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ABSTRACT

This thesis is concerned with two methods of improving
the reliability of binary data transmission over linear channels
in situations where the error-rate is essentially determined by

impulsive mnoise,

The first proposed method utilizes a new class of
signal waveforms which allows the designer to choose at will the
duration of the transmitted waveforms and to achieve, for a
given channel bandwidth, the same transmission rate as in the
conventional systems. The transmitted waveforms overlap in‘the
channel but, owing to their autocorrelation and crosscorrelation
properties, intersymbol interference can be prevented from
arising at the detector output. This method turns out to be

useful only in the high signal-to-noise ratio (SNR) regiom.

The second method, which is more effective in the low
SNR region, involves the use of several identical pulses for
each binéry symbol to be transmitted., The proposed decision
device first detects which pulses are more likely to have been
strongly corrupted by impulsive noise and then uses this knowledge
to choose the decision rule., A procedure for calculating the
 optimum number of pulse repetitions when the system includes a
binary linear forward-acting error-correcting coding scheme is

also presented,

The error-rate analysis for the two methods is carried
out in the presence of Poisson impulse noise and one example of
non-Poisson impulse noise., In the latter case the results were
obtained by means of a Monte-Carlo simulation and the exercise
is intended to provide an indication of the effect of Loﬁg
bursts of impulsive noise on the performance of the proposed

systems.
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INTRODUCTION

Dimidium facti qui coepit

habet: sapere'aude.

Horace, '"'Epistles'’,
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1.1 THE PROBLEM AND BASIC ASSUMPTIONS

This thesis contains the results of an invéstigation
into the problem of transmitting binary data through a channel
perturbed by impulsive noise. Impulsive noise consists of
transient disturbances of random energies separated in time by
random intervals;izrzﬁach the background Gaussian noise is the
dominant noise process. In practice the fraction of time for
which these transient disturbances show significant amplitudes
is usually small. However, the amplitudes of the impulsive
disturbances are generally quite large compared with the peaks
of Gaussian noise having the same average power as the observed
noise. This explains why the observed noise usually has a
first-order probability density function (PDF) with much longer
tails than a Gaussian PDF of the same variance, and why most of

the errors are caused by the impulsive component of the noise.

Fig. 1.1 is the functional diagram of the communication
systems considered in this thesis, The encoder-decoder is
assumed to be that part of the system in which a binary linear
error-correcting code is implemented.[l—i]. Let the encoded
binary symbols be presented at a constant rate of one every Tl
seconds to the waveform generator which is assumed to transmit
a group of L symbols at a time by sending through the channel

every LT. seconds (signalling interval) one of 2L signal wave=

forms si%t—kLTl) (1 =0,1,00c4, ZL—l; k=0,1,2...), selected
in some way depending on the corresponding group of L binary
symbols.* It is further assumed that the channel is linear and
perturbed by an additive noise n(t) of the type defined above,
It follows from this channel model that if si(t—kLTl) is

transmitted, the received waveform is given by Zik(t-kLTl)+n(t)

* Throughout the thesis, any information-bearing entity is
termed signal., Signal waveform, waveform or, more often;
pulse, are names given to analog (continuous~time,
continuous-amplitude) signals.
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where Zik(t-kLTl) is the result of a linear operation“ performed
on si(t-kLTl). The waveform detector, which is assumed to
operate in synchronism with the waveform generator, will have to
decide on the basis of the received waveform Zik(t-kLT1)+n(t),
and its knowledge of the chammel and the transmitter, which group

of L symbols was transmitted. The waveform Zik(t-kLT ) may be a

wloals

1
highly distorted version of si(t-kLTl) and the overlap  of

consecutive waveforms may prevent the waveform detector from
always reaching a correct decision, even in the absence of
noise. In general it is not possible to distinguish between the
errors caused by the noise and the errors caused by the overlap
of the received waveforms. Therefore, in searching for a

method for combatting one cause of errors one tends to lose
insight into the problem if the other inpairment is also present,
For this reason the chamnel is assumed throughout this thesis to

be distortionless, that is,
24, (E=KLT)) = o, (£-KLT, =)

where O is a constant attenuation and 0 is a constant delay. For
simplicity, it will often be assumed that & = 1 and & = O,
Other values of O and 5 are readily accommodated into the theory.
The techniques described and examined in this thesis are there=-
fore only applicable to those cases where either the effect of
the distortion introduced by the channel is known to be
negligible or this distortion has been effectively removed by
equalization . In the latter situation the equalizer is

considered in this thesis as part of the analog channel,

* The subscript k in Z,, accounts for the possibility of
the chamnel response™ depending on the epoch in which
the transmitted pulse was sent (time-varying channel).

*%  This overlap accounts for what is usually known as
intersymbol interference El-Z].

*%J% Equalization is the name given to the technique in which
any device capable of compensating for the distortion
introduced by the actual channel is used.
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The operation of the system depicted in Fig, 1.1 can
be summarized as follows. The waveform generator should use the
set of ol signal waveforms which best counteract the detrimental
features of the channel in the sense of easing the task of the
waveform detector., Whenever waveform design and detection fails
to yield‘an acceptably low error probability the encoder-decoder
pair is included in the system. The encoder is intended to add
extra symbols to the data stream so as to enable the decoder to
correct most of the errors which occur at the output of the

waveform detector.

The generation of the transmitted waveforms generally
includes the modulation of a single-frequency carrier by a
baseband waveform. In this thesis it is always assumed that a
demodulation procedure exists for which the whole modulation-
demodulation operation is linear. For convenience, the modulator
and the demodulator will be considered parts of the analog
channel so that the waveform generator and the waveform detector
can be assumed to operate in the baseband region%. The channel

in Fig. l.1 can thus be described as a distortionless baseband
channel.

In the systems proposed in this thesis the waveform
generator has the form presented in Fig. l.2(a). For each group
of L binary symbols coming from the encoder the serial-to-
parallel convertor applies simultaneously one of two antipodal
pulses to each filter (e.g. +e for a symbol O and -e for a 1).
 For convenience it is assumed henceforth that e(t) = 5(t)

(Dirac impulse). The waveform generator will thus transmit one

of the 2L baseband pulses of the following form:
L

- = - = +
si(t kLTl) E O(ijfj(t kLTl), ocij 1,
j=1

% The assumption of constant channel attenuation impiies
that the demodulator must be phase~locked to the
modulator,
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The waveform detector which will be used has the structure
shown in Fig.ll°2(b). The samplers shown in this figure are
assumed to operate simultaneously every TS = LTl/M seconds and
the decision device bases the decision about each group of L
transmitted symbols on the LM samples obtained within each
interval of LT1 seconds. The integer M is thus the average
number of samples the decision device uses per transmitted

symbol.,

In the presence of white Gaussian noise alone it is
always possible to design the transmitting and receiving filters
to achieve, with M=l, the minimum error probability corresponding
to the system constraints (transmission rate, channel bandwidth
and average transmitted power ) El-i]. Furthermore, the
above-mentioned filters can be chosen so that each sample S in
Fig. 1.2(b) depends only on one transmitted symbol . In thlS
case it is said that the samples Si exhibit no art1ficial¢¢
intersymbol interference and the decision device consists simply

of a parallel-to-serial converter presenting samples Si

sequentially to a zero-threshold detector.

On the other hand, it is not known whether the system
structure presented in Fig. 1.2 can achieve the minimum error
probability in the presence of any type of non~Gaussian noise,
Nevertheless, most of the systems proposed in the literature
are essentially based on the structure of Fig. 1.2, The cases
studied in the literature suggest that in general an attempt to
optimize the system against a given type of non-Gaussian noise
necessitates an M >1 and the use of a nonlinear decision device.
In this case, the decision device processes the samples Si

nonlinearly in order to obtain the decision statistics. These

% The waveforms f.(t) (i=1,2,...,L) are in this case orthogonal
to one another, The optimum performance is obtained if the
receiving filter described by h, (t) is matched to f. (t)

(for all i) [1-3].

sole Called artificial because it results from waveform design
and not from chammel imperfectioms.
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are then compared with a set of thresholds according to some
decision rule. The fact that all the nonlinear operations are
performed on discrete-time signals makes it easier to avoid
intersymbol and interchannel interference than in some cases

studied in the literature .

In a conventional data transmission system both L and
M have unit values and both fl(t) and hl(t) usually have a
duration of about Tl seconds, This is not the best solution for
providing immunity against impulsive noise because it is very-
likely that the response of the receiving filter to an impulsive
disturbance may have a duration in the order of Tl seconds or
longer and a peak amplitude which exceeds the response to a
received data pulse. The use of receiving filters having impulse
responses hi(t) much longer than 1/W (W being the channel band-
width) has long been recognized as a means of combatting impulsive
noise [1-4]. By increasing the duration of the hi(t) most peaks
of impulsive noise will eventually be rendered too weak to cause
error provided that the majority of the impulsive disturbances
at the receiver input are sufficiently short and spaced apart.
If this is not the case, one should transmit long waveforms and
let the decision device neglect the samples that show the highest

a posteriori probability of being affected by impulsive noise
El" 5] ® —

In this thesis the results of a theoretical investig-
~ation into the use of long waveforms for providing immunity
against impulsive noise are reported, The transmitting and
receiving filters are assumed to have impulse responses of the
following form: |

N-1

Z a; y(£-iT)

i=0

* See Chapter III for a further discussion of the
detector structure,
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where y(t) is a baseband pulse essentially time-limited to T
seconds and frequency-limited to the channel baﬁdwidth W. This
type of filter was chosen for three reasons: (i) ease of
implementation, (ii) mathematical tractability, and (iii) the
possibility of realizing a large class of impulse responses, for
which an at least nearly optimal solution can be expected to

exist. In the cases where NT >1T., consecutively transmitted

’
waveforms will overlap in the chaniel and thus further care must
be taken to prevent artificial intersymbol interference from
arising at the output of the waveform detector., Moreover, the
overlap of the transmitted waveforms increases the peak trans-
mitted power and thus the length N of these waveforms is limited
to a value determined by the maximum peak power the system can

handle.

Before considering the organization of this thesis a
few words are in order about the noise models used in the error-
rate analysis of the proposed techniques. It is always assumed
that the impulsive noise component, as viewed by the decision
device, can be considered to result from a series of short-
duration spikes (elementary impulsive disturbances) appliéd at
the input of the waveform detector*. In some cases it is further
assumed that the elementary impulsive disturbances occur
independently in time (Poisson impulse noise). In other cases
these disturbances are aésumed to cluster according to some

convenient time distribution (non-Poisson impulse noise). All

these assumptions will be justified in Chapter II.

1.2 LAYOUT OF THE THESIS

In the previous section the subject-matter of the
thesis was defined in general terms., In this section the contents

of the rest of this thesis will be described briefly,

X The duration of the spikes is assumed to be much
shorter than T seconds,
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Chapter II is devoted to a concise review of the
literature on impulsive noise characterization and a mathematical
description of the noise models is presented for use in later

chapters,

Chapter III provides a critical survey of the techniques
that have been suggested in the literature for combatting

impulsive noise.

1

The work described in the next four chapters is believed
to be original, unless it is specifically ascribed to others by

the quoting of an appropriate reference.

In Chapter IV a new class of signal waveforms is
presented which allows the designer to choose at will the length
N of the transmitted waveforms without introducing any artificial
intersymbol interference at the output of the waveform detector
and to achieve, for a given chammel bandwidth, the same trans-
mission rate as is achieved with a conventional data transmission
system. - In a frequency division multiplexed (FDM) system
interchamnel interference can also be avoided. The error-rate
analysis of this technique in the presence of a Poisson impulse
noise is carried out in this chapter. The case in which the
elementary impulsive disturbances tend to occur in bursts (non-
Poisson impulse noise) is postponed until Chapter VI. As the
title of Chapter IV suggests, the proposed method can only be

advantageous under conditions of high signal-to-noise ratio (SNR),

In Chapter V the low SNR case is considered. The
decision device is assumed to process several samples per trans-
mitted symbol (M > 1) and the possibility of improving its
performance by first detecting the samples which are more likely
to have been affected by impulsive noise is investigated. The
performance of the resulting waveform detector in the presence

of Poisson impulse noise is evaluated,
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Chapter VI is devoted to a Monte-Carlo simulatiomn of
the proposed techniques in the presence of impulsive noise. The
numerical results obtained in the two previous chapters are
checked and new results are obtained for one type of non-Poisson
impulse noise. These new results are intended to show the
effect of long bursts of impulsive noise on the data transmission

systems,

Since the improvement recorded in Chapter V is obtained
at the expense of either a reduction in transmission rate or an
increase in channel bandwidth, the use of an encoder=-decoder in
the system wasnext considered. This possibility is investigated
in Chapter VII where a method of maximizing the overall trans-
mission rate while keeping the overall error probability below

a given level is presented,

Finally, Chapter VIII summarizes the general conclusions
arising out of the study and examines those questions remaining
open at the end of the research project. The reader interested
only in the results of the investigation should turn directly

to Chapter VIII,
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CHAPTER 11

CHARACTERIZATION OF IMPULSIVE NOISE

'When I use a word', Humpty
Dumpty said in rather a scornful
tone, 'it means just what I
choose it to mean - neither more

nor less',

Lewis Carroll, "Through the
Looking Glass'".
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2.1 - INTRODUCTION

The nondeterministic impairments present in data trans-

mission systems can be divided into three categories:
(a) Background noise:

This noise component is due to ever-present causes,
most of which are located at the receiver or in the adjacent
equipment., It includes thermal noise, noise from electronic
components, ''hum' from power supplies, etc. Experience shows that
in most situations this noise can be successfully treated as if it
were an additive stationary Gaussian process, Moreover, ité level
is usually too low to seriously affect the error-~rate in a data

system".
(b) Impulsive noise:

This noise component is due to causes that act inter-
mittently and that are generally located outside the channel
under consideration. Impulsive noise, which can generally be
considered as additive, is troublesome because its time of
occurrence is unpredictable and the noise pulses observed at the
input of the decision device generally have a peak amplitude

which is quite large compared with the peaks of background noise.
(c) Multiplicative noise:

As mentioned above, both the background noise and the
impulsive noise are additive impairments. A third class of
disturbances, which is due to erratic variations of the trans-
mission system, gives rise to the so-called "multiplicative"
noise. It includes sudden level fades, momentary equipment
failure, or circuit interruptions, changes in the phase response
of the channel, translations of frequency occurring in some

single~sideband carrier systems, etc.

% The signal-to-background-noise ratio is typically 20
tO 50 dBa )
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This thesis is mainly concerned with waveform design.
Experience shows that waveform design techniques are quite
ineffective against multiplicative noise because in this case
most errors are due to signal "dropouts'. Under these catastr-
ophic (and fortunately exceptional) conditions, recourse to
coding seems to be the only hope [ 2-1, 40 ]. As stated in
Chapter I, only distortionless time-invariant data systems will
be considered in this thesis and consequently the question of

multiplicative noise will not arise,

The rest of this chapter deals with the detailed
description of the impulsive noise component which, under the

above conditions, is the major cause of errors.

2,2 OBSERVED CHARACTERISTICS OF IMPULSIVE NOISE

The vast majority of noise pulses observed at the input
of the decision device are the response of the receiving filter(s)
to transient disturbances arising from sources which are
independent from the message-circuit noise sources. For this
reason it will always be assumed that the impulsive noise is

statistically independent of the background noise,

Sometimes the source of impulsive noise generates a
wideband disturbance composed of a sequence of very short and
nonoverlapping pulses. In this case the exciting disturbance
will produce approximately the same effect on a narrow band
receiving filter as a sequence of Dirac impulses. However, the
original noise pulses may be so close to each other that consider-
able overlap will occur at the output of the receiving filter,
Situations also arise in which the original disturbance is
narrowband (e.g. noise due to intermodulation distortion or
crosstalk) and, under these circumstances, the noise waveform
observed at the output of the receiving filter looks very

different from a sequence of identically shaped pulses. It
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should be noticed that the shape of an observed noise pulse may
strongly depend on the point where the exciting pulse has

entered the message~circuit. Moreover, the number of possible
noise sources and types of data system is usually very large
‘and, in some cases, the noise source or the data system are not
precisely defined, This is often the case with the telephone
network, In view of the above, it is clear that any classific-
ation or identification of the observed shapes of the noise
bursts, in relation to their causes and the type of transmission
system, is a very difficult task which is bound to produce rather

imprecise results [2—2,3].

Possible causes of impulsive noise are switching
transients in the telephone plant, lightning storms, ignition
discharges, crosstalk from adjacent circuits in a telephone cable,
radio interference in a radio link, power line interference,
intermodulation products, accidental hits during maintenance work,
and a multitude of other causes., Because much of this noise is
man-made, experience shows a close correlation beﬁween impulsive
noise activity and the busy hours of the day. This dependence on
human activity and the sporadic nature of some natural causes
make impulsive noise a strongly nonstationary process oisieiong
periods of observation., Nevertheless the assumption canAbe made
that the process is stationary on a short-term basis, il.e. over
periods of about an hour. Periods of this order of magnitude
are usually taken as measurement intervals, Whether impulsive
noise may be considered an ergodic process over these short
intervais is still an open question. In some instances time-

averaging measurements of impulsive noise have been found rather

inconclusive E2-4:| .

