortest Path Tree Problem (RC-CluSPT) is an NP-hard
problem that we recently proposed [78]: given a weighted, simple, undirected
graph supplied with a resource function, and supposing that the set of nodes is
partitioned in clusters, it aims at finding a shortest path tree respecting some
resource consumption constraints and inducing a connected subgraph within
each cluster. In particular, in Ferone et al. [78] we propose a mathematical
model for this problem and devise a Branch & Price for its resolution.

In Section 5.1 we outline the motivations that led us to investigate the class
of clustered problem along with a brief literature review (Section 5.2). The
mathematical formulation of RC-CluSPT is presented in Section 5.3. Then, in
Section 5.4 we thoroughly describe our algorithmic proposal [78]. Finally, the
remaining of the Chapter is devoted to presenting results of the computational
study conducted to appraise the performance of our proposal (Section 5.5).

5.1 Background and Motivations

The purpose of this Section is to provide a detailed representation of the
context in which the RC-CluSPT is located and the reasoning for our study.
The scientific community is devoting great efforts to the study of clustered – or
generalized – versions of several classic optimization problems since they allow
to address a wide variety of real-world issues [66]. In particular, in a network
problem, the switch from the classic to the generalized version is obtained by
partitioning the set of nodes of the underlying graph in a specific number K of
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clusters. On the one hand, using such substructures, the aggregation phenomena
occurring between similar entities, e.g. community of individuals, are efficiently
depicted [62]. On the other hand, in this way several real-world problems
could be addressed, e.g. the design of backbone networks in telecommunication
or in metropolitan areas, the optimization of irrigation systems, the design of
inter-cluster topology in computer and transportation networks [149, 164, 172].

Moreover, the class of clustered problems is attracting interest also from a
theoretical point of view. In fact, the generalized version of a problem could
become extremely harder to solve than the original one, since the feasibility
conditions are expressed through constraints on clusters in addition to the
“classic” constraints, i.e. those of the original problem [47].

Notably, the concept of generalization has been carried out in the formulation
by following two different approaches, i.e. by requiring that:

a) either each feasible solution contains exactly/at least/at most one node
from each cluster [66, 149],

b) or that the subgraphs induced by the solution within each cluster are
connected [43, 172].

For this purpose, exploiting a generalization of type b), D’Emidio et al. [47]
defined the Clustered Shortest Path Tree Problem (CluSPT) as the problem of
determining a minimum cost shortest path tree on a clustered graph, such that
the subgraphs induced within each cluster are connected and proved that this
problem is NP-hard [62]. Given its inherent complexity and its applicability
in the context of optimized communication networks and irrigation systems,
the CluSPT has been addressed with different heuristic approaches. Binh et al.
[21] and Thanh et al. [164] designed two Evolutionary Algorithms based on
different encoding functions, Thanh et al. [165] proposed a heuristic based on
the combination of randomized greedy method and shortest path tree algorithm;
finally, Cosma et al. [43] devised an ad hoc Genetic Algorithm.

At the same time, the design of realistic optimized routes in transportation or
telecommunication networks generally requires finding optimal paths accounting
for assigned link attributes. As the resources represent a heterogeneous set of
attributes, several real-world problems could be modeled and solved through
Resource Constrained SPTs [107]. In Ferone et al. [78] we exploit the gener-
alization of type b) to define a clustered version of the Resource Constrained
Shortest Path Tree Problem (RC-SPT), namely the Resource Constrained Clustered
Shortest Path Tree Problem (RC-CluSPT) with local resource constraints.

Though the RC-SPT has been widely studied, to the best of our knowledge,
no generalization of this type has been proposed yet though it presents several
fields of application. In fact, the RC-CluSPT lies at the intersection between
the CluSPT and the RC-SPT. Accordingly, its possible contexts of application
naturally comprise those of the classic problems [106]. For instance, generalized
versions of specific communication network issues could be addressed through
the RC-CluSPT, such as the SPT subject to bandwidth constraints and hop limited
[177]. In this NP-hard problem, letting the bandwidth of a path be the minimum
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available residual bandwidth at any edge along the path, the aim is to compute a
minimum cost broadcast tree in which each path respects bandwidth constraints
and a bound on the number of traversed edges. Indeed, it is crucial to address
the broadcast routing problem in the design of different types of communication
networks, where the broadcasting is a function that allows a message to be sent
from a source node to all the other nodes in the network [45].

5.2 Literature Review

As pointed out in Section 5.1, the RC-CluSPT can be seen either as a refine-
ment of the CluSPT or as a generalized version of the classic RC-SPT. Therefore,
in this Section we provide: i) a brief literature review on generalized combi-
natorial optimization problems, focusing on both widely studied and recently
proposed ones (Section 5.2.1); ii) an overview of Resource CSPPs (Section 5.2.2).

5.2.1 Brief Overview of Generalized Optimization Problems

The class of clustered problems comprises generalizations of well established
problems such as: the Generalized Traveling Salesman Problem (GTSP), the
Generalized Minimum Spanning Tree Problem (GMSTP), and the Generalized
Steiner Tree Problem (GSteTP). The GTSP is one of the earliest formulated
clustered problem [99, 161]; in particular, in scientific literature appeared
contributions dealing with both the mentioned concepts of generalization (see
Section 5.1). Just to cite a few, Guttmann-Beck et al. [96] addressed the problem
of finding a minimum cost Hamiltonian tour so that the nodes of each cluster
are visited consecutively. They proposed approximation algorithms for different
variants of the problem, depending on whether or not the starting and ending
nodes of a cluster have been specified. In particular, the approximation ratio of
their algorithm for this latter variant of GTSP was later improved by Bao and
Liu [12]. Instead, Fischetti et al. [84] proposed Integer Linear Programs for the
Symmetric GTSPs in which the least cost solution cycle has to visit each cluster at
least/exactly once. The same authors tackled these variants with a Branch&Cut
algorithm [85]. More recently, Smith and Imeson [160] addressed the version
of the Symmetric GTSP with exactly one visit for each cluster implementing a
heuristic based on adaptive large neighbourhood search. However, it is worthy
to note that the classic Traveling Salesman Problem is an NP-hard problem; thus
all the possible GTSPs are themselves NP-hard.

The GMSTP was firstly formulated by Myung et al. [136] as the problem
of finding a minimum cost tree spanning a subset of nodes with exactly one
node from each cluster (EGMSTP); later, Ihler et al. [104] defined the version
in which at least a node from each cluster has to be included in the spanning
tree, namely LGMSTP. However, in contrast with the classic counterpart – which
is polynomially solvable – both these variants have been proved to be NP-
hard. Though, D’Emidio et al. [62] pointed out that the GMSTP in which the
solution tree is required to induce a connected subgraph in each cluster remains
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polynomially solvable. In literature, (meta-)heuristic and exact approaches have
been proposed for the above mentioned GMSTPs: for example, Öncan et al. [143]
devised a Tabu Search algorithm for EGMSTP and adapted it to the resolution of
LGMSTP; Hu et al. [101] tackled the EGMSTP with a Variable Neighbourhood
Search heuristic combining three different neighbourhood types; finally, Ferreira
et al. [79] found that, independently from the construction heuristic, a GRASP
algorithm for EGMSTP performed the best when employing path relinking and
Iterated Local Search. As regards the exact approaches, Feremans [65] designed
a Branch&Cut algorithm for EGMSTP; instead, Pop [149] proposed a Dynamic
Programming algorithm for EGMSTP.

As regards the GSteTP, Reich and Widmayer [153] defined a first version
in which, supposing that the subset R of required nodes is divided in K clusters,
the aim is to find a minimum cost tree of the graph containing at least a node
from each cluster. Ihler [103] tackled this GSteTP with a (K − 1)-approximation
algorithm, while Yang and Gillard [176] computed a lower bound on the problem
using Lagrangean relaxation and sub-gradient optimization. Exploiting the idea
of generalization in terms of cluster connection, Wu and Lin [172] recently
defined a variant of GSteTP on metric graphs: this problem aims at finding a
minimum cost Steiner tree inducing mutually disjoint minimal spanning trees in
the clusters of R. The authors tackled this problem with a (2 + ρ)-approximation
algorithm, where ρ is the best known approximation ratio for the Minimum
Steiner Tree Problem (MSteTP). Trivially, these GSteTPs are NP-hard since they
generalize an NP-hard problem; however, unlike the classic MSteTP, they remain
computationally hard problems even when the input graph is a tree or there are
no Steiner nodes [176].

As thoroughly described in Feremans et al. [66], among the other classic
problems whose generalization has been formulated with the exactly/at least/at
most approach, there are: the Vehicle Routing Problem [91], the Minimum Clique
Problem [117], the Shortest Path Tree Problem [125].

To conclude, we mention the Minimum Routing Cost Clustered Tree Problem
in which the generalization is formulated in terms of cluster connection. Lin
and Wu [127] recently proposed this problem which aims at finding a clustered
spanning tree with minimum routing cost that is the total distance summed over
all pairs of vertices. The authors proved the NP-hardness of the problem, when
there are more than two clusters, and proposed an Approximation Algorithm.

5.2.2 Brief Overview of Resource CSPPs

The Resource Constrained Shortest Path Problem (Resource CSPP) was formu-
lated by Desrochers [49] as a sub-problem of a Bus Driver Scheduling problem.
Since then, the investigation of Resource CSPPs has represented a flourishing
field of research; in particular, different variants of the problem have been
addressed for two main reasons: the resource constraints are versatile, thus
they allow to depict a heterogeneous variety of real-world problems, and the
formulation of these constraints depends itself on the nature of the attributes
represented through the resources [107]. At this purpose, Avella et al. [10]
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classified these attributes in three categories and presented the different for-
mulations of the corresponding constraints. According to them, resources can
represent attributes that are: numerical and cumulative (e.g. travel time, fuel
consumption); numerical and non-cumulative (e.g. road width, height); indexed
or categorical (e.g., parking restrictions, type of roads).

Moreover, the NP-hardness of the Resource CSPP regardless of the type and
the number of resources [76] motivates the continuous development of new
solution approaches, both exact and heuristic. Specifically, the proposed exact
methods can be categorized as follows: Path Ranking strategies, which find the
first K shortest paths and select among these the one with the least resource
consumption; Dynamic Programming approaches; Polyhedral and Branch&Cut
approaches. Just to mention few recent contributions, Sedeño-Noda and Alonso-
Rodríguez [159] devised an algorithm which encompasses the binary partition
strategy adopted in the K -SP Path Ranking algorithm [146] and several pruning
strategies, obtaining a sensible speedup on large instances, compared to the state
of the art. Righini and Salani [157] improved the classic Dynamic Programming
approach for RC-SPP [50] through bidirectional search with resource-based
bounding; moreover, the authors adopted the Dynamic Programming paradigm
to compute lower bounds in a Branch & Bound algorithm and proposed the
well-performing Decremental State-Space Relaxation, of which the two previously
mentioned algorithms are special cases. Finally, Horváth and Kis [100] recently
generalized and extended some valid inequality devised by Garcia [89] for
a Branch & Bound approach to solve Resource CSPP. Moreover, a heuristic
procedure to obtain an initial feasible solution at each node of the branching
tree and a variable fixing techniques are presented in this paper.

Instead, among the recently proposed heuristic approaches, Dong et al. [59]
devised an Ant Colony algorithm to solve a particular Resource CSPP arising
from a Multi-modal Transport Problem featuring time windows and constraints
on the overall number of transshipment. To solve the Resource CSPP, Marinakis
et al. [130] proposed a hybridized version of a Particle Swarm Optimization
method featuring a Variable Neighbourhood Search and two different Expanding
Neighbourhood topologies. Specifically, different local search strategies were
tested in their computational experiments to detect the most effective one.

Finally, it is worthwhile mentioning that Resource CSPP often appears as
Pricing Problem in Column Generation, e.g. for the Vehicle Routing Problem [6]
and the Crew Scheduling Problem [35]; consequently, its resolution has been
further refined in order to optimize this type of procedure. At this purpose, Zhu
and Wilhelm [183] devised a pseudo-polynomial three-stage solution approach
which performs the first two stages, namely pre-processing and setup, only once
to transform Resource CSPP in a Shortest Path Problem; then, the last stage
solves this problem at each iteration of Column Generation.
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5.3 Mathematical Formulation

In this Section we report the mathematical formulation of the RC-CluSPT, as
presented in Ferone et al. [78]. At this purpose, the graph structure is detailed
before presenting the path-based formulation in Section 5.3.1.

