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Abstract 

Computational design tools in architecture currently fall into two broad categories: Tools for 
representation and tools for generative design, including scripting. However, both categories address only 
relatively methodical aspects of designing, and do little to support the design freedom and serendipitous 
creativity that, for example, is afforded by iterative sketching. Calculating with visual rules provides an 
explicit notation for such artistic processes of seeing and drawing. Shape grammars have validated this 
approach by formalizing many existing designs and styles as visual rule-sets. In this way, visual rules 
store and transfer design knowledge. Visual calculating in a more general sense supports creativity by 
allowing a designer to apply any rule she wants, and to capriciously see and re-see the design. In contrast 
to other explicit design methodologies, visual calculating defines a decomposition into parts only after the 
design is calculated, thus allowing formalization without impeding design freedom. 

Located at the intersection between design and computation, the computer implementation of visual 
calculating presents an opportunity for more designerly computational design tools. Since parametric 
visual calculating affords the largest set of design possibilities, the computer implementation of 
parametric visual calculating will allow flexible, rule-based design tools that intelligently combine design 
freedom with computational processing power. In order to compute with shapes, a symbolic 
representation for shapes is necessary. This thesis examines several symbolic representations for shapes, 
including graphs. Especially close attention is given to graph-based representations, since graphs are well 
suited to represent parametric shapes. Based on this analysis, this thesis proposes a new graph for 
parametric shapes that is clearer, more compact and closer the original formulation of visual calculating 
than existing approaches, while also strongly supporting design freedom. The thesis provides algorithms 
and heuristics to construct this “inverted” graph, for connected and unconnected shapes. 
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1 Introduction 

This thesis is about how one can design with computers. The first section in this chapter introduces two 

contrasting aspects of designing: On the one hand, there is the creativity of design freedom, which can be 

fickle and seemingly arbitrary. On the other hand, there is the rigor of formal design methods. These two 

aspects can be reconciled by visual calculating, which is introduced in the second section. The third 

section briefly discusses how the contrast between design freedom and formal methodologies is reflected 

in architectural design practice, where computers are almost exclusively employed for explicitly defined 

tasks. Lastly, an overview of the remainder of the thesis is given. 

1.1 Design: Spontaneous Act or Explicit Process? 

This section discusses two contrasting notions of designing. One notion focusses on formal and 

methodological aspects, while the other underscores the intuitive and artistic nature of designing. 

Importantly, this dialectic also informs the manner in which computer are integrated in the design 

process. The notion of design freedom and serendipitous creativity is summed up by a quote from 

exhibition curator Ammann: 

[An artist] works on something whose end product he can discern only very vaguely. . . . He has some 

idea, but he is constantly confronted with failure. For it is possible that what is emerging does not fit with 

his idea. One can also say that doing constantly changes the idea, because doing is more important than 

the idea. (After (Gänshirt, 2007, p. 78)) 

Though, in this quote, Ammann refers to artists, his remark is easily generalized to all designers. Design 

is understood as a vague, poetic, and seemingly arbitrary activity, which prioritizes doing over reflecting 

and does not lend itself to easy systematization. Consequently, one might conclude that it is difficult, if 

not impossible, to preserve design knowledge or to support designing with computerized methods. 

A directly opposite position is taken by Simon (1996), who, in The Sciences of the Artificial, claims that, 

in principle, all designing is open to explicit formalization. According to Simon, the mind of a designer, 

i.e., the “human information-processing system”, is “basically serial in its operation” with “limited 

memory structures, whose content can be changed radically” (ibid., 81). In other words, Simon assumes 

that the functionality of the human mind is comparable to a digital computer, and that “the theory of 

design” therefore is nothing more than the “general theory of [combinatorial] search” (ibid, 83). 

Consequently, not only can designing be formalized: It can be automated completely. However, there has 

been little progress in validation of this claim since the first publication of Simon’s book in 1969 
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(Dreyfus, 1992). Nevertheless, Simon has inspired many methodological approaches, especially in the 

field of “design science”, i.e., “design research” (Bayazit, 2004). 

Explicit design methods store and transfer design knowledge and thus make it available for computer 

implementation. However, a recurring problem is that design methods rely on a prior, less formal 

understanding of the design task. This understanding can concern the nature of the solution or other 

unstated assumptions (such as the supposition that users know what they want). In other words, the design 

task is reduced into a form that may fit the design method, but not necessarily the task. For example, in 

Notes on the Synthesis of Form, Alexander (1964) assumes that a design problem can be solved by listing 

all explicit and implicit requirements and their interactions. Based on this information, one can then 

decompose the design task into a set of smaller problems. However, an important aspect of designing has 

to take place before Alexander’s method can be applied: Namely the definition of the requirements and 

their interactions, which necessitates value judgments by the designer1. As Alexander puts it, “two 

variables interact if and only if the designer can find some reason . . . which makes sense to him” (ibid., 

109). In What Computers Still Can’t Do, a similar point is made by Dreyfus (1992) in reference to a 

computer program presented by Newell, Shaw, and Simon as an example of creative thinking. Here, “the 

classification of the operators into essential and inessential . . . is introduced by the programmers before 

actual programming begins” (ibid., 116). In Tools for Ideas: an Introduction to Architectural Design, 

Gänshirt (2007) makes a more general but related point, namely that there can be no rationality without 

emotional judgment. He quotes the neuroscientist Antonio Damásio as saying that “people who have lost 

their ability to respond to things emotionally, who have lost their feelings . . . also lose the ability to plan 

ahead and act with an eye to the future” (ibid., 77). 

Comparing the vagueness of intuitive design freedom with the limited rationality of explicit 

methodologies, one can conclude that some aspects of designing are open to formalization, while others 

rely on artistic intuition, and that both approaches complement each other. One the one hand, it is 

commonly accepted that the key to creative design exploration is design freedom – thinking out of the 

box, the shedding of pre-conceptions, etc. On the other hand, explicit methods rely, by their very nature, 

on clear problem definitions and a bounded range of solutions. This dialectic has also been described as 

problem setting versus problem solving, or as divergent versus convergent thinking (e.g., (Dym, Agogino, 

Eris, Fry, & Leifer, 2005)). Similarly, Gänshirt contrasts an artistic notion of designing with a methodical 

one:  

                                                      
1 Alexander lists 141 needs in his design for an Indian village, none of which concern visual attractiveness 

(Alexander, 1964, pp. 137-142). 
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The simultaneity of different levels of action in one and the same act of designing makes it difficult to 

analyze further. The fact that designing is often mystified as something brilliant, intuitive and purely 

emotional is therefore not without reason. By comparison, the view of designing as a process (…) orders 

its procedures chronologically and thus reflect the way in which our activity is tied to time. In the process 

it contradicts the simultaneity of the overlapping and interdependent aspects of a design problem. Both 

approaches sum up essential aspects of design, but contradict each other and each remains unsatisfactory 

in its own right. (Gänshirt, 2007, p. 78) 

To overcome this contradiction, Gänshirt proposes a design cycle of understanding the problem, 

expressing an idea, evaluating the proposed idea, etc. (ibid.). In other words, for Gänshirt, a cycle of 

seeing and doing bridges the contradiction between designing as a spontaneous artistic act and designing 

as an explicit process. Schön (1983) has a similar conception of designing: he sees it as a process of 

“Reflection-in-action” governed by “backtalk” and “reframing”. For this thesis, design freedom and 

ambiguity are just as necessary for innovative design as rationality and explicit methods, since both need 

each other to reach their full potential. A vague initial idea can be concretized by a methodical approach, 

while the application of a design method needs creative inspiration to produce original results. Gänshirt’s 

design cycle and Schön’s reflection-in-action are descriptive models that integrate designing as a 

spontaneous act and designing as an explicit process. However, these models do not explain how these 

seemingly opposite approaches can be reconciled in detail. A more specific, rule-based formulation is 

provided by visual calculating, which is introduced in the next section. 

1.2 Visual Calculating Bridges Design Freedom and Explicit Methodologies  

Visual calculating, i.e., calculating with shapes, bridges the gap between design freedom and explicit 

methodologies. (Visual calculating is discussed more extensively in chapter 2.) Stiny has provided the 

current reference for visual calculating, SHAPE: Talking about Seeing and Doing (2006), and, similarly 

to Gänshirt, understands design as a process of seeing and doing. However, for Stiny, this view is rooted 

in the understanding that all design is rule-based, which is endorsed in this thesis. In this way, designing 

is understood as a process of successively applying visual rules, during which every result can give rise to 

new rules or new interpretations of the design. (See Figure 1.1 for an example of a visual rule and 

example designs created with that rule.) Calculating with visual rules thus goes beyond Gänshirt’s design 

cycle by offering a formal notation for exploratory visual design. Visual calculating allows the storage 

and transfer of design knowledge as rules, but on the other hand guarantees maximum design freedom by 

allowing for, and even encouraging, ambiguity and the deviation from pre-conceived ideas.  
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Figure 1.1 (a) is an example of a shape rule, while (b) and (c) show example designs that were created with it. 

Stiny puts it like this:  

Calculating with shapes is an open-ended process – like art and design. You’re always free to try another 

rule. (Stiny, 2011) 

Not only is the designer free to apply any rule, but, unlike the design methods discussed in the previous 

section, visual calculating allows her to see and re-see the design in any way she wants: 

Shapes are indeterminate – ambiguous – before I calculate, and have constituent distinctions – parts – 

only as a result of using rules in an ongoing process. (Stiny, 2006, p. 50) 

In other words, the design process can be formalized, but only after it has taken place. Visual calculating 

thus sees the apparent arbitrariness and fickleness of designing as essential for creative innovation, rather 

than as obstacles to more scientific methods of designing. Compared to other design methods, this is a 

key difference that promises to reconcile design freedom and explicit methodologies. 

Like symbolic computation, which can be achieved by hand with pen-and-paper, mechanically with gears, 

or digitally with zeros and ones, visual calculating is medium-independent. However, it stands to reason 

that a rule-based exploratory design process can benefit from the flexibility and computational power of 

digital computers. From that perspective, the computer does not automate the design process, but stores 

and applies design rules as a convenience for the designer. Although, in the last thirty years, a serious and 

divers body of work regarding the computer implementation of visual calculating has been produced, the 

resulting computerized design tools were often limited in terms of their functionality and have not found 

widespread use. However, as discussed in section 2.6, there recently have been a number of interesting 

approaches to extend the functionality of such design tools. In line with this research, this thesis proposes 

a flexible computational representation for shapes as a foundation for the computer implementation of 

visual calculating and as a bridge between intuitive and formal aspects of designing. A short overview of 

the role of computers in architectural design is provided in the following section. 

(a) (b) (c)
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1.3 Computers in Architectural Design 

To understand how the computer implementation of visual calculating differs from other computerized 

design tools, a short overview of architectural design with the computer is useful. In the 1980ies and 

90ies, the representation of architecture shifted from an analogue into a digital mode of drawing, which 

simplified many of the challenges of drafting with ink pens on tracing paper. In a second step, BIM 

introduced computer models as a three-dimensional and information-rich alternative to two-dimensional 

architectural drawings. However, the generation of designs with hand-drawn sketches still is a widespread 

way of designing. After a design idea has been evolved in sketches, designs are explored in detail via 

more formalized drawings and models. From this perspective, the actual process of designing has not 

been changed all that much by the introduction of computerized tools. 

However, there also has been a parallel interest in automating the design process. In The Logic of 

Architecture, Mitchell (1990, pp. 179-180) envisions an approach based on a cycle of automated design 

generation and testing. During the last decade, generative design tools have indeed spread among 

architectural designers (Burry, 2011). Often, techniques like scripting and parametric design are used to 

generate design variations, from which a final design is selected. Similar to the generate-and-test cycle 

proposed by Mitchell, these generative design techniques are sometimes combined with automated 

performance criteria to optimize certain aspects of a design. However, the spread of generative design 

techniques from academia into architectural education and practice has also highlighted important 

limitations: 

To start with, the application of generative design techniques requires a significant initial time investment. 

