8,181 research outputs found

    Adaptive signal processing techniques for clutter removal in radar-based navigation systems

    Get PDF
    The problem of background clutter remains as a major challenge in radar-based navigation, particularly due to its time-varying statistical properties. Adaptive solutions for clutter removal are therefore sought which meet the demanding convergence and accuracy requirements of the navigation application. In this paper, a new structure which combines blind source separation (BSS) and adaptive interference cancellation (AIC) is proposed to solve the problem more accurately without prior statistical knowledge of the sea clutter. The new algorithms are confirmed to outperform previously proposed adaptive schemes for such processing through simulation studies

    Bayesian subset simulation

    Full text link
    We consider the problem of estimating a probability of failure α\alpha, defined as the volume of the excursion set of a function f:XRdRf:\mathbb{X} \subseteq \mathbb{R}^{d} \to \mathbb{R} above a given threshold, under a given probability measure on X\mathbb{X}. In this article, we combine the popular subset simulation algorithm (Au and Beck, Probab. Eng. Mech. 2001) and our sequential Bayesian approach for the estimation of a probability of failure (Bect, Ginsbourger, Li, Picheny and Vazquez, Stat. Comput. 2012). This makes it possible to estimate α\alpha when the number of evaluations of ff is very limited and α\alpha is very small. The resulting algorithm is called Bayesian subset simulation (BSS). A key idea, as in the subset simulation algorithm, is to estimate the probabilities of a sequence of excursion sets of ff above intermediate thresholds, using a sequential Monte Carlo (SMC) approach. A Gaussian process prior on ff is used to define the sequence of densities targeted by the SMC algorithm, and drive the selection of evaluation points of ff to estimate the intermediate probabilities. Adaptive procedures are proposed to determine the intermediate thresholds and the number of evaluations to be carried out at each stage of the algorithm. Numerical experiments illustrate that BSS achieves significant savings in the number of function evaluations with respect to other Monte Carlo approaches

    Acoustic Echo and Noise Cancellation System for Hand-Free Telecommunication using Variable Step Size Algorithms

    Get PDF
    In this paper, acoustic echo cancellation with doubletalk detection system is implemented for a hand-free telecommunication system using Matlab. Here adaptive noise canceller with blind source separation (ANC-BSS) system is proposed to remove both background noise and far-end speaker echo signal in presence of double-talk. During the absence of double-talk, far-end speaker echo signal is cancelled by adaptive echo canceller. Both adaptive noise canceller and adaptive echo canceller are implemented using LMS, NLMS, VSLMS and VSNLMS algorithms. The normalized cross-correlation method is used for double-talk detection. VSNLMS has shown its superiority over all other algorithms both for double-talk and in absence of double-talk. During the absence of double-talk it shows its superiority in terms of increment in ERLE and decrement in misalignment. In presence of double-talk, it shows improvement in SNR of near-end speaker signal

    Sparsity and adaptivity for the blind separation of partially correlated sources

    Get PDF
    Blind source separation (BSS) is a very popular technique to analyze multichannel data. In this context, the data are modeled as the linear combination of sources to be retrieved. For that purpose, standard BSS methods all rely on some discrimination principle, whether it is statistical independence or morphological diversity, to distinguish between the sources. However, dealing with real-world data reveals that such assumptions are rarely valid in practice: the signals of interest are more likely partially correlated, which generally hampers the performances of standard BSS methods. In this article, we introduce a novel sparsity-enforcing BSS method coined Adaptive Morphological Component Analysis (AMCA), which is designed to retrieve sparse and partially correlated sources. More precisely, it makes profit of an adaptive re-weighting scheme to favor/penalize samples based on their level of correlation. Extensive numerical experiments have been carried out which show that the proposed method is robust to the partial correlation of sources while standard BSS techniques fail. The AMCA algorithm is evaluated in the field of astrophysics for the separation of physical components from microwave data.Comment: submitted to IEEE Transactions on signal processin

    Blind Source Separation with Compressively Sensed Linear Mixtures

    Full text link
    This work studies the problem of simultaneously separating and reconstructing signals from compressively sensed linear mixtures. We assume that all source signals share a common sparse representation basis. The approach combines classical Compressive Sensing (CS) theory with a linear mixing model. It allows the mixtures to be sampled independently of each other. If samples are acquired in the time domain, this means that the sensors need not be synchronized. Since Blind Source Separation (BSS) from a linear mixture is only possible up to permutation and scaling, factoring out these ambiguities leads to a minimization problem on the so-called oblique manifold. We develop a geometric conjugate subgradient method that scales to large systems for solving the problem. Numerical results demonstrate the promising performance of the proposed algorithm compared to several state of the art methods.Comment: 9 pages, 2 figure

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Genetically Enhanced Performance of a UTRA-like Time-Division Duplex CDMA Network

    No full text
    In this contribution a Dynamic Channel Allocation (DCA) algorithm is developed, which minimizes the amount of Multi-User Interference (MUI) experienced at the Base Stations (BSs) by employing Genetic Algorithms (GAs). A GA is utilized for finding a suboptimum, but highly beneficial Uplink (UL) or Downlink (DL) Timeslot (TS) allocation for improving the achievable performance of the third generation UTRA system’s Time Division Duplex (TDD) mode. It is demonstrated that a GA-assisted UL/DL timeslot scheduling scheme may avoid the severe BS to BS inter-cell interference potentially inflicted by the UTRA TDD CDMA air interface owing to allowing all TSs to be used both in the UL and D
    corecore