By definition, impulsive noise is a noncontinual type
of disturbance, that is to say, its sources are not permanently
active. It thus seems that the simplest way of mathematically
defining this noise is to give the statistical distribution of

the time intervals during which the noise sources are active,
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the distribution of the quiet intervals and the amplitude

distribution of the noise.

The measurements of impulsive noise reported in the
literature are of two types: analog measurements and measurements
of error statistics. In an analog measurement the noise observed
at the output of a receiving filter is recorded on magnetic tape,
usually in the absence of any transmitted signal., Normally the
only noise recorded is that above a fixed threshold that has a
very low probability of being exceeded by the background noise
and is somewhat lower than the normal signal levels. Analog
measurements make it possible to study both the amplitude
distribution and the time distributions of the noise. In a
measurement of error statistics, two identical data generators
are used, one at the transmitting end of the channel under test
and the other at the receiving end. As both generators are
synchronized to each other and produce the same pseudo-random
sequence of data, it is possible to compare the received and the
"original'messages and record the errors that occur at the
detector output, Most noise measurements reported in the liter-
ature are of this type mainly because the aim is in most cases
to devise efficient coding techniques and because the error
measurements are easier to carry out, As far as the time distrib-
utions are concerned, a close correlation is to be expected
between the results of both types of measurement, In other
words, one could expect to find a burst of errors when a burst
of impulsive noise is recorded and vice versa. However, when
multiplicative noise 1s present errors may occur which do not
correspond to any impulsive noise. For this reason, methods of
measuring the multiplicative noise have also been proposed in

the literature [ 2-2,5].

During each period of éctivity a source of impulsive
noise generates a noise burst which, as already stated, may or
may not look like a sequence of individual pulses. The peak
amplitudes and the effective durations of the noise bursts at

the output of a receiving filter vary over wide ranges, The
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peak amplitudes may be much higher than the normal signal level
and, on the other hand, they may be so small as to be confused
with the background noise. Nevertheless, the average peak
amplitude is usually much larger than that of the background
noise. The burst durations may be of the order of magnitude of
the signalling interval and, on the other hand, they may be
hundreds of times longer. However, the average quiet (inter-
burst) interval is usually much longer than the average burst
duration., Experience shows that the average noise power is
generally determined by the background noise whereas the impulsive

noise determines the error rate [2~27].

Measured cumulative distribution functions of the burst
durations, quiet intervals and burst amplitudes have been
presented in several papers [2—6 to 26:]. Empirical statistical
laws have been proposed which seem to fit the experimental data
with sufficient accuracy for common engineering purposes. These
empirical laws will be comnsidered briefly in the rest of this

section.

A study of analog recordings of impulsive noise is best
formulated in terms of a formal definition of a burst of mnoise.
The following definitiomn is taken from Ref. E2~23] and is
illustrated by Fig., 2.1. All portions of the noise waveform that

,‘_v_, JVoltzage
o
3]
2P
o I __Thermal type ___Impulse type noise
S T ;" noise ignored -/ burst considered
= -~ / /
>+ //
4T /
'_..' —
o /
2+ /
w0 3 /
o 1 /
A 4 /
—_—__-%:_~f"_———_ r—_——————— Level 2
n /
LR R T et
> Time
Fig, 2,1 Ideally rectified noise waveform illustrating

definition of pulse length.
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remain below a specified observation threshold, designated

level 2, are considered as part of the background noise until
level 2 is exceeded, Once level 2 is exceeded, the noise pulse
is measured starting at the point where level 1 was exceeded (as
indicated in the figure) and continuing until it returns below
level 1 and remains below this level for a specified amount of
time referred to as guard interval. The function of the guard
interval is to provide a distinction between nodes of a single
burst and two bursts which occur close together in time, A value
twice the inverse of the baseband chammel bandwidth has been
found in practice to be a convenient guard interval [2~23]. The
function of level 1 is to allow the study of the leading and

trailing edgés of the noise burst. Level 1 is set typically

ala
riy

10 dB above the r.m.s. value of the background noise . The
observation threshold (level 2) is typically between 13 and 16
dB above the r.m.s., value of the background noise and thus the
probability of it being exceeded by the background noise is very

low,

The amplitude distribution of impulsive noise can be

defined in two different ways: as the probability distribution

of the instantaneous amplitudes of the noise and as the probability

()
WS

distribution of the peak amplitudes of individual noise bursts .
As the decision device takes in noise samples that do mot always
coincide with the peak amplitudes of the noise bursts, the

distribution of the instantaneous amplitudes appears to have

waateuls
rAgriyriy

greater meaning . In fact, the peak.amplitude is really only

* As already stated, this r.m.s. value is practically the
same as the r.m.s. of the entire additive mnoise.

Wk In the case of bandpass noise the noise envelope is used
for the measurement,

%*%% This distribution can be obtained by measuring the fraction
of time for which the rectified noise exceeds an adjustable
threshold or by studying the noise samples obtained at a
sufficiently high rate,
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suitable for specifying short noise bursts, i.e, bursts whose
duration is in the order of the duration of a data pulse., When
the burst duration increases the peak amplitude becomes less
and less meaningful due to the increasing variety of possible

burst shapes.,

The above definition of noise burst implies that the
measured amplitude distributions are only the tails of the actual
distributions. In fact the noise is examined only when it has a
value above level 1 in Fig. 2.1, i.e. at values which have prob-
abilities of 10-2, or less, of being exceeded. In practice this
limitation is of little importance since only the high-~amplitude
disturbances are potentially destructive to data signals., On
the other hand, the noise bursts of lower amplitude tend to be
confused with the continual background noise and are thus

difficult to measure.,

- Mertz E2-ll, 2d] suggested the use of an empirical
hyperbolic distribution to describe the observed amplitudes of
impulsive noise. This means that the probability density function

(PDF) of the noise amplitude is given by

- R 1vly-n-1 |
. where: v = mnoise amplitude

= order of the distribution

bias of the distribution

i

h

The result of the noise measurement is normally the "exceedence"

probability function (EPF), that is,
Xy=1
E(x) = Prob[lvi>x] = (l+'ﬁ) (2)

In Ref. E2—6] a slightly different expression is proposed for
the EPF of atmospheric impulsive noise at very low frequencies

(VLF), which is,

E(x) = [1+ (x/n)™]" (3)
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The value of the parameter h in both expressions is normally
such that it has practically no influence on the tail of the EPF,
which is represented on a log~log paper by a straight line of
slope -n. Since the measured values are on this tail, the
expressions (2) and (3) are equivalent from a practical point of
view. Values of n ranging from a little over 2 to 20 have been
measured [?—18]. It can readily be shown that a finite r.m.s.,

value of the noise implies n> 2,

Other amplitude distributions have been used to describe
the impulsive noise observed in telephone lines and radio channels
E2-27 to 29]. Among them are the log-normal distribution and

the distribution whose EPF 1is
o .
E(x) = exp[—(x/xo) ] (&)
where 0< o < 2[2-27].

It seems that any of the laws mentioned above can be
made to fit measured values sufficiently well, provided that the
distribution parameters are suitably chosen.E2-27]. Experimental
data for much higher and lower probabilities of occurrence would

be necessary to determine which law (if any) is closest to nature.

As pointed out previously, most measured time statistics
concern the errors rather than the noise itself, The errors
caused by impulsive noise, unlike those due to the background
noise, are strongly correlated and tend to occur in bursts,.

When analog measurements are not available, a definition is
necessary to identify a burst of errors, Several definitions
have been proposed in the literature EZ—BL]. In Ref. EZ-Z!] a
burst of length B and weight W is defined as a sequence of

B digits, of which W are in error, such that:

%* In Ref, EZ-BO] a log-normal law is used instead of the
hyperboic law for reasons of mathematical tractability.
The log~normal law is also used in Ref, E?—8]q
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(a) The first and the last digits of the sequence are in
error;
(b) the error density W/B is higher than a specified

minimum density 0 ;

(c) the burst length B is the maximum number under the

previous conditions.

Those sequences of bits which lie between bursts are called
"intervals", If A is somewhat higher than the error probability
due to the background noise*, the bursts of errors will coincide
approximately with those regions of the data stream affected by
bursts of impulsive mnoise, provided that the effect of the multi-

plicative noise is mnegligible,

The measured cumulative distributions published in Refs.
E2-21, 22] show that long burst and interval lengths have a much
higher probability of occurrence than a purely random distribution
of errors would imply. Moreover, in all the chammels considered
in Refs. E2-21, 22] the occurrence of a long sequence of consec~
utive errors or the occurrence of an interval shorter than the

adjacent bursts are rare events.

The problem of finding the statistical laws that govern
the burst durations, the error occurrence within a burst and the
interval durations has been considered by several authors E2-3i]o
Mertz [2-13, 14, 20] uses hyperbolic laws to fit the experimental
data concerning the length of the error burst and the length of
the inter-burst intervals. He also points out, without
attempting to justify it, that the short-period and the long-
period distributions often exhibit different,parameters*f As in

the case of the amplitude distribution, other empirical laws

* %E Ref.[ZZ-ZZ]‘meaningful results were obtained for
= 0.05.

#% The same effect was pointed out in Ref, EZ-i]o

a
-
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have been proposed in the literature. In Ref. [2—3i] the log-
normal distribution is chosen to describe the burst and interwval
durations whereas in Ref.I:2~lj] the error occurrence is

ala

described in terms of the Pareto distribution .

A study of the literature on impulsive noise measure-
ments suggests strongly that it is impossible to describe by a
single mathematical theory the experimental facts. This is almost
certainly due to the great variety of situations encountered in
practice and to the fact that in most situations the noise is

strongly non~stationary over periods of several hours.

2,3 THEORETICAL MODELS OF IMPULSIVE NOISE

In a search for methods of combatting impulsive noise
it is obviously advantageous to have a mathematical description
of the noise. This description will make it possible to obtain
tﬁe PDF's of the noise sampleé at the input of the decision
device, or at least to generate these samples in a computer, If
possible, the noise model should exhibit those characteristics
of the observed noise which are believed to determine the
performance of the data system and, at the same time, it should
be simple enough to be mathematically tractable. Usually a

compromise between these requirements is necessary.

1f nw(t) is the part of the impulsive noise at the
input of a baseband receiving filter which is within the band-

width W of the receiving filter, then, according to the sampling

theorem,
T — sinZHW(t-ti)
n (t) = 2u _S_ a3 Tt - &, ) (5)
i==co *
_ _ i
where ;= ot oty (6)

* The Pareto distribution is in fact a hyperbolic-type
law with zero bias.
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and 2Wai = nw(ti) (7)

Let h(t) be the impulse response of the receiving filter. It
can readily be shown that the impulsive noise at the output of

this filter is given with good approximation by

rI(t) = E a; h(t-ti) (8)
i==o0c0
The noise n(t) at the input of the receiving filter can thus be

assumed to be given by

n(t) = n.(t) + Z a; b(c-t;) (9)

where nG(t) represents the background noise.

The impulsive noise often originates in the bandpass
section of the channel., If the impulse response of the front-end
filter of the receiver is r(t) cos(ZTcht+ \po), fc being the
carrier frequency, it is possible to show that the impulsive
noise at the demodulator input can be written in the following

form (see Ref, E2-34:l, Sec. 2.3):

oo
n(t) = Z Ap r(t - £ )eos(2NE_ & - liK) (10)
k==00
This relation is the bandpass equivalent to relation (8) and can
be derived following a similar procedure. This bandpass noise

can be split into two components in phase quadrature, that is,

nB(t) = nc(t)cos(wct+OLo)+nS(t)sin((.Uct+O(o) (11)

Z Ay cos(lJ)K+ OLo)r(t-tK) (12)

where nC(t) =
and nS(t) = Z AK sin(l\'u.K+O(0)r(t - tK) (13)

K== oo
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If ao is suitably chosen, the noise at the demodulation output
will be nC(t) and will thus have the form in Equation (8). This
completes the proof that the impulsive noise at the output of
an equivalent baseband receiving filter of impulse response h(t)
can always be expressed as in Equation (8). In many cases the
receiving filter has an impulse response whose amplitude is |
very small outside an interval in the order of 1/W seconds
duration. It thus follows that each noise sample delivered to
the decision device can be approximated by a linear function of
a small number of amplitudes ai[:see Equation (7)]. Tb complete

this model, it is reasonable to assume that the amplitudes a,

~ have zero value outside the time intervals corresponding to the

noise bursts. An alternative approach used later in this thesis
is to assume that the samples of impulsive noise at the input of
the decision device have negligible amplitude when outside the
noise bursts. The noise can thus be defined by the distribution
of the samples within the noise bursts, the distribution of the

burst lengths and the distribution of the gaps between bursts,

Other models of impulsive noise have been proposed in
which the elementary noise pulses do not occur periodically
[2-12,35,36]. The simplest and most important example is the
so-called Poisson impulse noise. In this case the amplitudes
a; in Equation (8) are statistically independent of one another

and also of the instants ti and these instants form a Poisson

~sequence of rate V per second [2-37]. If the amplitudes a, are

identically distributed, and their characteristic function (CHF)
is Fa(u), it can be shown.[2-35] that the CHF of the noise

samples at the output of the receiving filter is
F (u) = exp{wj.tﬁ‘(uh(t))—ﬂjdt} (14)
r —a
In most cases it is not possible to find a closed-form expression

for Fr(u) E2-38]. The situation is even more complicated when the

times ti are distributed according to a non-Poisson law,
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The mean and autocorrelation of the process defined by
Equation (8) can be readily obtained under the following

assumptions:

(a) The amplitudes a; are uncorrelated random variables

. ) 2
with zero mean and variance 7

(b) The amplitudes a, are statistically independent of the
instants ti and the elementary noise pulses aih(t—ti) occur

at a uniform average rate of Vv per second.
It is shown in Ref, E2-39:]that under these assumptions

ELr(e)] = 0 (15)
and ' ' ‘ ’

EE:I(t).rI(t+t)]= voczjz(t)h(tﬁ)dt (16)

- OO0

It thus follows that the power spectral density of rI(t) is
given by

R (£) = vl Ju(e)]

where H(f) denotes the transfer function of the receiving filter.
The impulsive noise at the input of this filter thus has a
uniform power spectral density (white noise), In the case of a
Poisson impulse noise Equations (15) and (16) can be derived
directly from Equation (14) and the highest-order characteristic

functions, as shown in Ref, E2—37].
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CHAPTER III

A SURVEY OF EXISTING TECHNIQUES FOR
’ COMBATTING IMPULSIVE NOISE

A man must see, do and think
things for himself, in the face
of those who are sure that they
have already been over all that
ground. In science, there is
no substitute for independence.

J. Bronowski, '"Science and
Human Values'.
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3.1 INTRODUCTION

Since impulsive noise can often be described by a
large-variance amplitude distribution%, to increase the trans-
mitted energy per symbol is a very inefficient method (from a
power standpoint) of improving the system performance, Another
alternative is the use of signal waveforms with a long duration
relative to the average effective duration of the noise bursts
[B-l]. There are three mechanisms by which this method may
provide an improvement. Firstly, if the impulse responses of
the receiving filters have long duration, a single elementary
disturbance will be spread out and therefore the noise peaks will
be reduced. Secondly, if a burst 6f elementary disturbances
occurs, the smeared responses of each filter will overlap and,
according to the central limit theorem, the PDF of the resulting
noise will have shorter tails, Thirdly, if the tramsmitted
waveforms have long duration the receiver can weight the samples
of the received waveform in accordance with the a posteriori
probability of them being corrupted by impulsive noise. Since
in practice the noise bursts usually have a low density**, the

receiver can generally obtain a sufficiently large number of

reliable samples on which to base the decision.