Setting up a parametric model or script is much more time-consuming than making a few sketches. This 

can make it more difficult for a designer to change her mind when the initial approach turns out to be 

problematic. This may sound paradoxical, since the benefit of setting up a generative system supposedly 

lies in the larger number of design variations that can be examined. However, only design variations 

within the initially defined constraints of the generative system can be explored. Traditional design 

techniques like sketching usually examine a smaller set of possibilities, but at the same time allow a much 

wider range of different ideas. The pre-defined constraints of the generative system lead to another 

limitation: In order to apply a generative design technique effectively, a designer needs to have a clear 

idea of what she wants. We thus end up with a dilemma that parallels the contrast between design 

freedom and explicit methodologies discussed in the first section: It is desirable that computerized design 

tools support design exploration, and not only representation and optimization. However, creativity and 

design freedom should be not be impeded by pre-definitions and a bounded range of solutions. A 
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computer implementation of visual calculating promises to overcome this dilemma by allowing a designer 

to change her mind easily and, at the same time, to explore design ideas in a rigorous and efficient 

manner. The last section gives an overview of the remainder of the thesis. 

1.4 Overview of the Thesis 

This thesis offers a step towards more powerful and integrated computer implementations of visual 

calculating. Specifically, a flexible symbolic representation for shapes as a pre-condition for visual 

computing is proposed. (One needs to represent visual shapes symbolically in order to digitally compute 

with them.) The representation is based on graphs and includes parametric and non-parametric shapes. 

Parametric shapes are a generalization of non-parametric shapes and allow the definition of classes of 

shapes such as “all quadrilaterals” or “all polygons”. Calculating with parametric shapes thus increases 

design possibilities. Graphs afford this kind of design freedom, but can be more tightly constrained when 

necessary. As discussed in chapter 3, a similar approach has been proposed by Grasl and Economou 

(2011), however, the graph in this thesis is more compact, closer to the original definition of shapes, and 

can represent non-maximally connected shapes (i.e., shapes that are composed of non-intersecting 

elements). 

The second chapter introduces visual calculating and gives an overview of the key problems and 

approaches to symbolically computing with shapes. The third chapter discusses graphs and compares five 

different graph-based representations for shapes, including the inverted graph proposed by this thesis. In 

the fourth chapter, algorithms for the inverted graph are provided. The last chapter offers a summary, 

sketches an opportunity for a creativity-enriching, rule-based exploratory design tool, and points out 

avenues for further research. 
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2 Visual and Symbolic Calculating 

This chapter reviews visual calculating as a rule-based formalization of visual design processes. First a 

general overview is given. The second section explains the embedding and part relations, two 

fundamental concepts of visual calculating, and the third transformations, i.e., the different ways in which 

shape rules are applied. In the fourth section, the important problem of decomposition is addressed, 

demonstrating how calculating with shapes contrasts with the symbolic calculations of computers. The 

fifth section explains key problems in bridging visual calculating and symbolic computation, while the 

last section discusses precedents of how visual calculating is implemented on computers. 

2.1 Designing with Shape Rules 

The idea of designing with visual rules is commonly associated with shape grammars. The first 

publication on shape grammars was “Shape Grammars and the Generative Specification of Painting and 

Sculpture” (Stiny & Gips, 1972). There, a shape grammar is described as a set of shape rules that replace 

the shape that is drawn on the left-hand side of a rule with the shape on the right-hand side: 

L RS S  

For an example, see (a) in Figure 2.1. A special shape is the empty shape, which, if on the left-hand side, 

allows the creation of new shapes from scratch: 

 RS  

For an example, see (b) in Figure 2.1. 

 

Figure 2.1 An example shape rule is given with (a), and an example rule with the empty shape on the left-hand side 
with (b). 

By applying the same rule multiple times, simple shape grammars create astonishingly rich visual 

designs. This richness from simple rules is especially true of recursive shape grammars, like the Ice-Ray 

(b)(a)
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grammar (Stiny, 1977). Here, recursion means that a shape rule applies to its own result, which is the case 

for the derivation from shape (a) to shape (d) in Figure 2.2. 

 

Figure 2.2 Rule (a) from Figure 2.1 is applied to shape (a) to derive shape (b). Rule (a) is also applied to shape (b) 
to derive shape (c) and to shape (c) to derive shape (d). 

Shape grammars thus succinctly encapsulate design processes as sets of rules reproducing designs of a 

certain kind or style (Knight, 1994). Much of the early research on shape grammars focused on defining 

grammars for existing designs. A well-known example is the Palladian grammar (Stiny & Mitchell, The 

palladian grammar, 1978). This grammar not only reproduced the plans of villas that were designed by 

Palladio, but also generated new plans in the Palladian style, allowing the enumeration of “all possible” 

Palladian villa plans for a given size (Stiny & Mitchell, Counting palladian plans, 1978). Arguably, this 

type of analysis not only leads to a deeper understanding of the examined designs in terms of their 

methodology, but also serves to validate two central assumptions behind the shape grammar formalism. 

The first assumptions is that much, if not all, of designing can be understood as rule-based; the second, 

that shape grammars therefore provide an adequate formalization of the design process. 

However, in accepting these two hypotheses, one has to conclude that, at its most creative, visual 

calculating is not only a method for reproducing designs by applying formalized design knowledge gained 

from the analysis of already known designs. Rather, one can understand visual calculating as a 

formalization of the process by which original designs are created. This view is expressed by Stiny 

(2006), and is adopted in this thesis. Visual calculating understands design as an iterative process of 

seeing and doing, where the designer applies a rule, looks at the result, and applies another rule based on 

what he sees. Instead of a shape grammar specifying the sequence of rules, as a designer you can “use any 

rule(s) you want, whenever you want to” (Stiny, 2011). In other words, visual calculating does not relive 

the designer of her responsibility to invent new rules and make (potentially spontaneous) decisions. 

However, this apparent arbitrariness does not mean that one should not record new rules or repeat existing 

ones. On the contrary, from the perspective of visual calculating, reapplying the same rules is exactly 

what designers do when they create visually coherent designs. Repetition and copying thus go hand-in-

hand with creative invention. Visual calculating provides a notation for this type of design process by 

expressing visual ideas in the more definite form of shape rules. In this way, design intentions are 

(d)(c)(b)(a)
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clarified and made available for reference and pedagogy. (For an example of design education with shape 

rules, see (Özkar, 2011).) Visual calculating thus overcomes the apparent opposition between explicit 

design methodologies and inspired design freedom. The next section discusses three fundamental aspects 

of visual calculating: maximal elements, the embedding relation, and the part relation. 

2.2 Calculating with Maximal Elements: The Embedding and Part Relations 

In visual calculating, a shape is defined as a finite set of maximal elements2. Common examples of 

elements are points, line segments, and planes, though elements can also include curves and other types of 

geometric entities. For an element to be maximal, it cannot be contained in, overlapping with, or adjacent 

to other maximal elements of the same type. Two non-maximal elements of the same type that do contain, 

overlap, or adjoin each other are joined into one maximal element via the reduction rules (Stiny, 2006, p. 

187). Requiring elements to be maximal ensures that a shape is composed of the smallest set of the largest 

possible elements. Rectilinear elements are defined in algebras Uij for unlabeled shapes, in algebras Vij for 

labeled shapes, and in algebras Wij for weighted shapes. The dimensionality of the elements is denoted by 

i and the dimensionality of the arrangement of the elements by j. Maximal elements with dimension i 

greater than zero potentially contain an indefinite number of smaller elements, while zero-dimensional 

elements (i.e., points) only contain one element, namely themselves. For example, a shape composed of 

elements from the algebra U12 consists of unlabeled line segments in the plane. Intersections and 

boundaries are not parts of maximal elements, since they are defined in different algebras. Examples of 

boundaries are the start and end points of a line segment, which, like the intersection point of two line 

segments, are zero-dimensional elements in the algebra U02. This thesis primarily focuses on shapes in the 

algebra U12 and on their intersections and boundaries. However, many of the presented concepts can be 

generalized to other algebras, which is why, in this thesis, line segments are often referred to as elements. 

Calculating with shapes is governed by the embedding relation, which defines how the elements of 

shapes interact. Similar to set theory, if one adds two identical elements together, the result is just one 

element, as in (a) in Figure 2.3. If, like in this case, the maximal elements of two shapes overlap 

completely, we say that the two shapes embed into each other. The reduction rules are a consequence of 

the embedding relation, since the addition of overlapping or adjoining elements results in maximal 

elements, as in (a) and (c) in Figure 2.3. In the case of (c), the partial square embeds into the square, but 

not vice versa. In other words, the partial square is a subshape of the square. If, on the other hand, one 

                                                      
2 If not noted otherwise, the definitions in this section follow Stiny (2006). For a chronological survey of the 
development of shape and shape grammar definitions see Yue (2009, pp. 25-43).  
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subtracts two identical elements from each other, as in (b) in Figure 2.3, the result is the empty shape. 

Hence, when visually calculating with shape S, 

S S S    

and 

.S S    

 

Figure 2.3 (a) shows the addition of two squares; (b), the subtraction. In (c), parts of a square are added to a 
square and, in (d), parts of a square a subtracted from a square. 

Complementing the embedding relation, the part relation is another critical property of visual calculating: 

Since maximal elements of i > 0 (i.e., elements that are not points) potentially contain an indefinite 

number of smaller elements, any combination of parts of maximal elements, i.e., any subshape, can be 

seen as a new shape. In other words, a shape can be decomposed in indefinitely many ways. (This is 

where visual calculating deviates from set theory, since a set has defined decompositions based on its 

members.) For example, in (d) in Figure 2.3, a square is decomposed by subtracting parts of a square from 

(c)

(d)

(b)

(a)
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it. More examples are given in Figure 2.4, where the two overlapping squares of shape (a) create another 

square, with the sides of the third, smaller, square formed by parts of maximal elements, as demonstrated 

by decomposition (b). Subshapes like the third square are also called emergent shapes and offer 

interesting opportunities for rule application. (For example, rule (a) from Figure 2.1 can be cursively 

applied to the third square created by the two overlapping squares, which accounts for the derivation in 

Figure 2.2.) As is visible in Figure 2.4, many other, in fact, indefinite, decompositions are possible for 

shape (a). (Note how (e), (f), and (g) divide (a) in an arbitrary fashion, without regard to intersection 

points.) The embedding and part relations thus allow a designer to see shapes in ambiguous and even 

mutually exclusive ways and in this way encourage the serendipitous developments that take designs in 

new directions. 

 

Figure 2.4 In each drawing (b) – (g), shape (a) is decomposed in a different fashion. Note that a decomposition 
does not have to be based on intersection points, as is the case for (e), (f), and (g). 

Both the embedding and part relations are crucial for rule application. One can apply a rule only on 

shapes where the left-hand shape of the rule embeds into, in other words, when one can find a shape or 

subshape that is the same as the left-hand shape of the rule. (Shapes or subshapes that are the “same” are 

called isomorphic.) The embedding relation ensures that the elements of a shape are maximal, which, via 

the part relation, allows a designer to select any combination of a shape’s parts for rule application. When, 

in this way, a matching shape or subshape SA is found, a rule is applied to a SA by subtracting the rule’s 

(e)(a)

(g)

(f)(c)

(b)

(d)
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left-hand shape SL from the original shape, and then adding the rule’s right-hand shape SR, resulting in 

shape SB (also see Figure 2.5.): 

( ) ( ) .

L R

A L R B

S S

S t S t S S



  
  

Note that rule application necessarily involves a transformation t that maps SL onto SA , since rules are 

defined separately from the designs that they create. Like the embedding and part relations, this 

transformation is an important aspect of seeing shapes in different ways, and is discussed in more detail in 

the next section. 

 

Figure 2.5 This figure shows the application of rule (a) from Figure 2.1 through difference and union. In (a), the 
subshape to which the rule is applied is subtracted from the shape. In (b), the right-hand side of the rule is added to 
the remainder. (c) shows how (a) and (b) combine to apply the rule. 