Let G = (V,E, c, r) be a simple undirected graph where c : E −→ R+ is a
non-negative cost function, with c(i, j) := ci j, and r : E −→ R+ is a resource
consumption function representing numerical cumulative attributes [10], with
r(i, j) := ri j. Consider a collection {Ck}k=1...K of node-sets that partition V, referred
to as clusters, and a source node s ∈ V; then, the Resource Constrained Clustered
Shortest Path Tree Problem (RC-CluSPT) aims to find a minimum-cost tree Ts in
G rooted in s, such that:

i) Ts spans all the nodes of the graph G;

ii) for each cluster Ck the subgraph induced by Ts is connected;

iii) every path in Ts respects a maximum resource consumption constraint.

In particular, the set E can be partitioned in two subsets: the set of edges
connecting nodes within the same cluster, called intra-cluster edges, and the set
of edges connecting nodes belonging to two distinct clusters i.e. the inter-cluster
edges. In other words, given [i, j] ∈ E, it is an intra-cluster edge if both i and j
belong to the same cluster Ck; otherwise, if i ∈ Ck and j ∈ Ch with k , h, then
[i, j] is an inter-cluster edge.

In the following, we will denote with Ek the set of intra-cluster edges of
cluster Ck, k = 1 . . .K. Moreover, for any node-set S ⊆ V, we will denote with
E(S) ⊆ E the edge-set of the subgraph induced by S.

Finally, let n be the cardinality of V and nk be the cardinality of the cluster
Ck, k = 1, . . .K; clearly, it holds that

∑
k≤K nk = n.

5.3.1 Path-based Formulation

The RC-CluSPT can be formulated as a multi-commodity flow problem. At this
purpose, we will use the directed graph D = (V,A, c, r) underlying G, in which
A =

{
(i, j), ( j, i) : [i, j] ∈ E

}
; i.e. for each edge [i, j] ∈ E, we define both the arc (i, j)

and the corresponding anti-parallel arc ( j, i) in the arc-set of the graph D. More-
over, c and r extend the corresponding cost and resource consumption functions
defined on G, with ci j = c ji and ri j = r ji. Then, the path-based formulation relies
on the definition of two types of variables:

1. non-negative continuous flow variables fhij, defined ∀h ∈ V r {s} and
∀(i, j) ∈ A, which assume a positive value if the arc (i, j) is used in the path
from s to h in Ts;

2. Boolean decision variables xi j defined ∀[i, j] ∈ E, such that xi j = 1 if
[i, j] ∈ Ts.
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To describe the particular tree structure of a generic feasible solution (condi-
tions (i)-(ii)), it is necessary to state the following constraints:

• the activation constraints (Equation (5.1)) which couple the f variables
with the corresponding x ones:

fhij + fhji ≤ xi j, ∀[i, j] ∈ E, h ∈ V r {s} (5.1)

• the flow balancing constraints given in Equation (5.2):

∑
j∈FS(i)

fhij −
∑

j∈BS(i)

fhji =


1 if i = s,
−1 if i = h,
0, otherwise.

∀i, h ∈ V, h , s (5.2)

• the dimension constraints, for the whole solution (Equation (5.3a)) as well
as for each cluster Ck (Equation (5.3b)):∑

[i, j]∈E

xi j = n − 1, (5.3a)∑
[i, j]∈Ek

xi j = nk − 1, ∀k = 1, . . .K. (5.3b)

In particular, constraints (5.3a)-(5.3b) yield that each feasible solution should
contain n − K intra-cluster arcs and K − 1 inter-cluster arcs, connecting clusters
so that there is no isolated cluster, otherwise constraints (5.2) would be violated.
Moreover, condition (ii) for a generic solution holds because of the combination
of constraints (5.2) and (5.3b).

Remark 10. It is worth to note that, for any feasible solution, condition (ii) could
be guaranteed replacing constraints (5.3b) with the acyclicity constraints (5.4)
within each cluster: ∑

[i, j]∈E(S)

xi j ≤ |S| − 1, ∀S ⊆ Ck, |S| ≥ 2. (5.4)

In fact, in each feasible solution T′s, condition (5.4) has to hold as an equality
when S = Ck, for each k = 1, . . . ,K otherwise there would exist a cluster with
an isolated vertex. Consequently, also constraints (5.4) state that each feasible
solution should contain n − K intra-cluster arcs. �

Finally, the resource constraints can be added to each single path, i.e. the
single commodity flows (cfr. Equation (5.5f)).

The model for the RC-CluSPT is given in (5.5), where the objective function
(5.5a) minimizes the cost of the resulting tree.

(RC-CluSPT) min
∑

h∈Vr{s}

∑
(i, j)∈A

ci j fhij (5.5a)
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subject to:

fhij + fhji ≤ xi j, ∀[i, j] ∈ E, h ∈ V r {s} (5.5b)

∑
j∈FS(i)

fhij −
∑

j∈BS(i)

fhji =


1 if i = s,
−1 if i = h,
0, otherwise.

∀i, h ∈ V, h , s (5.5c)

∑
[i, j]∈E

xi j = n − 1, (5.5d)∑
[i, j]∈Ek

xi j = nk − 1, ∀k = 1, . . .K (5.5e)∑
(i, j)∈A

ri j fhij ≤ Rh, ∀h ∈ V r {s} (5.5f)

xi j ∈ {0, 1}, ∀[i, j] ∈ E (5.5g)

fhij ≥ 0, ∀(i, j) ∈ A, h ∈ V r {s}. (5.5h)

Remark 11. It is widely known that the classic RC-SPT is computationally in-
tractable, namely it is an NP-hard problem even in case of a single resource
function [76]. As regards RC-CluSPT, it is NP-hard too since otherwise, letting
the number of clusters be K = 1, the RC-SPT would be tractable. �

5.4 Solution Approach

The aim of this Section is twofold: on the one hand, we point out the moti-
vations that led us to address the RC-CluSPT with a Branch & Price approach
and briefly outline its structure. On the other hand, we detail how the compo-
nents of this algorithmic framework are characterized for the problem under
consideration.

The idea of tackling RC-CluSPT with a Branch & Price method comes from the
observations that: i) the mathematical model (5.5) comprises a huge number of
variables, and ii) its coefficient matrix presents a double-bordered block diagonal
form [118]. Thus, it is possible to apply a Dantzig-Wolfe (DW) decomposition
[46] to (5.5) to efficiently solve the resulting problem with Branch & Price.

Indeed, Branch & Price is an algorithmic paradigm which integrates the
procedure of Branch & Bound (see Section 4.3) with Column Generation (CG)
to solve large-scale Integer Programming problems. Specifically, it consists in
solving a restricted version of the linear relaxation of the original problem,
namely the Restricted Master Problem (RMP), which comprises only a subset of
variables [48]. Then, solving the so-called Pricing Problem(s) either the RMP
solution is proved to be optimal also for the linear relaxation, or columns (and
variables) to add to the RMP are identified. In particular, the branching occurs
when the optimal solution of the linear relaxation does not satisfy integrality
conditions.

The Branch & Price algorithm devised in Ferone et al. [78] entails that
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Column Generation (CG) is adopted to solve the linear relaxations in each node
of the search tree, involving a Multiple Pricing scheme.

The DW decomposition of (5.5), the resulting Pricing Problems and the
strategy adopted to solve them are described in Sections 5.4.1 to 5.4.3.

5.4.1 Dantzig-Wolfe Decomposition

The DW decomposition of the model (5.5) follows from the observation that,
for each node h ∈ V r {s}, the constraints (5.5c), (5.5f) and (5.5h) describe the
feasible region of a Resource CSPP from s to h in D, while constraints (5.5b)
are the linking constraints. Thus, the variables fhij can be decomposed using
variables representing the paths from s to h in D which respect the resource
constraints.

Formally, given a node h ∈ V r {s}, let Ph be the set of all the possible paths
in D from s to h which respect the corresponding resource constraint (5.5f), and
define a continuous non-negative variable λp

h for every path p ∈ Ph. Then, the
flow along each arc (i, j) ∈ D in a path from s to h, is the convex combination of
flows along all the possible paths from s to h in Ph (see Equation (5.6)):

fhij =
∑
p∈Ph

λp
h f p

hij. (5.6)

Thus, for each node h ∈ Vr {s}, the cost of the path from s to h in the solution
is a convex combination of the costs cp

h of the paths p ∈ Ph (see Equation (5.7)).

∑
(i, j)∈A

ci j

∑
p∈Ph

λp
h f p

hij =
∑

(i, j)∈A

∑
p∈Ph

ci jλ
p
h f p

hij =
∑
p∈Ph

λp
h

∑
(i, j)∈A

ci j f p
hij︸      ︷︷      ︸

cp
h

=
∑
p∈Ph

cp
hλ

p
h. (5.7)

Then, the DW decomposition (5.8) of (5.5) is obtained by: replacing the flow
variables with the expression in (5.6), and reformulating constraints (5.5b) and
the objective function (5.5a) with (5.7). The resulting problem is the so-called
Master Problem.

(DW-MP) min
∑

h∈Vr{s}

∑
p∈Ph

cp
hλ

p
h (5.8a)

subject to:∑
p∈Ph

( f p
hij + f p

hji)λ
p
h ≤ xi j, ∀[i, j] ∈ E,∀h ∈ V r {s} (5.8b)∑

[i, j]∈E

xi j = n − 1, (5.8c)∑
[i, j]∈Ek

xi j = nk − 1, ∀k = 1, . . .K (5.8d)
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∑
p∈Ph

λp
h = 1, ∀h ∈ V r {s} (5.8e)

xi j ∈ {0, 1}, ∀[i, j] ∈ E (5.8f)

λp
h ≥ 0, ∀p ∈ Ph,∀h ∈ V r {s}. (5.8g)

The objective function (5.8a) minimizes the cost of the resulting tree; Equa-
tion (5.8b) represent the activation constraints while constraints (5.8c) and
(5.8d) are analogous to the corresponding (5.5d) and (5.5e). Finally, (5.8e) are
the convexity constraints for the continuous non-negative path variables, forcing
the selection of exactly one path in Ph for each h ∈ V r {s}.

5.4.2 Pricing Problem Formulation

As previously mentioned, each node of the branching tree is solved by apply-
ing a Column Generation with a Multiple Pricing Scheme. Specifically, this means
that at each iteration of the CG, it is required to solve n− 1 Pricing Problems, one
for each node h ∈ V r {s} in order to find the columns to add to the Restricted
Master Problem. Indeed, as proposed in Tilk and Irnich [167], we consider a
linear relaxation of DW-MP, removing the binary constraints (5.8f). Moreover,
the RMP is obtained by considering a subset of path variables.

The mathematical formulation of the Pricing Problem corresponding to a
generic node h ∈ V r {s} is obtained from the dual formulation (5.9) of DW-MP.

max
[∑

h,s

ηh
0 + (n − 1)µ2 +

∑
i≤K

(ni − 1)νi

]
(5.9a)

subject to:∑
[i, j]∈E

( f p
hij + f p

hji)πhij + ηh
0 ≤ cp

h, ∀p ∈ Ph,∀h ∈ V r {s} (5.9b)

πhij ≤ 0, ∀[i, j] ∈ E,∀h ∈ V r {s}. (5.9c)

In particular, for each edge [i, j] ∈ E, the negative dual variables πhij are
associated to the corresponding constraints (5.8b); then, variable ηh

0 ∈ R corre-
sponds to the convexity constraints (5.8e). Finally, variables νi ∈ R are related
to constraints (5.8c) and variable µ2 ∈ R corresponds to constraint (5.8d).

Since the reduced costs are described by Equation (5.9b), recalling Equa-
tion (5.7), we obtain the formulation (5.10) of the Pricing Problem to solve for
each node h ∈ Vr {s}. It is duly noted that this is a Resource Constrained Shortest
Path Problem from s to h in D, with non-negative costs.

(PP_h) min
[( ∑

(i, j)∈A

(ci j − πhij) fhij

)
− ηh

0

]
(5.10a)

subject to:

115



Chapter 5. The Resource Constrained Clustered SPT

∑
j∈FS(i)

fhij −
∑

j∈BS(i)

fhji =


1 if i = s,
−1 if i = h,
0, otherwise.

∀i ∈ V, (5.10b)

∑
(i, j)∈A

ri j fhij ≤ Rh, (5.10c)

fhij ≥ 0, ∀(i, j) ∈ A. (5.10d)

5.4.3 Solving the Pricing Problem

As noted in Section 5.4.2, the block diagonal structure of the RC-CluSPT leads
to n − 1 Pricing Problems, each of which consists in the solution of a Resource
CSPP from s to h ∈ V r {s} in D.

At this purpose, we resort to a Dynamic Programming (DP) algorithm, given
its successful application in the solution of CSPPs [53, 75, 157]. According
to this solution paradigm, the possible paths starting from s are associated to
labels, recording both their cost and resource consumption. Doing so, the DP
explores the solution space evaluating path labels via the concepts of feasibility
and dominance (cfr. Section 4.3.2).