If it is decided to maintain the data-rate while
increasing the duration of the data pulses, then obviously the
pulses must overlap in the chamnel. There are cases in which
the overlap prevents the receiver from achieving any improvement
and in these cases, in order to obtain some improvement, it is

necessary to reduce the data-rate,

The remainder of this chapter is a brief and critical

survey of the waveform design and detection techniques that have

* This means that the ratio of the standard deviation to the
median of the absolute value of the noise is much higher
than for a Gaussian distribution,

%%  Here "density" means ''fraction of time in which the signal
is strongly affected by impulsive noise',
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been proposed in the literature for use in one-way communication

systems perturbed by impulsive noise,

3.2 ORTHONORMAL FUNCTION CODING

In this case N mutually orthogonal waveforms, essentially
time-limited to NT seconds, are sent simultaneously through the
channel every NT seconds. Each group of K binary digits produced
by the data source will thus be transmitted by means of a wave-
form of the following type:

V N
51 (8) = > ay 9u(®) (1)
j=1
(i = 1,2,..0,2K), where the ¢G(t) belong to an orthonormal set
of functions and are essentially time~limited to NT seconds,
The choice of the orthonormal set {qg(t)} and the way of assigning
the coefficients aij to a given group of K binary digits define
the coding scheme. In this section, as in Refs, [3-3,4], it
‘will be assumed that K=N and that each term in Equation (1)
represents one of K binary digits. The corresponding optimum
receiver for use in the presence of white Gaussian noise alone
contains a set of filters matched to the waveforms ¥,(t), the
outputs of which are sampled every NT seconds EB-Z]. The samples
obtained in this way are the estimates of the coefficients aij’
and the decision about each transmitted binary digit is then

made by comparing the corresponding sample with a known threshold

value. All the threshold values will be zero if laij' = a, for-
all 1 and j, in which case Equation (1) becomes
N
s;(£) = a 2 € 5 qg(t) (2)

J
with €,, = +L and 1 = 1,2,...2 .
1] -

It is shown in Ref. EB-Z] that in the presence of white
Gaussian noise the error probability achieved with the previous

technique does mnot depend on the particular set {4G(t)} chosen,
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However, in the presence of impulsive noise the error probability
is in general dependent on the orthonormal set of functions used
but the exact form of this dependence is mot usually known. It
will be shown in Chapter IV that in the case of Poisson impulse
noise a good design strategy is to choose each function qg(t) so
that the N subintervals of T seconds duration contain nearly the
same fraction of the total unit energy. In the presence of non-
Poisson types of noise it is also shown in Chapter IV that this

may not be the best distribution of energy for the functions qﬁ(t).

The error-rate analysis of this techmnique in the
presence of Poisson impulse noise was carried out in Refs. [3-3,4]
for the following orthonormal set of functions:
2ﬂ(n04-j)t
== COS 0SSt<NT
NT NT ?
LPj(t) = (3)

O, OtherWise, j = 1,2,-0.,N0

This signalling scheme is equivalent to having N binary PSK
adjacent subchannels, each one having a bandwidth N times smaller
than.the overall channel bandwidth., For a fixed average trans-~
mitted power the energy per symbol in each subchannel conserves
its value as N increases, but the amplitude of the impulse
response of each subchamnel decreases proportionally as 1.//X.
Moreover, as N increases the data-rate and the required bandwidth
maintain their values and no intersymbol interference is intro-

duced.

-By analysing the results presented in Refs. [}F3,4]
it can be concluded that an increase in N will only lead to an
error-rate reduction if the SNR exceeds a critical threshold
which decreases as N increases. This is readily understood if

one notes that:

(a) for sufficiently low SNR's, a given isolated noise

pulse will cause more errors if N>1 than if N = 1;
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(b) as N increases, the noise at the input of the decision
device tends to become Gaussian because many long impulsive
disturbances overlap at a given instant., Therefore, a
reduction in the probability of a high noise magnitude is
obtained at the expense of an increase in the probability
of a low noise magnitude. It should therefore be expected
that, as the amplitude distribution of the impulsive
disturbances at the receiver input deviates from a Gaussian
distribution, the improvement obtained for a given N and an

SNR above the critical threshold will be reduced,

A disadvantage of this techmnique is that the peak
amplitude of the transmitted signal is proportional to Jﬁo For
large N this transmitted signal will exhibit a nearly Gaussian

amplitude distribution.

Another method of designing a set of orthonormal
functions overlapping not only in time but also in frequency will
be used in Chapter IV, It consists of designing the functions
qh(t) as sequences of similar pulses, i.e.

N-1"
9y(8) = ) iy(e-iD) W
i=0
where y(t) is a pulse essentially time-limited to T seconds and

frequency-limited to the channel bandwidth W.

3.3 NOISE~SMEARING TECHNIQUL

The structure of the data system in this case is shown

in Fig. 3.1,

Noise, n(t)

Sampler
e. (t)
in Into the
e—  S(£) | ‘ R(£) —° decision
device
Transmitting Receiving

filter filter

Fig, 3.1:
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For convenience, ein(t) is a signalling sequence of
positive and megative unit impulses which recur at intervals of
T seconds duration. The receiving filter is designed so as to
spread out the impulsive noise energy and thus reduce the noise
peak amplitude at the input of the decision device. In order to
avoid intersymbol interference the tramnsmitting filter is
designed so that the overall transfer function S(£).R(f) is the
Fourier spectrum of a pulse whose samples obtained at intervals

of T seconds duration are all zero but one.

This technique was first proposed in Refs. [3-5,6:]but
no procedure was given there for optimally designing the filters,
In Ref, E3~f] an amplitude~response |R(£)] was derived which
minimizes an upper-bound on the impulse response r(t) of the

filter. This upper~bound is given by

'\IOJR(f)I df = |z (t)| (5)

where the equality holds if the filter has a linear phase-
response; Since this optimization technique is obviously insens=-
itive to phase, no optimum phase-response could be obtained in
Ref. E3-f]. In Ref, [3-8] another amplitude-response R(f) was
obtained by minimizing the error probability of a system using
an approximate PDF for the impulsive noise., This technique is
also insensitive to the phase of R(f) and the results are
approximately the same as in Ref. E3-f]. The beneficial effect

a nonlinear phase-response may have on the performance of the

system is analysed in Ref, E3-8] for some special cases,

The best optimization procedure presented in the
literature is the ome in Ref. E3—9] because it takes into account
both the amplitude~response and the phase-response of the
receiving filter, The approach followed in this reference can
be regarded as an extension of that in Ref, E3-7] and consists
in minimizing the functional

[#,8]

Fle(t)] = frzn(t)dt (6)

- OO
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If n is sufficiently large only the largest peaks in r(t) will
make an appreciable contribution to the integral and if,'further—
more, one peak is slightly higher than the others it will
predominate. The value of the largest peaks of r(t) will
therefore be minimized, regardless of their location. No
general solution of this problem was presented in Ref, E3-9] and
the particular impulse response presented.there does not lead to
a better performance than the class of waveforms given in
Chapter IV, which have the form in Equation (4). Since mno
constraint is placed on the effective duration of r(t) (or on
the peak transmitted power) no unique optimum solution should

be expected from the optimization procedure used in Ref. E3—9].

It is important to point out that areduction in the
highest peak of r(t) does not necessarily minimize the number of
exrors produced by several noise impulses. The general problem of
minimizing the error probability under the constraints of
average and peak transmitted powers still remains unsolved.

Until its solution is found it seems that the best one can do is
to try families of waveforms optimizing their parameters for
minimum error probability under the channel constraints, This

is the approach followed in Chapter IV,

3.4 NONLINEAR AND NOISE-CONTROLLED RECEIVERS

In-this section some attempts to optimize the receiver
in the presence of imﬁulsive noise are considered, The trans-
mitter will be assumed to send through the channel nonoverlapping
waveforms somewhat longer than the average impulsive disturbance

at the output of the receiver front-end filter,

It is well known that the optimum receiver for use in
the presence of Gaussian nolse alone is linear. On the other
hand, in the presence of impulsive noise, the most efficient
receivers are in general nonlinear. Two intuitive approaches

to the design of these monlinear receivers have been proposed
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in the literature E3—lO to 16]:

(a) The inclusion of nonlinear saturating elements (noise

clippers) in the receiver;

(b) disturbance-~triggered, gating-out schemes, whereby the
receiver signal path is interrupted at some suitable stage

when a noise pulse is recognized.

In both cases the receiver can be described by means
of the diagram shown in Fig. 3.2, where the block B contains the
nonlinear elements, 1In a typical noise-clipping scheme the non-
linear block consists of a clipper arranged to clip off as much
of the noise as possible without running into the danger of
clipping the signal between the noise pulses. The smoothing
filter (block C) then suppresses the frequency components out of

the frequency-band of the desired signal E3-ll:[o

In a typical noise=~gating-out scheme the nonlinear
block B comprises two signal paths with a common input, one of
which is essentially a noise-detecting circuit and the other a
circuit whose operation is controlled by the first ome. The
noise~detecting branch gates out completely the controlled branch
whenever the amplitude of the received signal-plus-noise exceeds
a threshold set somewhere above the expected level of the signal.
The desired signal emerges from the controlled branch with "holes"
which are then smoothed out by filter C EB—lQ]. Since these
"holes" will have a duration in the order of wt seconds, or
longer, (W Hertz being the bandwidth of the front-end filter A)
it can be concluded that the previous techniques can only be
effective if W~l is somewhat smaller than the signalling interval
(T1 seconds), that is, the bandwidth W must be somewhat greater
than the bandwidth of the data pulses [3-12,16].

When the nonlinear block B is a zero=-memory device its

ideal transfer characteristic is as shown in Fig, 3.3. If the
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data pulses have an approximately rectangular shape and W"l<Z:T

then the waveform obtained at the output of block B will displa;
shapes like those in Fig. 3.4, where the noise pulses were
assumed to have peak amplitudes much greater than the signal
amplitude S. If further the smoothing filter is matched to the
data pulses* it can readily be concluded from Fig. 3.4 that an
error may only occur if Tl‘< 2T, Therefore the previous schemes
can only be efficient when the fraction of the signalling
interval occupied by the noise pulses at the output of the

front=end filter is sufficiently small.

In the previously quoted references no attempt was
made to optimize the receiver in a decision theoretic sense.
This was done in Refs._[}-l? to 241 where optimum and suboptimum
nonlinear receivers for use against non-Gaussiannoise were
derived., In Ref. [3-20] it is assumed that the imput bandwidth
W of the receiver is several times as large as the bandwidth of
the data pulses. 1In data transmission it is more convenient to
shorten the elementary pulses to about W-l seconds duration and -
to transmit each data symbol by means of M consecutive pulses
E3-l7]. The waveform received for each data symbol will thus be:

M-1
v(t) = + Z f(t - Kt) + n(t) (7)
o %0

where £(t) stands for the elementary pulse shape and n(t) for
the noise process. The corresponding receiver is shown in
Fig. 3.5(a) and, apart from the zero-memory nonlinearity (ZNL)
and the étorage device, is assumed to operate in the conventional
manner EB-?:]. The receiving filter is designed so that the
samples delivered to the zero=-memory mnonlinear device exhibit
no interpulse interference. When n(t) is a continual non-

Gaussian noise the zero-memory nonlinearity is designed optimally

w* Under the previous assumptions this means that the
smoothing filter performs an integration operation.
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as follows [3-2d]. Let Zy (K=1,2,,..,M) be the samples corr-
esponding to a given data symbol. In the absence of noise either
ZK = +S or ZK = «S, The log-likelihood ratio is thus
o p(zg - 9)
log\ = Zlog m (8)
: K=1

where p(+) is the PDF of the noise-samples at the output of the
receiving filter., Therefore if the shape of the nonlinearity is

G(z) = 1log g%%fi—%% (9)

it follows that the output of the storége device immediately
after the Mth sampling instant is the value of log/\. The thresh-
old device will decide in favour of one symbol if logA.2 0 and
in favour of the other symbol if logA.< 0.

A typical shape of G(Z) for a large-variance noise
amplitude PDF is shown in Fig. 3.5(b), There is a striking simil=~
arity between this and the characteristic given in Fig. 3.3(b),
but in the case of Fig. 3.5(b) the suppression of the contributibns
to the decision statistic that are much larger than the signal

amplitude is carried out in an optimal manner,

The optimization of the receiver shown in Fig. 3.5(a)
against an additive combination of Gaussian and impulsive noise
was attempted in Ref, E3-l7]c,.It was shown there that an optimum
number of pulse repetitions can be found which depends on the
relative proportion of the two noise components, and on the

amplitudé and time distributions of the impulsive noise,

In Ref. E3-18] the possibility was considered of the
the depector producing an erasure symbol when the decision stat-
istic falls into certain regions of ambiguity (null-zone
detection). A special encoding operation must thus be performed
at the transmitter which will enable the receiver to replace the

erasure symbols,
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3.5 NOISE=CANCELLING RECEIVERS

In these receivers a cancelling device is commected in
parallel with part of the main signal path and the outputs of the
two parallel blocks are subtracted from each other to obtain a
substantial reduction in the overall response to an impulsive
disturbance. Two schemes have been proposed in the literature.
In the first scheme the branches in parallel are bandpass
amplifiers with the same centre frequency but the cancelling
amplifier has a bandwidth somewhat larger than the other one
[3—1Q]. This scheme is nothing but a special case of the noise-

smearing techniques considered in Section 3.3.

In the second scheme the cancelling device accepts the
noise from a channel through which no signal is transmitted and
performs a frequency-shifting operation which transfers the noise
spectrum to the frequency-band of the signal before subtraction

takes place E3—25,26].

In both cases a significant improvement is only possible
.if the responses of the two branches in parallel to almost every
impulsive disturbance have nearly equal phases and nearly
identical envelopes. In practice, the set of possible impulsive
disturbances is generally too large for these conditions to be

satisfied,

3.6 CONCLUDING REMARKS

All the systems analysed above have an equivalent
structure to that in Fig. 1.2 except those in which a nonlinear
analog operation is performed on the received signal (Fig. 3.2).
In these cases the elimination of intersymbol interference
entails the use of a signalling rate below that which the band-
width usually permits. This is not so in Fig. 1.2 because there

the analog waveforms are sampled before being monlinearly processed.
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The techniques described previously can:be subdivided
into two main categories: those in which the system attempts to
make the non-Gaussiannoise appear Gaussian and then uses the
optimum receiver for Gaussian noise, and those in which the
recelver directly exploits the specific characteristics of the
non-Gaussian noise. The first category includes the systems
considered in Sections 3.2 and 3.3 in which the receiving filters
have long impulse responses and are thus capable of averaging out
the contributions of several noise impulses., As stated before,
these systems are only advantageous for sufficiently high SNR's,
The second category includes the systems considered in Section-
3.4 in which the receiver front-end filter has a short impulse
response and the long transmitted waveforms are nonoverlapping
to avoid intersymbol interference. These systems provide a
lower data~-rate than the previous ones but, on the other hand,
they are particularly efficient in the low SNR region. The
reason is that in this region the receiver will find it easier
to recognize the impulsive noise in the background formed by

the signal and the Gsussian noise.
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CHAPTER IV

PROPOSED SIGNAL DESIGN: I -~ HIGH SNR

The weak have one weapon:
the mistakes of those who
think they are strong.

Georges Bidault.
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4e.1 INTRODUCTION

In the previous chapter three methods of combatting
impulsive noise were described which employed data signals much
longer than the average duration of the mnoise pulses. These meth-
ods were described as the smear-desmear technique (Section 3.3),
the orthonormal function coding (Section 3.2) and the long non-
overlapping signal technique (Section 3.4). It was pointed out
in Chapter III that both the smear~desmear technique
and the orthonormal function coding (OFC) can yield a significant
improvement in the presence of impulsive noise provided that its
amplitude PDF has reasonably short tails and the SNR exceeds a
certain critical threshold. Below this threshold the conventional
system performs better and the required improvement can only be
achieved by using long non-overlapping signals, with a consequent
reduction in signalling rate. An improvement of this long nomn:-
overlapping signal technique, which is particularly efficient
in the case of a noise amplitude PDF with long tails, will be

presented in Chapter V.

In this chapter a modification of the smear-desmear
concept, which turns out to be more efficient than the procedures
described in the literature, is studied. Before begimming this
study it is helpful to show that the OFC method, the proposed
method and the conventional smear-desmear technique can be viewed

as aspects of a more general signal design scheme.

