1,222 research outputs found

    Convolutional LSTM Networks for Subcellular Localization of Proteins

    Get PDF
    Machine learning is widely used to analyze biological sequence data. Non-sequential models such as SVMs or feed-forward neural networks are often used although they have no natural way of handling sequences of varying length. Recurrent neural networks such as the long short term memory (LSTM) model on the other hand are designed to handle sequences. In this study we demonstrate that LSTM networks predict the subcellular location of proteins given only the protein sequence with high accuracy (0.902) outperforming current state of the art algorithms. We further improve the performance by introducing convolutional filters and experiment with an attention mechanism which lets the LSTM focus on specific parts of the protein. Lastly we introduce new visualizations of both the convolutional filters and the attention mechanisms and show how they can be used to extract biological relevant knowledge from the LSTM networks

    Imbalanced Multi-Modal Multi-Label Learning for Subcellular Localization Prediction of Human Proteins with Both Single and Multiple Sites

    Get PDF
    It is well known that an important step toward understanding the functions of a protein is to determine its subcellular location. Although numerous prediction algorithms have been developed, most of them typically focused on the proteins with only one location. In recent years, researchers have begun to pay attention to the subcellular localization prediction of the proteins with multiple sites. However, almost all the existing approaches have failed to take into account the correlations among the locations caused by the proteins with multiple sites, which may be the important information for improving the prediction accuracy of the proteins with multiple sites. In this paper, a new algorithm which can effectively exploit the correlations among the locations is proposed by using Gaussian process model. Besides, the algorithm also can realize optimal linear combination of various feature extraction technologies and could be robust to the imbalanced data set. Experimental results on a human protein data set show that the proposed algorithm is valid and can achieve better performance than the existing approaches

    Subcellular localization for Gram Positive and Gram Negative Bacterial Proteins using Linear Interpolation Smoothing Model

    Get PDF
    Protein subcellular localization is an important topic in proteomics since it is related to a proteins overall function, help in the understanding of metabolic pathways, and in drug design and discovery. In this paper, a basic approximation technique from natural language processing called the linear interpolation smoothing model is applied for predicting protein subcellular localizations. The proposed approach extracts features from syntactical information in protein sequences to build probabilistic profiles using dependency models, which are used in linear interpolation to determine how likely is a sequence to belong to a particular subcellular location. This technique builds a statistical model based on maximum likelihood. It is able to deal effectively with high dimensionality that hinder other traditional classifiers such as Support Vector Machines or k-Nearest Neighbours without sacrificing performance. This approach has been evaluated by predicting subcellular localizations of Gram positive and Gram negative bacterial proteins

    Prediction of lung tumor types based on protein attributes by machine learning algorithms

    Full text link

    PLPD: reliable protein localization prediction from imbalanced and overlapped datasets

    Get PDF
    Subcellular localization is one of the key functional characteristics of proteins. An automatic and efficient prediction method for the protein subcellular localization is highly required owing to the need for large-scale genome analysis. From a machine learning point of view, a dataset of protein localization has several characteristics: the dataset has too many classes (there are more than 10 localizations in a cell), it is a multi-label dataset (a protein may occur in several different subcellular locations), and it is too imbalanced (the number of proteins in each localization is remarkably different). Even though many previous works have been done for the prediction of protein subcellular localization, none of them tackles effectively these characteristics at the same time. Thus, a new computational method for protein localization is eventually needed for more reliable outcomes. To address the issue, we present a protein localization predictor based on D-SVDD (PLPD) for the prediction of protein localization, which can find the likelihood of a specific localization of a protein more easily and more correctly. Moreover, we introduce three measurements for the more precise evaluation of a protein localization predictor. As the results of various datasets which are made from the experiments of Huh et al. (2003), the proposed PLPD method represents a different approach that might play a complimentary role to the existing methods, such as Nearest Neighbor method and discriminate covariant method. Finally, after finding a good boundary for each localization using the 5184 classified proteins as training data, we predicted 138 proteins whose subcellular localizations could not be clearly observed by the experiments of Huh et al. (2003)

    Model-based classification for subcellular localization prediction of proteins

    Get PDF

    Using Support Vector Machine and Evolutionary Profiles to Predict Antifreeze Protein Sequences

    Get PDF
    Antifreeze proteins (AFPs) are ice-binding proteins. Accurate identification of new AFPs is important in understanding ice-protein interactions and creating novel ice-binding domains in other proteins. In this paper, an accurate method, called AFP_PSSM, has been developed for predicting antifreeze proteins using a support vector machine (SVM) and position specific scoring matrix (PSSM) profiles. This is the first study in which evolutionary information in the form of PSSM profiles has been successfully used for predicting antifreeze proteins. Tested by 10-fold cross validation and independent test, the accuracy of the proposed method reaches 82.67% for the training dataset and 93.01% for the testing dataset, respectively. These results indicate that our predictor is a useful tool for predicting antifreeze proteins. A web server (AFP_PSSM) that implements the proposed predictor is freely available

    AGMIAL: implementing an annotation strategy for prokaryote genomes as a distributed system

    Get PDF
    We have implemented a genome annotation system for prokaryotes called AGMIAL. Our approach embodies a number of key principles. First, expert manual annotators are seen as a critical component of the overall system; user interfaces were cyclically refined to satisfy their needs. Second, the overall process should be orchestrated in terms of a global annotation strategy; this facilitates coordination between a team of annotators and automatic data analysis. Third, the annotation strategy should allow progressive and incremental annotation from a time when only a few draft contigs are available, to when a final finished assembly is produced. The overall architecture employed is modular and extensible, being based on the W3 standard Web services framework. Specialized modules interact with two independent core modules that are used to annotate, respectively, genomic and protein sequences. AGMIAL is currently being used by several INRA laboratories to analyze genomes of bacteria relevant to the food-processing industry, and is distributed under an open source license

    HCV genotyping using statistical classification approach

    Get PDF
    The genotype of Hepatitis C Virus (HCV) strains is an important determinant of the severity and aggressiveness of liver infection as well as patient response to antiviral therapy. Fast and accurate determination of viral genotype could provide direction in the clinical management of patients with chronic HCV infections. Using publicly available HCV nucleotide sequences, we built a global Position Weight Matrix (PWM) for the HCV genome. Based on the PWM, a set of genotype specific nucleotide sequence "signatures" were selected from the 5' NCR, CORE, E1, and NS5B regions of the HCV genome. We evaluated the predictive power of these signatures for predicting the most common HCV genotypes and subtypes. We observed that nucleotide sequence signatures selected from NS5B and E1 regions generally demonstrated stronger discriminant power in differentiating major HCV genotypes and subtypes than that from 5' NCR and CORE regions. Two discriminant methods were used to build predictive models. Through 10 fold cross validation, over 99% prediction accuracy was achieved using both support vector machine (SVM) and random forest based classification methods in a dataset of 1134 sequences for NS5B and 947 sequences for E1. Prediction accuracy for each genotype is also reported
    • …
    corecore