In this context, denoted with R(p) the total resource consumption along a
generic path p, given two paths psi and p̂si from s to i ∈ V r {s}, path psi is
said to be dominated by p̂si if the following conditions hold: (i) c(p̂si) ≤ c(psi);
(ii) R(p̂si) ≤ R(psi), and at least one of such conditions is strict. Consequently,
throughout the exploration process of DP, only feasible non-dominated paths can
be held as candidate for extensions towards the target node h.

5.5 Computational Experiments

This Section reports the computational experiments and the related discussion
we presented in Ferone et al. [78]: we have designed this testing to appraise the
performance of the proposed Branch & Price algorithm (BP), and have compared
it with the results achieved by the direct solution of the mathematical model
(5.5) performed with the ILOG CPLEX 12.9 solver.

More specifically, Section 5.5.1 presents the data-set used in the numerical
experiments, Section 5.5.2 discusses the direct comparison of the proposed
methodology and the CPLEX solver, while Section 5.5.3 delves into the analysis
of the results of BP when related to instance properties.

The compared approaches have been coded in C++ using the flags -std=c++17
-O3 and compiled with g++ 8.2. The experiments were run on an INTEL i9-
9900X@3.5 GHz processor with 4GB of RAM. A time limit of 1800 seconds has
been used for both solution methods.
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5.5.1 Test Problems

The network topologies featured in the computational experiments designed
in Ferone et al. [78] are the small instances of Types 1, 5 and 6 used by Thanh
et al. [166] for the Clustered Shortest Path Tree Problem.

In particular, as described in Mestria [133]: Type 1 networks are obtained
from the TSPLIB benchmark, using a k-means algorithm to define the clusters;
Type 5 instances derive from those used in the literature of the TSP, clustered
by grouping the vertices in geometric centres; and, lastly, graphs of Type 6 are
adapted from the TSPLIB library, by partitioning the networks into quadrilaterals,
each of which corresponds to a cluster. Using these topologies, a set of feasible
instances for the RC-CluSPT is generated through the procedure detailed below.

Instance Generation

Given a generic clustered undirected graph G = (V,E), a resource consump-
tion function r : E −→ R+ satisfying the triangle inequality can be associated to
the edges of G according to the following steps:

1. randomly assign temporary resources rtmp,e to each e ∈ E;

2. solve an all-pairs shortest path tree problem using rtmp,e as costs;

3. impose ri j equal to the cost of the shortest path from i to j found in step 2.

Once the non-negative resource consumption function r : E −→ R+ is deter-
mined, a RC-CluSPT instance is specified through its resource constraints.

Let T∗s be the optimal solution of the classic CluSPT with r as cost function,
and let p∗s,h be the path of T∗s connecting the source s and the node h ∈ V r {s}.
Moreover, let R(p∗s,h) indicate its cost in T∗s, i.e. the total resource consumption of
p∗s,h. Then, using a generation scheme similar the one described in Dumitrescu
and Boland [61], it is possible to define three sub-classes characterized by: low-
resource (Low-R), medium-resource (Medium-R), and high-resource (High-R), by
considering convex combinations of R(p∗s,h) and 2 R(p∗s,h).

(Low-R) Rh = (1 − α)R(p∗s,h) + α2 R(p∗s,h), ∀h ∈ V r {s} (5.11)

(Medium-R) Rh = 0.5 R(p∗s,h) + R(p∗s,h), ∀h ∈ V r {s} (5.12)

(High-R) Rh = αR(p∗s,h) + (1 − α)2 R(p∗s,h). ∀h ∈ V r {s} (5.13)

As Dumitrescu and Boland [61], we used α = 0.05 for all graph topologies.
It is duly noted how in all three cases T∗s is a feasible (possibly sub-optimal)
solution. As a result of this instance generation process we obtained 255 feasible
instances for the RC-CluSPT, whose characterizing features are summarized in
Table 5.1.1

1The full data-set can be found at https://figshare.com/s/7ef8c99aedc027b208c9.
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Table 5.1 Summary of instances properties.

Type Number Nodes Edges Clusters

1 81 51–105 1275–5460 5–75
5 63 30–120 435–7140 5–10
6 111 51–105 1275–5460 2–42

5.5.2 Comparison of Algorithms

The first set of computational analyses is devoted to the comparison of BP
with the performance achieved by CPLEX on the entire data-set.

Table 5.2 summarizes the comparative numerical analysis, averaging the
results according to three distinct categories: instances solved by both algorithms
(“avg both”); instances solved by the corresponding method, i.e. all the instances
solved by BP (resp. CPLEX) in the corresponding column (“avg single”); and all
instances (“avg all”). For each of such categories, Table 5.2 reports the average
objective function value (“Cost”), the total time and time to best (“TtB”), and
the optimality gap, computed as

GAP =
Ĉ − LB

LB
, (5.14)

where Ĉ is the cost of the incumbent solution, and LB is the best lower bound
found by the algorithm. Since BP and CPLEX derive lower bounds using different
strategies, different solutions may yield the same optimality gap. Finally, the last
two rows of Table 5.2 indicate, for each method, the number of instances for
which at least a feasible solution has been found, and the number of instances
solved to optimality.

Table 5.2 BP vs CPLEX on the entire data-set.

BP CPLEX
Cost Total time GAP TtB Cost Total time GAP TtB

avg both 130690.33 126.46 0.01 85.29 130729.76 522.85 0.01 332.39
avg single 133472.00 180.65 0.02 133.63 133693.89 589.25 0.02 369.93
avg all 408.15 869.31

Feasible 221/255 193/255
Optimal 208/255 139/255

Observing the results of Table 5.2 it emerges that the proposed Branch &
Price found at least feasible solutions for approximately 87% of the instances
(221/255); in comparison CPLEX was able to find solutions to 76% of the data-set
(193/255). Moreover, when taking into account the number of optimal solutions
found, the edge of the proposed algorithm with respect to CPLEX is evident, with
a total of 208 instances solved to optimality against 139.
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The difference in terms of the number of optimal solutions found is also
reflected in the average solution cost in the category avg both, that evidences
how BP achieves objective function values lower than those obtained by CPLEX.

This first analysis of the quality characterizing the solutions achieved by both
approaches evidences that the proposed Branch & Price significantly improves
the performance of CPLEX. However, this behaviour is not highlighted by the
GAP values, that on average are approximately the same for both algorithms;
actually, this outcome can be related to the different strategies used to derive
lower bounds.

Concerning the computation times, BP employs approximately 25% of the
time needed by CPLEX on instances solved by both methods (126.46s against
522.85s) and around 47% on all instances (408.15s vs 869.31s). As a final
remark it is possible to observe that on average the ratios of the time to best with
respect to the total computation times are comparable for both methods, and are
within the interval [0.63, 0.74].

5.5.3 Sensitivity Analysis

In the second set of analyses conducted in Ferone et al. [78] we evaluated
the performance of the proposed Branch & Price relating the results to the type
and distinctive features of the instances considered.

Table 5.3 reports the averages of the total times of computations and objective
function values achieved, dividing the benchmark according to network types
(Type 1, Type 5, and Type 6) and resource allowance (namely, Low-R, Medium-R,
High-R). Analogously, Table 5.4 for each group reports the fraction of instances
for which at least a feasible solution has been found, and the instances that
were solved to optimality. Lastly, Table 5.5 collects a detailed description of the
behaviour of the proposed solution approach, reporting, for each group, the time
spent solving reduced RMP (“MP time”) and pricing sub-problems (“PR time”),
the number of total RMPs solved (“#MP”) and call to the pricing procedures
(“#PR”), the number of columns added (“#Cols”), and the total number of
branching nodes explored (“#Bnodes”).

Analyzing the summaries of Table 5.3 and Table 5.4, it is evident how a lower
resource allowance is related to reduced computational times and thus a higher
number of optimal solutions found. This particular behaviour can be justified
observing that a lower resource allowance leads to a smaller solution space, that
allows BP to prove optimality by just exploring an extremely limited number of
branching nodes. Table 5.5 confirms this evidence, reporting that, for the totality
of instances characterized by a low resource allowance, a single branching node
is sufficient to prove optimality. As a direct consequence, this behaviour is also
reflected in lower number of calls to the pricing sub-problems and the number
of columns added to the RMPs.

Moreover, as the resource allowance grows, a set of more permissive resource
constraints allows the algorithm to explore a wider range of solutions, thus
yielding average costs that are generally lower. This is of course expected, since a
feasible solution for low resource allowance is still feasible in the case of medium
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and high allowance. At times, though, even in presence of higher resource
allowance it is possible to note higher average costs: see, for example, Type 1
Low-R and High-R instances in Table 5.3. In such cases, the average cost values
are affected by the lower number of optimal solutions found in High-R instances,
that leads to sub-optimal solutions possibly worse than the optima of Low-R
instances of the same networks.

This last observation suggests that: (i) given the lower computational times
implied by the solution of instances with low resource allowance, and (ii) given
that for a fixed network topology the feasible region of Low-R instances is a
subset of Medium-R and High-R instances, the solution of a surrogate problem
with lower resource allowance could be used to yield good-quality feasible
solutions in the case of the harder High-R instances.

Lastly, Instances of Type 5 appear to be significantly easier to solve than Type
1 and 6. This observation is equally reflected in the average computational time
required and the number of instances solved to optimality. This behaviour can
be related to the lower number of clusters that characterizes Type 5 instances, as
reported in Table 5.1.

Table 5.3 Average times and cost values. Instances grouped according to network
types and resource allowance.

Low-R Medium-R High-R Avg
Type Cost Time Cost Time Cost Time Cost Time

Type_1 152065.46 8.16 147964.70 298.76 161223.54 924.06 152836.02 410.33
Type_5 63391.99 4.53 62600.26 20.48 57475.25 709.76 61405.36 237.43
Type_6 170951.92 6.63 170529.27 276.51 141784.58 1130.74 164824.85 452.98

Avg 138379.06 6.60 136425.37 220.32 120977.10 957.90 133472.00 385.97

Table 5.4 Fraction feasible/optimal solutions found. Instances grouped accord-
ing to network types and resource allowance.

Low-R Medium-R High-R Total
Feasible Optimal Feasible Optimal Feasible Optimal Feasible Optimal

Type_1 1 1 0.92 0.88 0.62 0.51 0.85 0.80
Type_5 1 1 1.00 1.00 0.80 0.71 0.93 0.90
Type_6 1 1 1.00 0.91 0.51 0.40 0.83 0.77

Total 1 1 0.97 0.92 0.62 0.51 0.86 0.81
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5.6 Conclusions

In this Chapter we addressed the Resource Constrained Clustered Shortest
Path Tree Problem (RC-CluSPT), which we recently proposed in Ferone et al.
[78]. In particular, this problem lies at the intersection between the Clustered
Shortest Path Problem and Resource Constrained Shortest Path Tree Problem
(RC-SPT). Indeed, being the clustered version of the RC-SPT, also the RC-CluSPT
is NP-hard.

In Ferone et al. [78] we firstly proposed a mathematical model for the RC-
CluSPT and then, due to its block-diagonal structure, we devised a Dantzig-Wolfe
decomposition. The problem is tackled with a Branch & Price method, featuring
a Column Generation approach with Multiple Pricing Scheme. The performance
of this method are compared with those attained by CPLEX solver in the solution
of the mathematical model, on a data-set obtained by adapting instances of the
Clustered SPT from literature.

As reported here, the results evidence that the proposed Branch & Price
significantly improves the performance of CPLEX, solving to optimality a greater
number of instances and taking less than half the computation time of CPLEX.
Moreover, the performed sensitivity analysis reveals that a lower resource al-
lowance implies reduced computational times and thus a higher number of
optimal solutions found, namely a single branching node is sufficient to prove
optimality. Moreover, from the collected data it is possible to observe that the
instances characterized by a lower number of clusters are easier to solve for the
Branch & Price.

Due to the computational intractability of the RC-CluSPT, as further investi-
gation we will exploit meta-heuristic techniques to obtain sub-optimal solutions
of good quality in a reasonable computation time. Moreover, since only the case
of local resources has been addressed in Ferone et al. [78], as a future line of
research we plan to formalize the RC-CluSPT with global resource constraints,
and to develop an ad hoc solution approach.
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Part II

A Scheduling Problem in 3D
Printing
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CHAPTER 6

The Additive Manufacturing
Machine Scheduling Problem

The mathematical model of the Additive Manufacturing Machine Scheduling
Problem (AMM-SP) was recently proposed in Kucukkoc [119]. However, due
to the intractability of AMM-SP, it cannot be employed to solve instances of
relevant size. At this purpose, in Alicastro et al. [3] we devised a Reinforcement
Learning Iterated Local Search meta-heuristic, based on the implementation of a
Q-Learning Variable Neighbourhood Search, to provide heuristically good solutions
in reasonable computational times.