In the conventional binary data system one of two
antipodal  pulses +s(t) is transmitted every T seconds. The

signal s(t) can be written as

s(e) = VE] y(r) (1)

‘where E_ is the energy of s(t) and y(t) is a pulse with unit
energy, essentially time~limited to T seconds, If it is

assumed that the transmission chammel is distortionless then,
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as is well known, the probability of detecting a single trans-
mitted pulse in error in the presence of white Gaussian noise

is minimized when the receiving filter is matched to the waveform
s(t). 1In this case the receiving filter will thus have an

impulse response h(t) given by, say,

h(t) = y(AT - t) (2)

for some integer £, and consequently a transfer function H(f)

given by |
H(E) = Y (£) exp(-j2TLATE) (3)

When a sequence of data pulses 1s transmitted, it is possible to
show that, under the assumed conditions, the error probability

is minimized if the pulse y(t) is designed so as to avoid any
intersymbol interference [4-1]. The overall impulse response of the

system depicted in Fig, 4.1, whose frequency spectrum is given by
s(£) H(E) = VE, |¥(£)] ? exp(-32TTE) (4)

should thus have a non-zero sample at the instant t; = LT and
zero samples at all instants tn = nT, n# . This property will
" be expressed by saying that y(t) is a Nyquist pulse., One case
where this complete elimination of the intersymbol interference
is achieved is that where ‘Y(f)lz belongs to the family of
raised~cosine frequency characteristics [4-£]. It is obvious
that the same result is obtained when IY(f)l2 is the spectrum

of a waveform which is exactly time-limited to the interval
[:—T,fj and is continuous at the extremes of this interval. It
will be shown in Section 4.2 that a transmission free from
intersymbol interference is also possible when y(t) belongs to

a class of pulses which will be called perfect Nyquist pulses.
These pulses have the additional property of allowing the trans-
mission of a maximum number of chamnels within a given bandwidth

without any interchannel interference,
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In the orthonormal function coding scheme N mutually
orthogonal signals sK(t), K=1, 2, ..., N, are sent simultan-
eously every NT seconds, with either polarity. If the signals

SK(t) have the same energy E then sK(t) can be written as
s (8) = VD y(t) (5)

where the yK(t), K=1,2,...,N, form an orthonormal set of
functions. Thus, the possible transmitted waveforms in an

interval of duration NT seconds are
N .
g, (t) = VE, g € vx(t) (6)
K=1

i=1,2,...,M, where SiK = +1 and M <§2N. The choice of the
signals gi(t) to be transmitted determines the coding scheme,
Henceforth it will be assumed that no redundancy is introduced
into the signals gi(t), i.es M= 2N, and further that the
coefficients EiK stand for the N binary digits to be transmitted
every NT seconds. In data transmission, a matural way of choosing
the orthonormal set {yK(t)} is to take some Nyquist pulse vy(t),
essentially time-limited to T seconds, and design yK(t) SO as
to occupy the whole interval [O,nT] in the following way:
N
7(®) = ) apy y(e+T- D) (7)
. 3=
The choice of the elementary pulse y(t) is usually governed by
bandwidth requirements and ease of generatiom, It should be
noted that if N = 2" then the OFC technique is a special case
of a more general method where L = ZK signals (0 <K<n) are
transmitted simultaneously, their transmission being initiated
every LT seconds, When K<n the coefficients aKj must fulfil
additicnal conditions in order to avoid any intersymbol inter-
ference. The case in which L = 2 is in fact the signalling

method proposed later in this chapter, with the choice of L = 2

being adopted on account of its associated ease of implementation,
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The structures of the transmitter and receiver corresponding

to this case are identical to those shown in Fig. 4.2 where
G(f) and H(f) represent a conventional filter set, These
structures are easy to generalize for any L>2., The performance
of the optimum receiver in the presence of white Gaussian noise
does not depend on the coefficients'aKj provided that they are
chosen so as to prevent any intersymbol interference. Such
performance is in fact the same as that of the conventional
system shown in Fig. 4.,1. Therefore the signal design method
described previously may only be useful in the presence of non=
Gaussian types of noise. All these points will become more

obvious after studying the case in which L = 2 in Section 4,2,

If it is desired to transmit a single long signal every
T seconds then the so-called smear-désmear technique results,
This .scheme, which has already been studied in detail in Chapter
III,can be viewed from a slightly different viewpoint. The
block diagram shown in Fig. 3.1 can be modified by breaking the
transmitting filter S(f) and the receiving filter R(£) into

two elements as follows:

S(£) M(£).G(£) (8)
and R(£) H(f).N(£) (9)

\

where G(f), H(f) represent the matched filters of a conventional

i

system and M(f), N(f) represent a smear-desmear filter set (see

Fig. 4.3).

o—s3{ M(f) S G(f) H{f) N(f) }—o—o

Noise

s(£) n(t)

R(f)

Fig, 4.3 Smear~desmear technique,
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If, in order to avoid intersymbol interference, the

condition

S(f).R(f) = G(f).H(f)exp(~jwd) (10)
is satisfied, then

M(£).N(f) = exp(~-jwd) (11)

that is, the overall effect of M(f) and N(f) is simply a time
delay, 1If, further, the system is to be optimized against white
Gaussian noise, the filters M(f) and N(f), as G(f) and H(f),

should be matched to each other, i.e,.

N(E) = M (£)exp(-j W) (12)
and thus, according to Equatiomns (11) and (12),

M) = o)l =1 o 3)

within the frequency band of interest. The filters M(£), N(f)
should thus be designed as complementary delay filters [ﬁ—lﬂ].
In general a criterion of optimization against impulsive mnoise
will lead to amplitude characteristics [M(£)| and [N(f)| which
are not uniform over the frequency band of interest and thus the
resulting system will‘not be optimum in the face of white
Gaussian noise, This implies that the optimization criterion
should take into account the relative importance of the Gaussian
and impulsive mnoise components. If, as suggested in Ref, [4-i],
the filters M(f), N(f) are designed on the basis of tapped

delay lines and thus signals of the form in Equation (7) are
transmitted at intervals of T seconds, it is obvious that the
intersymbol interference cannot be eliminated. It follows

that in this case the optimization procedure should take into
account the three system impairments: white Gaussian noise,

3

impulsive noise and intersymbol interference . The task is

* It has been recognized in Ref, Eﬂ-j] although in a
different context, that an optimum receiving system
may give rise to a certain amount of intersymbol
interference,
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much simpler when using the method proposed later in this
chapter, whereby the intersymbol interference can be eliminated
and at the same time the system can be optimized against the
impulsive noise component without increasing the error probab-

ility due to the background Gaussian noise.

4,2 ANALYSIS OF THE PROPOSED TECHNIQUE

4,2.1 Major Assumptions

In this section a new signal design technique to be
used in the presence of impulsive noise is developed. Throughout
the study it is assumed that the modulation scheme is linear,
which makes it possible to analyze any channel in terms of its
equivalent baseband response EA.l]c, Binary data are assumed to
be transmitted by means of antipodal waveforms which give rise
to no intersymbol interference when the transmission channel is
assumed distortionless. In the case of a frequenc§?§ﬁ?§€plexed
(FDM) system it is further assumed that no interchannel inter-
ference occurs. For these reasons Nyquist pulses play an
important part in the signal design and thus deserve detailed

consideration.

4,2,2 Some properties of Nyquist pulses

A Nyquist pulse of signalling period § is defined

here as any waveform s(t) for which

Ag = Joos(t) s*(t + Kb)dt
_: - §2TKROf
=J S(£) s (£f) € af

ES if K=20 :
= (14)
' 0 otherwise,
where K is an integer and 0 is some real number, Furthermore,

s(t) is defined to be a perfect Nyquist pulse of parameters

(p, 0) if



J°° jarnf3t

Ap, = s(t) s (£+Kb) € dt
~ 00
00 4 - j2TROE
= | ste - mp) s"(0) € df
- 00
E ifn=K=20
_ {8
0 otherwise (15)
where n, K are integers and
L .
B: ﬁg, P=2,lor1§ <]-6)

Two perfect Nyquist pulses, s(t) and r(t), of parameters (pP,5)

wilill be said to be associated with each other if

o0 - j4ln(3t
Byn = j-:(t) r (t + K& £ : dt
oo - 52T OE
= J S(f -~ 2nB) R (£f) € df = 0 (17)

for any pair of intZ;ers (n,K) and 3= 1/pb.

In the previous definitions s(t) and r(t) are not
" necessarily real signals., In fact if s(t) is a real Nyquist
pulse it is obvious that s(t) exp(jémist) is also a Nyquist pulse
for any integer !. Moreover, it follows immediately from
Equation (15) that if s(t) is a Nyquist pulse of parameters
(p,0) then its spectrum S(f) is a Nyquist pulse of parameters
Qp, 2B). Therefore

s, (t) = %\/% S(ﬁ—gg (18)

is a Nyquist pulse of parameters (p,0) with the same emergy as
s(t). The pulse sl(t) given by Equation (18) will be called
the dual of s(t). The spectrum of sl(t) is thus given by

g2
Sl(f) = % s“(’Q-zé—-f) (19)

Furthermore, it is very easy to show that if s(t) and r(t) are
perfect Nyquist pulses associated with each other, then As(t)+

Br(t) is a perfect Nyquist pulse for any complex constants A
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and B. Hencefoerth, unless otherwise stated, use will be made

only of real perfect Nyquist pulses. By making n = 0 the analysis

can easily be extended to any real Nyquist pulse since Equation

(14) is the special form of Equation (15) for mn = 0.

The construction of an FDM data system on the basis of
some perfect Nyquist pulse is an easy matter in view of Theorem
1 stated below. In presenting it here it is intended mainly to
make clear the meaning of the parameters p and B used in the

above definitions,

Theorem 1 Given the real baseband perfect Nyquist pulse s(t),
of parameters (p,0), it is possible to transmit the pulses
+G_s(t - K0), #g (t-KD) and th,(t~K0), where

gn(t) = Gns(t) cos(4Tnft + a ) (20)
h.l(t) = His(t) sin(4Tif3t + oci) (21)
i = 1, 2, 3, ees

1,
1
K = 0, +1, +2, ... = ——=
s L T4y ’ B Pﬁ’
and detect them without any interpulse interference.

Therefore, by sending the pulses at a rate of 1/5
per second, it is possible to transmit\p(2L4-l)B Baud in the
bandwidth.[p, (2L-+l)ﬁ]Hertz, for any integer L =20, thereby

achieving a transmission rate of P Baud/Hertz.

The following two theorems are the basis of the signal
design method introduced later in this section. Their proofs
are presented in Appendix 1.1 together with the proof of -

Theorem 1,

Theorem 2 Two real baseband perfect Nyquist pulses, 31(t) and
sz(t), of parameters <f3’5)’ which are associated with each
other, can be used simultaneously as in Theorem 1 without giving

rise to any mutual interference.

It can be concluded as a corollary that no pair of

associated Nyquist pulses can be found for which f’= 2 Baud/
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Hertz, otherwise it would be possible to exceed the Nyquist

rate.
Consider now the sequences of N real Nyquist pulses
Es N-1 _
sa(t) =[5 E a1 y(t - iT) (22)
i=0 :
and

s, (8) fz g ¥ = AD) (23)

The elementary waveform y(t) is assumed to be a perfect Nyquist

pulse of parameters Qp, T) having unit energy. Thus if

Zai = Zbi = N, (24)

i=1 i=1

" the parameter ES is the energy of both Sa(t> and sb(t). By
introducing two infinite sequences Sa.}'and {b.k, N can be
defined, with no loss of generality, as the smallest even

integer such that a, = bi 0 when i <1 or 1:>N

Theorem 3 The real waveforms Sa(t) and sb(t) given by Equations
(22) and (23), y(t) being a Nyquist pulse of parameters (p, T),
are Nyquist pulses of parameters (p/2, 2T) if and only if

E 8 8 on = 0, any K#0 (25)
and i

E bl bl+2K = 0, any K# 0. (26)

i

The same waveforms sa(t) and sb(t) are associated Nyquist

pulses if and only if

E b, a; ,x = 0,anyK (27)
i 0
Thus, according to Theorems 2 and 3, the pulses

defined by Equations (22) and (23) make it possible to transmit
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at the rate achieved when using the Nyquist pulse y(t) and the
signalling method of Theorem L.

The following two theorems, whose proofs are presented
in Appendix 1l.l, provide a method of finding pairs of associated

Nyquist pulses.

Theorem 4 If s(t) is a symmetric or antisymmetric real waveform,

time-limited to E-T/Z, T/2], then s(t) is a perfect Nyquist

s

pulse of parameters (1,T) if and only if

E
s%(e) # =¢_(§) (28)
and o ‘
s(e) + s2(e-1/2) = =2, 0<t<T/2 (29)

where ES is the emergy of s(t).

Theorem 5 If s(t) is a real symmetric Nyquist pulse of para~
meters (1,T), time-limited to [ ~T/2, T/2_], then the anti~-
symmetric pulse '

r(t) = s(3 - lt]) Ga(t/T) sgn t (30)
is a perfect Nyquist pulse associated to s(t).

At this point it may be helpful to give a few examples
of Nyquist pulses, some of which will be used later in this
chapter. The simplest form of Nyquist pulse known is the

rectangular pulse of duration T:
L . Yl/ﬁ, |t| < T/2
s;(£) = =6,(3) =
JT 0, |t|>1/2 (31)
In order to prove that sl(t) is a perfect Nyquist pulse of

parameters (2,T) it is sufficient to note that

oD

_L oty
Aon = T ‘aga(t/T)exp(JZHhT)dt
sin(Tin) _ 0, n 40
_ Tin
1 , n=0 (32)

7

% Ga(x) = 1, if |x|<0.5; G (x) = 0, if [x| > 0.5.
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The spectrum of sl(t) is given by

in(TtTL
s,(£) = T Sioif) » (33)
and thus
s,(t) = %Sl(_t?
T
1 sin(1it/T) (34)
\/'-I‘- /T .
= 1 sinc(t/T)
T

is another Nyquist pulse of parameters (2,T). As a second .
example, consider the unit energy pulse

2

83(t> = |7 Ga(t/T) cos(Tt/T) (35)
Since
sg(t) = %(1 + 0082¥E

it follows,according to Theorem 4,that 83(t> is a Nyquist pulse
of parameters (1,T). Its spectrum is given by
S3(f> _ % o cosILTE 5 (36)
, 1 - (2£T)

from which another Nyquist pulse of parameters (1,T) can be

derived:
V2 2t
s,(t) = 7 53(3)
T
_ 4 cos(21t / T) (37)
/T 1 = (4t/T)*

As a further example, consider the following antisymmetric

pulse:

2 .
SS(t> = /; Ga(t/T)51nOIt/T) (38)
Since _
sc(T/2 = |t]) G, (t/T) sgnt = s5(t)
it follows, according to Theorem 5, that the pulses 53(t> and

SS(t) are associated perfect Nyquist pulses of parameters (1,T).
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Therefore, according to Theorems 1 and 2 it is possible to
transmit both orthogonal pulses 83(t> and SS(t) in the baseband
and modulate by the same pulses two carriers in quadrature at
each of the frequencies %?Hz, n=1,2,..., thereby achieving

the maximum possible rate of 2 Baud/Hz overall, The spectrum of

the pulse SS(t) is given by

where 2
/3T cos(TLTE) (2£7)

TTE 'y o (2em)?
This result makes it possible to add another Nyquist pulse to

By(£)

the list, namely:

N

_ 2 cos(are/T) _ (4t/T)°
\/T- 27Tt /T 1 - (lpt/T)z

It is not difficult to show. that the duals of two associated

(40)

Nyquist pulses are also associated with each other. Therefore
84(t> and s6(t) form a pair of associated Nyquist pulses. In

view of Theorem 4 the symmetric pulse

s,(t) = j%fl - z‘-% G, (t/T) (41)

is another perfect Nyquist pulse of parameters (1,T). Therefore,

according to Theorem 5, the antisymmetric pulse
2 t
SS(t) =% Vit] Ga(T)Sgn t (42)

is also a perfect Nyquist pulse of parameters (1,T) which in
addition is associated with s7(t). The duals of s7(t) and

sg(t) form another pair of associated pulses but, since their
mathematical expressions are quite complicated, they will mnot

be dealt with here.
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4,2.3 Proposed signal design

As stated above, the signal design proposed in this
chapter consists of sending every 2T seconds the associated
Nyquist pulses defined by Equations (22) and (23), the waveform
y(t) being a Nyquist pulse essentially time=-limited to T seconds.
As expressed by Theorem 3, in order to avoid any artificial
intersymbol interference resulting from the overlap of the
transmitted waveforms, the sequences A = {ai} and B = {bi& should
satisfy the conditions (25), (26) and (27). Sequences satisfying
Equations (25) and (26) are termed self-orthogonal sequences and

those satisfying Equation (27) are called associated sequences,

The diagram shown in Fig. 4.2(a) makes it possible
to satisfy these conditions. In this figure it is assumed that
a train of Dirac impulses
o0
ML) = Zai 5(t ~ iT), oy = 41 (43)
=00 _
representing the binary symbols, is applied at the input. The
serial-to-parallel converter (SPC) is assumed to generate the
impulse trains ”

Z Oy Bt = 2KT) (44)

K=—00

M (e)

and

O

Z CL2K_16(t ~ 2KT), (45)

K==oco

M,(e)

which are applied to the inputs of the tapped delay lines La

and Lb respectively. The output of the shaping filter, whose
transfer function is |
E
6(£) = |5 ¥(£), (46)

is signal
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0 ‘
s(t) = Z [:DCZKsa(t-ZKTHO(ZK_lsb(t—ZKT)] (47)
== 00

~where sa(t) and sb(t) are given by Equations (22) and (23).
This signal s(t) is transmitted through a channel which is
assumed to be distortionless and, after being corrupted by the
noise n(t), it is applied to the receiver, whose block diagram
is shown in Fig. 4.2(b). The front-end filter is assumed to
have the transfer function

H(E) = == Y (£) exp(~3j2T0LTE) C (48)
» N - ,
for some integer !, and is thus matched to the transmitter shaping
filter, It is shown in Appendix 1.2 that if the artificial
intersymbol interference is to be avoided, the tap gains of the
transmitter and receiver delay lines must satisfy the following

relations:

| E by Titok = E a; Siqog = Vs @0y K (49)

i i
E a3 TipoR = :>: b; 8;40x = 0s K # O. (50)
T I |

It is shown in Appendix 1.3 that if {ai} is a self-orthogonal

sequence then the relations (27) and (49) are satisfied if and

only if
- 1y
by = PG ay iy 6D
_ ~1yd .
r, = r(~-1) bN_i+1 (52)
i

for some constants b, r and s, It can thus be concluded that

ri = G a, : (54)

and s, = HbD,, (55)

for some constants G and H, and that the relations (50) are
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automatically satisfied., The two samplers in Fig. 4.2(b) are
assumed to operate at the instants 2KT, for any integer K, and
the resulting samples are presented serially to the decision

device by means of a parallel-to-serial converter (PSC).

