518 research outputs found

    Soft-Decision Low-Complexity Chase Decoders for the RS(255,239) Code

    Full text link
    [EN] In this work, we present a new architecture for soft-decision Reed-Solomon (RS) Low-Complexity Chase (LCC) decoding. The proposed architecture is scalable and can be used for a high number of test vectors. We propose a novel Multiplicity Assignment stage that sorts and stores only the location of the errors inside the symbols and the powers of a that identify the positions of the symbols in the frame. Novel schematics for the Syndrome Update and Symbol Modification blocks that are adapted to the proposed sorting stage are also presented. We also propose novel solutions for the problems that arise when a high number of test vectors is processed. We implemented three decoders: a h = 4 LCC decoder and two decoders that only decode 31 and 60 test vectors of true h = 5 and h = 6 LCC decoders, respectively. For example, our h = 4 decoder requires 29% less look-up tables in Virtex-V Field Programmable Gate Array (FPGA) devices than the best soft-decision RS decoder published to date, while has a 0.07 dB coding gain over that decoder.This research was funded by the Spanish Ministerio de Economia y Competitividad and FEDER grant number TEC2015-70858-C2-2-RTorres Carot, V.; Valls Coquillat, J.; Canet Subiela, MJ.; GarcĂ­a Herrero, FM. (2019). Soft-Decision Low-Complexity Chase Decoders for the RS(255,239) Code. Electronics. 8(1):1-13. https://doi.org/10.3390/electronics8010010S11381Cideciyan, R., Gustlin, M., Li, M., Wang, J., & Wang, Z. (2013). Next generation backplane and copper cable challenges. IEEE Communications Magazine, 51(12), 130-136. doi:10.1109/mcom.2013.6685768Koetter, R., & Vardy, A. (2003). Algebraic soft-decision decoding of reed-solomon codes. IEEE Transactions on Information Theory, 49(11), 2809-2825. doi:10.1109/tit.2003.819332Sudan, M. (1997). Decoding of Reed Solomon Codes beyond the Error-Correction Bound. Journal of Complexity, 13(1), 180-193. doi:10.1006/jcom.1997.0439Guruswami, V., & Sudan, M. (1999). Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE Transactions on Information Theory, 45(6), 1757-1767. doi:10.1109/18.782097Jiang, J., & Narayanan, K. R. (2008). Algebraic Soft-Decision Decoding of Reed–Solomon Codes Using Bit-Level Soft Information. IEEE Transactions on Information Theory, 54(9), 3907-3928. doi:10.1109/tit.2008.928238Jiangli Zhu, Xinmiao Zhang, & Zhongfeng Wang. (2009). Backward Interpolation Architecture for Algebraic Soft-Decision Reed–Solomon Decoding. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(11), 1602-1615. doi:10.1109/tvlsi.2008.2005575Jiangli Zhu, & Xinmiao Zhang. (2008). Efficient VLSI Architecture for Soft-Decision Decoding of Reed–Solomon Codes. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(10), 3050-3062. doi:10.1109/tcsi.2008.923169Zhongfeng Wang, & Jun Ma. (2006). High-Speed Interpolation Architecture for Soft-Decision Decoding of Reed–Solomon Codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(9), 937-950. doi:10.1109/tvlsi.2006.884046Zhang, X. (2006). Reduced Complexity Interpolation Architecture for Soft-Decision Reed–Solomon Decoding. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(10), 1156-1161. doi:10.1109/tvlsi.2006.884177Xinmiao Zhang, & Parhi, K. K. (2005). Fast factorization architecture in soft-decision Reed-Solomon decoding. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13(4), 413-426. doi:10.1109/tvlsi.2004.842914Bellorado, J., & Kavcic, A. (2010). Low-Complexity Soft-Decoding Algorithms for Reed–Solomon Codes—Part I: An Algebraic Soft-In Hard-Out Chase Decoder. IEEE Transactions on Information Theory, 56(3), 945-959. doi:10.1109/tit.2009.2039073GarcĂ­a-Herrero, F., Valls, J., & Meher, P. K. (2011). High-Speed RS(255, 239) Decoder Based on LCC Decoding. Circuits, Systems, and Signal Processing, 30(6), 1643-1669. doi:10.1007/s00034-011-9327-4Zhang, W., Wang, H., & Pan, B. (2013). Reduced-Complexity LCC Reed–Solomon Decoder Based on Unified Syndrome Computation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(5), 974-978. doi:10.1109/tvlsi.2012.2197030Peng, X., Zhang, W., Ji, W., Liang, Z., & Liu, Y. (2015). Reduced-Complexity Multiplicity Assignment Algorithm and Architecture for Low-Complexity Chase Decoder of Reed-Solomon Codes. IEEE Communications Letters, 19(11), 1865-1868. doi:10.1109/lcomm.2015.2477495Lin, Y.-M., Hsu, C.-H., Chang, H.-C., & Lee, C.-Y. (2014). A 2.56 Gb/s Soft RS (255, 239) Decoder Chip for Optical Communication Systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(7), 2110-2118. doi:10.1109/tcsi.2014.2298282Wu, Y. (2015). New Scalable Decoder Architectures for Reed–Solomon Codes. IEEE Transactions on Communications, 63(8), 2741-2761. doi:10.1109/tcomm.2015.2445759Garcia-Herrero, F., Canet, M. J., Valls, J., & Meher, P. K. (2012). High-Throughput Interpolator Architecture for Low-Complexity Chase Decoding of RS Codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(3), 568-573. doi:10.1109/tvlsi.2010.210396