After an introduction about additive manufacturing process planning (Sec-
tion 6.1) and a comparison between the AMM-SP and a related machine schedul-
ing problem (Section 6.2), the mathematical model for AMM-SP is given in
Section 6.3. Then, Section 6.4 is fully devoted to an in-depth description of
the proposed approach, while the computational experiments and their results
are described in Section 6.5. Lastly, in the Appendix 6.A, a numerical example
illustrates the key procedures of the proposed solution approach.

6.1 Overview of Additive Manufacturing Process Plan-
ning

Additive Manufacturing (AM) is defined by the American Society for Testing
and Materials as the “process of joining materials to make parts from 3D model
data, usually layer upon layer, as opposed to subtractive manufacturing and
formative manufacturing methodologies”.

This technology is gaining ground in the industry and experiencing continu-
ous breakthrough because of high purchasing, affordable maintenance, and low
processing costs of AM machines [57]. However, a general optimization problem
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for the planning of AM processes can be represented coarsely by means of three
interacting components: orientation of parts and their packing in jobs – referred
to jointly as nesting – and scheduling of operations.

As thoroughly surveyed by Oh et al. [142], the scientific contributions pro-
posed in this field all resort to slightly different levels of detail for each one of
such three interacting components. For example, in the context of determining
location and orientation of parts, the maximization of nesting rate has been
addressed. At this purpose, considering irregular shaped parts with due dates,
Wang et al. [171] proposed a computer vision-based approach to tackle effi-
ciently the 2D Packing Problem which arises once that parts have been sorted
according to heights, areas and time remained before deadline. Analysing the
nesting issues from a 3D perspective, Wu et al. [174] devised a Genetic Algo-
rithm to address the problem of packing several irregular shaped parts in a
single job such that the total height, surface roughness, and support volume are
minimized. Finally, both the orientation of job and the related Packing Problem
were addressed in [95]. The authors considered 2D irregular shaped parts and
aimed at minimizing the total construction time of jobs through a six-stages
procedure, combining a Tabu Search to solve build orientation and a two-stage
procedure for the 2D Packing Problem. On the other hand, focusing on the
production planning of parts with different shapes and geometries, Oh et al.
[141] optimized the operations to be performed on multiple AM machines. The
authors proposed a heuristic algorithm to solve the related packing problem
and analyzed two different build orientations for the parts: standing policy and
laying policy, showing how the former outperforms the latter when the number
of parts increases. Accounting for parts with different due dates, Chergui et al.
[38] studied the minimization of the total tardiness in case of parallel identical
AM machines. Lastly, Li et al. [123, 124] tackled the problem of dynamic order
acceptance scheduling, modelling a scenario in which a series of part orders
arrives dynamically at a production facility, where the on-demand production
has to be optimized to maximize the average profit-per-unit-time.

The AMM-SP discussed in this Chapter considers a finite set of parts with
several characteristics that have to be produced by a finite set of AM machines,
each of which may have different specifications. In particular, each AM machine
can produce more than one part simultaneously on its platform. Thus, the aim is
to minimize the maximum completion time, i.e. the makespan. Indeed, it was
described in the following multiple variants in Kucukkoc [119], where also the
mathematical model was presented:

i) AM single machine when dealing with instances characterized only by one
AM machine;

ii) AM parallel identical machines (PI-AMM-SP) if the instances are character-
ized by at least two AM machines having the same specifications;

iii) AM parallel non-identical machines (PNI-AMM-SP) when there are at least
two AM machines with different specifications.
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The only approach currently proposed in scientific literature relies on the
use of CPLEX solver. However, our design of an efficient heuristic approach
was motivated by the computational intractability of AMM-SP [119]. In fact,
the i) version of AMM-SP is equivalent to the well-known Bin Packing Problem
[115] which is strongly NP-hard [90]. Instead, in versions ii) and iii), the job
processing time is a function of the volume and the height to be printed, hence
minimizing the makespan is an even harder problem [37, 119].

6.2 AMM-SP vs BPMP

In this Section, we analyze similarities and differences between the AMM-SP
and the related Batch Processing Machine Problem (BPMP), which has been
widely studied in the literature, as surveyed in Section 6.2.1

The AMM-SP is based on the Selective Laser Melting technology, an expensive
process both in terms of purchasing of the machines and layer by layer production.
Moreover, the production of parts is commissioned by distributed customers:
thus, to increase machines utilization and to reduce the average cost – due to
set-up and post-processing operations –, it is necessary to group these parts in job
batches and to schedule these batches on the machines [119], considering also
that each AM machine can produce many parts simultaneously on its platform,
as long as their total size is not greater than the capacity of the machine.

On the other hand, in the generic BPMP, jobs with or without identical
characteristics (i.e. due date, size, ready time), have to be allocated into batches
to be released on one or multiple, identical or not, machines to optimize specific
performance metrics, e.g. makespan [33]. In particular, the machines can
process several jobs simultaneously as a batch, given that the total size of all
the jobs in the batch does not exceed the capacity of the machine on which it is
scheduled. Actually, by letting parts and jobs in the AMM-SP play the roles of
jobs and batches in the BPMP, the AMM-SP may look similar to the BPMP with
arbitrary job sizes [126].

However, despite the similarity in the scheduling resolution procedure, there
exists the following relevant differences between AMM-SP (with single or parallel
machines) and BPMP with arbitrary job sizes [119, 122].

1. On the one hand, the batch processing time in the BPMP is determined by
the largest processing time of the jobs included in it, where the processing
time of a job is a parameter of the problem. On the other hand, the job
processing time in the AMM-SP depends on the total volume of the parts
included in the job, as well as on the maximum heights of those parts (see
Section 6.3).

2. In the AMM-SP, the job processing time is computed via a function (Equa-
tion (6.3h) in Section 6.3) which takes into account the volume and the
height to be printed. As a consequence, the parts included in a job batch
strongly influence its processing time, that is to say that different combina-
tions of parts yield to different costs.
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In conclusion, in the AMM-SP, both the feasibility of a solution and the comple-
tion time strongly depend on the combination of parts considered in batches.

6.2.1 BPMP: Literature Review

Due to its computational intractability, the BPMP has been tackled with
different heuristics and meta-heuristics.

In the 80-90s the earlier papers on BPMP considered only a single Batch Pro-
cessing Machine (BPM). Just to cite a couple, Ikura and Gimple [105] proposed
efficient algorithms for the minimization of the makespan in the case of jobs
with different but compatible release times and due dates. Then, Uzsoy [169]
proved the NP-completeness of the problems of minimizing the makespan and
the total completion time in the case of arbitrary job sizes and proposed, among
the others, the First-Fit Longest Processing Time heuristic.

More recently, the BPMP with several identical (IP-BPM) or not (NIP-BPM)
machines has been addressed. Cheng et al. [37] described MILP models and
computational complexity for both makespan and total completion time mini-
mization for IP-BPM with non-identical job sizes. The authors also devised an
Approximation Algorithm. Trindade et al. [168] proposed MILP models for four
different BPMP versions, considering BPM and IP-BPM and jobs with or without
release times. Jia and Leung [109] addressed the makespan minimization on
IP-BPM with arbitrary job sizes through a meta-heuristic based on the Max-Min
Ant System method. Then, this approach was adapted to the case of NIP-BPM
in [110], where also a heuristic based on the First-Fit-Decreasing rule was pre-
sented. Instead, Suhaimi et al. [163] tackled the NIP-BPM via a Lagrangian
method applied to two different relaxations of the problem. In Zhou et al. [182]
the batching on identical machines with non-identical job sizes and arbitrary
release times, was performed via distance matrix based heuristics. Recently,
Zhang et al. [180] proposed an Evolutionary Algorithm to address the BPMP for
the makespan minimization on identical AM machines.

However, to provide a more accurate description of real-world production
systems, also the BPMP with Unrelated Machines (BPUM) has been defined by
letting the speed of the machines depend on the jobs. At this purpose, Arroyo and
Leung [8], addressed the version with identical BPUM and jobs with arbitrary
features – size and ready time – with heuristics based on First-Fit and Best-Fit
Earliest Job Ready Time rules. The same authors addressed the variant with
non-identical BPUM in [7] via an Iterated Greedy Strategy.

Finally, it is worthwhile mentioning that the makespan minimization is not
the only considered objective. For example, Li et al. [121] proposed heuristics
procedure for the integrated production and delivery on IP-BPM of jobs with
identical and non-identical sizes. Instead, Jia et al. [111] proposed an effec-
tive meta-heuristic based on Ant Colony optimization for the minimization of
weighted completion time for IP-BPM with arbitrary job sizes.
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6.3 Mathematical Formulation

In this Section we report a formal description of the problem, as originally
presented in Kucukkoc [119]. For this purpose, first we thoroughly describe the
elements involved in the AMM-SP, then we define the decision variables, and
finally we present and comment the mathematical model.

As previously mentioned, the problem consists in the scheduling of operations
to be performed by a collection M = {1, . . . , p} of AM machines. The generic m-th
AM machine is characterized by the following set of specifications (1-3) and
known physical characteristics (4-5):

1. VTm: the time to form per unit volume of material;

2. HTm: the time for powder-layering, which depends on the highest pro-
duced part in each job;

3. SETm: the time needed for set-up, e.g. initializing and cleaning, which is
repeated for each job;

4. MAm: the production area of the tray of machine;

5. MHm: the maximum height supported by the machine.

The goal of the AMM-SP is to batch processing a collection I = {1, . . . , q} of parts
into job batches ( j ∈ J = {1, . . . , k}) to be scheduled on AM machines optimally.
Clearly, it holds that k ≤ q, because there should be at least one part in each job.
In particular, we refer to the bounding box of the part rather than to its actual
shape [see 119]. Thus, each part i ∈ I is only characterized by height (hi), area
(ai), and volume (vi). Given an arbitrary instance of AMM-SP, a part i ∈ I is
incompatible with a machine m ∈ M when hi > MHm or ai > MAm; i.e. a part
cannot be grouped into any job on a machine when either the height of the part
is greater than the maximum height supported by the machine, or its area is
larger than the maximum area supported by the machine.

The mathematical formulation of the AMM-SP relies on the introduction of the
following variables:

• Boolean variables Xmji describing the assignation of parts to jobs and
machines:

Xmji =

1, if part i is assigned to job j on machine m,
0, otherwise;

• Boolean variables Zmj describing the assignation of jobs to machines:

Zmj =

1, if job j on machine m contains at least one part,
0, otherwise;
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• real variables PTmj representing the processing time of the j-th job on the
m-th machine;

• real variables Cmj representing the completion time of the j-th job on the
m-th machine.

The time spent to process the j-th job on the m-th machine is then defined
as the sum of three terms, depending on: the set-up time, the volume and the
height to be printed. Formally:

PTmj = SETm · Zmj + VTm ·
∑
i∈I

vi · Xmji + HTm ·max
i∈I
{hi · Xmji}. (6.1)

Moreover, assume that each machine is ready at time 0, i.e. Cm0 = 0,∀m ∈M.
Then, considering the sequential nature of the job processing, the completion
time of the j-th job on the m-th machine is obtained as

Cmj ≥ Cm( j−1) + PTmj. (6.2)

The resulting AMM-SP mathematical model, presented in Kucukkoc [119], is
given in (6.3):

(AMM-SP) min
[

max
m∈M, j∈J

Cmj

]
(6.3a)

s. t.∑
m∈M

∑
j∈J

Xmji = 1 ∀i ∈ I (6.3b)∑
i∈I

ai · Xmji ≤MAm ∀m ∈M,∀ j ∈ J (6.3c)

hi · Xmji ≤MHm ∀m ∈M,∀ j ∈ J,∀i ∈ I (6.3d)∑
i∈I

Xm( j+1)i ≤ ψ ·
∑
i∈I

Xmji ∀m ∈M,∀ j ≤ k − 1 (6.3e)

Cm( j−1) + PTmj ≤ Cmj ∀m ∈M,∀ j ∈ J (6.3f)

Cm0 = 0 ∀m ∈M (6.3g)

PTmj = SETm · Zmj + VTm ·
∑
i∈I

vi · Xmji

+ HTm ·max
i∈I
{hi · Xmji} ∀m ∈M,∀ j ∈ J (6.3h)

Xmji,Zmj ∈ {0, 1} ∀m ∈M,∀ j ∈ J,∀i ∈ I (6.3i)

The objective function (6.3a) represents the minimization of the maximum
completion time, that is the makespan. The model is made up by: part occurrence
constraints (6.3b) that restrain all parts to be processed exactly once; area (6.3c)
and height (6.3d) capacity constraints, to ensure that parts are supported by the
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assigned machine; constraints on job utilization (6.3e) to force the allocation of
jobs with an incremental strategy, meaning that if job j of machine m is empty,
then parts can not be assigned to job j + 1; completion time constraints (6.3f)
and (6.3g) and processing time constraints (6.3h) that specify how to compute
completion and processing times of jobs. Finally there are sign constraints (6.3i).