The general solution to the problem of finding the
sequences A = {aig, B = {bi@, R = {rﬁs and S = {sig so as to
minimize the error probability due to a non~continual noise
could not be found. It is shown in Appendix 1.2 that in the
case of a white Gaussian noise the error probability attains its
minimum value, for a given transmitted power, if and only if the
relations (54) and (55) are satisfied for any subscript i, that
is, if and only if the delay lines Lr and LS are matched to La
and Lb respectively. Since the filters G(f) and H(£) are
matched to each other the whole system is then optimum with
respect to white Gaussian ndise, The magnitudes of the signal
samples produced by the samplers 1 and 2 in Fig. 4.2(b) are

given respectively by

A = a.r; [c] V‘ES (56)
q .
VE
. S
and A, = & bisi = [H] VES, (57)

provided that y(t) has unit energy and the relations (24) are
satisfied. Without any loss of generality it is possible to

set |G| = |H| = 1 so as to obtain the simple result

Al = A2 = AS = \/ES (58)

From the results in Appendix 1.2 it can further be concluded
that the error probability due to white Gaussian noise does not
depend on the pair of associated self~orthogonal sequences

A= {ai} and B = {biﬁchosen., This is certainly not the case in
the presence of impulsive noise. An attempt at optimization

against impulsive noise is made later in this chapter,



To conclude this section a method of comstructing
pairs of associated self-orthogonal sequences is presented.
The method is based on the following theoremswhose proofs are

given in Appendix 1.3.

Theorem 6 If A = {a.k is a self-orthogonal sequence, the
—_— i

sequence B = {bi& determined by
= (.13
by = (D)7 ag iy (59)

i=1, 2, ..., N, is also self-orthogonal and the two sequences

are associated with each other.

Theorem 7 If A and B are associated self-orthogonal sequences,
C = {A,B} and D = {mA,B} are also associated self-orthogonal

sSequences .

According to these theorems, it is possible to start
with the sequences XO = YO = {l} and construct two associated
self-orthogonal sequences of length N = 2n, n=1, by means of

the recurrence relations:

Xe = {cost.Xy 1, sinp Y o3 (60)

Y = {-sinpK.XK_l, cosMK.YK_l} . (61)

where the HK’ K=1, 2, .c., n, are arbitrary real numbers, It

is obvious that the sequences An = /N Xn and Bn = /N Yn satisfy
the relations (24). In general a self-orthogonal sequence which
satisfies the conditions (24) has N/2 degrees of freedom for it

is subjected to a total of N/2 conditions, Therefore, if n>2

the previous rule cannot produce all the self-orthogonal sequences

of length N = 2", The associated self-orthogonal sequences

A = {2, -1, -5/3, 1/3, 3/2, 2, 1, 2} (62)
and

B = {2, -1, 2, -3/2, 1/3, 5/3, -1, -2} (63)

w Here -A = {ual, "853 sees -aNB and

C = {al, az, cecy ELN, bl, b2, ey bN}e



- 66 -

are an example of sequences that cannot be constructed by
using the previous rule. So far it has not been possible to
find a systematié rule+ for generating sequences like those
given in (62) and (63). However, the class of sequences gener-
ated by relations (60) and (61) will be found later to be large

enough for the purposes of this chapter.

The class of uniform self-orthogonal sequences plays
an important role in the remainder of this chapter. A sequence
will be called uniform if all its elements have the same magnitude.
If the set of parameters {ui} in the relation (60) are given the
N = 2" possible combinations of values My ='%:ai withOLi = 41,
i=1, 2, ..., n, then a set of N mutually orthogonal vectors are
obtained which can be grouped in N/2 pairs of associated uniform
sequences. In this way the examples presented in Table 4.1 can
be obtained quite easily. In Appendix 1.3 a group of permutation
operations is defined, by means of which a total of (n-1)! - 1
other sets of uniform self-orthogonal sequences can be derived
from the basic set obtained by using the rule just described.
By using a direct search procedure'it has been possible to show
that the previous rules generate all the possible uniform self-
orthogonal sequences of length N = 2n, n<4. The method is
possibly exhaustive for any value of n but no formal proof has

been found for this conjecture.

The possibility of constructing uniform self-orthogonal
sequences whose length N is not a power of 2 has also been
investigated. This investigation has led to the following

theorem, the proof of which is given in Appendix 1.4

Theorem 8 The length N of a uniform self-orthogonal sequence

must either be 2 or a multiple of 4,

% By systematic rule is meant one in which the sequence
elements are given in terms of a set of parameters
{uigcorresponding to the degrees of freedom of the
generator sequence (60),
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Table l_p_.__];

Some basic sets of uniform self-orthogonal

sequences

Otl al a,
1 1 1
-1 1 -1
! %2 1 22| 23 2y
L 1 1 1 - 1
1 ~1 1 1 1 -1
~1 1 1 -1 1 1
-1 -1 1 -1 -1 ~1
CLl CL2 OL3 ag a, aq a, ag ag ay ag
1 1 1 1 1 -1 1 -1 -1 -1 1
1 1 -1 1 1 -1 1 1 1 1 -1
1 -1 1 1 1 1 -1 1 1 -1 1
1 -1 -1 1 1 1 -1 -1 -1 1 -1
-1 1 1 1 -1 1 1 -1 1 1 1
-1 1 -1 1 -1 1 1 1 -1 =1 -1
-1 -1 1 1 -1 ~1 -1 1 -1 1 1
~1 -1 -1 1 -1 -1 -1 -1 1 -1 -1
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In Appendix l.4 the relationship between the self-
orthogonal éequences and Golay's complementary series E4-4] is
established., The N-long sequences A = {ai} and B = {bi} are
complementary if and only if [4-4]:

XN' (
.a, .+ b, b., .)= 64
<a1 a1+J 1 1+J) g IN, j==0 ( )

i=1
It has been possible to prove that the pairs of associated
uniform self—orthogonal sequences form a subclass of the comp-
lementary binary sequences studied by Golay, Let P and Q
designate the numbers of -1's in two associated self-orthogonal
sequences. Without any loss of generality it can be assumed
that” Q, P < N/2 and that P >Q. It is proved in Ref. [4=4]
that the length of the sequences must be expressible as a sum

of at most two squares, that is

N = R®+ sz, R 25
and that,
N~R+4+ S
Po= 7
N~-R - S
Q = )
If N= 2 then R=8 =1 and thus P=1, Q = 0, If N~2 it is

easy to show that N cannot be a multiple of 4 unless both R and
S are even numbers. If R and S are chosen such that R = 2K

and S = 2L, then

N = 4(K2 + L2) (65)
P = % - K+ L (66)
and Q = % -~ K - L, | (67)

where K and L are any integers such that K=2L. It should be

noted, however, that the previous necessary conditions are not

¥ If P (or Q) > N/2 the sequence shculd be multiplied by -1.
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sufficient for the existence of associated self-orthogonal
sequences.,” Up to the length 128 the only values of N that
satisfy the above conditions are the powers of 2 and the values
in the following list, where the corresponding K and L are within

brackets:

20(2,1), 36(3,0), 40(3,1), 52(3,2),
68(4,1), 72(3,3), 80(4,2), 100(5,0
or 4,3), 104(5,1), 116(5,2).

When N is not a power of 2, self-orthogonal sequences have only
been discovered for those cases where N = 10.2n, n=1l. It is
easy to see that if two complementary sequences are interleaved,
a self-orthogonal sequence is obtained. In this way sequences
of length N = lO.Zn, n=1l, may be derived by starting with the
complementary sequences* of length 10 which can be generated as
explained in Ref, E4—4]. By using the two basic pairs of
complementary sequences of length 10 given in Ref.l:é-éj the

following self=-orthogonal sequences of length 20 are readily

obtalned:

f==F+F+ =t =ttt -t -+
I I kIR

(+ stands for +1 and - stands for -1). A list of all the self-
orthogonal sequences of length 20 is given in Appendix l.4. It
is easy to see that given a self-orthogonal sequence A of length
N = 4M, the two sequences of length 2M which by interleaving
reproduce A, are complementary sequences, Since complementary
séquences do not exist for 2M = 18, as shown in Ref, Eh—é], it
is obvious that uniform self-orthogonal sequences of length N =
36 cannot exist, This fact proves the non-sufficiency of

condition (65),

It is important to point out at this stage that non-

binary self~orthogonal sequences can be constructed for any even

ats
[AY

Complementary sequences have only been discovered with

lengths 10 or a power of 2 E4"41°



- 70 -

length, For example, in the case N = 6 there exist two basic
pairs of associated ternary self-orthogonal sequences with a
single zero element, from which all others may be derived by
reversing them or altering the signs of their nonzero elements.
These two pairs of sequences are:

++ 0+ + = ++0 -+ -

and A

++ -0 -+ + 4+ 0 =+,
If in either of these pairs one of the zeros is replaced by -+l
and the other by -1, then two sequences are obtained which,
together with those given by Equations (52) and (53), satisfy
the relations (49) and (50) and can thus be used as transmitted
sequences. However, since they are not associated self-orthogonal
sequences, it follows that Equatioms (54) and (55) are not
satisfied in this case, Moreover, according to Equations (56)

and (57),
| _ 4
Ay = Ay = A = EVE]

instead of Equation (58)".

L4,2.4 Performance evaluation

The expression for calculating the error probability
of the system described before, in the presence of Poisson
impulse noise, is derived next. This noise model is used here
since it is by far the simplest of the very few mcdels for which
- the computation of the error probability.can be carried out
without recourse to noise simulation., Although the Poisson
noise model represents reasonably well certain types of noise
encountered in practice (e.g. VLF atmospheric noise, FDM cable
systems disturbed by Corona ''pops", etc.), there are many
important circumstances in which this is not the case (e.g. non-

Poisson HF atmospheric noise, impulsive noise in telephone

* It is assumed that la,| = |b.| = lr.|=[s.] =1
if 1< 1 <N, * * ot
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facilities, etc.). However, it is felt that the qualitative
conclusions drawn below will hold in any real situation. The
performance in the presence of mon~Poisson impulse noise is
considered in Chapter VI by means of a Monte Carlo=-type of
simulation, It is impor&ant to point out here that the assump-
tion of a purely random (Poisson) time structure of the noise
can be made more realistic if the samples of the transmitted
signal are scrambled before transmission and then descrambled
at the receiver, The scrambler would be placed immediately
before the shaping filter G(f) and the descrambler would be
placed immediately after the receiving filter H(f) (see TFig.
4.2). It has been reported [ 4=5, 6, 7] that the use of scrambling
in conjunction with erro;—control coding techniQues is often
useful in making the error performance less sensitive to
changes in bit-error structure, In fact, since the existing
burst-error~correcting codes are vefy sensitive to these changes,
it is often advisable to choose an error-correcting code
designed for random errors and use it in conjunction with a
scrambling-descrambling system. However, in the case of the
system under study the situation is mnot the same in that the
detection is made on a bit-by-bit basis and thus the average
error rate 1s the parameter that defines the system performance.
The question thus arises as to whether the Poisson impulse
noise is more or less harmful than a non-Poisson-type of noise,
for the same fraction of signal samples corrupted by impulsive
noise, Some examples studied in Chapter VI are intended to
give insight into the problem of deciding whether scrambling
should be used at both the coding and/or modulation levels
rather than at the coding level only. In Chapter VII the use

of scrambling at the coding level is considered,

It is shown in Appendix 1.2 that if the coefficients’
1
di in Equation (43) are statistically uncorrej%ed and equally
likely to take on the value +1 or -1, then the average trans-

mitted power P_ in Fig. 4.2(a) is given by
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E N o9
P = —> (a2 + b2) J~v2(t)dt (68)
S 2NT i i 7
» -0
. i=1 ‘
If y(t) has unit energy and the relations (24) are satisfied,
then ‘
Eg
Po= - (69)

If y(0) is the peak value of y(t) it is easy to conclude from
Equations (22), (23) and (47) that the peak transmitted power

PM is given by

E .
~ S, 2 T2
PM - NZ' Y (O) (70)
where Z is the largest of
N/2
z, = E (el + by (71)
K=1
and
N/2 :
= ) ’
, E N N I (72)
K=1
If {ai&and {bi& are uniform sequences then
- 2 _ 2
P, ¥ E_Ny (0) = PSNTy(O) (73)
Henceforth it will be assumed that
N N -
2 2 .
E r, = E s; = N (74)
i=1 i=1
and thus |r| = |s| = 1 in Equations (52) and (53). Therefore,

according to Equations (56), (57) and (69), the signal samples

magnitude at the input of the decision device is given by

A=A, = A =Y\/E; = YVB T (75)

S

where the parameter Y is such that

<% If y(t) is limited to the interval [—T/Z, T/Z] the
relation (70) is valid with equality sign.
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N
Zaj(;l)j Dy.jpr = YN (76)
3=1

and thus 0 <5Y$§l. The parameter Y will take its maximum value
1 if and only if the sequences {aj} and {bigare associated self-

orthogonal sequences. In this case, as shown previously,

r, = a,, s; = bi (77)

It is necessary at this point to consider in a little
more detail the description of the noise. As stated previously,
a Poisson impulse noise is assumed present at the input of the
receiver [ Fig. 4.2(b) ], that is,

oo ,
n(t) = Z rié(t - Ii) (78)
oo .
where the T form a sequence of purely random instants to
which corresponds a fixed average impulse repetition rate of Vv
impulses per second. The impulse intensities (areas) r, are
assumed to be statistically independent and are assumed to obey
a symmetric unimodal PDF pr(x) with zero mean and finite
variance Oi, The characteristic functions (CHF's) of the noise
samples obtained at the points a and b in Fig. 4.2(b) are given

respectively byh:

Fa(fﬂ) = exp {\{Lif?r(@sa(t))- l:] dt]E (79)
and ‘

oo
Fb(co) = exp [VICLFr(st(t))- 1] dt.zs (80)
where V 1is the average impulse repetition rate, FrQD) is the
CHF corresponding to pr(x) and sa(t), sb(t) are given by
Equations (22) and (23) with Es = 1, that is,
N--1

zz: a:. y(t - iT) (81)

i=0

s, (£) =

éﬂlH

% See Chapter II, Equation (14).



- 74 -

N-l

(t)= & b, . y(t - iT) (82)
5p \/N‘; i+1 Y .