2.3 Transformations 

Transformations govern which shapes are valid “inputs” for a rule. As discussed in the previous section, 

one can apply a rule to a shape when one sees that the rule’s left-hand side embeds into the shape. 

Formally, a rule is applicable to (sub-)shapes that are isomorphic to the left-hand shape of the rule, and 

two shapes are isomorphic when there is a one-to-one mapping (i.e., a bijection) t between their maximal 

(c)

(a)

(b)
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elements that preserves the appropriate relationships (such as proportions, angles, etc.) between them. 

Then, two shapes SA and SB embed into each other when 

 | ( ) .A Bt t S S     

More often, SA is isomorphic to a part of SB. Then, SA embeds into SB as a subshape: 

| ( ) .A Bt t S S   

Importantly, there are different transformations t that, according to the intentions of the designer, can 

govern a visual calculation. For example, all of the shapes in Figure 2.1 can, under different 

transformations, be seen as isomorphic to a square. A set of shapes that is isomorphic for a given 

transformation t is also called an equivalence class. 

 

Figure 2.6 Isomorphisms of a square based on different transformations t. 

Visual calculations can be characterized by their transformations. In this thesis, five sets of 

transformations are distinguished: Translation, Isometry, Similarity, Linearity, and Everything else. Five 

derivations based on these transformations and rule (a) from Figure 2.1 are given in Figure 2.7. Figure 2.8 

gives an overview of the transformations included in the different categories. 

 

Figure 2.7 Five derivations based on rule (a) from Figure 2.1. Derivation (a) is based on translation and (b) on 
isometry. Similarity governs (c), and linearity (d). Finally, (e) is an example of a derivation based on everything 
else, which in this case means curved shapes. 

 

 

(a) (b) (c) (d) (e)
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TRANSLATION 

In this category, the only allowed transformation is translation. In other words, a shape can only be 

moved, but not rotated or mirrored. Consequently, there is only one way in which rule (a) from Figure 2.1 

can apply to the squares in derivation (a) in Figure 2.7, leading to the diagonal arrangement. 

ISOMETRY 

Isometry includes the rigid, or Euclidean, transformations. Here a shape can be translated, rotated, and 

mirrored. As implied by the term “rigid”, these transformations preserve a shape’s size, proportions, and 

angles, though not necessarily its orientation. In derivation (b) in Figure 2.7, rule (a) from Figure 2.1 is 

applied in different orientations based on the symmetry of the square. However, the rule cannot apply to 

the smaller and larger squares that emerge from the overlap of the original ones, since scaling is excluded. 

SIMILARITY 

Many shape grammars allow similarity transformations, which, next to the Euclidean transformations, 

include proportional scaling. Proportional scaling preserves a shape’s proportions and angles, but not its 

size, as is visible in derivation (c) in Figure 2.7. In contrast to isometry, in this case rule (a) from Figure 

2.1 can apply to different sized squares. 

LINERARITY 

Linear transformations include all transformations that can be expressed as a transformation matrix3. This 

includes translation, isometry and similarity, but also affine transformations, perspective projections, etc. 

In a linear transformation, the angles and proportions of a shape are not preserved, in contrast to more 

general characteristics, like maximal elements and convexity. This also is the case in derivation (d) in 

Figure 2.7. In the special case of an affine transformation, collinearity and ratios of distances are 

preserved as well. 

EVERYTHING ELSE 

This last category covers all cases, including ones where the transformation cannot be expressed as a 

transformation matrix. For example, shape isomorphism can be topologically defined based on relations 

of connectivity between intersection points, which is the case for derivation (e) in Figure 2.7, where rule 

(a) from Figure 2.1 applies to all closed shapes, including curved ones. One can also preserve other 

characteristics such as the convexity or number of sides of a shape. Another possibility is to base shape 

                                                      
3 Transformations that can be expressed by a transformation matrix are convenient for computer implementation. 
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isomorphism on the area enclosed by a shape, or the fact that a shape is a polygon, etc. etc. There are thus 

no limits to the designer’s imagination. 

 

Figure 2.8 In this table, the columns represent the five sets of transformations. Each row represents an individual 
transformation. Note how each set contains progressively more transformations. Also note the division between non-
parametric and parametric (i.e., non-similar) sets of transformations. 

In the literature, the translation, isometry and similarity transformations are collectively referred to as 

non-parametric transformations, while non-similar transformations are also known as parametric 

transformations. Parametric shape grammars were first introduced as grammars with open terms, i.e., 

shapes without fixed proportions or angles (Stiny, 1980). Subsequently, visual calculating was defined for 

general transformations t (Stiny, 1990). While, as discussed in section 2.5, parametric visual calculating is 

hard to implement on a computer, the linear and some of the simpler non-linear cases can be addressed by 

representing shapes as graphs, which is the motivation for this thesis. Since shape isomorphism based on 

parametric transformations has fewer constraints, it represents a generalization of non-parametric shape 

isomorphism. However, both are specific examples of the transformation t, whose generality imbues 

visual calculating with power and flexibility by allowing a designer to apply rules according to her 

personal way of seeing. Transformations thus are another way in which visual calculating supports design 

freedom, next to the unlimited opportunities for decomposing shapes discussed in the previous section. 

The next section discusses the problem of decomposition, which arises when one symbolically represents 
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visual designs, for example, in computer programs. Further aspects of the computer implementation of 

visual calculating are discussed in the last two sections. 

2.4 The Problem of Decomposition 

In comparing visual calculating with conventional, symbolic calculating, the probably largest difference is 

constituted by maximal elements. While, as discussed in section 2.2, visual calculating represents shapes 

by the smallest set of the largest possible elements, symbolic calculating often breaks elements into their 

smallest constituents. Digital computers, for example, represent data as zeros and ones. However, it is 

impossible to define the parts of a shape in advance while allowing a designer all the ways of seeing that 

she might want to use. The part relation allows indefinite decompositions for shapes, all of which might 

be useful to a designer. In other words, shapes are inherently ambiguous in terms of their “atomic 

designs” (Stiny, 1987), which is why decompositions can only be applied retroactively (Stiny, 1994). 

Decompositions are one of the key challenges for the computer implementation of visual calculating. If a 

symbolic representation imposes an inappropriate decomposition onto a shape, a shape rule that would 

otherwise apply might not be applicable. Often, different design derivations decompose a shape in 

mutually exclusive ways. The problem of ambiguity in decomposing shapes is discussed at length in 

Stiny (2006, pp. 65-70), where a description of shapes according to their “lowest-level constituents”, 

proposed by a computer scientist, is given as a dissuasive example. The problem of decomposition is of 

great significance for design, since, arguably, the ability to re-see a given situation in a new light, or, in 

this case, to decompose a shape in a different way is a key competence for any creative activity. Art 

students learn how to escape “traditional habits of daily perception” (Eisner, 2002, p. 68), while 

engineering students must at least “tolerate ambiguity … in viewing design” (Dym, Agogino, Eris, Fry, & 

Leifer, 2005). 

Not coincidentally, the problem of decomposition is encountered in many conventional CAD programs 

and with computational design tools for architecture such as BIM, parametric4 design, or scripting, where 

the parts of shapes are fixed in advance. (See Kolarevic (2003) for an overview on computational design 

tools in architecture.) Often, the manner in which these tools represent designs makes it hard for a 

designer to follow up on new ideas or to see designs from a new perspective. A simple example is that, in 

a CAD program, the third square created by two overlapping squares (see (a) in Figure 2.4) would mostly 

likely not be represented as a square. Developing symbolic representations for shapes without 

                                                      
4 Parametric in the context of conventional digital design tools means objects with varying parameters, as opposed to 
the parametric transformations discussed in the previous section.  
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inappropriate decompositions, like the graph-based representation presented in this thesis, thus promises a 

new generation of more designerly computational design tools. 

2.5 Symbolically Representing Visual Calculating 

Visual calculating bridges design freedom and creativity on the one hand, and the need for explicit design 

methodologies on the other. Calculating with shapes gives designers the freedom to see and re-see, but 

affords enough rigor to formalize designs when necessary, for example, for pedagogy or design 

automation. Many conventional design methods lack the freedom to see things differently, for example, 

computational design tools such as parametric modeling and BIM or engineering design methods based 

on atomic decompositions. (For examples of engineering design methods, see “Functional Analysis” or 

“Quality Function Development” in (Otto & Wood, 2001).) Given that visual calculating is a designerly, 

yet rule-based design methodology, it seems a natural candidate for computer implementation. In other 

words, it should be possible and useful to represent design processes symbolically on a computer, as they 

can be explicitly formalized as visual calculations. Since computers are designed for automated rule 

application, a symbolic representation for visual calculating promises greater speed and convenience 

relative to hand calculation, while the virtual display of the computer screen allows geometries that are 

hard to control with pen-and-paper (such as curves or three-dimensional shapes, etc.). A computer 

implementation of visual calculating thus promises exploratory design tools that support regularities in 

design processes, as well as spontaneous and surprising changes. Indeed, as discussed below, there have 

been many computer implementations of visual calculating in the past thirty years, though most were 

limited in scope and did not find a broad audience. An ideal computer implementation, described by Gips 

(1999) as “the Big Enchilada”, should be able to deal with a broad range of shapes, such as parametric 

shapes, curved shapes, shapes with complex labels, etc., and would therefore be “qualitatively more 

useful than today's programs” (ibid.). For the past decade, this vision has remained unrealized; however, 

one can understand the graph representation developed in this thesis as a step towards this goal. 

A fundamental question for the computer implementation of visual calculating is symbolic representation. 

Since digital computers manipulate only symbols, the step from visual calculation to symbolic 

computation requires the symbolic representation of visual shapes. Symbolic representations allow access 

to the powerful machinery of digital computers, but at the risk of losing something essential in terms of 

design freedom, as already touched upon with the problem of decomposition in the previous section. The 

tension between visual calculating as a rule-based, though intuitive creative activity and symbolic 

computation with its desire for explicitly defined problems is expressed in this quote: 
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It is claimed that, in design, ambiguity serves a positive and deliberate function. In principle, shape 

grammars can be devised to take advantage of ambiguity in creating novel designs. However, ambiguity, 

in general, is inherently counter-computable (...). (Yue & Krishnamurti, 2008) 

The key challenge for computer implementation is thus to preserve as much ambiguity as possible. 

Specifically, this means that shapes should be symbolically represented without imposing inadequate 

decompositions. For example, shapes should not be represented with a (necessarily finite) set of pre-

defined types, since pre-defined types have fixed decompositions instead of allowing many. Avoiding 

inadequate decompositions means that a computer implementation should preserve the embedding and 

part relations, which leads to the problem of subshape recognition, i.e., the problem of discovering, in a 

given design, subshapes that are isomorphic to the left-hand side of a rule. Subshape recognition is a hard 

computational problem because of the embedding and part relations. It is difficult for computers to find 

emergent subshapes, like the square created by the two overlapping squares in (a) in Figure 2.4. Chase 

(1997) sees the embedding and part relations as critical challenges for the computer implementation of 

visual calculating. These challenges are directly related to the question of how shapes are represented, 

since, as we will see below, different computational techniques are available for different types of 

representations. Several non-parametric implementations have successfully addressed subshape 

recognition by employing geometric representations. 

Another challenge is posed by the parametric transformations discussed in section 2.3. The 

implementation of parametric transformations needs flexible representations of shapes that preserve key 

properties while releasing others. Representations for parametric shapes severely complicate subshape 

recognition, since, for a parametric shape, one can no longer find subshapes based on the shape’s 

geometry, such as angles or proportions. Extending this insight, Yue, Krishnamurti, and Gobler (2009) 

claim that “it is impossible to implement a parametric shape grammar interpreter” which can handle more 

than “a subset of grammars”. As examples for subsets, they mention shape grammars without the 

embedding and part relations or shape grammars based exclusively on rectangles. Although this claim of 

impossibility is probably exaggerated, we will see below that there are not many representations for 

parametric shapes, and that most of these representations do not support the embedding and part relations. 