6.4 Solution Approach

As discussed in Section 6.1, to the best of our knowledge the only solution
approach presented in the literature for the AMM-SP tackles the linear pro-
gramming model using CPLEX directly. However, due to its intractability, it is
not always possible to solve optimally the problem with limited time resources.
Consequently, the growth in the size of instances could foster the use of heuristic
algorithms to yield promising sub-optimal solutions in short computational times.

At this purpose, in Alicastro et al. [3] we devised an Iterated Local Search
(ILS) algorithm, whose local search employs a Learning Variable Neighbourhood
Search. In particular, our algorithmic proposal leverages a Q-Learning algorithm
– a model-free Reinforcement Learning technique – to achieve the best possible
balance between three distinct neighbourhood structures. Moreover, with the
aim of testing our solution proposal on large sized instances against another
heuristic solution technique, we implemented an adaptation of the Evolutionary
Algorithm (EA) presented by Zhang et al. [180] for the IP-BPM.

This choice was made:

• to have a reference point to better evaluate the performances of our heuris-
tic proposal;

• because EA achieved promising results [180] on a problem that shares
similar characteristics with the AMM-SP, as pointed out in Section 6.2.

The general structure of the ILS is outlined in Section 6.4.1, while its details
are thoroughly described in Sections 6.4.2 to 6.4.5. In particular, Appendix 6.A
illustrates the operations performed by our ILS through a numerical example.
Finally, Section 6.4.6 details the Probabilistic Stopping Rule adopted as alternative
stopping criterion for the ILS, while the adapted Evolutionary Algorithm is
described in Section 6.4.7.

6.4.1 Iterated Local Search

Iterated Local Search (ILS) is among the most general single-point and
memory-less meta-heuristics [4, 162]. Generally, ILS builds an initial solution
randomly and at each iteration perturbs the current solution x – according to a
specific heuristic procedure – and performs a local search in the neighbourhood
of the perturbed solution. Both perturbation and local search procedures have a
key role: the former aims to kick the current solution x out from the attraction
basin of the local optimum (for diversification purposes), while the latter looks
for better solutions, by performing an intensification phase.
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During the years, the ILS has been implemented and hybridized in several
different ways, incorporating biased-randomization [73], tabu search [139], and
many other variants [129]. In Alicastro et al. [3], we designed a specific variant
of ILS, in which the construction phase uses an encoded version of the solution,
inspired by the genetic algorithm literature, and the local search is a Learning
Variable Neighbourhood Search, based on a Q-Learning approach [151].

In particular, the construction phase (Section 6.4.2) builds randomly an
encoded solution that is converted in a final solution by solving the Strip-Packing
problem (Section 6.4.3); the perturbation phase changes the current encoded
solution (Section 6.4.4) randomly, and the local search uses a learning and
adaptive strategy to choose the best neighbourhood to explore (Section 6.4.5).

6.4.2 Construction and Encoding

In order to construct and perturb solutions efficiently, we used a strategy
inherited from Random Key Genetic Algorithms which consists in encoding the
solution through a vector of integers and managing the vector in the aforemen-
tioned phases.

Before presenting the encoding strategy, we point out that two machines with
the same specifications –VT, HT, SET, MA and MH– are considered logically
equivalent. Thus, letting t be the number of different types of machines of a given
instance, M̃1, . . . , M̃t will denote the sets of the indexes of the logically equivalent
machines, namely the meta-machines. We can then define the following vector
representations of length q:

X̄i = m̃ ⇔ i is scheduled on m ∈ M̃m̃. (6.4)

Therefore, X̄i = m̃ means that the i-th part will be processed by a machine
m ∈ M̃m̃. In this encoding phase, no assumption is made about the regrouping
of parts into jobs; consequently, a Packing Problem has to be solved during the
decoding phase. For this reason, the construction phase is very efficient and
simple: each part is assigned to a feasible meta-machine randomly, with respect
to the constraints that limit the maximum height and area.

6.4.3 Decoding

The decoding phase aims to translate an encoded vector into an AMM-SP
solution, by solving the problem of grouping parts into jobs. The aim is to
minimize the total processing time needed by each machine, that is given by the
sum of all the processing time of jobs related to that machine:∑

j∈J

PTmj
def
=

∑
j∈J

[
SETm · Zmj + VTm ·

∑
i∈I

vi · Xmji + HTm ·max
i∈I
{hi · Xmji}

]
= SETm ·

∑
j∈J

Zmj︸           ︷︷           ︸
(a)

+ VTm ·

∑
j∈J

∑
i∈I

vi · Xmji︸                    ︷︷                    ︸
(b)

+ HTm ·

∑
j∈J

max
i∈I
{hi · Xmji}︸                        ︷︷                        ︸

(c)

. (6.5)
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It is worthy to note that the term (b) is independent from the aggregation of
parts into jobs. Thus, starting with an already existing part-machine association,
the new – feasible – aggregation of parts into jobs ideally has to minimize: the
number of performed setups (a), i.e., the number of utilized jobs, and the sum
(c) of the heights of jobs in which parts are grouped, i.e. the height of the
highest part contained in each job. Minimizing those quantities yields to the
resolution of a particular Packing Problem known as Strip Packing Problem whose
characteristics are briefly summarized in the following subsection, before giving
the details of the decoding process.

Strip Packing Problem

An instance of Strip Packing Problem (Str-PP) is defined by a rectangular bin
with finite width W and infinite height, and a set {o1, . . . , on} of n axis-aligned
rectangular items, each with width at most equal to W and finite height. The
objective of this problem is to find a packing of all items into the bin so as to
minimize the packing height under some physical constraints, namely: packed
items can neither cover each other nor be rotated. Indeed, the Str-PP is a
generalization of the Bin Packing problem, a well-known NP-hard problem [90].
In literature, approximation [22, 108] and exact [132] algorithms have been
developed for Str-PP. Moreover, it has been proved that any offline bin packing
algorithm can be applied to Str-PP maintaining the same asymptotic worst-case
ratio [97]. Anyway, among the others, the Str-PP can be solved with a level-
oriented approach which packs items in rows forming levels, such that in each
level the items are bottom-aligned. Though, this algorithm often produces a
sub-optimal solution, as depicted in Fig. 6.1 where on the left hand side, there is
an optimal solution that minimizes the packing height, and, on the right hand
side, there is a level-oriented feasible solution.

i8
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i9
i4 i7

i3

area size

he
ig

ht

i8 i9
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Fig. 6.1 Example of solutions for an instance of Strip Packing Problem.

However, the level-oriented solution brings an implicit partition into strips
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that could be otherwise obtained only with a post-processing operation on the
optimal solution. In particular, the post-processing may require an excessive time
effort on large sized instances due to the complexity of the Str-PP.

Decoding Process Details

The aim of this Subsection is twofold: pointing out the analogy between the
Str-PP and the Packing Problem associated to the decoding phase, and detailing
the operations executed in that process.

Let Ī = {i1, . . . , ih̄} be the set of parts to be regrouped into jobs and m̃ be the
meta-machine on which the parts have to be processed. The problem of the
aggregation of parts into jobs can be formulated as a Str-PP with a bin of width
W = MAm̃ and items {o1, . . . , oh̄}, such that each o j has width and height equal to
those of part i j. In particular, the feasibility of the set of items is guaranteed by
the fact that, after the encoding phase, parts are associated only with compatible
machines. Solving this Str-PP instance with a level-oriented approach ensures
that each job can be processed by the m̃-th meta-machine: regarding each strip
as a job, it holds that the sum of the widths of the items of each strip – the sum
of the area of the parts of each job – does not exceed the width of the bin – the
maximum area capacity of meta-machine m̃.

Parts Meta-Machines Packing Jobs Machines

i1

i2

i3

i4

i5

. . .

j11

j12

j22

j21

M̃1

M̃2

. . .

m1∈M̃1

m2∈M̃2

m3∈M̃2

Fig. 6.2 Conceptual model of the Decoding Process.

Thus, all the parts are firstly divided into sets depending on the meta-machine
they have to be scheduled on, and then, for each set, a Str-PP is solved. After
that, one job at a time is scheduled on one of the less loaded machines m ∈ M̃i,
sorting the resulting jobs by non-ascending processing times (Fig. 6.2).
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As regards the level-oriented approach to solve the Str-PPs, we focus on
three of the best known greedy bin packing offline algorithms [131]: Next-Fit
Decreasing Height, First-Fit Decreasing Height and Best-Fit Decreasing Height. In
particular, since none of these procedures turns out to be the best behaving,
we apply all of them for each encoded solution vector v and decode v into the
solution that exhibits the lowest makespan.

To describe these procedures, we suppose that: parts are sorted in non-
ascending order by their heights, J is the list of already allocated jobs and the
first k̄ − 1 parts, with k̄ ≤ h̄ are already grouped into some jobs. Therefore the
k̄-th part, namely ik̄, has to be processed.

Next-Fit Decreasing Height (NFDH) According to this greedy strategy, part
ik̄ is processed by the last allocated job j̄ ∈ J if possible; otherwise a new job is
created at this purpose and it is added to the list J (Fig. 6.3). NFDH has been
proved to satisfy the worst-case performance ratio r(NFDH) = 2 [112].

j1 j2 j3

i1 i2 i3 i4 i5

Fig. 6.3 Example of application of the Next-Fit Decreasing Height on an instance
of Str-PP with 5 items.

First-Fit Decreasing Height (FFDH) It is an extension of NFDH since it at-
tempts to use all the |J| already allocated jobs: if ik̄ can be processed by at least
one job in J, then the one with the lowest index – that is the job which was
allocated first – is considered; otherwise, a new job is allocated, added to the
list J, and used to process ik̄ (Fig. 6.4). It has been proved that the First-Fit
greedy strategy satisfies the asymptotic worst-case performance ratio equal to
17
10 [112]. Consequently, FFDH satisfies the asymptotic worst-case performance
ratio r∞(FFDH) = 17

10 .

Best-Fit Decreasing Height (BFDH) BFDH works as FFDH, with the only
difference that BFDH tries to maximize job utilization. If any job in J can process
ik̄, then the one with the maximum occupied area – the job with the minimum
residual area – is chosen. In particular, in case of a tie between two or more
jobs, the one with the lowest index, that is the job which was allocated first, is
considered. If none of the jobs in J can be used, a new job is allocated (Fig. 6.5).
It has been proved that the Best-Fit greedy strategy satisfies the same worst-case
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j1 j2 j3

i1 i2 i3i4 i5

Fig. 6.4 Example of application of the First-Fit Decreasing Height on an instance
of Str-PP with 5 items.

bounds as First-Fit greedy strategy [112], and, therefore, also BFDH satisfies the
asymptotic worst-case performance ratio r∞(BFDH) = 17

10 .

j1 j2 j3

i1 i2 i3 i4i5

Fig. 6.5 Example of application of the Best-Fit Decreasing Height on an instance
of Str-PP with 5 items.

6.4.4 ILS Perturbation

The perturbation function in our ILS follows a classic random scheme as
described in Stützle and Ruiz [162]. Namely, our function changes a given
number of components of the current encoded solution randomly. Specifically,
given a vector of length n and a threshold 0 < Θ ≤ 1, our perturbation selects
dΘ · ne parts randomly and schedules them on other compatible random meta-
machines.

6.4.5 Local Search

The aim of the local search procedure is to explore the neighbourhood of the
current solution so as to reach a local optimum that is better than the best solution
found so far. In particular, in Alicastro et al. [3] we implemented a Variable
Neighbourhood Search (VNS) [134] that uses three different neighbourhoods
structures: 1-flip, 2-swap, and job-alloc. Formally, given a decoded solution x:

• 1-flip neighbours of x are all the solutions with exactly one part scheduled
on another job, belonging either to the same previous machine or to
another machine;
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• 2-swap neighbours of x are all the solutions with exactly two parts swapped
between the corresponding jobs, that either belong to the same machine or
to two different machines;

• job-alloc neighbours of x are all the solutions having exactly two parts
grouped into a new job on any machine.

Indeed, a key point of each VNS is the strategy adopted for selecting the
neighbourhood to explore. A classic scheme is the Variable Neighbourhood
Descent (VND), where the neighbourhoods are explored in a fixed order and the
exploration re-starts from the first one each time improving solution is found.

Inspired by Queiroz Dos Santos et al. [151], we implemented a learning
strategy that looks for the best neighbourhood to select, based on a policy
updated at each iteration. In particular, we used a Q-learning algorithm, where
an agent (the learner) interacts with its environment and selects the actions to
be applied according to its current state and the reinforcement (i.e., rewards) it
collects. The main goal of the agent is to maximize the reward, thus it provides
to the learning algorithm a feedback about the effect of the taken actions.