Given the variance O’r of pr(x), the variances of both Fa(w)
and Fb(oo) have the value

2 2
oa = vor (83)

since sa(t) and sb(t) are unit energy waveforms. In order to
make the expressions of Fa(co) and Fb(CO) more suitable for

~computation they can be written in terms of

Vi o= VT (84)

and  yy() = VT y(=D) o (s5)

Note that Vl is the average number of noise impulses occurring -
within a signalling period T and that yl(x) is a unit~-energy
Nyquist pulse essentially time-~limited to 1 second, It is very

easy to show that

Fa(o)) = exp {Vl J‘OEFr% sal(x))-l:]dx (86)
-0

Fa(&)) = exp {Vl jol;_-Fr}% sbl(x))-l:]dx (87)

where N-1
(x) =T s (x1) =% ) a . y(x-i) (88)

Sal x Sa \/ﬁ = i+l yl 1)

N-1
1 . '
51,1 () = JT 51, (xT) =\/—ﬁ- b, 1 vy(x=1) (89)

i=0
If pa(Z) and pb(Z) are the PDF's corresponding to Fa((..)) and
Fb(&)) respectively, then the error probabilities corresponding
to the transmission paths of the system under study are:
oo _
P = jA p,(2)dz (90)

S

¥ Sece Chapter II, Equation (16).
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o0
and P = i pb(Z)dZ (91)
s

The overall error probability is then

.Pe - -]2=(Pa +P,) (92)

It is often convenient to work with probability distributions

having unit variance, which, in this case, have CHF's

Frl(w) = F_(0/0,) (93)
F (W) = Fa(w/Cfa) (94)
1L
and Fblﬂﬁﬁ = Fb(aVCé), (95)

with PDF's prl(x), pal(x) and pbl(x) respectively. The new

expressions resulting in this case are

F, @ = o {VLEFrl&?_ s, (£))-17at}
= ex F (2 x))-1]dx 96
ekp{vl_jw[ rlhsal( ))-1Jdx}  (96)
F () = exp{vjoEF (2 s, (£)- 1]dt}
bl J o rl\/\T b
= e \Y U}‘( Q. g (x))-1 dax} (97)
XP{l_JOErV\—;i by Jax;
b= J op, Goax (98)
B 21
and S
P. = [Tp. (x)dx (99)
b stpbl
where A 5T
$ = S o~ v [-S. (100)
o N VOﬁ

The parameter { is the magnitude of the signal samples at a
point where the noise samples have unit variance and is referred

to henceforth as signal~to-noise ratio,
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In view of equations (96) and (97), it is obvious that
if yl(t) is used instead of y(t), at a transmission rate of
1 Baud, then the error probability Pe is not altered, provided
that the average impulse repetition rate is given the value Vl
instead of V and the variance Gi is kept unchanged. In fact, if
the pulse yl(t) given by Equation (85) is used the signal sample

magnitudes become
Ag) = Ag VT
and the SNR is given by
v Asy A
1

. Vv

The error rates given in Section 4.3 were calculated directly
from the CHF's F, (®) and FblGD) using the method presented in
Ref. E4"8]. A brief description of the method is given in
Appendix 1.5 and the method used to compute the expressions (96)
and (97) is described in the same appendix. It is important to
point out that if the Nyquist pulse yl(x) is limited to the
interval [—1/2, 1/2] then the noise samples obtained at intervals
of T sec at the output of the receiver front~end filter H(f) are
statistically independent. This agrees with the fact that if*
yl(x) = yl(x)Ga(x) then Equations (96) and (97) can be rewritten

in the following form

N
R, @ = |1 a0 (101)
1 i=1 '
N
@ = |00 (102)
1 i=1 :

where, as shown in Appendix 1.5,

Qﬁl(&)) = exp {Vl J;z EFrl(% yl(x))-ljdx} (103)
o 1

Thus, if {a.! and {b,} are associated sequences, then
’ i i

R See footnote on page 59
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F_ (@) = F_ (@ (104)
1 1
and if further they are uniform sequences, then
N
F, @ = Foo@ = [# W] (105)
ay bl 1

which, in view of Equation (103), depends only on v, and N
1N

In all the error rate calculations described in

through the product V

Section 4.3 uniform self-orthogonal sequences were used., For
reasons explained in Appendix 1.5, it is conjectured that these
sequences are optimal or nearly optimal in the presence of
Poisson impulse noise, provided that the signal-to-noise ratio
exceeds a certain critical value which decreases for increasing:
N. It is shown in the same appendix that in the case of non-
Poisson types of noise the minimization of the error probability

can lead to sequences {ai} and {big which are not uniform.

4,3 DISCUSSION OF NUMERICAL RESULTS

The computations were carried out with three differ-
ent Nyquist pulses of parameters (1,T) used for y(t) in
Equations (81) and (82). These are the pulses s3(t), 34(t)
and 86(t) given by Equations (35), (37) and (40). In.view of
Theorem 5 (subsection 4,2.,2) and Equation (103) it is obvious
that the pulse SS(t) given by Equation (38) will give rise to
the same performance as its associated pulse s3(t). In the
case of sa(t) the data system has the same overall impulse

response.as in Ref, [4—9].

Four types of PDF were assumed for the intensities

(areas) of the noise impulses:

(a) Gauss PDF:
1 ' x2
p_(x) = - exp(- —5) (106)
r AL 20~
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(b) Laplace PDF:
] 2
p.(x) = exp(- l’;”/-) (107)
o] ﬁ T
T
(c) Generalized Cauchy PDF:
n . 1T 1
p.(x) = = sin(s= (108)

(n integral; Db > 0).

(a) Cauchy-type PDF:
D el '
p (x) = HEEZ) (g, XV (109)

= )
¢ a/Tt () a’
(v >0; a >0).

The Gauss and Laplace PDF's have also been used in Ref, E4-—9:].
Their CHF's are respectivelg

Fr(o)) = exp(~ %E (.02) (110)
and : 02
F @ = (L+—2a) (111)

As thelr names indicate the third and the fourth distributions
are modifications of the so-called Cauchy distribution which
corresponds to the values n = 1 and v = %, The CHF corresponding

to the PDF (108) is

n-1
\ 2541

F (CO) = SJ_II( ). E exp(~b|W|sim o ).
s=

.sin(22+lﬁ+b]oo[ os—%-séj_—l- (112)
If n>1 the variance 1is given by
2 b2
O’r = TF 2cosQt/n) (113)

In the case of PDF (109) the CHF is given by
alml )

FO) = 7oy ¢ R (al]) (114)
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where Kv(-) is the modified Bessel function of the second kind.,
It should be noted that the variance of the Cauchy-~type distrib-
ution is not finite, unless v>1. 1In this case it can easily be
shown that the variance is given by,

2 az

Or = E?;T:MTT’ v >1 (115)

It can also be shown that if

v = n+ %, (116)

for any integer n =1, then Fr(GD can be written in the following

form:
F@ =™ (e Z ~BIR Ga o)) (1)
K=1

We notice that the important hyperbolic PDF discussed in Section
2,2 and the PDF's (108) and (109) have identical variations in
the regions where the noise magnitude is large. These are the
regions of particular interest in the present study, This fact,
and the simple form of the CHF's (112) and (117), were the
reasons for choosing the corresponding distributions. It should
be noted, however, that for large n these distributions show
completely different behaviour, since in the case of the

generalized Cauchy PDF,

lim - 1 X

p_(x) = ——— G _(———) (118)

n=o"r 2G Vg a 2 G /E
" Fr T
and, in the case of the Cauchy~type distribution,

2
lim i X

emson Pr(X) exp(~ =) (119)

TC
O£V2 2 N
where, in both cases, Oi is the fixed value of the variance,

The CHF corresponding to the rectangular PDF is given by,
. sinw0_ V3
F @) = ————=— (120)
wa_ V3

It can readily be concluded from Equation (105) that

the probability of error for a given SNR does not depend on the
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particular sequences {ai§ and {biﬁ used provided that they are
associated uniform self-orthogonal sequences and, in addition,
yv(t) is time~limited to[:—T/Z, T/2]. It has been assumed in

the computations that these conditioné exist., In those cases
where y(t) is not time~limited to E—T/Z, T/2] the numerical
results have shown that the error probability Pe depends only
slightly on the assumed pair of sequences and that the differences
are too small to be indicated on the performaﬁce curves (Figs.
4ok to 4.20). Moreover, the probabilities P and P, defined by
(90) and (91) are slightly different when y(t) is not limited to
E-T/Z, T/2] but the numerical results have shown that both tend
rapidly to Pe as N increases. The graphs of the error probability
Pe versus the signal-to~noise ratio () Esee Equation (lOO)] are
presente? in Figs. 4.4 to 4,20 for different values of Vl and N
(or VlN)"° On account of the fact that when dealing with the
modified Cauchy distributions and the pulses Sh(t) and s6(t)

the computation time is prohibitive, the graphs corresponding

to these conditions were not obtained. By analysing Figs. 4.4
to 4,13 it can be concluded that the effect of the shape of the
elementary pulse y(t) on the error probability is not important
~ from a practical standpoint, at least in those cases where v(t)
is essentially limited to the signalling period T and the system

bandwidth W, which are both assumed fixed.

By comparing the graphs presented below, it can be
seen that the performance of the smearing technique is strongly
dependenﬁ on the shape of the PDF Pr(x); This point can be
illustrated by finding the smallest value of N = 2" capable of
4

giving Pe<:lO" for each pr(x) referred to above, under the

conditions:

I

y(t)
Y,

S3(t)9
1/32, by = 20 dB

il

1

% See end of Sectiomn,
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The following values are obtained from the performance curves:

(a) Gauss PDT (see Tig. 4.4):
le = % e N = 8
(b) Laplace PDF (see Fig. 4.9):
VN = % S N = 16
(c) Generalized Cauchy PDF (see Fig. &4.14):
VN = 4 S. N = 128
(@) Cauchy~type PDF (see Fig, 4.18):
VN = 8 S N = 256

It should be noticed that the value of Pe for N =1 is, in all
cases, approximately 10-3. It thus follows from the above
example that the value of N necessary to achieve a required
performance at a given SNR can vary widely with the change in
pr(x). In Table 4,2 the values of N obtained above, together
with the values corresponding to another two SNR's, are given,

As can be seen, the minimum value of N for a required performance
and a given PDF pr(x) can also vary over a wide range as a
result of a change in SNR, If the SNR is too small the reduction
in the error probability, obtained by increasing N up to an
acceptable limit, may be too small to be of any practical
interest (see Table 4.3). In this table the values of the error
probability Pe corresponding to a SNR of 14 dB are presented for

several values of N.

These facts indicate that .the designer of a smear-
desmear system should start by choosing the maximum acceptable
value of N on the basis of factors like peak transmitted power
or system complexity. Then the improvement in the SNR necessary
to achieve a certain error probability Pe’ with respect to the
conventional system (N = 1),should be evaluated, Table 4.4
gives some values of the SNR improvement for Pe = 10-4 and

Vl = 1/32, It can be seen that the 3SNR ijwmprovements for the
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Table 4.2

4

Cy(e) = sy(e), vy = 1/32]

@dB
14 dB 20 dB 26 dB
pr(x SER R
Gauss 128 ] 8 1
Laplace 256 16 2
Gen, Cauchy 16384 128 2
(n=2)
Cauchy-type 32768 256 4
(n=1)
Table 4.3

Variation of P  with. N

[y(e) = s,(8), vy = 1/32, (g = 14 dB]

N 1 8 32 128 512
Pr(x

. 4.8 % 3.8 x 6.0 x | 7.0x 5.5 x
10~3 10-3 10~4 10™ 10~6

3.8 x 4.8 T.7 % | 2.7 x 7.0

- A -

Laplace [ ;4-3 -3 10~3 10" 10
Gen. Cauchy | 3.8 x 3.0 x 1.8 9,7 x 4,8 x
(n=2) | 10-3 103 10"§< 10™4 10~%
Cauchy-type | 3.1 x 3.3 x 2,2 x 1.3 x 6.6 x
(n=1) 10-3 103 103 10-3 10~4
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Table 4.4“

SNR improvement in dB

-ty
Cy(e) = sye), vy = 1/32, P =10""]

N _ ‘ t
32 64 128 - 256
pr(X) ‘
Gauss. 9.4 10.6 11.8 12.4
Laplace 9.0 10.8 12.2 13.5
Gen., Cauchy 4.8 5.8 6.7 7.6
(n=2) [ ) . [ ©
Cauchy-type L 5.1 6.0 7.0
(1‘1=]_) ¢ L] ) &

If ¢N is the SNR mnecessary to achieve Pe = 10“'4

with signals of length N, this table gives the

improvement ¢l,dB - ¢N,dB‘
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Gaussian and Laplace PDF's are approximately twice those

obtained for the other two distributions.

In view of the previous considerations, it can be
concluded that a somewhat precise knowledge of the properties
of the noise amplitude distribution must be obtained before any
conclusion can be drawn about the efficiency of the proposed
signal design techmique. The longer the tails of the PDF pr(x)
the lower the SNR improvement corresponding to a given value of
N. In fact, since the improvement stems from the fact that the
combination of several noise samples tends to become Gaussian,
the farther pr(x) is from being Gaussian the larger the wvalue

of N necessary to achieve a certain SNR improvement.

4.4 CONCLUSTONS

From the results presented previously the following
conclusions can be drawn concerning the performance of the

proposed signalling method in the face of Poisson impulse noise:

(a) The method is only efficient if the signal-to-noise
ratio exceeds a certain threshold which decreases for increasing
signal length N. For lower SNR's the conventional system,
obtained by removing the smearing delay-lines (case N = 1 in the
error probability graphs),performs better. This stems from the
fact that in a strongly non-Gaussian noise the high amplitudes
normally have a greater probability, with respect to a Gaussian
noise with the same variance, but the reverse is true for the
low amplitudes., The receiver delay-lines tend to render the
noise Gaussian and thus its effect can be harmful for low SNR's.
In coding theory the same kind of SNR threshold arises below
which the coded system has a higher probability of error than

does the uncoded system,

(b) The error probability depends on the elementary pulse
y(t) but, on account of the results, it is believed that the
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effect is not important from a practical viewpoint, provided that
y(t) is essentially limited to the fixed signalling period T and
a fixed bandwidth W corresponding to the system bandwidth.

(c) There are grounds for conjecturing that, given the
elementary pulse shape and the signal length N, then, provided
. that the SNR exceeds the threshold referred to in (a), the
minimization of the error probability will 1ead to a pair of
self=orthogonal sequences which are uniform, or nearly uniform.
Below that SNR threshold the conventional system (N = 1) gives
a better performance than the proposed signal design. The
variation in Pe due to changing the pair of uniform sequences
has been found negligible to the extent that it is not possible
to show the difference on Figs. 4.4 to 4,20, The analysis in
Appendix 1.5 suggests that in the presence of strongly non- .
Poisson noise the optimization will lead to strongly non-uniform
sequences, In this appendix, a noise with a non=Poisson
distribution of impulse arrival times is defined for which the
uniform sequences can be proved not to minimize the error

probability,

(d) The system performance was found to depend strongly on
the amplitude distribution of the impulsive noise., This is due

to the fact that the degree to which the noise becomes Gaussian,
for a given signal length N, depends on how far the probability
distribution of the accumulated noise samples is from the Gaussian

distribution,

(e) By comparing the graphs presented in Figs, 4.5 and 4.6
with the graphs published in Ref, E4w9], which are reproduced in
Fig. 4.21, it can be concluded that for Nz=8 the signals proposed
here perform better than the signal used in this reference., It
should be noted also that the proposed system is much easier to

implement than the oﬁe suggested in Ref, E4~9].
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SNRY

Fig. 4.21: Performance curves obtained
in Ref. [:4—9].
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CHAPTER V

e

PROPOSED SIGNAL DESIGN: II - LOW SNR

Do not put all your

eggs in one basket.

Proverb, 18th Century.,
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5.1 INTRODUCTION

In the previous chapter the transmission rate was
maintained at the value which can normally be achieved, for a
given channel bandwidth, in the presence of background Gaussian
noise.alone. It was concluded that for this transmission rate,
and in the presence of impulsive noise, the smear-desmearing
technique results in an improvement in system performance when the
signal-to-impulsive-noise ratio (SINR) is greater than a critical
threshold, but that below this threshold the method gives rise

to a deterioration of performance.

In this chapter attention is focused on the low SINR

case. The technique proposed consists in transmitting a number

of pulses per data element and trying to optimize the detection
operation performed at the receiver, Although this idea is not
new (see Section 3.4) an attempt will be made in this chapter to
improve the detection operation in the presence of impulsive

noise, The technique will obviously lead to a reduction in
transmission rate or, if the transmission rate is to be maintained,

an increase in necessary bandwidth.

In this chapter it is assumed that the noise possesses

the following main characteristics:

(a) It is a non-continual noise (see Section 2.3) in the
sense that each one of its samples can be drawn from one of
several amplitude distributions, according to some time distrib-
ution which gives the amplitude distribution to be used at each

sampling instant;

(b) A fraction of the noise samples is due to the background
Gaussian noise alone and the other samples include, in addition,
the contribution from the intermittent (impulsive) causes of

noise;

(c) The level of the background Gaussian component is

usually much lower than that of the impulsive components of the
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s

noise .

In view of these characteristics, 1t seems reasonable
to try and detect first the presence of the impulsive noise and
then to use this knowledge to improve the signal detection. This
concept is depicted in Fig. 5.1. Depending on whether the noise
detector decides that the incoming sample has been corfupted by
impulsive noise or not, that sample will follow either the lower
or upper branch of the receiver, respectively. These two
branches should be designed in much the same way as the receiver
shown in Fig. 3.5, That is, the sample values within each
interval MT seconds long are accumulated after being optimally
processed by a memoryless device (S and T in Fig. 5.1) and the
resulting value is fed into a decision device, The decision
device in the upper branch is best designed as a null-zone
detector because, if the acceptedbsamples nearly cancel one
another after accumulation, it is very likely that the noise
detector has made a wrong decision in a large number of samples.
For this reason, the decision device in the upper branch will
produce an erasure symbol x at its output Whenever its input is
close enough to zero. In this instance the switch at the receiver
output will choose the symbol coming from the lower branch, whose

decision device is the usual single threshold detector,

The difference between the present approach and that
described in Section 3.4 can be summarized as follows. The
single-path detector of Section 3.4 (Fig. 3.5) is optimum under
the assumption that the noise samples are independently drawn
from the same statistical distribution (white continual noise).
On the other hand, the detector now being proposed aims at
exploiting the non-continual nature which is characteristic of

impulsive noise. In order to achieve this, the detector cannot

* In this chapter it is assumed that the impulsive noise
samples are drawn from a single statistical distribution
which represents the effect of all intermittent causes
of noise.

% % Usually a nonlinear device.
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treat identically all the noise samples and therefore it must
incorporate some criterion for distinguishing between the
Gaussian and the impulsive noise components. The criterion to

be used in the following sections 1is the difference between the

ofe
o~

levels of these noise components .

