701 research outputs found

    Design of sequences with good correlation properties

    Get PDF
    This thesis is dedicated to exploring sequences with good correlation properties. Periodic sequences with desirable correlation properties have numerous applications in communications. Ideally, one would like to have a set of sequences whose out-of-phase auto-correlation magnitudes and cross-correlation magnitudes are very small, preferably zero. However, theoretical bounds show that the maximum magnitudes of auto-correlation and cross-correlation of a sequence set are mutually constrained, i.e., if a set of sequences possesses good auto-correlation properties, then the cross-correlation properties are not good and vice versa. The design of sequence sets that achieve those theoretical bounds is therefore of great interest. In addition, instead of pursuing the least possible correlation values within an entire period, it is also interesting to investigate families of sequences with ideal correlation in a smaller zone around the origin. Such sequences are referred to as sequences with zero correlation zone or ZCZ sequences, which have been extensively studied due to their applications in 4G LTE and 5G NR systems, as well as quasi-synchronous code-division multiple-access communication systems. Paper I and a part of Paper II aim to construct sequence sets with low correlation within a whole period. Paper I presents a construction of sequence sets that meets the Sarwate bound. The construction builds a connection between generalised Frank sequences and combinatorial objects, circular Florentine arrays. The size of the sequence sets is determined by the existence of circular Florentine arrays of some order. Paper II further connects circular Florentine arrays to a unified construction of perfect polyphase sequences, which include generalised Frank sequences as a special case. The size of a sequence set that meets the Sarwate bound, depends on a divisor of the period of the employed sequences, as well as the existence of circular Florentine arrays. Paper III-VI and a part of Paper II are devoted to ZCZ sequences. Papers II and III propose infinite families of optimal ZCZ sequence sets with respect to some bound, which are used to eliminate interference within a single cell in a cellular network. Papers V, VI and a part of Paper II focus on constructions of multiple optimal ZCZ sequence sets with favorable inter-set cross-correlation, which can be used in multi-user communication environments to minimize inter-cell interference. In particular, Paper~II employs circular Florentine arrays and improves the number of the optimal ZCZ sequence sets with optimal inter-set cross-correlation property in some cases.Doktorgradsavhandlin

    New Constructions of Zero-Correlation Zone Sequences

    Full text link
    In this paper, we propose three classes of systematic approaches for constructing zero correlation zone (ZCZ) sequence families. In most cases, these approaches are capable of generating sequence families that achieve the upper bounds on the family size (KK) and the ZCZ width (TT) for a given sequence period (NN). Our approaches can produce various binary and polyphase ZCZ families with desired parameters (N,K,T)(N,K,T) and alphabet size. They also provide additional tradeoffs amongst the above four system parameters and are less constrained by the alphabet size. Furthermore, the constructed families have nested-like property that can be either decomposed or combined to constitute smaller or larger ZCZ sequence sets. We make detailed comparisons with related works and present some extended properties. For each approach, we provide examples to numerically illustrate the proposed construction procedure.Comment: 37 pages, submitted to IEEE Transactions on Information Theor