Let Q(t, a) be an estimation of the expected total reward obtained by per-
forming action a on state t, named action-value function. The learning process
consists of a sequence of epochs (0, 1, . . . ,n, . . . ). At epoch n, the agent is in state
t and performs the action a receiving a reward r(t, a); then, it moves to state t′.
Hence, the action value Q(t, a) is updated as follows:

Q(t, a) = Q(t, a) + α
[
r(t, a) + γmax

a′∈A
Q(t′, a′) −Q(t, a)

]
, (6.6)

where γ ∈ [0, 1] is a discount factor, α ∈ [0, 1] is the learning rate, and A is the
set of possible actions.

For the considered problem, the neighbourhood structures can play the roles
of both action and states. In particular, the current state t is the last applied local
search move, while the action a is the next move to be applied.

The local search procedure based on the Q-learning approach is depicted
in Algorithm 8. In particular, we suppose that the set A of possible actions
is initialized with N = (N1, . . . ,Nhmax ). Moreover, in order to increase the
exploration factor, a parameter ε ∈ (0, 1) is given in input to the algorithm and
is employed in the selection of the next action (Line 4): with probability ε, the
algorithm selects the next action (local search) randomly; on the contrary, with
probability 1 − ε, the next action a is chosen to be the one that maximizes Q(t, a).

6.4.6 Probabilistic Stopping Rule

While most meta-heuristic techniques rely on highly specific construction
phases or local search procedures to achieve effective performance with small
computational efforts, the same attention is not devoted to the stopping criterion,
which often relies on rules that make hardly any usage of the information
gathered during the execution. In fact, usual stopping criteria are based on a
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Algorithm 8 Pseudo-code of local search with Q-learning

1: procedure QLearningLS
2: Initialize x∗.
3: while A , ∅ do
4: Select_Search.
5: x′ = Na(x).
6: r(t, a) = cost(x∗) − cost(x′).
7: if cost(x′) < cost(x∗) then
8: x∗ = x′.
9: A = N .

10: else
11: A = A \ {Na}.
12: Q(t, a) = Q(t, a) + α

[
r + γmaxa′∈AQ(a, a′) −Q(t, a)

]
.

13: t = a.
14: return x∗.
15: end procedure

maximum number of iterations, total execution time, or a bound that limits the
maximum number of consecutive iterations without improvement.

To shorten the computational times at the cost of negligible worsening in
terms of solution quality, in Alicastro et al. [3] we implemented a probabilistic
stopping rule that exploits the information collected at each iteration. This
stopping criterion, inspired by Ribeiro et al. [155] and formally described in
Felici et al. [63], estimates the probability of achieving further improvements of
the incumbent solution, thus weighing-in the profitability of keep running the
algorithm rather than terminating its execution.

Letting a random variable Z represent the objective function value achieved
at the end of each iteration, the stopping rule consists of the two following
successive phases: data-fitting and probability estimation.

1. The goal of the data-fitting is to approximate the Probability Density Func-
tion (PDF) fZ(·) ofZ. At this purpose, it is necessary to select a parametric
family of distributions F whose member functions can be used to estimate
fZ(·). This first choice is based mainly on empirical observations of the
objective function values and their relative frequencies, obtained in a series
of preliminary experiments. Then, by means of a Maximum Likelihood Es-
timation (MLE), the parameters characterizing the best fitting distribution
of the chosen family are determined.

2. At a generic iteration, in which the algorithm holds an incumbent objective
function value z̄, the aim of the probability estimation is to evaluate the
probability p of visiting a solution that improves z̄. Once computed, such
probability is compared with a user-defined threshold τ, and if p < τ the
algorithm stops.

Following the reflection procedure described by Felici et al. [63], the parametric
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family identified to be a good fit for the relative frequencies of Z is the Gamma
distribution family, whose members are specified uniquely by two parameters:
shape (κ), and scale (θ). Once the F has been selected, to estimate accurately
the PDF, the ILS collects an initial sample of objective function values achieved
in a user-defined number of iterations, and then executes a function – developed
in R – which runs a MLE to compute the specific κ and θ values that identify
the individual distribution of the Gamma family that best represents fZ(·), thus
completing the data-fitting phase. Summarizing, the probabilistic stopping rule
can be condensed in the following operations:

a) let the ILS collect the objective function values at the end of the first q
iterations, where q is a user-defined positive integer;

b) using the collected values, execute the data-fitting procedure to compute
the specific shape and scale parameters, κ and θ, of the best fitting Gamma
distribution;

c) every time that an incumbent solution is improved, the probability estima-
tion procedure is performed and the probability p of further improvements
is computed. If p is less than or equal to τ, the stopping criterion is satisfied.

6.4.7 Evolutionary Algorithm

In order to compare our proposal with a sophisticated approach, in Alicastro
et al. [3] we adapted one of the most recent approaches for the BPMP– an
Evolutionary Algorithm (EA) – presented in the literature by Zhang et al. [180].

Indeed, Zhang et al. [180] addressed the makespan minimization for the
IP-BPMP; however, some dissimilarities with our AMM-SP occur: on the one hand
all the machines in their BPMP are identical, therefore the proposed approach
cannot manage problems with non-identical machines easily. On the other hand,
the parts to be scheduled in batches present a complex 3D shape, thus making the
packing problem in Zhang et al. [180] more sophisticated. Taking into account
these differences, we modified two aspects of their EA: the coding strategy
in was adapted to check the “part-machine” associations, as to guarantee the
feasibility of the solutions obtained at each phase of the algorithm (initialization,
crossover, mutation. . . ). Moreover, the packing strategy used by Zhang et al.
[180] was replaced with our Strip Packing algorithm (Section 6.4.3), since only
the bounding boxes of parts are considered in our problem, thus the packing
problem to solve is quite different.

6.5 Computational Experiments

In this Section we detail the numerical experiments designed in Alicastro
et al. [3]. In particular, we divide them in four different tests: a first preliminary
analysis – as described in Section 6.5.2 – is carried out to tune the characteristic
parameters of both the ILS here proposed, and the adapted EA described in
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Section 6.4.7. Secondly, Section 6.5.3 details a comparison between the two
meta-heuristics and ILOG CPLEX 12.8 solver on a set of small sized instances,
to appraise the heuristic performance with respect to the optima computed by
the solver. Section 6.5.4 compares the objective function values achieved by the
ILS and EA in the solution of medium and large sized instances, for which the
use of an exact solver is deemed impractical. Lastly, in Section 6.5.5 there is the
analysis of the potentialities of the probabilistic stopping rule in the achievement
of shorter computational times though slightly worsening the solution quality.

All the algorithms have been implemented in C++, and the experiments
were run on a INTEL i5-6400@2.70 GHz processor with 8GB of RAM. A time
limit of 60 seconds has been used for the two meta-heuristics, while for CPLEX
the maximum running time has been set to 1 hour.

6.5.1 Test Problems and Evaluation Metrics

To appraise the algorithmic performance, in our experimental phase we
include both already-proposed data-sets and ad-hoc generated instances1. In
particular, the instances belong to the PI-AMM-SP and PNI-AMM-SP class and
span a range of different sizes. The distinctive features characterizing each
data-set and its source are reported in Table 6.1.

Table 6.1 Summary of instances properties.

Instances Name Type #machines #parts Source

P15–P38 B PI 2–3 15–46 Kucukkoc [119]
P39–P62 C PNI 2–3 15–46 Kucukkoc [119]
P63–P102 D PNI 2–6 10–420 Li et al. [122]
R01–R40 R PNI 5–19 21–48 Randomly generated

The results discussed in Section 6.5.2 to Section 6.5.5 are reported in terms of
the following statistics: the average of the objective function values; the number
of times the algorithm reached the best solution; the average GAP and DEV.
More specifically, we refer to GAP as the relative difference between an objective
function value (OFV) and the one achieved by CPLEX (CPLEX OFV)

GAP =
OFV − CPLEX OFV

CPLEX OFV
· 100, (6.7)

while DEV is the relative difference between an objective function value and the
best value found by one of the algorithms:

DEV =
OFV − best OFV

best OFV
· 100. (6.8)

1All the instances are available at http://bit.ly/2sMYN7nhttp://bit.ly/2sMYN7n.
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6.5.2 Tuning

In order to tune the characteristic parameters of the ILS, we performed
a preliminary tuning phase with the Irace package [128]. The data-set used
in this tuning is composed by 25 randomly selected problem instances, and
includes ≈ 20% of each group. The resulting parameters and their respective
variation intervals are reported in Table 6.2. The perturbation percentage of
the ILS is denoted by ρ; ε is the probability of selecting a random action in the
Q-learning process; α and γ are the parameters used in the update of the policy
(Algorithm 8). Finally, τ is the threshold used in the probabilistic stop.

Table 6.2 Configuration parameters obtained in the tuning phase.

Algorithm Parameter Interval Selected

ILS

ρ (0.05, 0.50) 0.35
ε (0.05,0.25) 0.11
α (0,1) 0.88
γ (0,1) 0.86

PS τ {0.05, 0.10, 0.15, 0.20, 0.25} 0.20

Finally, to evaluate the effectiveness of the Q-Learning process, we also
implemented the ILS with a random VND in which the neighbourhoods are
explored in a totally random fashion. The two approaches – ILS+Q-learning and
ILS+VND-rand – have been tested on the tuning instances using 60 seconds as
stopping criterion. The results are presented in Table 6.3 which reports, for both
the methods, the Makespan values and the times to best (TtB).

The results reveal that the use of the Q-learning strategy yields a significant
improvement of both the solution quality and the convergence speed. In fact,
the average time to best of the ILS+Q-learning is ≈ 66% of that of the ILS+VND-
rand. Finally, a two-sided Wilcoxon signed-rank test with critical value α = 0.01
suggested that the averages are significantly different (p-value equal to 0.0007).

6.5.3 CPLEX vs Heuristics on Small-Sized Instances

A first set of experiments is devoted to the comparison between the objective
function values achieved by CPLEX and the results of ILS and EA in the solution
of small-sized instances, as done in Alicastro et al. [3].

For the sake of a fair comparison and continuity with respect to scientific
literature, the linear programming model considered by CPLEX closely follows
what described in Kucukkoc [119]. Consequently, in addition to the mathematical
formulation describing the problem of interest, the computation introduces an
a-priori limitation on jn, the total number of jobs that can be scheduled.

Remark 12. It is duly noted that while a-priori limitation on jn is not a constraint
featured in the description of the problem, it is nevertheless introduced by
Kucukkoc [119] to reduce computational times. In fact, guided by heuristic
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Table 6.3 (Q-learning vs Random VND). Computational results in terms of ob-
jective function value (Makespan) and Time to Best.

ILS+Q-learning ILS+VND-rand
Makespan TtB Makespan TtB

P25 434.74 41.09 435.04 25.54
P30 359.01 35.55 359.39 20.95
P34 381.19 22.94 381.73 31.41
P35 363.18 23.98 363.31 42.68
P37 438.58 39.03 438.86 22.10
P40 199.45 0.01 199.45 0.06
P50 451.51 4.65 451.51 21.57
P51 296.07 15.90 296.15 30.72
P54 356.93 25.66 356.96 26.39
P62 449.15 26.54 449.45 56.59
P66 3282.19 0.00 3282.19 0.01
P69 1457.57 0.00 1457.57 0.00
P72 5225.98 0.00 5225.98 0.00
P79 3970.98 11.45 3970.98 19.19
P81 5358.14 0.97 5358.14 3.20
P88 4486.98 8.09 4488.38 16.11
P89 6222.89 10.18 6235.03 35.60
P96 4488.72 9.80 4488.88 9.68
P102 27692.17 17.58 27779.67 55.59
R01 367.67 0.04 367.67 1.42
R06 426.02 36.42 426.89 21.17
R12 233.03 2.23 234.28 40.16
R13 232.96 0.01 232.96 2.15
R17 306.46 35.92 309.62 23.31
R27 706.65 2.12 706.65 45.54

Average 2727.53 14.81 2731.87 22.05
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Table 6.4 (Data-set B). Computational results in terms of objective function
value (Makespan) found by each method within the time limits (60
seconds for the two heuristics and 1 hour for CPLEX).

