304 research outputs found

    Complete Issue 2, 1988

    Get PDF

    The art and architecture of mathematics education: a study in metaphors

    Get PDF
    This chapter presents the summary of a talk given at the Eighth European Summer University, held in Oslo in 2018. It attempts to show how art, literature, and history, can paint images of mathematics that are not only useful but relevant to learners as they can support their personal development as well as their appreciation of mathematics as a discipline. To achieve this goal, several metaphors about and of mathematics are explored

    Feasible approach for the computer implementation of parametric visual calculating

    Get PDF
    Thesis (S.M. in Architecture Studies)--Massachusetts Institute of Technology, Dept. of Architecture, 2013.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 62-66).Computational design tools in architecture currently fall into two broad categories: Tools for representation and tools for generative design, including scripting. However, both categories address only relatively methodical aspects of designing, and do little to support the design freedom and serendipitous creativity that, for example, is afforded by iterative sketching. Calculating with visual rules provides an explicit notation for such artistic processes of seeing and drawing. Shape grammars have validated this approach by formalizing many existing designs and styles as visual rule-sets. In this way, visual rules store and transfer design knowledge. Visual calculating in a more general sense supports creativity by allowing a designer to apply any rule she wants, and to capriciously see and re-see the design. In contrast to other explicit design methodologies, visual calculating defines a decomposition into parts only after the design is calculated, thus allowing formalization without impeding design freedom. Located at the intersection between design and computation, the computer implementation of visual calculating presents an opportunity for more designerly computational design tools. Since parametric visual calculating affords the largest set of design possibilities, the computer implementation of parametric visual calculating will allow flexible, rule-based design tools that intelligently combine design freedom with computational processing power. In order to compute with shapes, a symbolic representation for shapes is necessary. This thesis examines several symbolic representations for shapes, including graphs. Especially close attention is given to graph-based representations, since graphs are well suited to represent parametric shapes. Based on this analysis, this thesis proposes a new graph for parametric shapes that is clearer, more compact and closer the original formulation of visual calculating than existing approaches, while also strongly supporting design freedom. The thesis provides algorithms and heuristics to construct this "inverted" graph, for connected and unconnected shapes.by Thomas Alois Wortmann.S.M.in Architecture Studie

    Realistic Mathematics Education as a lens to explore teachers’ use of students’ out-of-school experiences in the teaching of transformation geometry in Zimbabwe’s rural secondary schools

    Get PDF
    The study explores Mathematics educators’ use of students’ out-of-school experiences in the teaching of Transformation Geometry. This thesis focuses on an analysis of the extent to which students’ out-of-school experiences are reflected in the actual teaching, textbook tasks and national examination items set and other resources used. Teachers’ teaching practices are expected to support students’ learning of concepts in mathematics. Freudenthal (1991) argues that students develop their mathematical understanding by working from contexts that make sense to them, contexts that are grounded in realistic settings. ZIMSEC Examiners Reports (2010; 2011) reveal a low student performance in the topic of Transformation Geometry in Zimbabwe, yet, the topic has a close relationship with the environment in which students live (Purpura, Baroody & Lonigan, 2013). Thus, the main purpose of the study is to explore Mathematics teachers’ use of students’ out-of-school experiences in the teaching of Transformation Geometry at secondary school level. The investigation encompassed; (a) teacher perceptions about transformation geometry concepts that have a close link with students’ out-of-school experiences, (b) how teachers are teaching transformation geometry in Zimbabwe’s rural secondary schools, (c) the extent to which students’ out-of-school experiences are incorporated in Transformation Geometry tasks, and (d) the extent to which transformation geometry, as reflected in the official textbooks and suggested teaching models, is linked to students’ out-of-school experiences. Consistent with the interpretive qualitative research paradigm the transcendental phenomenology was used as the research design. Semi-structured interviews, Lesson observations, document analysis and a test were used as data gathering instruments. Data analysis, mainly for qualitative data, involved coding and categorising emerging themes from the different data sources. The key epistemological assumption was derived from the notion that knowing reality is through understanding the experiences of others found in a phenomenon of interest (Yuksel & Yildirim, 2015). In this study, the phenomenon of interest was the teaching of Transformation Geometry in rural secondary schools. In the same light, it meant observing teachers teaching the topic of Transformation Geometry, listening to their perceptions about the topic during interviews, and considering how they plan for their teaching as well as how students are assessed in transformation geometry. The research site included 3 selected rural secondary schools; one Mission boarding high school, a Council run secondary school and a Government rural day secondary school. Purposive sampling technique was used carefully to come up with 3 different types of schools in a typical rural Zimbabwe. Purposive sampling technique was also used to choose the teacher participants, whereas learners who sat for the test were randomly selected from the ordinary level classes. The main criterion for including teacher participants was if they were currently teaching an Ordinary Level Mathematics class and had gained more experience in teaching Transformation Geometry. In total, six teachers and forty-five students were selected to participate in the study. Results from the study reveal that some teachers have limited knowledge on transformation geometry concepts embedded in students’ out-of-school experience. Using Freudenthal’s (1968) RME Model to judge their effectiveness in teaching, the implication is teaching and learning would fail to utilise contexts familiar with the students and hence can hardly promote mastery of transformation geometry concepts. Data results also reveal some disconnect between teaching practices as espoused in curriculum documents and actual teaching practice. Although policy stipulates that concepts must be developed starting from concrete situations and moving to the abstract concepts, teachers seem to prefer starting with the formal Mathematics, giving students definitions and procedures for carrying out the different geometric transformations. On the other hand, tasks in Transformation Geometry both at school level and the national examinations focus on testing learner’s ability to define and use procedures for performing specific transformations at the expense of testing for real understanding of concepts. In view of these findings the study recommends the revision of the school Mathematics curriculum emphasising pre-service programmes for teacher professional knowledge to be built on features of contemporary learning theory, such as RME theory. Such as a revision can include the need to plan instruction so that students build models and representations rather than apply already developed ones.Curriculum and Instructional StudiesD. Ed. (Curriculum Studies

    Incorporating sufficient physical information into artificial neural networks: a guaranteed improvement via physics-based Rao-Blackwellization

    Full text link
    The concept of Rao-Blackwellization is employed to improve predictions of artificial neural networks by physical information. The error norm and the proof of improvement are transferred from the original statistical concept to a deterministic one, using sufficient information on physics-based conditions. The proposed strategy is applied to material modeling and illustrated by examples of the identification of a yield function, elasto-plastic steel simulations, the identification of driving forces for quasi-brittle damage and rubber experiments. Sufficient physical information is employed, e.g., in the form of invariants, parameters of a minimization problem, dimensional analysis, isotropy and differentiability. It is proven how intuitive accretion of information can yield improvement if it is physically sufficient, but also how insufficient or superfluous information can cause impairment. Opportunities for the improvement of artificial neural networks are explored in terms of the training data set, the networks' structure and output filters. Even crude initial predictions are remarkably improved by reducing noise, overfitting and data requirements
    • …
    corecore