    A common operator for FFT and FEC decoding

    Get PDF
    International audienceIn the Software Radio context, the parametrization is becoming an important topic especially when it comes to multistandard designs. This paper capitalizes on the Common Operator technique to present new common structures for the FFT and FEC decoding algorithms. A key benefit of exhibiting common operators is the regular architecture it brings when implemented in a Common Operator Bank (COB). This regularity makes the architecture open to future function mapping and adapted to accommodated silicon technology variability through dependable design

    Alpha Entanglement Codes: Practical Erasure Codes to Archive Data in Unreliable Environments

    Full text link
    Data centres that use consumer-grade disks drives and distributed peer-to-peer systems are unreliable environments to archive data without enough redundancy. Most redundancy schemes are not completely effective for providing high availability, durability and integrity in the long-term. We propose alpha entanglement codes, a mechanism that creates a virtual layer of highly interconnected storage devices to propagate redundant information across a large scale storage system. Our motivation is to design flexible and practical erasure codes with high fault-tolerance to improve data durability and availability even in catastrophic scenarios. By flexible and practical, we mean code settings that can be adapted to future requirements and practical implementations with reasonable trade-offs between security, resource usage and performance. The codes have three parameters. Alpha increases storage overhead linearly but increases the possible paths to recover data exponentially. Two other parameters increase fault-tolerance even further without the need of additional storage. As a result, an entangled storage system can provide high availability, durability and offer additional integrity: it is more difficult to modify data undetectably. We evaluate how several redundancy schemes perform in unreliable environments and show that alpha entanglement codes are flexible and practical codes. Remarkably, they excel at code locality, hence, they reduce repair costs and become less dependent on storage locations with poor availability. Our solution outperforms Reed-Solomon codes in many disaster recovery scenarios.Comment: The publication has 12 pages and 13 figures. This work was partially supported by Swiss National Science Foundation SNSF Doc.Mobility 162014, 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN

    Nonphotolithographic nanoscale memory density prospects

    Get PDF
    Technologies are now emerging to construct molecular-scale electronic wires and switches using bottom-up self-assembly. This opens the possibility of constructing nanoscale circuits and memories where active devices are just a few nanometers square and wire pitches may be on the order of ten nanometers. The features can be defined at this scale without using photolithography. The available assembly techniques have relatively high defect rates compared to conventional lithographic integrated circuits and can only produce very regular structures. Nonetheless, with proper memory organization, it is reasonable to expect these technologies to provide memory densities in excess of 10/sup 11/ b/cm/sup 2/ with modest active power requirements under 0.6 W/Tb/s for random read operations

    A Flexible LDPC/Turbo Decoder Architecture

    Get PDF
    Low-density parity-check (LDPC) codes and convolutional Turbo codes are two of the most powerful error correcting codes that are widely used in modern communication systems. In a multi-mode baseband receiver, both LDPC and Turbo decoders may be required. However, the different decoding approaches for LDPC and Turbo codes usually lead to different hardware architectures. In this paper we propose a unified message passing algorithm for LDPC and Turbo codes and introduce a flexible soft-input soft-output (SISO) module to handle LDPC/Turbo decoding. We employ the trellis-based maximum a posteriori (MAP) algorithm as a bridge between LDPC and Turbo codes decoding. We view the LDPC code as a concatenation of n super-codes where each super-code has a simpler trellis structure so that the MAP algorithm can be easily applied to it. We propose a flexible functional unit (FFU) for MAP processing of LDPC and Turbo codes with a low hardware overhead (about 15% area and timing overhead). Based on the FFU, we propose an area-efficient flexible SISO decoder architecture to support LDPC/Turbo codes decoding. Multiple such SISO modules can be embedded into a parallel decoder for higher decoding throughput. As a case study, a flexible LDPC/Turbo decoder has been synthesized on a TSMC 90 nm CMOS technology with a core area of 3.2 mm2. The decoder can support IEEE 802.16e LDPC codes, IEEE 802.11n LDPC codes, and 3GPP LTE Turbo codes. Running at 500 MHz clock frequency, the decoder can sustain up to 600 Mbps LDPC decoding or 450 Mbps Turbo decoding.NokiaNokia Siemens Networks (NSN)XilinxTexas InstrumentsNational Science Foundatio
    • …
    corecore