CPLEX ILS+Q-learning EA
Instance Makespan Total time Makespan Makespan

P15 197.51 7.30 197.51 197.51
P16 203.89 7.47 203.89 204.49
P17 389.97 69.44 389.97 389.97
P18 397.78 6.98 397.78 397.78
P19* 381.17 4.50 378.76 378.76
P20 385.09 22.95 385.09 385.68
P21 280.61 68.11 280.61 281.20
P22 294.95 28.04 294.95 294.95
P23* 414.32 34.55 414.25 414.25
P24 433.10 18.68 433.10 433.10
P25* 435.43 175.77 434.74 435.83
P26 454.85 60.85 454.85 454.85
P27* 438.41 606.90 436.52 436.52
P28* 462.36 883.51 456.55 456.55
P29 348.46 1801.29 348.83 349.16
P30 358.81 3605.29 359.01 359.66
P31* 341.51 44.58 340.68 340.74
P32 349.25 1801.31 350.61 350.34
P33 368.99 1800.02 370.81 370.55
P34 378.52 3600.01 381.19 381.67
P35 361.74 1800.59 363.18 362.80
P36 372.16 1801.16 374.07 374.00
P37 436.00 1800.02 438.58 438.70
P38 447.07 3600.01 451.82 451.85

observations, the authors observed how fixing a-priori the total number of jobs,
could imply sensibly shorter computational times. However, the maximum
number of jobs characterizing optimal solutions can not be known a-priori, and
thus the computation of such an upper bound requires some preliminary work to
ensure that this additional constraint does not yield infeasibility or sub-optimality.
At this purpose, every time CPLEX terminates within the given time limit and yet
obtains solutions outperformed by at least one of the two heuristics, this implies
sub-optimality of the solution for the corresponding instance. As a consequence,
this kind of instances are marked with an asterisk in Tables 6.4-6.5. �

The results obtained (summarized in Table 6.6) evidence that, as expected, on
average the best OFVs are achieved by CPLEX, yet the gap characterizing the two
heuristic techniques is negligible. Additionally, we observe that for ≈ 20% of the
instances, the solver required the full allotted time, thus giving an average time
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Table 6.5 (Data-set C). Computational results in terms of objective function
value (Makespan) found by each method within the time limits (60
seconds for the two heuristics and 1 hour for CPLEX).

CPLEX ILS+Q-learning EA
Instance Makespan Total time Makespan Makespan

P39 195.44 1.64 195.44 195.44
P40 199.45 1.55 199.45 199.45
P41 385.59 7.59 385.59 386.03
P42* 396.93 1.84 394.35 394.35
P43 372.58 6.38 372.58 372.58
P44 380.22 5.91 380.22 380.22
P45* 286.53 40.05 286.41 286.43
P46* 293.09 60.02 291.78 291.78
P47* 425.93 43.77 423.05 423.19
P48* 435.51 60.86 430.46 430.46
P49* 447.48 156.62 444.46 444.65
P50* 456.31 104.30 451.51 451.51
P51 296.05 112.09 296.07 300.00
P52 299.71 187.24 300.49 302.89
P53 352.16 3600.01 352.41 353.31
P54 357.82 3602.07 356.93 357.37
P55 342.30 3600.01 343.62 344.48
P56 345.05 3600.13 347.68 348.53
P57 372.58 3601.66 375.22 375.01
P58 376.90 3603.93 379.12 379.52
P59 364.12 3600.02 367.82 368.96
P60 368.43 2401.97 372.18 373.03
P61 444.08 2401.22 444.22 444.71
P62 446.55 1801.62 449.10 449.86

of ≈ 1172s. Finally, we observe that though the additional constraint imposed on
the maximum number of jobs speeds-up the computation, it yields at-least 13
instances with sub-optimal solutions.

As a final remark, in this first round of computational experiments, to evaluate
the performance achieved by the three methods properly, we performed a non-
parametric test to appraise the statistical significance of the differences in terms
of objective function values. A two-sided Wilcoxon signed-rank test – with critical
value α = 0.01 – suggested that the solutions obtained by the two heuristics are
not significantly different with those achieved by CPLEX (p-values of 0.5214 and
0.1123 for the ILS and EA, respectively). These results evidence that for small
instances, both ILS and EA are able to find near optimal solutions efficiently.
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Table 6.6 (Data-sets B and C). Summary of results for the small-sized instances.

CPLEX ILS+Q-learning EA

avg(OFV) 366.10 366.20 366.56
avg(time) 1171.91 60.00 60.00
#best 34/48 28/48 18/48
avg(GAP) 0.04% 0.15%
avg(DEV) 0.16% 0.20% 0.31%

6.5.4 Comparison of Meta-heuristics

This Section is devoted to the comparison of the performance achieved by
the proposed ILS and the EA adapted from the literature. To this aim, we take on
the solution of medium-to-large sized instances to appraise the solution obtained
on a data-set for which the use of CPLEX is impractical.

In particular, the analyses are based on the solution of two distinct data-sets,
namely D and R. The former – taken from Li et al. [122] – is characterized by
few parallel non-identical machines upon which a number of parts – from 10 to
42 – characterized by high variability has to be scheduled. On the contrary, the
latter has been generated randomly to include in the experiments instances that
presented a higher number of machines with fewer parts to be processed.

Analyzing the results – Tables 6.7 to 6.10 – it is possible to appraise the
efficient implementation of both the meta-heuristics, that in 60 seconds are able
to evaluate a high number of solutions (reported as #s.e.).

On data-sets D and R, ILS presents better results compared with EA (Ta-
ble 6.9). In terms of solution values, the ILS found 63/77 best solutions, as
opposed to the 30/77 achieved by EA. A similar difference appears also for the
average OFVs and DEV. Additionally, from the recorded time to best, it is possible
to note that both heuristics are able to achieve good quality solutions quickly.
This behaviour, in addition to the high number of evaluated solutions, suggests
that there may be room for improving the efficiency of the methods by further
reducing the computation time (see Section 6.5.5). Also in this case, we per-
formed a two-sided Wilcoxon signed-rank test – with critical value α = 0.01 –
obtaining a p-value equal to 7.454 · 10−5. Therefore, the difference between the
two methods is statistically significant.

Finally, Fig. 6.6 presents the percentage deviations with respect to the number
of machines characterizing the instances of data-sets D and R. It is evident that
the higher number of machines appears to affect the performance of EA mainly,
with the ILS that consistently achieves the best solutions across almost the
whole data-set. This behaviour can be related to the flexibility of the Variable
Neighbourhood Search, whose neighbourhood structures are managed efficiently
by the Q-learning approach.
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Table 6.7 (Data-set D - PNI machines). Computational results in terms of objec-
tive function value (Makespan), Time to Best and number of solution
evaluations of the two heuristics in 60s.

ILS+Q-learning EA
Instance Makespan TtB #s.e. Makespan TtB #s.e.

P63 910.50 0.00 195455792.00 910.50 0.00 1206501.00
P64 1168.22 0.00 168122899.40 1168.22 0.00 1193286.60
P65 1516.24 0.01 186798528.40 1517.05 0.00 1184095.60
P66 3282.19 0.00 200321289.00 3282.19 0.00 1127863.60
P67 2043.57 0.69 178780217.40 2043.57 0.00 1133396.00
P68 6918.48 0.00 189170560.40 6918.48 0.00 1106312.20
P69 1457.57 0.00 172061604.60 1457.57 0.00 1147947.80
P70 1417.39 0.01 177912681.80 1417.39 0.00 1085863.80
P71 3777.21 0.00 180411625.60 3777.21 0.00 1070055.80
P72 5225.98 0.00 171606884.00 5225.98 0.00 1027955.00
P73 5993.22 0.01 164932490.00 5993.22 0.00 966560.60
P74 6871.53 0.00 168194657.40 6871.53 0.00 941965.00
P75 1912.28 0.00 172616767.60 1912.28 0.00 1060505.80
P76 1729.32 0.19 144615689.00 1729.39 20.33 990440.80
P77 5120.85 0.01 162992407.80 5120.85 0.00 955595.00
P78 6473.88 0.01 156694243.20 6473.88 0.00 931064.60
P79 3970.98 9.63 142652178.40 3977.30 3.16 886899.20
P80 8198.11 0.01 157966451.20 8198.11 0.00 876562.00
P81 5358.14 1.06 143567040.60 5360.32 25.38 960390.20
P82 1487.82 0.13 144347371.20 1488.23 8.71 934897.60
P83 4179.74 0.01 148644403.20 4179.74 0.00 880089.20
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Fig. 6.6 Percentage deviations with respect to the number of machines.

145



Chapter 6. The AM Machine Scheduling Problem

Table 6.8 (Data-set D - PNI machines). Computational results in terms of objec-
tive function value (Makespan), Time to Best and number of solution
evaluations of the two heuristics in 60s.

ILS+Q-learning EA
Instance Makespan TtB #s.e. Makespan TtB #s.e.

P86 3267.40 35.80 95616747.00 3266.95 38.42 652822.80
P87 5660.99 28.12 91052416.40 5654.69 23.07 521669.00
P88 4489.16 21.32 68422597.20 4490.58 27.15 495533.40
P89 6236.83 34.99 76101501.00 6223.87 23.94 319399.20
P90 7166.71 36.63 68669884.80 7149.92 53.41 307951.80
P91 9597.28 29.25 65715122.40 9583.41 13.83 257248.00
P92 13739.83 37.61 65547032.60 13731.18 38.91 241010.20
P93 1351.09 0.12 125190577.60 1378.00 0.09 972161.60
P94 1739.14 13.56 110585111.20 1736.73 38.92 794752.40
P95 2976.48 53.64 95234381.00 2973.83 24.59 621489.40
P96 4491.54 35.30 81941102.80 4476.00 39.98 446016.40
P97 5054.10 26.98 68579136.80 5050.85 45.74 327303.40
P98 6596.19 43.07 53856672.00 6599.10 37.36 243309.40
P99 9243.98 37.98 46167338.60 9241.21 46.61 182321.60
P101 16995.16 36.95 40863319.60 16933.64 32.84 127817.80
P102 27718.10 30.92 35369305.80 27647.83 49.20 99371.00

Table 6.9 (Data-set D). Summary of results for the Comparison of Meta-
heuristics.

ILS+Q-learning EA

avg(OFV) 3125.97 3130.93
avg(TtB) 18.98 24.64
#best 63/77 30/77
avg(DEV) 0.04% 1.32%
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Table 6.10 (Data-set R). Computational results in terms of objective function
value (Makespan), Time to Best and number of solution evaluations
of the two heuristics in 60s.

ILS+Q-learning EA
Instance Makespan TtB #s.e. Makespan TtB #s.e.

R01 367.67 0.23 137600210.40 378.80 21.38 959656.00
R02 1004.25 34.52 85992360.40 1011.67 22.86 982115.40
R03 480.98 1.66 128732852.20 509.65 41.02 955905.00
R04 1908.18 30.33 86953258.40 1925.36 32.40 999617.60
R05 861.54 23.38 116563247.60 876.58 25.81 1057024.40
R06 426.02 36.42 81847180.20 421.53 53.29 914710.20
R07 4112.98 23.33 75267055.80 4124.90 24.73 1051679.40
R08 289.06 18.41 68087790.40 297.67 23.87 864809.80
R09 514.06 29.24 90333696.20 517.29 37.13 922032.60
R10 931.26 38.42 65000083.80 992.71 37.36 878894.00
R11 1465.57 28.81 80212525.60 1480.82 47.39 979493.80
R12 232.69 28.00 79338614.60 245.42 20.85 883067.40
R13 232.96 1.60 124442102.80 237.46 26.52 967674.00
R14 602.09 32.99 70643463.20 616.55 49.63 893650.20
R15 203.98 26.71 103814801.60 212.84 43.59 952676.40
R16 2397.33 25.50 99012670.80 2411.91 28.51 1056932.20
R17 306.46 35.92 92065567.80 316.52 41.24 897019.60
R18 432.92 32.60 88806125.00 446.43 26.03 957048.60
R19 1195.61 16.75 118001403.20 1205.71 19.47 1127769.00
R20 650.70 31.20 122556649.20 663.81 24.32 1110799.60
R21 2404.41 29.10 81461748.40 2427.35 50.18 960586.80
R22 338.62 30.24 90620928.60 355.29 33.81 943222.40
R23 398.80 14.31 73175670.60 424.83 22.86 888861.80
R24 478.96 33.86 73700161.20 503.54 38.39 858491.00
R25 488.10 0.03 137912287.20 488.24 15.90 974012.00
R26 507.71 9.23 114517026.40 513.64 23.99 1093576.80
R27 706.12 29.39 65133500.40 735.46 47.61 874182.20
R28 350.48 0.01 124502641.00 357.25 27.99 1032032.40
R29 466.19 23.34 81508788.40 483.71 50.56 870255.20
R30 693.75 29.24 65423227.60 713.62 34.23 873894.60
R31 675.53 28.15 100402056.80 694.19 39.99 980126.60
R32 379.52 6.12 99723638.60 390.93 16.99 1025732.60
R33 2560.00 26.70 108018449.40 2568.39 37.57 1047099.80
R34 454.26 28.41 98823120.00 471.72 28.11 960846.00
R35 428.43 25.56 117729310.00 436.20 33.99 1081345.60
R36 2274.81 39.73 96046417.40 2285.41 26.78 1037821.60
R37 128.12 0.18 186556339.40 130.02 15.79 987659.60
R38 1992.41 44.64 91440001.20 2002.18 35.64 1038506.80
R39 280.55 33.00 123754689.20 291.68 34.36 976395.40
R40 739.64 20.59 68327812.00 753.77 43.33 939174.40
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6.5.5 Testing the Probabilistic Stopping Rule

In this Section we detail the computational experiments devised in Alicastro
et al. [3] to test the probabilistic stopping rule (PS) described in Section 6.4.6.
At this purpose, we compare the results obtained solving the instances of the
data-set R employing the ILS algorithm with two different stopping criteria: a
maximum computation time of 60 seconds (ILS + Q-learning), and the proba-
bilistic stopping rule (ILS + Q-learning + PS).