5.2 ANALYSIS OF THE PROPOSED TECHNIQUE

5.2,1 Major assumptions

As mentioned before, each binary digit is to be trans-
mitted by means of a sequence of M pulses which will be assumed
identically shaped. The transmitted signal corresponding to the

i 4igit thus has the following form:

1

M-1
(8 = B VE, ) ag(ek), g =m ()
K=0

where y(t) is assumed to be a Nyquist waveform (see Section
4,2,2) thus avoiding interference between pulses., It is further
assumed that y(t) has unit energy and that

M-1 :
Zaé = M - (2)

K=0
Therefore, as in Section 4.2.4, the average transmitted power

is given by
Es
= S )
P = | (3)
The information is transmitted at a rate of 1/MT bit/sec since

the pulse sequences are assumed non~overlapping.

As in the previous chapters the channel is assumed Lo
be ideal (distortionless). At the receiver input the signal is
additively corrupted by a combination of white Gaussian noisc,

nl(t), and Poisson impulse noise, n2(t); that is,

* It may be possible to devise more efficient noise detectors
which exploit other distinguishing features of the
impulsive noise bursts,
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n(e) = ny(t) + ny(c) | (4)

where 00

ny(6) = ) B(e-Ty) (5)

i:- 0.

In order to simplify the problem, it is assumed through-
out this chapter that the receiver input filter has an impulse

response

‘h(t) = y(T = t) (6)

(for some integer £ ) which is precisely time=-limited to an interval
of duration T. This assumption implies that the samples of
impulsive noise produced by the sampler in Fig. 5.1, at the
instants tn = nTv(n integer), are statistically independent.

Since y(t) is a Nyquist pulse, the samples of Gaussian noise
are also statistically independent (see Appendix 1.2). It thus
follows from the discussion at the end of Section 4.2 that the
coefficients ay in Equation (1) must have unit values, i.e.
ap = +1 for any K.

If p is the probability that the samples of the
~ received signal are corrupted by impulsive noise, then the

combined PDF of the noise samples is

p(x) = qp (x)+pp,(x) (7)

where q = 1-p, pw(x) is the Gaussian noise PDF and pz(x) is the
PDF of the noise samples affected by at least one noise impulse.
In what follows both pw(x) and pz(x) are assumed to be symmetric,
unimodal, PDF's which are completely known. The probability p

is also assumed known.

Due to the purely random occurrence of the noise pulses
in time, the probability pM(i) of having i samples corrupted by
impulsive noise in a sequence of M signal samples is given by

the well known binomial distributiomn:

¥ See Section 4.2, Equation (78).
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(8)

In this chapter only small values of M are considered, namely

p(i) = (1;4) " q

M<6, since for higher values the system becomes very inefficient
in terms of transmission rate and thus is not suitable for data
transmission. If a low M gives an unacceptably high error
probability the combination with coding appears to be the best

alternative. This point will be considered further in Chapter VII.

It is also further assumed that the signal=-to-Gaussian-

noise ratio (SGNR) defined by
E

S
th = 10 10g10 gi
w

(Gi being the variance of the Gaussian noise) is gréater than
12 dB in which case the error probability of the receiver in the
presence of Gaussian noise alone is much less than ]_O“5 and thus

-most errors occur when impulsive noise is present.

5.2.2 The noise detector

As explained in Section 5,1, the noise detector in
Fig. 5.1 aims at detecting the presence of the impulsive component
of the noise in the background formed by the transmitted signal
and the white Gaussian noise. In the following analysis it is
assumed that this aim is to be achieved by using only the inform-
ation contained in the samples of the received waveform at the
instants £, = nT (n being an integer). The optimum detector
would in general be expected to process continuously the received
waveform but its analysis is naturally much more difficult than

that of the suboptimum detector considered below,

Let the samples delivered by the sampler in Fig. 5.1
be termed Si (i=0,1, 2, oee, M-1) and let the parameter @i
indicate the presence (@i = 1) or absence (Gi = 0) of the

impulsive disturbance at the ith sample, We can then write

Si = A¢i+wi+ ui@i (9)
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where A = MES is the signal sample magnitude", ¢i = +1 accounts
for its polarity, W is the white Gaussian noise sample and ui@i
is the impulsive component of the noise. Instead of Equation

(9), it will be found more convenient to write

<A¢i+wi if9i=0 ‘
S, = (10)

Toolag, + z, if 6, =1
i i i
where W and z, are distributed according to the PDF's pw(x)

and pz(x) respectively. As defined above
PEGi= lj=p
m@ P[9i=O]=l—p=q

In order to calculate the required likelihood ratio we

first note that

(11)

PLS;/6; = 05 B, = p(5; - Ad;) (12)
PLs;/0; = 1i 8,]=p,(5; ~48;)
and therefore ’
PLs;/6,=00= > 208 00,Cs; - a0)
g7
(13)

pCs;/o,=10= ) 204, T, (5,48,

g,=+1

The likelihood ratio on which the detector is based is by
definition ES—l]
p[s,/0.=i]
N(8;) = (14)
p[ s, /6,=0]

A
If Gi is the decision made about the value of Qi we can express

the receiver action in the following terms:

Y See Section 4.2, Equation (58), where Aé means the same
as A,
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I£f ALS.) > A decide @j = 1;
~ * L (15)

if Jﬂ(Si) < A decide Qi = 0,

As is well known[:S-ﬂ], the threshold A can be expressed as

follows:
: qu
N= —£ = 4 16
T PGy b ! (16)

where Cf is the cost of deciding éi = 1 when actually Qi = 0
and Cm is the cost of deciding§i=0whenactuallygi =1, A(zero
value is assumed for the cost of any correct decision. For the
purpose of minimizing the probability of error in the signal
detection, making Cf = Cm does not necessarily lead to the
optimal receiver., This question will nct be pursued further at
this point but will be taken up later in this chapter when the

performance of the overall receiver is considered.

In the remainder of this chapter it will be assumed

that

L@, =+1]=2[8, =-1]=% (17)
In view of Equation (14) it is thus possible to write

p(5,+A) + p_(5,-A)
NE;) = p (5. +A) + p_(5.-A) (18)

Since pz(x) and pw(x) are symmetric unimodal PDF's it follows

ot

that "

and that PZ(A)

In the cases of interest, the probability of the event zi:>A

is much higher than that of the event wi:>A and thus

NOoY> 1 | (21)

The symmetry expressed by Equation (19) is a direct
consequence of Equation (17).
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By comparing Equations (9) and (10) it can be concluded that

z. = w, <+ u, and thus
i i i~

I

¢ (@) = C (@.c @),

where CZ, Cw and Cu are the characteristic functions (CHF's) of

the random variables z, w and u respectively., Therefore,

O

P, (0) = cw(co)cu(@)dm

P

- OO

<k _L c_@) [c (@) 4o

-1ﬁ JY ¢_(@dw = p (0), (22)

where the second inequality follows from the fact that ICU((.O)IQ 1.
From Equation (18) we obtain

p,(0) + p_(24)
AR = 50y, () (23)

In most practical situations

P, (ZA) P, (24)
p () S p(0y <! ' (24)

and thus
p,(24) _ p,(0)
(28) = p (0)°
Py - )

1f ang(ZA) is such that
a p,(0) a+p_(0)
r = = {
p(248) " p (0) ~ p (24) +p (0)

then, in view of relatioms (22) to (24),

p,(0) - p,(0)
W < A(A) < ZPW(O) <2 (25)

There are cases, like those studied in Section 5,3, where the

reason behind relations (21) and (24) also implies that
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NA) << 1, (26)

The previous considerations serve to justify the typical graph
of function A(x) shown in Fig. 5.2. From this figure it can
be seen that the decision rule expressed by relations (15) can
be reformulated in the following terms: ' |

If - El<lsi| - A<E, decide B, = 0
(27)

2
otherwise decide @i = 1,

The new thresholds El and 82 are obviously positive functions of

the threshold A in the decision rule (15).

The performance of the noise detector can be described

by the probabilities

o« = P[0, =16, = 0] (28)
and Al : * _
B = p[6, =ole, =1] (29)
In view of equation (19) O can be expressed in the following
manner:
= 1=-0a =0 (30)
+ -
where
» a, = P[B,=0, s,>0]0,=0, ¢ =+1] (31)
a. = P[6,=0,5.<0l0,=0, §,=+1] (32)
If O‘i is the variance of the Gaussian noise samples then
: €1, s €
&, = % erf( ) +% erf( ) (33)
g /2 g2
W W
and
2A-E 2A-l-€2
o =% erfc(- ) =% erfc( -, (34)

o V2 GW\/E

Since usually A>>OW, it is assumed hereafter that CL_@CL+ and
therefore that
ax 1 -0, |
€1 € (35)

~

~ L erfe(

)

) +% erfe(

owﬁ o;qﬁ

e o £ e e M. V3 vmn .+ PRI AT
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Also, in view of Equation(19) it follows that

B = B, +8. (36)

where

1l
I
I
1

B, P[Qi 0, Si>0|91 1, 8, '+1] (37)

and

il
I

B = P[@i 0, S,<0 | 0, =1, 8, = +1] (38)
These probabilities can be expressed in terms of the exceedence
probability function (EPF) of the random'varlab]es Z. /K ,

being some approprldte dispersion parameter of pz(x). Slnée

this EPF is given by _
r) = \dx
Q,(y) = K, L p,(K_x)dx (39)

it follows that

B

€1 €2
1 - Qz<1’i;') - Qz(f") (40)

2A~¢
B. = Q= Cl)—Q(

and 2A+€2

) | (41)

z

In the follewing subsection it is shown that the error
probability at the receiver output is a function of the above-
defined probabilities. It is important to mote at this stage
that these probabilities can be readily expressed in terms of

the following parameters:

(a) Signal-to~Gaussian-noise ratio (SGNR):
A
= & 2
P 5 (42)
(b) . Signal-to=-impulsive-noise ratio (SINR):
A
M= K (43)
(c) Impulsive~-to-Gaussian~noise ratio (IGNR):
Y P
C=3% =1 (44)
W
* In the num%rlcal examples considered later, if the

variance 0% of P4<X) is flnlte then K = g_,. Otherwise
K, is assumed to be
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(d) The ratios 51 = El/OW and 62 = EZ/OW-

5.2,3 The double-path detector

As outlined in Section 5.1 the noise detector studied

~above produces two outputs,

gy = Si.(l - Gi) - (45)
and '

h. = §S..8.
1 1 1

(46)
which are directed to the blocks S and T (Fig. 5.1) respectively.
Let d, demote the i™ transmitted digit (0 or 1) and 3i denote
the corresponding binary digit produced at the receiver output,

It will be assumed henceforth that

+1 if di 0
g, = (47)
-1 if di 1.

]

In terms of the notation in Fig., 5.1 the performance of the

double-péth detector can be described as follows:

M-1
= 3 == = >
Ki 0 if X E-* S(gi)f/ Xl 0
d, = i=0 | (48)

K, =1 if XX, <0

i 2

i <

My if X2<IX Xl,

Xl and X2 being the thresholds of the null-zone detector, In
the last case the null-zone detector produces an erasure symbol
(i.e. Ki = x).and the decision rule is
M~1
0 1if Y = 2;_ T(hi) >0
d, =M, = i=0 | (49)
1 ify <o,
In view of Equation (19) it can be seen that the exrror probability
Pe of the receiver in Fig. 5.1 is the same whether di = 0 or

d. = 1, that is
i



fllS—

p_=p[d, = 1] g, = +1]=p[d, =0]p; = -1](50)

Therefore, by assuming that a message eclement d.1 = 0 was trans-

mitted, the error probability, Pe, can be expressed as follows:

P = P + PP (51)
c eu X X

where Peu and PX are the probabilities of obtaihing a 1l and an
erasure symbol x, respectively, at the output of the upper
.branch, and PeX is the probability of obtaining a 1 at the
output of the lower branch when an erasure symbol is delivered
by the upper branch. In terms of the notation in Fig. 5.1,

these probabilities can be defined formally as follows:

P, = PLK, =1]¢, = +1] (52)
P =P[R, =x]|g =+1] | (53)
P = p[m, =1 | K, = x, §, = +1] (54)

To obtain an expression for Pe in terms of the receiver
parameters is, in the general case, an intractable problem. 1In
order to understand better the difficulties involved, let it be
assumed for ease of exposition that El = 82 = EO and that the
block S in Fig. 5.1 has the transfer function shown in Fig. 5.3,
In this case S(gi) = #A + v, for some v, such that lvﬂ < BO and
thus the output from the accumulator 1 (Fig. 5.1) can be written

as follows:

M=1
E S(g;) = KA+
i=0

where K=0, +1, +2, ..., M and

the meaning of BO being explained in Fig. 5.3. When K # 0
the null-zone detector should decide in favour of 0 or 1
according to the sign of K (Ki = 0 if K>0 and K, = 1 if K<0).

However, if K = 0, all the information about the signal has
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been destroyed by the noise and thus an erasure symbol shouid
be produced, The determination of the optimum thresholds for the
null-zone detector is a quite difficult problem unless the slope
of the straight lines in Fig. 5.3 is chosen such that MBOSE A/2,
-In fact, only in this case is it possible to decide without

error whether K= 0 or K # 0. TFor this reason it will be assumed
henceforth that the receiver is of the simplified form in which

the block S-shown in Fig. 5.1 is assumed to be a hard limiter,

i.e,

+A if 8s >0
S(g;) = (55)

In this case, BO = 0.

Since usually the SGNR Pin > 12 dB, the performance
of the lower branch of the receiver will be essentially deter-
mined by the impulsive component of the noise, Thus, the input
hi to the block T in Fig. 5.1 can be drawn directly from the
sampler output. The corresponding block diagram is shown in
Fig. 5.4, where the noise detector and the transfer functioh

S(gi) have been merged into the block R defined by:

+A if - El‘i Si—A <I€2
R(Si) =1 =A if - €, < Si-i-A < € (56)

0 otherwise,
The null~zone detector thus prcduces an erasure symbol x when
its input is zero and a symbol O or 1 when its input is positive
or negative, respectively., It is important to mote that in
Fig. 5.4 the path passing through the block T is exactly the
single~path detector discussed in Section 3,4, The upper branch
is intended to improve the performance by exploiting the mnon-~
continual nature of the noise n(t) as already explained in

Section 5.1.
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Now let Pe be defined as the probability of error at

g
the output of the lower branch of the receiver and PeZ as the
probability of error at the same point when the noise at the
output of the sampler in Fig. 5.4 is replaced by a continual

noise of PDF pz(x). Hence

Py = PET}i =14, = 0] (57)

and Pez is the value taken by Pe when p = 1, The numerical

2
results presented in Section 5.3 support the following important

relations

n

(58)

<P . (59)

P

ex ez
P P <P
X ex el
Relation (58) means that, in most cases where the upper branch
fails to reach a decision, all the M samples are affected by
impulse noise, assuming of course that the noise detector is
performing sufficiently well, The same numerical results
referred to above show that for low SINR's the two terms in

Equation (51) are such that
P <P_P | (60)
eu X ex

This relation, together with (58), suggests a means of making
the receiver adaptive in cases in which p changes with time.

In these cases the parameters €, and €, would be chosen so as

to minimize the erasure probabi}ity szwhich can be estimated
during the actual operation of the receiver., This question will
be considered again in Section 5.3, It can be further concluded
that the performance of the whole receiver depends mainly on the
performance of the noise detector through the value of PX and on
the design of the block T in Fig. 5.4 through the value of

P ~ P .
ex ez

The expressions for calculating the probabilities
defined by Equations (52) to (54) will now be derived. Let
(see equation (45))
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P, = PEgi >0 | g, = +1 ] (61)
P = Plg, <0 g, =+1] (62)
and o= P[:gi = 0 | ¢i = +l] (63)

According to Equation (45), if g; = 0, then either @i =1 or
Si = 0, the latter event having a zero probability. If the
definitions of the probabilities in Equations (30) and (36) are

taken into account then it follows that

p. = p[6, =1]
= qO + p(1=-3) (64)
Fal
P, = PE9i= 0, si>o|¢i=+1'_']
= qo * PE, (65)
and P = PEQi =0, 5,<0 | g, = +1]
= 1-P =-P
0o +
= qo_ + p@3, (66)
If now, in the expansion?
M L I my ™
(P_+PO+P+) = § N, P_ ?O P, (67)

the terms in which 2i2>ni are selected Peu is obtained and if the

terms in which Qi ni are seiected PX is obtained. Thus:

F
ai bi ci
P, = _;_ F, P° PP, a; >c, (68)
i=1
and G . ei fi
PX = E G . PO P+ , di = fi (69)
i=1

An algorithm for computing Peu and PX is presented in Appendix

2.l. If A<l and p( <& q then, as shown in the same appendix

% If for i # K either 8 # by or m mbbor both, it can
be shown that L = L(M'+ 1) (M + 2), viously Ql +m,
+ n, = M for any i. .
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the product PxPex is given with good approximation by
PP i ¢ pipipip (e,A) (70)
i "= "o T+ &irTi
i=1
where En(x) is the exceedence probability function (EPF) of the
sum of n independent random variables each one of these being
the response of the block T in Fig. 5.4 to a mnoise sample z. with
PDF p (x). Since the derivation of the relations (68) to (70)
is based on a trinomial probability distribution.[see Equation
(67)] it follows that they are only valid when the signal samples
corrupted by impulsive noise are distributed in time in a purely

random way.