Paradoxically, some representations for parametric shapes support the embedding and part relations while 

categorizing shapes according to pre-defined hierarchies or types, which is another way of imposing 

potentially inadequate decompositions.  

An important detail of the symbolic representation of shapes is numeric precision. In a computer, 

numbers are stored with finite numbers of digits, which can lead to problems of accuracy such that shapes 
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that should be recognized as isomorphic are not, and vice versa. Krishnamurti (1980) addresses this 

problem by constraining shapes and their transformations to rational numbers (i.e., numbers that can be 

represented as integer fractions). Tapia (1996, pp. 84-86) constrains shapes to a grid, which allows him to 

represent shapes with only integer numbers. In three dimensions, the problem of accuracy becomes more 

acute (Stouffs, 1994, pp. 185-187). However, while important for actual computer implementation, the 

problem of numeric precision is not a focus of this thesis. The next section will give an overview of 

existing symbolic representations and the corresponding computer implementations. 

2.6 Precedents for Symbolic Representation and Computer Implementation 

The below overview categorizes existing symbolic representations and the computer implementations 

based on those representations according to the three aspects of the (non-)employment of pre-defined 

types, embedding (including the part relation), and parametric transformations, with a focus on relatively 

recent contributions5. 

CATEGORY I Representations with pre-defined types without embedding and parametric shapes 

Implementing a system for visual calculating without the embedding and part relations is computationally 

straightforward, since one can represent shapes as discrete objects, without having to test for emergent 

subshapes. Out of twenty-one implementations listed by Chau, Chen, McKay, and de Pennington (2004), 

twelve do not support the embedding and part relations. Of those twelve, about ten are non-parametric. A 

relatively recent example is Shaper 2D by McGill (2002), a purposefully restricted, two-dimensional 

implementation for educational purposes. In three dimensions, a similar approach has been taken by Hoisl 

and Shea (2009). From a computational point of view, the implementation of visual calculating without 

the embedding and part relations or parametric shapes is unproblematic. However, because of their 

limited functionality, implementations in this category also are relatively uninteresting as tools for 

exploratory design. 

CATEGORY II Representations with embedding without pre-defined types and parametric shapes 

Chau, et al. (2004) list eight implementations that support the embedding and part relations, though 

apparently none are parametric. Much of the work in this category is based on an algorithm for subshape 

recognition in two dimensions described by Krishnamurti (1981). Krishnamurti’s algorithm relies on a 

reference triangle that is defined by three randomly chosen, non-collinear points of a shape. Alternative 

                                                      
5 For more extensive accounts of existing implementations of visual calculating see (Gips, 1999), (Chau, Chen, 
McKay, & de Pennington, 2004), and (Yue, 2009, pp. 21-25). 



29 
 

algorithms and a corresponding two-dimensional implementation were developed by Chase (1989). 

GRAIL is a three-dimensional implementation presented by Krishnamurti (1992) that is based on plane 

segments. GEdit, developed by Tapia (1999), is considered one of the best implementations, mainly 

because of its interface (Chau, Chen, McKay, & de Pennington, 2004). In GEdit, subshape recognition is 

achieved by constraining the ends of line segments to a pre-defined, two-dimensional grid. In that way, a 

shape can be described with a reference rectangle defined by two diagonal grid points. This reference grid 

defines a “maximum resolution”, which can be seen as imposing a definite decomposition and thus as a 

limitation of design freedom. Chau, et al. (2004) present an implementation for calculating with lines in 

three dimensions. This implementation has been extended with a graphical user interface by Li, Chau, 

Chen, and Wang (2009). Stouffs and Krishnamurti (2004) have provided a “unified foundation for 

arithmetic in any shape algebra”, i.e., a geometric representation for shapes composed of points, line 

segments, or plane segments in one, two, or three dimensions. They also have extended this 

representation to the boundaries of three-dimensional shapes (Stouffs & Krishnamurti, 2006). SGI by 

Trescak, Rodrigues, and Esteva (2009) is a two-dimensional implementation notable for significantly 

improving Krishnamurti (1981). Jowers and Earl (2011) present a two-dimensional implementation for 

curved shapes based on the mathematics of quadratic Bézier curves. (The mathematical representation of 

curved shapes is discussed in (Jowers & Earl, 2010).) 

The approaches in this category that were examined so far rely on the specific geometry of the shape for 

subshape recognition, for example, a reference triangle or rectangle defined by the shape’s points, or the 

mathematical properties of curves. In other words, shapes are represented geometrically. However, since 

these approaches rely on the specific geometry of shapes, such as their angles and proportions, they are 

not feasible for parametric shapes. There are, however, two notable alternative approaches: Pixels and 

graphs. Keles, Özkar, and Tari (2010) represent shapes as graphs, which, as will be explained below, is a 

promising approach for parametric implementation. (In this case, the implementation is non-parametric, 

with subshape recognition based on Krishnamurti (1981). The next chapter discusses graphs, as well as 

the specifics of the representations by Keles et al. (2010).) In a more recent paper, Keles, Özkar, and Tari 

(2012) outline an implementation employing image recognition and a pixel-based representation. On the 

one hand, pixel-based approaches enable the use of arbitrarily curved shapes and the integration of hand-

drawn sketches, as also demonstrated by Jowers, Hogg, McKay, Chau, and de Pennington (2010). On the 

other hand, pixel-based approaches are very intensive in terms of computation, since one needs to 

compare individual pixels instead of maximal elements. Moreover, similarly to GEdit’s grid-based 

approach, pixel-based approaches are limited by a maximum resolution, in this case by the number of 

pixels. Pixel-based approaches do not lend themselves to parametric implementation, since, as discussed 
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in section 2.3, isomorphic parametric shapes can be visually different from each other. This category is 

largely resolved in terms of fundamental computational problems, however, as demonstrated by some of 

the precedents, there are still interesting areas to explore, for example, different geometries or better user 

interfaces. However, both of these topics are beyond the scope of this thesis. 

CATEGORY III Representations with pre-defined types and parametric shapes without embedding 

Compared to categories I and II, there are significantly fewer implementations in this category. The two 

implementations listed by Chau, et al. (2004) are application specific, i.e., they handle only a set of 

parametric shapes whose representations have been fixed in advance. Consequently, they generate 

specific types of objects. For example, the implementation of the parametric, three-dimensional Queen 

Anne grammar by Flemming (1987) produces only houses in the Queen Anne style. Similarly, Agarwal 

and Cagan (1998) have implemented their “language of coffee makers” to generate three-dimensional 

coffee makers from parametrically defined components. These types of implementations are close to 

contemporary digital design tools like scripting or parametric CAD programs, which also employ pre-

defined parametric objects. A more general approach is taken by Yue (2009, pp. 115-121), who presents a 

representation for parametric polygonal shapes based on graph grammars, though without the embedding 

relation. In terms of computational problems, this category seems resolved, since, like in category I, 

shapes are represented as discrete objects without the need to test for emergent subshapes. This category 

offers little in terms of exploratory design tools because of the limitations to design freedom inherent in 

this approach. In the last two decades, commercial parametric design programs with capabilities similar to 

the precedents in this category (e.g., CATIA, Revit, etc.) have become widely used. 

CATEGORY IV Representations with pre-defined types, embedding and parametric shapes 

Few precedents implement visual calculating with the embedding and part relations and parametric 

shapes. Chau, et al. (2004) list no implementations with this capability. The earliest attempt is by 

Nagakura (1995) and relies on pre-defined parametric shapes in a manner similar to the implementations 

in category III. Here, the designer needs to explicitly program definitions for shapes before he can design 

with them. (For example, see ibid., 272.) Support for the part relation is therefore limited to subshapes 

that have been explicitly defined in advance. McCormack and Cagan (2002) present a two-dimensional 

parametric shape representation based on a hierarchy of constraints, which they also apply to curved 

shapes (McCormack & Cagan, 2006). This hierarchy, for example, always preserves ninety degree angles, 

while allowing other angles are to vary. According to the authors, “the levels of the hierarchy are defined 

so that the most constrained lines of a shape are those lines that the designer intended exactly” (ibid., 

915). However, this approach is based on the doubtful assumption that the designer’s intentions are 
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predictable and constant. As argued in section 2.5, representations of shapes based on pre-defined types, 

like the ones in this category, are severely limiting design freedom. Pre-defined types are often defended 

with claims about what a designer will or will not do. For example, Nagakura assumes that “although it is 

possible to subdivide a line segment at any point regardless of intersection (phantom subdivision) . . . this 

is unlikely because of the psychology of human image recognition” (Nagakura, 1995, p. 72). However, 

this type of argument only underscores that the unpredictability of designers is a defining characteristic of 

the creative process. It is for this reason that, instead of balancing “utmost flexibility” with “the cost of 

losing useful explicit structures in the drawing” (Nagakura, 1995, p. 87), computer implementations of 

visual calculating should preserve as much design freedom as possible. (An important, but secondary 

consideration is the development of an easy-to-use user interface to manage the complexity that can arise 

from this freedom.) In terms of developing better tools for exploratory design, this category is 

problematic, with the precedents inhabiting an unstable middle ground between the pre-defined objects in 

category III, and the flexible representations of categories II and V. 

CATEGORY V Representations without pre-defined types with embedding and parametric shapes 

This thesis presents a representation for parametric shapes with the embedding and part relations and 

without the pre-definitions of the representations in category IV. The representation is graph-based, since, 

as discussed above, other approaches based on pixels or geometry are limited to non-parametric shapes. 

Graphs on the other hand represent topological relationships of connectivity that can be constrained 

according to various properties such as angles, proportions, convexity, parallelism, etc. In this manner, a 

variety of parametric and non-parametric transformations can be represented. Critically, graph 

representations of this type can be constructed “on the fly”. (Algorithms that construct a graph 

representation in polynomial time are described in chapter 4.) In fact, a new graph can be constructed 

with every change of the design, i.e., there is no need to maintain a specific symbolic representation as the 

design changes. Subshape recognition is achieved by searching for subgraphs in graphs. This type of 

search is also known as subgraph matching and is a topic of research in the field of graph-grammars6 

(see, for example, (Batz, 2006)). 

                                                      
6 Subgraph matching is known to be an NP-complete problem (Batz, 2006). The parametric implementation of 
visual calculating therefore is an NP-complete problem insofar such an implementation relies on graphs for 
subshape recognition. In a sense, this reasoning supports the claim by Yue et al. (2009) that “parametric subshape 
recognition, in general, is NP-hard”, which, as mentioned in the previous section, leads them to claim that the 
implementation of visual calculating is possible only for special cases. However, their proof relies on relating 
subshape recognition to the clique problem, which is known to be NP-hard only for non-planar graphs. (See 
(Nishizeki & Chiba, 2008) for a polynomial algorithm for finding cliques in planar graphs.) Since, by definition, 
shapes are always planar, this proof only is correct for non-planar graph representations of shapes. (See section 3.2 
for a discussion of planar and non-planar graphs, and how they relate to shapes.) The algorithmic complexity of 
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Another, very similar precedent in this category was developed by Grasl and Economou (2011), though 

only for shapes composed of connected maximal elements. (The representation developed in this thesis 

also extends to non-maximally connected shapes.) Grasl and Economou (ibid.) employ a graph algorithms 

library to find candidate parametric subshapes by searching for isomorphic subgraphs. In a second step, 

these candidates are filtered according to various geometric constraints. 

As discussed above, graph-based representations for shapes have various advantages that make them 

promising candidates for the development of exploratory design tools based on parametric visual 

calculating. They are flexible enough to accommodate different geometries, labels etc., however, this is a 

topic for further research. After a general introduction to graphs and how they can symbolically represent 

shapes, the next chapter compares the approach of this thesis with the approaches of Keles et al. (2010) 

and Grasl and Economou (2011). 