The results reported in Table 6.12 and summarized in Table 6.11 show that
with respect to the full 60 seconds, the solutions achieved using the PS present
a significant decrease in terms of number of best solutions found – 3 out of
40 cases – yet the deviations recorded in singular instance are rather small,
being on average equal to 1%. As a reference, comparing the results reported in
Section 6.5.4 for the Evolutionary Algorithm, it can be noted that in the solution
of R instances, the ILS + PS is characterized by slightly better: deviations (1% vs
2%), number of best solutions (3 vs 1), and average objective function values
(≈ 888 vs ≈ 898), as shown in Tables 6.10 and 6.11.

Moreover, the results achieved by ILS + PS evidence sensible improvements in
terms of total computational time. In fact, when using the probabilistic stopping
rule, the execution of the algorithm is terminated before the 60 seconds time
limit in 39 out of 40 cases, with an average total execution time equal to 4.28
seconds. This result implies a 92.87% reduction of the execution times at the
price of a 1% average worsening in terms of solution quality, thus suggesting
that the probabilistic stopping rule can be a valuable tool to strike the proper
balance between efficiency and effectiveness.

Table 6.11 (Data-set R). Statistics for the probabilistic stopping rule.

ILS+Q-learning ILS+Q-learning+PS

avg(OFV) 884.06 887.79
avg(time) 60.01 4.28
#best 40 3
avg(DEV) 0.00 0.01
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Table 6.12 (Data-set R). Computational results achieved by ILS with and without
the use of a probabilistic stopping rule.

ILS+Q-learning ILS+Q-learning+PS
Instance Makespan Time #s.e. Makespan Time #s.e.

R01 367.67 60.00 137600210.40 368.37 1.48 499276.60
R02 1004.25 60.01 85992360.40 1007.36 2.82 2367833.00
R03 480.98 60.00 128732852.20 483.16 1.63 549159.80
R04 1908.18 60.00 86953258.40 1912.52 2.09 964546.20
R05 861.54 60.00 116563247.60 865.52 1.54 448391.20
R06 426.02 60.01 81847180.20 437.45 5.02 4666402.40
R07 4112.98 60.00 75267055.80 4116.54 2.19 1208067.40
R08 289.06 60.01 68087790.40 301.74 4.82 3567037.60
R09 514.06 60.02 90333696.20 516.33 5.19 5410968.60
R10 931.26 60.01 65000083.80 934.13 2.60 1353245.80
R11 1465.57 60.01 80212525.60 1470.37 2.64 1722243.80
R12 232.69 60.01 79338614.60 235.63 3.32 2486845.60
R13 232.96 60.00 124442102.80 233.12 1.59 756933.40
R14 602.09 60.01 70643463.20 604.02 3.55 2424805.00
R15 203.98 60.00 103814801.60 207.27 2.07 1128122.60
R16 2397.33 60.00 99012670.80 2401.33 1.57 518453.20
R17 306.46 60.01 92065567.80 318.03 4.09 3778105.40
R18 432.92 60.01 88806125.00 436.55 2.28 1365338.40
R19 1195.61 60.00 118001403.20 1199.40 1.45 361204.00
R20 650.70 60.00 122556649.20 656.13 1.51 526675.40
R21 2404.41 60.00 81461748.40 2407.18 2.32 1170283.80
R22 338.62 60.01 90620928.60 346.55 2.37 1480032.00
R23 398.80 60.01 73175670.60 403.98 2.95 1989287.80
R24 478.96 60.01 73700161.20 480.49 3.37 2405283.80
R25 488.10 60.00 137912287.20 488.10 1.49 479393.60
R26 507.71 60.00 114517026.40 509.36 14.93 19865244.80
R27 706.12 60.01 65133500.40 707.49 3.22 1898086.80
R28 350.48 60.00 124502641.00 350.48 1.39 312403.40
R29 466.19 60.01 81508788.40 468.64 3.22 2337568.80
R30 693.75 60.01 65423227.60 696.21 3.99 2815984.20
R31 675.53 60.01 100402056.80 678.34 2.09 1211934.00
R32 379.52 60.00 99723638.60 387.54 1.52 435860.80
R33 2560.00 60.00 108018449.40 2564.32 1.99 1102662.20
R34 454.26 60.00 98823120.00 457.68 2.20 1265039.40
R35 428.43 60.00 117729310.00 430.39 1.75 750645.20
R36 2274.81 60.00 96046417.40 2279.51 1.90 900709.60
R37 128.12 60.00 186556339.40 128.12 60.23 9759535.40
R38 1992.41 60.01 91440001.20 1995.01 2.11 1117554.60
R39 280.55 60.00 123754689.20 286.14 1.67 719500.80
R40 739.64 60.01 68327812.00 741.36 3.13 1811590.40
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6.6 Conclusions

In this Chapter, we addressed the recently proposed Additive Manufacturing
Machine Scheduling Problem (AMM-SP), outlining similarities and differences
with the Parallel Batch Machine Problem (BPMP).

In particular, the AMM-SP is NP-hard, thus it is impractical to solve medium-
large sized instances with limited time resources. At this purpose, in Alicastro
et al. [3] we proposed heuristic solution approach, namely a Reinforcement
Learning Iterated Local Search (ILS), which is thoroughly detailed in this Chapter.

With the aim of validating this approach, we compared its performances with
the CPLEX solver and an Evolutionary Algorithm adapted from literature [180].
Through an extensive experimentation on data-sets both taken from scientific
literature and ad-hoc generated, it has been observed that ILS turned out to
be fast in reaching good solutions, and achieved notable results with respect
to other approaches, especially when applied on medium-large sized instances.
Moreover, we also employed a different stopping criterion in our algorithm,
namely a probabilistic stopping rule, in order to detect whether a slight worsening
of the solution quality could yield to better computational times.

However, we addressed a somehow simplified version of the AMM-SP since
neither the orientation of parts has been considered nor nesting concerns have
been given a relevant role. These simplifications yield to the resolution of a
Packing Problem that only takes into account bounding boxes of parts. On the
other hand, as thoroughly observed in Oh et al. [142], nesting outcomes – e.g.
geometries of parts or orientation of jobs – may affect the chosen performance
indicators, like the makespan. Consequently, as future line of investigation, the
mathematical model could be further extended in order to consider true shape
2D/3D nesting algorithms to solve the resulting Packing Problem.

In addition, we retain that interesting results can be gathered by means of
a deeper exploration of the multiple Strip Packing Problem [22, 23], mainly
focusing on proof of an approximation ratio also for the AMM-SP of the three
level-oriented algorithms considered in this Chapter.

Additionally, further researches could be focused on a more realistic context,
where the information characterizing instances is related with some level of
uncertainty, and could be formalized by means of stochastic variables. Given the
intrinsic complexity of the AMM-SP, interesting research streams for addressing
this scenario is related to the study of sim-heuristic algorithms [67, 82, 154].
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Appendix 6.A Numerical Example

The aim of this Section is to provide a numerical toy example in order to
show how the proposed ILS algorithm works. The example problem consists of a
set of 10 parts to be scheduled on 2 machines. The parameters of the machines
and the specifications of the parts are presented in Table 6.13 and Table 6.14,
respectively.

Table 6.13 Parameters of the machines in the toy example.

m VTm HTm SETm MAm MHm

1 0.030864 0.7 1.2 800.0 40.0
2 0.030864 0.7 1.2 600.0 35.0

Table 6.14 Specifications of the parts in the toy example.

p hp ap vp

1 4.27 122.62 102.83
2 2.18 178.34 214.79
3 29.58 273.83 840.17
4 18.99 89.68 683.06
5 10.77 269.75 1928.60
6 26.67 258.54 1375.90
7 14.38 114.56 989.53
8 3.50 454.89 683.48
9 3.00 615.12 722.91

10 17.04 99.53 703.08

The initial assignment of parts to meta-machines is obtained through a ran-
dom initialization that produces the chromosome [1, 1, 1, 2, 2, 2, 2, 2, 1, 1], i.e. the
parts 1, 2, 3, 9, and 10 are assigned to meta-machine m̃1, the others to meta-
machine m̃2. All the three packing heuristics consider the parts according to their
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height, in non-increasing order, as detailed next.

FFDH: for m̃1, parts 3, 10, and 1 all fit in the first job ( j1), while part 9
has to be scheduled on a new job ( j2), given the capacity constraint of the tray.
The lower area characterizing part 2 allows it to be scheduled on job ( j1). The
resulting packing is depicted in Fig. 6.7.

j1 j2

3

10

1 2 9

Fig. 6.7 (FFDH). Job/parts assignment for the meta-machine m̃1.

For m̃2, the remaining five parts are assigned as follows: 6, 4, and 7 all belong
to the first job ( j4) on that machine, while the widths of 5 and 8 require two
new jobs – j5 and j6 –, printing the remaining two parts separately. This packing
yields the job/parts assignments of Fig. 6.8.

j4 j5 j6

6

4
7

5

8

Fig. 6.8 (FFDH). Job/parts assignment for the meta-machine m̃2.

The makespan achieved by the First-Fit heuristic is 206.96.

BFDH: for m̃1, parts 3, 10, and 1, are assigned to the first job j1, and part 9
to a second job j2– as in the case of the First-Fit heuristic. Differently, while part
2 fits on both the first and second job, the evaluation of the Best-Fit heuristic
assigns part 2 in the second job (see Fig. 6.9).

j1 j2

3

10

1 9 2

Fig. 6.9 (BFDH). Job/parts assignment for meta-machine m̃1.

The packing obtained for the second meta-machine is the same of the one
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yielded by the FFDH. Also for the BFDH, the makespan yielded is 206.96.

NFDH: for the toy instance, the Next-Fit heuristic produces the same packing
achieved by the Best-Fit procedure.

The proposed decoding algorithm selects the best solution out of the three.
Since in this case, all the three packing heuristics produce solutions of the same
quality, one of them is selected at random as the decoding design; namely, the
solution produced by the First-Fit algorithm is chosen. Then, according to the
Q-learning paradigms and its action values (see Section 6.4.5), one of the three
possible local search procedures is selected: 1-flip, 2-swap, or job-alloc. After this
selection, the algorithm evaluates all the feasible moves in the neighbourhood of
the decoded solution, and the local search performs the move that improves the
current objective function value, i.e. the makespan, the most.

Considering the 1-flip as example, Table 6.15 shows all the feasible moves
achievable from the decoded solution obtained by FFDH – reported in the first
row –, and their corresponding makespan values. In such Table, the flip that
distinguishes each solution from the decoded one is evidenced in bold font.
Analysing the objective function values, the solution to be explored in the next
iteration is obtained moving part 6 to either j1 or j2.

Table 6.15 Summary of feasible 1-flip moves and corresponding Makespan val-
ues, in the neighbourhood of the decoded solution.

m̃1 m̃2 Makespan
j1 j2 j3 j4 j5

{2, 9, 0, 1} {8} {5, 3, 6} {4} {7} 206.96

{2, 9, 0, 1} {8} {3, 6} {4,5} {7} 260.56
{2, 9, 0, 1,3} {8} {5, 6} {4} {7} 185.88
{2, 9, 0, 1} {8,3} {5, 6} {4} {7} 185.88
{2, 9, 0, 1} {8} {5, 6} {4,3} {7} 233.80
{2, 9, 0, 1} {8} {5, 6} {4} {7,3} 238.89
{2, 9, 0, 1,6} {8} {5, 3} {4} {7} 176.42
{2, 9, 0, 1} {8,6} {5, 3} {4} {7} 176.42
{2, 9, 0, 1} {8} {5, 3} {4,6} {7} 240.03
{2, 9, 0, 1} {8} {5, 3} {4} {7,6} 245.12

As last operation of the iteration, the action values used in the Q-learning al-
gorithm are updated, possibly affecting the next selection of local neighbourhood
structure.
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