    Chip and Signature Interleaving in DS CDMA Systems

    Get PDF
    Siirretty Doriast

    Design of One-Coincidence Frequency Hopping Sequence Sets for FHMA Systems

    Get PDF
    Department of Electrical EngineeringIn the thesis, we discuss frequency hopping multiple access (FHMA) systems and construction of optimal frequency hopping sequence and applications. Moreover, FHMA is widely used in modern communication systems such as Bluetooth, ultrawideband (UWB), military, etc. For these systems, it is desirable to employ frequency-hopping sequences (FHSs) having low Hamming correlation in order to reduce the multiple-access interference. In general, optimal FHSs with respect to the Lempel-Greenberger bound do not always exist for all lengths and frequency set sizes. Therefore, it is an important problem to verify whether an optimal FHS with respect to the Lempel-Greenberger bound exists or not for a given length and a given frequency set size. I constructed FHS satisfying optimal with respect to the Lempel-Greenberger bound and Peng-Fan bound for efficiency of available frequency. Parameters of a new OC-FHS set are length p^2-p over Z_(p^2 ) by using a primitive element of Z_p. The new OC-FHS set with H_a (X)=0 and H_c (X)=1 can be applied to several recent applications using ISM band (e.g. IoT) based on BLE and Zigbee. In the construction and theorem, I used these mathematical back grounds in preliminaries (i.e., finite field, primitive element, primitive polynomial, frequency hopping sequence, multiple frequency shift keying, DS/CDMA) in order to prove mathematically. The outline of thesis is as follows. In preliminaries, we explain algorithm for minimal polynomial for sequence, linear complexities, Hamming correlation and bounds for FHSs and some applications are presented. In section ???, algorithm for complexity, correlation and bound for FHSs and some applications are presented. In section ???, using information in section ??? and ???, a new construction of OC-FHS is presented. In order to prove the optimality of FHSs, all cases of Hamming autocorrelation and Hamming cross-correlation are mathematically calculated. Moreover, in order to raise data rate or the number of users, a new method is presented. Using this method, sequences are divided into two times of length and satisfies Lempel-Greenberger bound and Peng-Fan bound.clos

    New Spectrally Constrained Sequence Sets With Optimal Periodic Cross-Correlation

    Get PDF
    Spectrally constrained sequences (SCSs) play an important role in modern communication and radar systems operating over non-contiguous spectrum. Despite numerous research attempts over the past years, very few works are known on the constructions of optimal SCSs with low cross-correlations. In this paper, we address such a major problem by introducing a unifying framework to construct unimodular SCS families using circular Florentine rectangles (CFRs) and interleaving techniques. By leveraging the uniform power allocation in the frequency domain for all the admissible carriers (a necessary condition for beating the existing periodic correlation lower bound of SCSs), we present a tighter correlation lower bound and show that it is achievable by our proposed SCS families including multiple SCS sets with zero correlation zone properties

    Data transmission through channels pertubed by impulsive noise

    Get PDF
    Imperial Users onl

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    High-resolution diffusion-weighted brain MRI under motion

    Get PDF
    Magnetic resonance imaging is one of the fastest developing medical imaging techniques. It provides excellent soft tissue contrast and has been a leading tool for neuroradiology and neuroscience research over the last decades. One of the possible MR imaging contrasts is the ability to visualize diffusion processes. The method, referred to as diffusion-weighted imaging, is one of the most common clinical contrasts but is prone to artifacts and is challenging to acquire at high resolutions. This thesis aimed to improve the resolution of diffusion weighted imaging, both in a clinical and in a research context. While diffusion-weighted imaging traditionally has been considered a 2D technique the manuscripts and methods presented here explore 3D diffusion acquisitions with isotropic resolution. Acquiring multiple small 3D volumes, or slabs, which are combined into one full volume has been the method of choice in this work. The first paper presented explores a parallel imaging driven multi-echo EPI readout to enable high resolution with reduced geometric distortions. The work performed on diffusion phase correction lead to an understanding that was used for the subsequent multi-slab papers. The second and third papers introduce the diffusion-weighted 3D multi-slab echo-planar imaging technique and explore its advantages and performance. As the method requires a slightly increased acquisition time the need for prospective motion correction became apparent. The forth paper suggests a new motion navigator using the subcutaneous fat surrounding the skull for rigid body head motion estimation, dubbed FatNav. The spatially sparse representation of the fat signal allowed for high parallel imaging acceleration factors, short acquisition times, and reduced geometric distortions of the navigator. The fifth manuscript presents a combination of the high-resolution 3D multi-slab technique and a modified FatNav module. Unlike our first FatNav implementation, using a single sagittal slab, this modified navigator acquired orthogonal projections of the head using the fat signal alone. The combined use of both presented methods provides a promising start for a fully motion corrected high-resolution diffusion acquisition in a clinical setting
    corecore