  

                                                                                                                                                                           
parametric subshape recognition therefore depends on the choice of symbolic representation. Also, note that, 
although subgraph matching for non-planar graphs is NP-complete, good results are possible in practice. For 
example, Batz (2006) presents an algorithm that can solve “several problem instances which may occur in practice . 
. . in reasonable time”. 
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3 Shapes as Graphs 

This chapter recapitulates formal definitions for graphs, examines the similarities and differences between 

shapes and graphs, and compares five basic possibilities for representing shapes as graphs. One can 

choose between a maximal graph, where maximal elements, e.g., line segments, are graph edges and 

boundaries are nodes, a direct graph, where maximal elements are edges and the elements’ intersections 

are nodes, an over-complete graph, where, compared to the direct graph, an element is represented with 

additional edges, an inverted graph, where elements are nodes and intersections are edges, and an 

elaborate graph that represents both elements and intersections as nodes. From these possibilities, the 

inverted graph is chosen for its suitability for computer implementation, as well as its relative 

compactness, clarity, and proximity to the original definition of shapes. 

3.1 Graphs and Graph Isomorphism 

In graph theory, a graph is defined as an ordered pair (V, E), where V is a set of vertices and E is a set of 

edges disjoint from V, together with an incidence function ( ) { , }e u v   that associates each edge with a 

pair of vertices (Bondy & Murty, 2008). Similar to maximal elements in shapes, edges and/or vertices can 

be labeled, for example, with weights or colors. A graph with ordered vertex pairs is called a directed 

graph. In a multigraph, multiple edges can join the same pair of vertices. Graphs can easily be visualized 

by drawing them on the plane. For planar graphs, this mapping is possible without intersecting edges. 

Various graph types are illustrated by Figure 3.1. 

Two graphs GA = (VA, EA) and GB = (VB, EB) are isomorphic when there are mappings φV and φE such that 

for every vertex va in VA, there is a corresponding vertex vb in VB and vice versa (if applicable with 

matching labels), and for every edge ea in EA there is a corresponding edge eb in EB and vice versa (if 

applicable with matching direction and labels): 
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GA is a subgraph of GB when there are mappings φV and φE such that for every vertex va in VA, there is a 

corresponding vertex vb in VB, and for every edge ea in EA there is a corresponding edge eb in EB: 
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For example, in Figure 3.1, graphs (a) and (b) are isomorphic, and both are subgraphs of graph (f). 

Similar to intersection points and line segments for parametric shapes in U12, the mapping of nodes and 

edges preserves topological relationships of connectivity. Additional affinities and differences between 

shapes and graphs are discussed in the next section. 

 

Figure 3.1 Types of Graphs. 

3.2 Differences between Shapes and Graphs 

Shapes and graphs can be visually similar in that both can consist of connected line segments. There also 

is a formal parallelism between subshapes and subgraphs, and both shapes and graphs can carry labels. A 

graph representation for shapes might therefore seem both natural and unproblematic. However, there 

also are a number of important differences: 

Most importantly, graphs lack the embedding and part relations, which are defining characteristics of 

visual calculating. As discussed in section 2.2, maximal elements are more-dimensional and contain 

indefinite decompositions of themselves, while graph edges are zero-dimensional symbols. One might 

easily express a graph as a labeled (and thus symbolic) shape, but a graph by definition is a symbolic 

representation. In practice, this means that when a shape is directly interpreted as a graph, intersections 

become nodes and intersected maximal elements are split into multiple graph edges (for an example, see 

Figure 3.2). This splitting of maximal elements imposes a definite and potentially inappropriate 

decomposition. Specifically, as demonstrated in Figure 3.2, one cannot easily recognize parts composed 

of more than one collinear segment. (The problem of decomposition is discussed at length in section 2.4.) 
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(a) 
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Figure 3.2 Shape (a) is directly interpreted as a graph, resulting in graph (b). The large triangle in shape (a) is 
similar, and thus isomorphic, to the small triangles in (a). However, the graph of the large triangle, (c), is different 
from the graph of a small triangle, (d), which is an undesirable distinction. 

The subtle, yet fundamental distinction between shapes as visual entities and graphs as graphical symbols 

also lies at the basis of the second difference. While shapes are interpreted by the transformation t, graphs 

symbolically represent topological relationships of connectivity. (In other words, graphs always are 

interpreted by the same “transformation.”) As long as connectivity relations are preserved, the 

representation of nodes and graph edges can be manipulated freely. The same graph can thus have very 

different visual representations, as demonstrated by the two isomorphic graphs (a) and (b) in Figure 3.1. 

For a shape, the transformation t that will allow it to be recognized as isomorphic with another shape will 

often be narrower, though it can at times also be wider, as discussed in section 2.3. For example, one 

might want to distinguish between convex, concave, and self-intersecting shapes or accept all polygons as 

isomorphic. This difference is acknowledged in the graph-grammar-based representation by Grasl and 

Economou (2011), where a number of geometric conditions filter isomorphic shapes from a larger set of 

isomorphic graphs. 

The third and final difference is related to the previous point about graphs as symbolic representations of 

connectivity. While intersection points exist implicitly in shapes as a consequence of intersecting 

maximal elements, in a graph connections between edges are explicitly symbolized by nodes. (Note that 

nodes are included in the formal definition of a graph, while intersections are not included in the formal 

definition of a shape.) This explicit representation allows topologically equivalent mappings and is crucial 

for the distinction between non-planar and planar graphs. A planar graph can be drawn in the plane such 

that all edge intersections are nodes, while, in non-planar graphs, some edge intersections are not 

recognized. (For example, compare graphs (e) and (f) in Figure 3.1. Also note that (b) in Figure 3.1 is, in 

fact, planar, since it can be drawn into the plane without intersecting edges. It that case, it would look like 

(a).) In shapes, on the other hand, all intersections of maximal elements are equally valid, since a shape is 

a visual configuration instead of a symbolic representation. In other words, there can be no such thing as a 

(d)(c)(b)(a)
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non-planar shape. Informed by the three differences of embedding, transformations, and intersections, the 

concluding section of this chapter discusses three different possibilities for representing shapes as graphs. 

3.3 Representing Shapes as Graphs 

As flexible data structures with numerous possibilities, graphs afford many choices in representing 

shapes, without one necessarily being the most “correct”. However, one can propose a number of criteria 

that will aid in the following discussion. At the very least, the representation should capture the defining 

properties of a shape. These properties include the embedding and part relations, as well as maximal 

elements and their intersections. This is the case for only two of the five possibilities discussed in this 

section. Secondly, the representation should be as compact as possible. In other words, it should include 

relatively small numbers of nodes and edges to optimize computational processing. Lastly, the 

representation should be analytically clear with a transparent mapping between shape and graph. This 

aesthetic consideration is less important for actual computer implementations, but relevant for discussion 

and pedagogy. 

Given the criteria of completeness, compactness, and transparency, five options deserve attention7. The 

earliest approach was introduced by Stiny (1975) and can be called the maximal graph. Here, each 

maximal element is represented as a graph edge, and its two element boundaries as nodes. Intersections 

are not represented. (See graphs (1b) to (4b) in Figure 3.3.) Maximal graphs clearly show the maximal 

elements of a shape and preserve the embedding and part relations. However, because they do not include 

intersections, maximal graphs tend to consist of several unconnected parts, as is visible for graphs (2b), 

(3b), and (4b) in Figure 3.3. This un-connectedness makes the maximal graph unsuitable for computer 

implementation. It also is incomplete since it does not include intersections. For n elements, the maximal 

graph requires Θ(n) edges and Θ(n) nodes. 

A second possibility is the direct graph, which represents maximal elements as edges and intersections as 

nodes. For shapes in U12, direct graphs have the appeal of being visually very similar to the original 

shape, as can be seen for graphs (1c) to (4c) in Figure 3.3. Following this approach, Yue (2009, pp. 115-

121) presents a graph grammar-based representation, which, however, does not support embedding. As 

discussed in the previous section, direct graphs tend to split maximal elements, which prevents the 

indefinite decompositions afforded by the embedding and part relations. (This is the case for (2c), (3c), 

and (4c).) Consequently, the direct graph is incomplete. For n elements with a maximum of n2 

intersections, the direct graph requires O(n2) edges and O(n2) nodes. 

                                                      
7 For additional options, including the employment of hyperedges, see Grasl and Economou (2011). 
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Figure 3.3 The four shapes in the top row are represented with maximal graphs in the second row, with direct 
graphs in the third row, and with over-complete graphs in the bottom row. 

The third approach is presented by Keles et al. (2010). Compared with the direct graph, this over-

complete graph has additional edges, such that all pairs of intersections on a maximal element are 

connected by an edge. (See graphs (1d) to (4d) in Figure 3.3.) In this way, multiple decompositions are 

preserved, though at the expense of a larger number of edges and with the resulting need to keep track of 
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which set of edges represents a maximal element. In Figure 3.3, all edges of a maximal element are 

identically labeled; however, it is unclear where global information about a maximal element, such as its 

length or orientation, would be stored in such a case. Specifically, n(n+1)/2 graph edges are needed for 

each element with n-1 intersections, assuming that the intersections are in different locations. For n 

elements with a maximum of n2 intersections, the over-complete graph requires O(n2) nodes to represent 

the intersections and O(n3) edges to represent the n maximal elements. If all elements intersect each other 

in the same location, only Ω(1) nodes and Ω(n) edges are needed. However, despite this cubical increase 

in complexity and corresponding loss in compactness and transparency, the problem of decomposition 

remains fundamentally unresolved. Strictly speaking, a complete representation of a maximal element 

with an over-complete graph would require an indefinite number of edges, since the part relation allows 

indefinite decompositions. 

As a fourth option, one can reverse the previous model and represent elements as nodes and edges as 

intersections (see (1e) to (4e) in Figure 3.4). This model is adopted in this thesis. At first glance, the 

inverted graph may seem counterintuitive, but it elegantly accounts for the embedding and part relations 

by representing each maximal element as undivided in one node. One can see this model as an evolution 

of the maximal graph. Maximal elements, represented by Stiny (1975) as one edge with two nodes, are 

condensed into one node. An intersection between two elements can now be represented as an edge, 

which completes the representation and avoids the unconnected parts of the maximal graph. One might 

reject this model for not accounting for intersections with more than two lines intersecting in the same 

point (named coincident intersections), since single edges represent the connections between only two 

lines (named distinct intersections). However, coincident intersections can be handled with relative ease 

by labeling the edges representing them. An intersection of three elements will then be represented by 

three identically labeled edges, one for each pair of elements. This is visible in graph (3e) in Figure 3.4, 

where the three edges representing a coincident intersection are labeled with “4”. As explained in the next 

chapter, there are different types of intersections between two elements, which, in this case, can be 

elegantly represented by a labeled edge, regardless whether an intersection is coincident. For this 

approach, a shape composed of n elements with a maximum of n2 intersections will require exactly Θ(n) 

nodes to represent the elements and at most O(n2) edges to represent the intersections, regardless of 

whether they are coincident. 

The last possibility is presented by Grasl and Economou (2011) and might be called the elaborate graph. 

Here one represents both elements and intersections as nodes, as in graphs (1f) to (4f) in Figure 3.4. This 

model accounts for the embedding and part relations and coincident intersections, but only with a loss of 

compactness and transparency. This graph also makes it more complicated to represent the properties of 
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intersections, such as angles or types, since different data types are needed for intersections with different 

numbers of elements. Again assuming that a shape consists of n elements with a maximum of n2 

intersections, the elaborate graph requires O(n2) nodes for the elements and their intersections, and O(n2) 

edges to connect them. If all elements intersect in the same location, only Ω(n) nodes and Ω(n) edges are 

required. 

 

Figure 3.4 The four shapes from Figure 3.5 are represented with inverse graphs in the first row and with elaborate 
graphs in the bottom row. 

In selecting a graph for computer implementation, one can immediately rule out the maximal and direct 

graphs, since the first is unconnected and does not represent intersections and the second splits maximal 

elements in potentially inappropriate decompositions. The over-complete graph does not support 

indefinite decompositions in a straightforward manner, but will be compared with the two other 

approaches for the sake of the discussion. Examining the compactness of the over-complete, inverted, and 

elaborate graphs, we find that for both the over-complete and the elaborate graphs, the size of the graph 

depends not only on the number of elements, but also on the number of distinct intersections. When many 

intersections are coincident, the elaborate graph is the most compact. However, one can expect most 

shapes to have mostly distinct intersections and only a small number of coincident ones. In that more 

general case, the inverted graph is the most parsimonious, while also preserving the embedding and part 
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relations8. Compared to the inverted graph, the over-complete graph is unclear since a maximal element 

can correspond to any number of distinct edges, as demonstrated with graph (4d) in Figure 3.3. While 

clearly representing the embedding and part relations and multiple intersections, the elaborate graph, on 

the other hand, is potentially confusing in its employment of nodes for both elements and intersections. 

Usually, graph edges represent a connection between two entities, as is the case for the over-complete and 

the inverted graphs. In the elaborate graph, a connection between two elements is represented by two 

edges and one node, which can be a source of unclarity. This also points to another stylistic difference 

between the over-complete, inverted, and elaborate graphs, namely how intersections are handled. The 

inverted graph understands intersections as connections between two maximal elements, while the over-

complete and elaborate graphs sees intersection as objects of their own. In that sense, the inverted graph is 

closest to how visual calculating formally defines shapes: There, as mentioned in section 3.2, 

intersections are seen as implicit consequences of how maximal elements are arranged, rather than as 

entities of their own. The next chapter outlines the inverted graph in detail. 

  

                                                      
8 When implemented on a computer, the inverted and elaborate graphs might well turn out to be of similar size and 
complexity, since the edges of the elaborate graph do not carry information, but the edges of the inverted graph do.  
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4 The Shape Graph 

This chapter first describes a method for constructing a shape graph for shapes in the algebra U12 (planar 

line segments), based on the previously outlined inverted approach. The shape graph is an oriented 

multigraph. To generate this representation from a non-maximal shape, one organizes the shape’s line 

segments into infinite elements (in U12, infinite lines), calculates the intersections of those elements, and 

then constructs the shape graph by mapping infinite elements to nodes and their intersections to edges. 

The second section of this chapter examines the different intersection types of infinite elements in U12. In 

the third section, these types are developed into heuristics for representing non-maximally connected 

shapes. An algorithm that employs these heuristics to construct shape graphs for both maximally and non-

maximally connected shapes is presented in the last section. 

4.1 Constructing the Shape Graph 

We assume that, initially, a shape is represented as a set of non-maximal elements, such as the line 

segments a designer might draw in a conventional CAD program. From these elements, we generate a set 

of infinite elements, with each containing at least one maximal element. In U12, infinite elements are 

(infinite) lines that carry at least one (finite) maximal line segment; in U23 they are planes carrying at least 

one maximal planar polygon. (A similar approach for representing line segments is employed by both 

Krishnamurti (1980) and Chase (1989).) As explained below, each infinite element also carries a 

sequence of half-intersections that characterize an intersection point from the perspective of the infinite 

element. The shape graph is created by mapping infinite elements to nodes and half-intersections to 

edges. The proposed procedure can also be extended to other algebras, for example, by representing 

planes as nodes and their intersections as edges. 

ALGORITHM A (Infinite Element Creation) 

A1 Construct the set of infinite elements 

We receive a non-maximal shape in U12 as a set of n non-maximal line segments: 

1 2{ , ,..., }.nS s s s  

A non-maximal element si is defined by its boundaries, that is, its start point and end point. Let the start 

point psi be the left-most point of the element, and the end point pei be the right-most. Vertical elements 

extend from bottom to top: 

( , ).i si eis p p  
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From S, we first construct a pair of ordered sequences (i.e., ordered sets). The first sequence contains m 

lines, sorted according to their slopes and containing the n line segments: 

1 2{ , ,..., }.mL L L L  

 The second sequence contains m sequences of half-intersections, corresponding to the lines in L: 

1 2{ , ,..., }.mI I I I  

A line Li is defined as a sequence of boundaries containing the start points and end points of all segments 

in S collinear with Li. Each line contains at least one start point and one end point. The boundaries are 

sorted from left to right and from bottom to top, with coincident boundaries sorted such that start points 

are first and endpoints are second, thus defining the line’s orientation and geometry9: 

1 1 2 2{ , , , ,..., , }.i s e s e sn enL p p p p p p  

 If a line segment (ps1,pe1) is contained in another segment (ps2, pe2), the sequence would be ordered as 

{ps1, ps2, pe2, pe1}. If the two segments overlap, the sequence is {ps1, ps2, pe1, pe2}. To construct the infinite 

elements, we sort the n segments according to their slopes and partition them into m sets of collinear 

segments, in a total running time of O(n2). The 2n boundaries can be sorted in O(n2) time as well. 

A2 Apply the reduction rules 

We apply the reduction rules by iterating over the boundaries in each sequence Li while maintaining a 

counter i (starting with i = 0 for each sequence). If the current boundary b is a start point, we increase i by 

one. Subsequently, if i is larger than one, we delete b: 

1

( ) ( 1) .
s

s

b p i i

b p i b

   
    



Else, if the current boundary is an end point, we decrease i by one. Subsequently, if i is larger than zero, 

we delete b: 

1

( ) ( 0) .
e

e

p p i i

p p i b

   

    
 

This step can be achieved in O(n) time, since we iterate only once over each sequence Li. (See Figure 4.1 

for a visual description of this step.) 

                                                      
9  For actual computer implementation, it is convenient to represent lines in parametric form and associated 
coordinates with a single parameter. 
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Figure 4.1 For each diagram, the top row shows a non-maximal element composed of several segments. For each 
segment, a white dot indicates the start point; a black dot, the end point. Below the top row, each segment is shown 
in an individual row. At the lower right of each segment boundary, the value and change of the counter is displayed, 
with the algorithm passing over the boundaries from left to right and from top to bottom. For start points, the 
counter increases with one; for endpoints, it decreases with one. When, at a start point, the counter is larger than 
one, the start point is deleted. When, at an end point, the counter is larger than zero, the end point is deleted. A 
deleted boundary is drawn with an x. In the bottom row of each drawing, the maximal element obtained by the 
algorithm is displayed. (a) shows two coincident segments; (b), two adjoining segments; (c), two overlapping 
segments; and (d), a segment that is contained in another segment. (d) and (e) are examples of three overlapping 
segments. 

A similar approach is taken by Krishnamurti (1980). Chase employs a less efficient, recursive, technique 

(1989). After we have iterated over the boundaries in Li in the described manner, iL  is maximal, i.e., it 

contains neither adjacent start points nor adjacent end points. An adjacent start point and end point define 

a maximal element; an adjacent end point and start point, an empty element: 

3 4 3 4

4 5 4 5

{..., , ,...} { , }

{..., , ,...} { , } .
s e s e

e s e s

p p p p maximal

p p p p empty

 

 
 

A3 Calculate half-intersections 

For each line Li, we construct the sequence Ii by calculating all half-intersections generated by that line 

and by sorting the half-intersections according their position relative to the line’s orientation: 

1 2{ , ,..., }.i nI i i i  

i+1=1

i+1=1
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Let a half-intersection be defined as a four-tuple, containing references to the intersection point and the 

intersected line, as well as to the two elements on the intersected line that are located to the left and right 

of the intersecting line: 

1 2

1 2

( , , , )

with

( , ), ( , ),

and

, , .

k k j j j

j k j k

k j

i p L l r

l p p r p p

p p p L



 



 

If the intersected line holds an element that extends across the intersection point, the two elements are 

identical: 

1 2

1 2

( , ) with

, .

j j

j

l r p p

p p L

 


 

If two lines do not intersect, they are parallel. We denote this non-intersection as a half-intersection, with 

the corresponding empty element spanning from the last boundary on each line to infinity10:  

( , ) with

.

j j n

n j

l r p p

p L

 


 

For this step, we calculate a total of 2m2 half-intersections, which can be sorted in O(n4) time. O(n4) also 

is the total running time for algorithm A. Having prepared the infinite elements and their intersections, we 

are ready to construct the shape graph. 

ALGORITHM B (Shape Graph Construction) 

B1 Construct the shape graph 

Given a shape S represented as a sequence of infinite elements L and a sequence of sequences of half-

intersections I, we interpret the infinite elements as a set of nodes, and the sequences of half-intersections 

as sets of labeled half-edges (see Figure 4.2 for an illustration): 

: ( , ).M S G L I  

                                                      
10 Note that parallel lines “intersect” only once, namely in the direction towards the “end” of the lines. When 
searching for a shape, a candidate line therefore has to be examined twice: Once with its direction unchanged, and 
once with its direction reversed. 
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Figure 4.2 The four shapes in the first row are shown with oriented infinite elements in the second row. In the fourth 
row, these infinite elements are interpreted as nodes. The (half-)intersections of the infinite elements are shown in 
the third row, leading to the completed shape graphs in the fifth row. (a0) indicates a half-intersection located on 
element a at position 0, etc.) Each half-edge represents one line intersecting another line, which is why two 
corresponding half-edges represent one intersection point, i.e., two lines intersecting each other. Note how labeled 
half-edges represent a coincident intersection of three lines in column (c) and parallel non-intersections in column 
(d). Also note that, although the shape in column (b) is non-maximally connected, the corresponding shape graph is 
topologically identical to (a). (Non-maximally connected shapes like (b) and (d) are treated more extensively in 
sections 4.3 and 4.4.) The difference between shapes (a) and (b) is characterized by the intersection type associated 
with the edges (see section 4.2), and the maximal elements of the infinite elements associated with the individual 
nodes. 
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In this way, a half-intersection ik is represented as an oriented half-edge from the node of the intersecting 

line to the node of the intersected line, labeled according to its position pk on the intersecting line. We 

refer to these connections as half-edges, since every connection between two nodes actually consists of a 

complementary pair of (half) edges, and to the (half) edge pair as an edge11. An intersection between two 

lines is thus represented as a pair of labeled half-edges oriented in opposite directions, since, from the 

perspective of the first line, the first line is intersecting the second line, and vice versa. The two lines are 

represented by the two nodes joined by the two half-edges: 

( , , , )

( , , , )

( ) ( , ) 

( ) ( , ).

k i k j j j

l j l i i i

k i j

l j i

i I p L l r

i I p L l r

i L L

i L L





 

 





 

Since two nodes are connected by two oriented edges, the shape graph is an oriented multigraph. The 

running time for algorithm B depends on the number of m ≤ n nodes and 2m2 ≤ 2n2 half-edges and 

therefore is O(n2). Hence, the total running time for algorithms A (Infinite Element Creation) and B 

(Shape Graph Construction) is O(n4). In this section, we have assumed that all intersections between 

infinite elements are included in the shape graph. An algorithm that considers different intersection types 

is presented in section 4.4. 

4.2 Types of Intersections 

Before we discuss how shape graphs can represent non-maximally connected shapes, this section 

examines different types of intersections. Together, the left and the right elements of a half-intersection 

identify four distinct types of intersections, as shown in Figure 4.3. 

These types generate 16 combinations, since both half-intersections have one of the four types associated 

with them. In the shape graph, the same is true for the two half-edges that together represent an 

intersection. Intersections are also termed registration marks in the literature (Stiny, 2006). Taking this 

concept further, registration marks can be grouped into three types: full intersections, where both lines 

contain a maximal element at the intersection point; partial intersections, where one of the two lines 

contains a maximal element at the intersection point; and empty intersections, where both lines hold an 

empty element at the intersection point. An additional type is the infinite non-intersection of two parallel 

                                                      
11 For computer implementation, it is convenient to include a pointer to the complementary half-edge with 
each half-edge, similar to doubly connected edge lists. 
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lines, which is also an empty intersection. Infinite intersections are used to represent special cases like the 

three parallel lines of shape (d) in Figure 4.2. 

 

Figure 4.3 The four types of half-intersections generate 16 intersection types, which are grouped into full, partial, 
and empty intersections. 

Let a line segment bounded by two consecutive intersection points be termed a bounded segment. Let 

bounded segments that do not contain (part of) a maximal element be called empty, and segments 

bounded on only one side be called open. (Open segments are also known as half-infinite lines or rays.) 

The next section explores how different types of intersections and bounded and open segments aid with 

representing non-maximally connected shapes. 

4.3 Heuristics for Representing Non-maximally Connected Shapes 

In graph theory, a path is defined as a sequence of edges connecting a sequence of nodes. (That is, the 

first edge connects the first and the second node; the second edge, the second and third node; and so on.) 
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Then a graph is connected if there is a path between every pair of nodes. Otherwise, the graph is 

unconnected. Similarly, for shapes, let a path be a sequence of infinite elements, connected by a sequence 

of intersections. (In other words, the first intersection occurs between the first and the second element; the 

second intersection, between the second and third element; and so on.) In U12, where maximal elements 

are line segments and infinite elements are lines, let a path consisting of only full intersections, with 

maximal elements between consecutive intersections, be a maximal path. Then a shape is maximally 

connected if there is a maximal path between every pair of infinite elements, and non-maximally 

connected if there is a non-maximal path (i.e., a path including partial and/or empty intersections, or 

consecutive intersections with empty elements between them) between at least one pair of infinite 

elements. For example, shapes (c), (f), and (g) in Figure 4.4 are non-maximally connected. As is 

explained below, non-maximally connected shapes can result in unconnected graphs, depending on which 

intersection points are included in the representation. 

 

Figure 4.4 Seven shapes. Shapes (c), (f) and (g) are non-maximally connected. 

Representing non-maximally connected shapes with graphs is less straightforward than one might think. 

Previous graph-based representations have included only maximally connected shapes, while 

Krishnamurti (1981) has demonstrated a method for representing non-maximally connected shapes when t 

is non-parametric. His method, however, does not work for graphs, especially when t is not a similarity 

transformation (i.e., t is parametric). In constructing graphs for shapes that are non-maximally connected 

and with less constrained transformations t, the key question is which intersection points should be 

included. At a minimum, it is necessary to include enough intersections so that the shape is connected. 

Otherwise, the resulting graph is unconnected and therefore does not represent the shape as a whole. 

Selecting the exactly right set of intersection points, however, is a problem of ambiguity, since it depends 

on the perceptions of the individual designer. As we will see below, one can include different sets of 

points for each shape in Figure 4.4, with each set defining a different shape graph. This ambiguity has 

important implications for visual calculating. If too many points are included, the shape graph is over-

defined and might not allow embedding into the shapes expected by a designer. If, on the other hand, the 

point set is too small, a shape rule applies in much wider range of cases than anticipated. (Note that this 

(f)(b)(a) (e)(c) (g)(d)
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only applies to shapes that one is searching for, as opposed to shapes that one is searching in. In a shape 

where one is searching in, all intersection should be included.) 

Gestalt psychology offers guidelines as to which representations might be most appropriate, for example, 

the “law of continuation and good closure” (Wertheimer, 2012, pp. 149-160), which states that human 

perception tends to complete ambiguous figures into more definite shapes. However, this kind of 

guideline is by no means definitive or applicable in all case. While, in Figure 4.4, shape (c) should 

probably be represented as an incomplete chevron and shape (f) as an incomplete triangle, shape (b) 

eschews easy categorization. It can be perceived as a quadrilateral with extensions, a triangle that is both 

incomplete and subdivided, or an incomplete chevron. Shape (g) reads like two separate shapes, but could 

be an incomplete chevron. In a computer implementation, an algorithmic representation of maximally 

non-connected shapes therefore cannot aspire to an “optimal” solution. Instead, the implementation 

should provide an algorithm that is applicable for a broad range of cases, while leaving flexibility for 

designers to come up with customized representations. Below, the author of this thesis has applied his 

personal judgment to determine which representations are most appropriate. However, and more 

importantly, the proposed framework represents both maximally and non-maximally connected shapes 

and is general enough to be adapted to individual perspectives (e.g., through additional or refined 

heuristics). The framework consists of four simple heuristics, employing the intersection types discussed 

in the previous section, and an algorithm that combines three of the four heuristics in a hierarchical 

fashion. The heuristics are discussed below, while the algorithm is presented in the next section. 

HEURISTIC 1 Only accept full intersections  

This simplest of heuristics can result in unconnected graphs for non-maximally connected shapes such as 

shapes (c), (f) and (g) in Figure 4.5. Since parallel non-intersections are empty intersections, they are not 

included. This heuristic is applied by Grasl and Economou (2011). 

 

Figure 4.5 The dots indicate intersections included by Heuristic 1 (Only accept full intersections) for the shapes 
from Figure 4.4. 

 

(e)(c)(b) (d) (f)(a) (g)
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HEURISTIC 2 Include all intersections 

This heuristic is the default for the shape graph construction algorithm presented in the first section of this 

chapter. Though representing non-maximally connected shapes in a straightforward manner, this heuristic 

also introduces potentially unwanted distinctions and a loss of symmetry. With the exception of triangle 

(f), the shapes in Figure 4.6 appear over-defined, i.e., they include more intersection points than 

necessary. However, this heuristic is useful when constructing shape graphs that will be scanned for 

subshapes, since, in that case, including all intersection points preserves a maximum of possibilities. 

 

Figure 4.6 Here, the six shapes from Figure 4.4 are drawn with line segments extended to their intersection points. 
The dots indicate intersections included under Heuristic 2 (Include all intersections). 

For example, if we do not constrain angles and proportions, quadrilateral (a) in Figure 4.5 possesses 

eight-fold symmetry. It can then be rotated in four different ways and mirrored in two, and still be 

embedded into itself. However, once we expand the definition of the shape to include the two empty 

intersections formed by the extended sides of the quadrilateral, as for (a) in Figure 4.6, we can rotate the 

shape just in two ways, so that it now possesses only four-fold symmetry. Perhaps surprisingly, the same 

would be true for a square with parallel sides (if parallel non-intersections are not specifically excluded). 

HEURISTIC 3 Only include intersections with non-empty bounded or open segments 

This heuristic focuses on bounded segments, defined by two consecutive intersection points, and on open 

segments, defined by the last or first intersection point of an infinite element, instead of on individual 

intersections. We only include an intersection point when it is a boundary of at least two non-collinear, 

non-empty bounded or open segments. As shown in Figure 4.7, this heuristic addresses the problems of 

potential loss of symmetry (see shape (a)) and non-maximally connected shapes (see shapes (c) and (f)). 

However, shape (g) would still result in an unconnected graph. We also can represent a shape composed 

of only parallel line segments, such as shape (d) in Figure 4.2, and related special cases. 

(e)(b) (g)(c) (d) (f)(a)
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Figure 4.7 The six shapes from Figure 4.4, with intersections included under Heuristic 3 (Only include intersections 
with non-empty bounded segments). 

However, this heuristic also introduces distinctions between shapes that might strike a designer as 

artificial. For example, in Figure 4.7, shape (d) is represented as a triangle, but shape (e) is not. In this 

case, (e) embeds into (d), but not (d) into (e), although one can easily perceive both shapes as potentially 

isomorphic U-shapes. The same would be true if the sides of (d) and (e) were parallel (again assuming 

that parallel non-intersections are not specifically excluded). 

HEURISTIC 4 Only include non-empty intersections 

With this last heuristic, we include full intersections as well as partial ones, without regard to bounded 

segments. As is visible in Figure 4.8, this heuristic is problematic. For example, shape (c) is not 

represented as a chevron, and the graph of shape (f) would be unconnected. However, this heuristic 

recognizes the subdivided triangle in (b), which, in special cases, might be desirable. It also results in a 

connected graph for (g). Since parallel non-intersections are empty intersections, they are not included. 

 

Figure 4.8 The six shapes from Figure 4.4, with intersections included under Heuristic 4 (Only include non-empty 
intersections). 

Each of the previously discussed heuristics has, in some cases, proved unsatisfactory. However, one can 

achieve convincing results for a large number of cases by combining heuristics in a hierarchal fashion, 

which is the idea behind the algorithm in the following section. 

 

(e)(b) (c) (d)(a) (f) (g)

(e)(c) (d) (f) (g)(b)(a)
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4.4 Constructing Shape Graphs for Non-Maximally Connected Shapes 

The algorithm described below employs, in a hierarchical series of steps, three of the four heuristics 

developed in the previous section to construct shape graphs for both maximally and non-maximally 

connected shapes. (As we have seen, Heuristic 4 (Only include non-empty intersections) is problematic 

and should be reserved for special cases.) Note that this algorithm should be applied only to shapes that 

one is searching for as subshapes. Shapes that will be scanned for subshapes should always be constructed 

with all intersections points to preserve a maximum of possibilities. 

ALGORITHM C (Shape Graph Construction with Heuristics) 

C1 Partitioning the graph edges 

We are given a set of nodes L representing infinite elements and a set of edges I representing their 

intersections (including parallel non-intersections), with each edge composed of two half-edges 

representing half-intersections. We partition I into three non-intersecting subsets. The first subset contains 

all edges representing full intersections. Of the remaining edges, we include those representing a 

boundary of at least two non-collinear, non-empty (bounded or open) segments in the second set. The 

remaining edges are included in the third set. 

( , , ).I A B C  

We test if an edge represents a full intersection by examining the intersection type defined by its two half-

edges. This can be done in linear time. To check if an intersection point is bounding at least two non-

collinear, non-empty segments, we test for both half-intersections if there is a least one (part of) a 

maximal element between the previous and the next half-intersection on the intersecting line. In other 

words, we test for both half-intersections if at least one of the two bounded (or open) segments to the left 

and right of the half-intersection is non-empty. Since both the maximal elements and the bounded 

segments of a line are represented as ordered sets, we can perform this test with two binary searches in 

O(log n) time. Hence, the O(n2) edges can be partitioned into the three subsets in O(n2 log n) time. 

C2 Construct a shape graph with full intersections 

We construct a shape graph from the set of nodes representing infinite elements L and the set of edges 

representing full intersections A (see Figure 4.9): 

( , ).AG L A  
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This step corresponds to heuristic one from the previous section. If the shape graph is connected, the 

representation is completed. Otherwise, we continue to the next step. Constructing the shape graph takes 

O(n2) time (see algorithm B in Section 4.1). To test if a shape graph is connected, we traverse the graph, 

with a random node as the starting point. (In other words, we explore the extent of the graph by traversing 

nodes and edges, for example, by using depth-first search or breadth-first search). If, at the end of the 

traversal, the number of traversed nodes is equal to the number of nodes in L, the shape graph is 

connected. The running time for the traversal linearly depends on the number of edges and therefore is 

O(n2). 

 

Figure 4.9 The six shapes from Figure 4.4, after step C2. The black dots indicate intersections added during this 
step. 

C3 Construct a shape graph with intersections with non-empty segments 

We include the set of intersections with non-empty segments B in GA to construct a new shape graph (see 

Figure 4.10): 

( , ).BG L A B   

This step corresponds to heuristic three from the previous section. If the shape graph is connected, the 

representation is completed, otherwise we continue to the next step. 

 

Figure 4.10 The six shapes from Figure 4.9, after step C3. The black dots indicate intersections added during this 
step, the white dots intersections that were added previously. Note that shape (d) did not receive a third point, since 
it was already completed in step C2. 

 

(d)(a) (b) (c) (g)(f)(e)

(g)

(a) (b) (c) (g)(f)(e)(d)
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C4 Construct a shape graph with all intersections 

We include the set C, consisting of the remaining partial and empty intersections, with GC to construct a 

new shape graph (see Figure 4.11): 

( , ) ( , ).DG L A B C L I     

This step corresponds to heuristic two from the previous section. Since this graph includes all 

intersections (including parallel non-intersections), it is guaranteed to be connected. 

 

Figure 4.11 The six shapes from Figure 4.10, after step C4. Note that intersections were only added for (g), since 
all other shapes were connected previously. 

Since a shape graph is constructed (or expanded) in steps C2, C3, and C4, their running time is identical, 

namely O(n2). Therefore, the total running time for algorithm C is O(n2 log n). To construct a shape graph 

for both maximally and non-maximally connected shapes, we combine algorithms A and C, resulting in a 

total running time of O(n4). 

As demonstrated by Figure 4.11, the above algorithm appropriately represents a variety of shapes. 

Though even better heuristics certainly are a worthwhile topic for further research, ultimately the designer 

should decide which approach is viable for a given design. In their implementation, Keles et al. (2010) 

rely on choices by the designer to create adequate representations. The purpose of algorithm C is to 

provide a good baseline, which, if necessary, can be refined by input from the designer (e.g., by explicitly 

selecting the points to be included in the symbolic representation of a shape). The next chapter 

summarizes this thesis, sketches the potential for a graph-based design tool based on visual parametric 

calculating, and points out avenues for further research. 

  

(g)

(a) (b) (c) (g)(f)(e)(d)
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5 Conclusion 

In this concluding chapter, the first section will summarize the thesis. Subsequently, a creativity-

enriching, rule-based design tool based on graphs is outlined as an objective to which this thesis 

contributes. Based on this objective, the last section outlines an agenda for further research. 

5.1 Summary of the Thesis 

The thesis is motivated by two conflicting notions of design: A formal one that underlies explicit design 

methodologies, and an artistic one that views design freedom as primary. This dialectic can be reconciled 

with visual calculating, i.e., calculating with shapes, which provides a formal, rule-based notation for 

exploratory visual design, without the limitations that usually accompany explicit design methods. (For 

example, to apply explicit methods effectively, designers need to know in advance what they want to 

achieve.) Crucially, although sets of visual rules can be codified as shape grammars (Stiny & Gips, 1972), 

while designing, designers can apply any rules they want in any way they want (Stiny, 2011). Visual 

calculating supports this freedom by allowing a definite decomposition of a design only after the design 

process has taken place. This property results from the embedding relation, which guarantees that a shape 

is always composed of maximal elements (Stiny, 2006). In other words, a shape is represented by the 

smallest set of the largest possible elements. Complementing the embedding relation, the part relation 

ensures that any part of a maximal element can be picked out for rule application. In other words, a shape 

can be decomposed in indefinitely many ways. Maximal elements and indefinite decompositions thus 

guarantee design freedom. Maximal elements are an important contrast between visual calculating and 

other design methods, which, as a first step, tend to decompose a design problem. (This prior 

decomposition can make it hard for designers to change their minds.) Calculating with maximal elements 

also contrasts with digital computation, which works with the largest set of the smallest possible 

elements: zeros and ones. 

The dialectic between explicit methodologies and design freedom can also be observed in the field of 

computerized tools for architectural design. Generative design techniques like scripting or parametric 

design suffer from the same limitations as other explicit methods, which is why a computer 

implementation of visual calculating promises an opportunity for more designerly design tools. Research 

about the computer implementation of visual calculating has been ongoing for the past thirty years, but 

implementations have remained limited in scope and popularity (Gips, 1999). Relatively recently, 

computer implementations with three-dimensional (Stouffs & Krishnamurti, 2006) and curved (Jowers & 

Earl, 2011) geometries have been developed. However, the implementation of parametric visual 

calculating has received comparatively little attention. (Parametric visual calculating allows the 
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arguments of a rule to vary geometrically. For example, a parametric rule can apply to “all 

quadrilaterals”, as opposed to “all squares”. In other words, rule application is governed by different 

transformations, some of which are parametric.) In fact, considerable effort has been expended to show 

that parametric visual calculating is difficult, if not impossible, to implement on a computer ( (Yue, 

Krishnamurti, & Gobler, 2009) and (Yue, 2009, pp. 78-90)). 

A key question for the implementation of parametric visual calculating is how shapes should be 

symbolically represented. (Shapes are visual entities, but computers work only with symbols.) Though 

there are several approaches to choose from, most of them do not work with parametric shapes, including 

geometry-based approaches (Krishnamurti, 1981) and image recognition (Keles, Özkar, & Tari, 2012). 

Other approaches apply restrictions, such as pre-defined objects (Nagakura, 1995) or hierarchies 

(McCormack & Cagan, 2002) that undermine the design freedom that makes visual calculating uniquely 

promising for computerized design tools. The remaining option, which is explored in detail in this thesis, 

is to represent shapes as graphs. (A graph is a data-structure composed of nodes and edges, with the edges 

representing connections between the nodes.) Graphs are suitable for representing parametric shapes 

because they are based on topological connectivity, and not on fixed geometric features. Rather than 

loosening a geometric representation to make it parametric, graphs start out as flexible data-structures but 

can be constrained tighter when necessary. Graphs have been employed in several computer 

implementations (for example, (Yue & Krishnamurti, 2008) and (Keles, Özkar, & Tari, 2010)), but only 

one (Grasl & Economou, 2011) employs graphs for parametric visual calculating while preserving the 

design freedom that is manifested by the embedding and part relations. The thesis compares several 

graph-based representations for rectilinear, two-dimensional shapes and proposes an inverted graph that 

is clearer, more compact, and closer to the original formulation of visual calculating than the elaborate 

graph by Grasl and Economou (ibid.). In the inverted graph, nodes represent infinite elements (the 

collinear extension of maximal elements) and edges their intersections. 

Another key problem for the computer implementation of visual calculating is subshape recognition: In 

order to apply a visual rule to a shape, one needs to find, in the shape, instances of the argument of the 

rule, which is itself a shape. This problem is especially difficult for parametric visual calculating, since, 

when searching for instances of parametric shapes, a computer often has to examine many possibilities. 

When employing a graph-based representation, subshapes can be found via graph search. Graph search is 

a well-known algorithmic technique, but can be difficult to compute12. However, graph search has many 

                                                      
12 General graph search is NP-complete, which means that, in theory, the time for some computations exceeds the 
age of the universe. However, many NP-complete problems are tractable in practice (Dasgupta, Papadimitriou, & 
Vazirani, 2008, pp. 269-293). 
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applications and continues to be an area of active research (Jungnickel, 2012). Advances in graph search 

indicate that, in many practical cases, the theoretical difficulty of this technique translates into workable 

solutions (Batz, 2006). 

The thesis describes algorithms that construct the inverted graph for two-dimensional, rectilinear shapes, 

with special attention given to non-maximally connected shapes (i.e., shapes with non-intersecting 

maximal elements). When interpreted naively as graphs, non-maximally connected shapes result in 

unconnected graphs. Since unconnected graphs are unsuitable for computation, non-maximally connected 

shapes need to be interpreted as connected graphs. This need for interpretation potentially introduces 

unwanted definitions and distinctions, which is a recurring challenge for the symbolic implementation of 

visual calculating. Non-maximally connected shapes, though addressed early for non-parametric visual 

calculating (Krishnamurti, 1981), have not received prior attention in the context of parametric visual 

calculating with graphs. In interpreting non-maximally connected shapes as connected graphs, the key 

question is which intersection points (also known as registration marks), should be included: If one 

includes too few intersection points, the resulting graph is unconnected; if one includes to many, the 

graph is over-defined, i.e., more constrained than a designer would expect. To address this question, the 

thesis proposes four heuristics based on a typology of intersection points, and an algorithm that combines 

three of those heuristics in a hierarchal fashion. The algorithm achieves good results for a variety of 

shapes; however, it ultimately should be up to the individual designer to decide how to represent a given 

shape appropriately. In a design tool, designers should be free to choose heuristics, or to pick an 

appropriate set of intersection points by hand, in case the proposed algorithm results in an inappropriate 

symbolic representation. The next section outlines how the flexible application of constraining heuristics 

can lead to creativity- enriching, rule-based design tools. 

5.2 Towards Design Tools with Flexible Constraints for Serendipitous Discovery 

The freedom to choose and customize constraints is a big advantage of the proposed, graph-based 

representation. Since graphs are highly flexible data structures, they can be (un)constrained almost at will. 

The only constraints inherent in graphs are topological relationships of connectivity, but even those can 

be released to some degree. One can, for example, apply a rule to “any closed polygon”, by searching for 

closed cycles in the shape graph. (In graphs, a cycle is a path that returns to the starting node.) By 

requiring the graph search to preserve different types of geometric information (such as length, angles, 

proportions, convexity, and/or parallelism), rule application with different transformations can be 

achieved: By constraining angles, distances and the embedding of maximal elements, shapes can be 

restricted to similarity transformations, while, for affine transformations, one would release angles, but 
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preserve proportions of point distances along lines. As an example of a more general transformation, one 

could preserve only embedding and convexity, etc. etc. Shape graphs can also be constrained by non-

geometric information, such as embedding or labels, which creates even more possibilities. For example, 

shapes can be defined to be of certain colors or line weights. 

One can thus imagine a computerized tool that not only lets designers experiment with shapes, but also 

with the heuristics and constraints that govern rule application and the creation of symbolic 

representations. From this perspective, the prime virtue of constraints is not that they “narrow a vast 

design space” (Tapia, 1996, p. 93), but that they become part of design experimentation. In that way, a 

computer implementation would not only be a convenient tool that stores and automatically applies visual 

rules: By offering designers the choice from a range of constraints that are hard to replicate by hand-

calculation, the flexible, nimble application of visual rules can lead to surprising results and, in that 

manner, stimulate creativity in ways that go beyond non-parametric visual calculating. (To be more useful 

to designers, such a creativity enhancing, rule-based design tool would have to include geometries other 

than two-dimensional line segments.) I hope that this thesis is a step towards such a rule-based design tool 

for serendipitous discovery based on all kinds of heuristics, constraints, and geometries. In any case, the 

thesis articulates a clear agenda for further research in that direction. 

5.3 Further Research 

As already mentioned in the previous section, one interesting avenue for further research is the extension 

of the inverted graph to other geometries and dimensions. For example, it is of interest to connect the 

inverted graph to previous research about the computer implementation of visual calculating with three-

dimensional (Stouffs, 1994) or curved (Jowers & Earl, 2011) elements. The inverted graph, with its logic 

of nodes as infinite elements and their intersections as edges, extends naturally to other geometries; 

however, the details of such an extension certainly deserve closer attention. 

Another interesting topic are additional and possibly more sophisticated heuristics for unconnected 

shapes, since the heuristics outlined in this thesis do not make any claims to completeness or optimality. 

A related issue is the application of geometric and other constraints to restrict the graph search for 

subshapes. These constraints afford various (parametric) transformations that certainly merit exploration 

in more detail. Most likely, the examples from the previous section form only a small part of the 

intriguing transformations that are afforded by the inverted graph. In this context, one would also have to 

explore how to apply rules with non-linear transformations (i.e., transformations that cannot be expressed 

as a transformation matrix). 



60 
 

An especially interesting challenge is the development of a customized graph search algorithm. As 

mentioned in the first section, graph search algorithms are a topic of research in computer science. 

However, a graph search algorithm that is tailor-made for (parametric) visual calculating is potentially 

much more efficient than general-purpose approaches like the algorithm employed by Grasl and 

Economou (2011)13. This algorithm finds subgraphs based on topological relationships, which, in a 

second step, have to be constrained to specific geometries. Especially in the case of non-maximally 

connected shapes, this approach, though relatively easy to implement, is much less efficient than a 

comparable algorithm that would integrate the desired geometric constraints into the graph search. 

The last avenue of research has received almost no attention in this thesis: The question of what kind of 

user interface would be appropriate for a design tool of the type sketched in the previous section. As we 

have seen, there are many possibilities for different visual calculations based on various geometries, 

heuristics, and constraints. Making these complex opportunities available in an intuitive and simple 

manner is an important design task in its own right. The agenda outlined in this section holds great 

promise, so let’s get to it!  

                                                      
13 Grasl and Economou employ a library (GrGen.NET), which uses search plans to optimize graph search. Before 
the (NP-complete) graph search is begun, the subgraph is analyzed by another, polynomial, algorithm that finds an 
efficient searching strategy. Although the search plan does not guarantee tractability, it has been shown to have good 
results in many cases (Batz, 2006). 
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