The numerical examples studied in Section 5.3 show that
if Oéji>A the values of 81 and €2 that minimize the exror probab-
ility Pe are very close to each other. Therefore, it is
important from a practical point of view to consider the sub-

optimum receiver where

= £ =
& 2 €0

and EO is chosen so as to minimize the exrror probability Pe.

Even in this simpler case it has not been found possibie Lo
obtain an expression for the optimum value EO owing to amalytical
difficulties.. In the mnext section the optimization of the

receiver is carried out with the help of computational techniques.

If it is assumed that the SINR |l is very small, the
order of magnitude of the optimum value of EO can easily be

obtained, In fact, from Equations (40) and (41) it follows that

lim lim _
K ~an3+ T K ~¢o§- =0
z z

and thus, according to Equations (64) to (66),

1im

pm>OP+ R
1im
hes 0 T- T A%
Tim = .

PO p + ql

> O
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in Equation (34) and it is assumed that €, << 2A

If € = €, = ¢ 0

L 2 0
then it can readily be shown that

& 2 ,
= 0 )2 o A
o = jT’E exp( 262) (71)
W
: W
Relation (35) can now be written as
£
A% erfo(—>) (72)

a V2
If the SGNR p is high enough (say,\PdBZ>12 dB) relation (71)
shows that 0. will have a negligible value and thus all terms
in Equation (69) will be negligible except that for which d, =
fi = 0. Moreover, since ai;?l, all terms in Equation (68) are
very small., According to relation (58)

1im lim

= = %
}.L--)OPex p=> 0 “ez ?
It thus follows that
lim ~ L lim
L= 0 Fe 2 u=-0 Px
~ Lim M M
= %H__)OPO = %(p + q0)
For small &
lim ~ L M o

and thus, if MO <<p, the performance is close to the best that

can be expected. More specifically, if

E 7
2y = & (73)
ow\/i

M erfe(

then Pe can be written as

P % kp (74)

Another important limiting case is that in which the
. . . 2 . . . .
Gaussian~-noise varlance(% is negligible. TFrom Equations (33)

and (34) it follows that
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Lim o _ lim

g =0% = 1 andd.__,_j)OOL_ = 0,
w W
Therefore, according to Equations (40), (41), '(65) and (66),

. £

lim 0

posTa 1= 2pQ, (% (75)
lim 2A-E_ Z 28+ €,

pE. = P e Q) (76)

Let p and M, be defined as the values of the SINR for which

d Ao
HE:"'PX:] =0 AF pshy =g
0 €O=O Z

and

d | M
[a'z" Pe:l =0 if USH) =g
0 £ =0 Z
0
the values of PX and Pe being those obtained for g,= 0. Thus

it can be stated that PX (or Pe) attains a minimum value at

€&, = +0 provided that}i'épo (or u< 1,L1). For higher SINR's this

minimum value will be attained at some EO > 0, In Appendix 2.2
it is shown that
= ‘ Xli -
P X3~ 30 F RGP 1=0, 1 77)
where _
p, (0)
Pu) =1+ I)—Z"@K)

F
Y = Z g(ai- 1)°Fi
. i=1

G
gy = Z £(d, - K).Gi.[:i(j)+jEe.l(ei.Aj>]
v i=1

| 1 if n=0
E(n) =
0 ifn#0
the notation of Equations (68) to (70) being assumed. The

above relations are sufficient to enable the functions
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Hy = fo(p) and P, = fl(p) to be plotted for any value of M >1.
These functions are plotted in Figs. 5.5 and 5.6 for M = 2 and

M = 3 and for the following forms of pz(x):

(a) Case Study 1 - Gaussian PDF:
1 x2
p,(x) = —E— exp(- 5 o)
o /27T 2
z Z
(b) Case Study 2 - Cauchy PDF:
. . .
p(x) = -5 (79)
A T B2 + X2

The dispersion parameter KZ has been given the values a, and (3, .
respectively. The computations have shown that the values of Hy
and Ml for M >3 are greater than those given by the graphs in
Figs. 5.5 and 5.6 for the same value of p.

By using Equations (75) and (76) it can be concluded

that foro = 0 and €, = +0
\ 0

and thus PO =1 - P, -~ P_=p. Equations (68) and (69) will
thus give

M
P, = 0,andP = p. (81)

The previous value of PX shows that the upper branch of the
detector only fails to reach a decision when all the M received
samples are affected by impulsive noise. Therefore, in this
case

Pex = Pez (82)

It should be noted that if P -~> 0 then relation (74) becomes

an exact equality.,

The previous results can be summarized by saying that

if 0, = 0 and &, = +0 then & = (3 = 0 and thus the noise detector

performs ideally. When Gaussian noise is present the noise
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g

detector should be designed so as to obtain’ (if possible)

p[6. =0, 8, =1]=qa<=l - (83)

and p[e, =1, 8, =0]=rpB<L. (84)

These conditions mean that the upper branch of the detector will
éccept most samples corrupted by Gaussian noise alone and
virtually none of those corrupted by impulsive noise. It thus

follows from these conditions that

P ¥ P.P_, (85)
~ M
PX - p e (86)

where

If the SINR y is low enough, conditions (83) and (84) can be

satisfied with the noise detector described in Section 5,2.2,
If this is not the case, an attempt should be made to develop
more efficient noise detectors as suggested at the end of

Section 5.1. In any case
P > pM P = P (87)
e "Tez LB’?

where the value PLB corm sponds to ideal performance of the

noise detector (=3 = 0).

alests

5.3 DISCUSSION OF NUMERICAL RESULTS

In this section the analysis will be continued for

the two cases referred to in Section 5,2, namely:
(a) Case Study 1

In this case the noise samples affected by impulsive
noise are assumed to follow the Gaussian PDF of Equation (78).

With KZ =0, in Equation (39) it follows that
Q. (y) = % erfc(--) (88)
z | /2

w* Note that if, by varying & , the probability o decreases
then B increases and vice versa.

e IE Py =0 dB the error probability P_ can be slightly
lower Ehan P as the numerical results in the next
section show,
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(b) Case Study 2

In this case the noise samples affected by impulsive
noise obey the Cauchy PDF of Equation (79). With K defined as

the median of the random variable [z\ then

K =8 (89)
and Equationm (39) gives
I S ‘
Q(y) = 5 ~-Ftgy. (90)

Case 1 is presumed to be a favourable one due to the fast
variation of pz(x) for high x. On the other hand, since the
Cauchy distribution has an infinite variance, Case 2 must be a

rather unfavourable one.

In both cases the block T in the diagram of Fig. 5.4

has been assumed linear, i.e.
T(x) = X. | (91)

In Case 1 this would be the optimum shape for T(x), if the
presence of impulsive noise could be detected with no errox, and
is obviously nearly optimum if conditions (83) and (84) are
satisfied, In fact, under these conditions the noise detecting
operation is nearly ideal and therefore the lower branch of the
receiver processes a stream of samples corrupted by an almost
continual noise with PDF pz(x). As shown in Section 3.4, the
optimization of the block T of the receiver thus leads in

ata

Case 2 to the following nonlinear transfer function :

p,(x - A)

log —

T(x) p (x + A)

BZ + (x + A)2

=1 (92)

og
B + (x - A)°

oo,

* See Section 3.4, Equation (9).
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Since the determination of the noise PDF at the ouktput of such
nonlinear device is too difficult a task to be done analytically;
only the linear transfer function is considered in this chapter.
The performance that can be obtained by using a nonlinear block T
will be estimated in Chapter VI with the help of Monte Carlo

techniques,

The fact that both the Gaussian and the Cauchy distrib-
utions are stable makes it very easy to find the expressions of
the EPF En(y) involved in relation (70), in the case where

T(x) = x. These expressions give:

Case Study 1:

E_(nA) = } erfc(-c-?: ) (93)
= (uvn), W= -§‘— ‘
z
Case Study 2:
1 1 -1 A
E (nA) =% - = tg
n 2 T
B A (94)
= QZ(H)’ M= B-.'

As can be seen, in Case 2 En(nA) turns out to be independent of n.

In the graphs presented in Chapter IV the SINR was

defined as ratio of r.m.,s. values, i.e.

g

Gyp = 20 log, ——7: =l g = 10 log;,p. (95)
VP

It was shown in that chapter that the smear~desmear technique

gives a significant improvement only if

e 10 log;,P» (96)
that is, if ‘
b= A s, (97)
Tz

% For the definition of stable distribution, see Ref.[:5~2]0
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In this chapter interest is centred only on the low SINR cases,

that is to say, those cases where

Mg < 0 dB (98)

while still maintaining a SGNRthB > 12 dB, so as to have the

impulsive noise as the only important cause of errors.

Consider now the analysis of the graphs presented
below paying particular attention to the differences and simil-
arities between the two cases being studied., These graphs can

be grouped into several classes which may be described as follows.

A) Graphs giving the values (in dB) of the ratios 51 =
El/ow and 52 = 82/6W that minimize the error probability, Pe,
versus gdB = ng - Hgpe for several values ofkde.

These graphs are shown in Figs, 5.7 and 5.8 for Case 1
and in Figs. 5.9 and 5,10 for Case 2., It should be recalled
here that the abcissa of these graphs is the impulsive-to-Gaussian
noise ratio (IGNR) defined by Equation (44), As in all the other
graphs presented below, the following high value of p has been

assumed:

Vi = - logp= %,
that is,
p = 0.118,.

It can be concluded that, in the low SINR cases
defined by relation (98), the parameters €, and €, differ very
little from each other and can thus be set to a common value

EO without significantly affecting the receiver performance.

B) Graphs giving the value of the minimum error probability
corresponding to the ratios 61 = El/Ow and 62 = 82/0’w given by
the graphs of class (A).

These graphs are shown in Fig. 5.11. They show that
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for high values of the IGNR C very little can be gained by
increasing the SGNR p,

G) Graphs giving the value of the erasure probability, ng

under the conditions of the previous graphs.

These graphs are shown in Fig. 5.12 and are quite

similar in shape to those of the minimum error probability.

D) Graphs giving the parameters [ see Equation (18)]:
= R -
Yi qJ\(A El) (99)
and
= R - |
Y, g I\A + Ey) (100)

calcﬁlated under the conditions of the above graphs.

These graphs are shown in Figs. 5.13 and 5,14 for
Case 1 and in Figs. 5,15 and 5.16 for Case 2, They show that
for de<3:O dB the parameters'Yl and Y2 differ very little from
each other., This means that for very low SINR M the optimal
receiver must indeed be preceded by a noise detector as shown in
Fig. 5.1. In other words, the receiver structure of Fig, 5.l is

asymptotically optimal as the IGNR C tends to infinity.

All graphs in classes (A) to (D) were computed by using
a minimization subroutine to minimize the function Pe = f(El,EZ)
defined by Equations (51), (68) and (70). In all graphs
discussed below the parameters El and 82 are assumed to be set
to a common value EO.
E) . Graphs giving the value (in dB) of the ratio b= EO/OW
that minimize the error probability P_, versus the IGNR gdB, for

several values of the SGNR\de.

These graphs are presented in Fig. 5.17 and show that
if condition (98) is satisfied the optimum value of EO can be
obtained with good approximation by using the curve corresponding
£o Pip = 12 dB, If p = 0.118 then Equation (73) gives the
following values of ﬁdB:
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M

2

3

4

5

6dB

8.8

9.2

9.4

9.6

9.8

As can be seen, these values of SdB are quite close to each other

and to those given by the graphs in class (E).

F) Graphs giving the minimum error probability correspond-
ing to the value of EO given by the graphs in the previous class.,.
These are shown in Fig. 5,18 and can be seen to give practically
the same values as those in Fig. 5.11., Therefore the restriction
€ = €2 = EO has no practical consequences in the range of '

parameters considered,

G) Graphs giving the erasure probability, PX, correspond=

ing to the minimum error probability.

These graphs are presented in Fig. 5.19. IHere again
the values given by these graphs are very close to those given

by the graphs of Fig. 5.12,

H) Graphs giving the value (in dB) of the ratio 0 = EO/GW

that minimizes the erasure probability PX.

These graphs are presented in Fig. 5.20 and have a
similar shape to those shown in Fig. 5.17. When de<§:O dB the
optimum value of 0 is practically independent of\p and is very
close to the value given by Equation (73). On the other hand,
if deZD 0 dB the minimization of P_ leads to b= p, that is,

Eo attains its maximum value, A,

1) Graphs giving the minimum erasure probability, mein'

These graphs are shown in Fig, 5.2l and can be seen
to give values which are practically identical to those given

by the graphs of Fig. 5.19.

J) Graphs giving the error probability corresponding to

the minimum erasure probability given by the previous graphs,
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These graphs are shown in Fig, 5.22 and can be seen to
give values which are practically identical to those plotted in
the graphs of Fig. 5.18. It can thus be concluded from the

graphs discussed above that if
fﬁB >12 dB and Hap < 0 dB

then the minimization of the erasure probability Px’ as a
function of EO’ will lead to an error probability Pe very clcse

to the minimum given by the graphs in class B,
In the graphs discussed below, each curve corresponds

to a fixed value of the parameter EO.
K) Graphs giving the error probability Pe versus the

SGNR \de, for a fixed value of the IGNR gdB'

These graphs are shown in Figs. 5.23, 5.24 and 5.25
for the values gdB = 20,0, 32.0 and 44,0 dB, respectively, In
each graph the continuous curves correspond to a value § = Eoﬂjw
close to the optimum for the assumed gdB and‘PdB = 12 dB; the

dots correspond to 6d - 3,0 dB and the small circles correspond

B
to 6dB + 3.0 dB. It can be seen that the error probability

exhibits a quite shallow minimum as a function of O,

L) Graphs giving the erasure probability PX under the

same conditions as the graphs in class K,

These graphs are presented in Figs. 5.26, 5,27 and
5.28 and the graphical conventions are the same as for the
graphs of class K. The curveslof Px show a point of inflexion
at th = gdB’ that is, Pap ™ 0 dB, The difference between the
~values of PX at a low and a high value of fﬁB decreases as EdB
increases, and for high values of QdB relation (86) is valid
for any Dip within the range of interest, in accordance with

the theory of Subsection 5.2.3,

M) Graphs giving the error probability of the upper
branch of the receiver, Péu’ under the conditions of the two

previous classes of graphs.
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They are shown in Figs. 5.29 and 5.,30. By comparing
them with the graphs of class K it can be concluded that,
within the range of parameters considered, the contribution of
the upper branch of the receiver for the error probablility is
always smaller than the contribution of the lower branch, that
is, _
Peu.<:Px'Pex°
For high values of gdB it can be further concluded that Peu is

negligible compared with Pe'

N) Graphs giving the probability PeX defined in subsection
5.2.3 and calculated with the help of relations (69) and (70).

These graphs are shown in Fig. 5.31 for Case 1 and in
Fig. 5.32 for Case 2, In view of Equation (94) it is easy to
conclude that in Case 2

L L. Ll -1 |
P, ¥ T -gwte M (1o1)
and thus the PeX curves in Fig. 5.32 are horizontal translatiomns

of each other;_

0) Graphs giving the error probability P, at the output

of the lower branch of the receiver. '
These graphs are presented in Fig. 5.33 for Case 1

and in Fig. 5.32 for Case 2, The method used for calculating

Pez is explained in Appendix 2,3. It should be noted that the

curves for (., = 32 dB can be obtained from those for U, = 44 dB

by translating the latter 12 dB to the left, The same method

can be used for any other gdB‘< 44 dB for reasons explained in

Appendix 2.3. It is important to note that PeJZ is the error

probability of a linear receiver which bases its decision on a

long signal, as in the case of Chapter IV. Fig. 5.33 shows

again that to render the noise Gaussian by accumulating noise

samples is only beneficial for high SINR, Moreover, Fig. 5,32

shows that the use of long signals cannot be of any help in the

case of a Cauchy amplitude distribution,
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P) Graphs giving the error probability Pe7 at the output

of the lower branch of the receiver shown in Fig. 5.4, when all

samples are corrupted by impulsive noise, that is, when p = 1.

These graphs are shown in Fig. 5.33(a) for Case 1 and
in Fig. 5.32 for Case 2. The expressions for Pe7 are given in

Appendix 2.3, As can be seen, Pez is only a function of p, M

and J. In view of relation (101) it follows that in Case 2

P ¥ P .
ez ex

This relation is also true in Case 1, as can be seen by comparing
the graphs in Figs. 5.33(a) and 5.31. These graphs give a value
of Pex slightly higher than the wvalue of Pez’ which is due to the
error of the approximation given by relation (70). Since the
nolise detector makes some errors in detecting the presence of

the samples corrupted by impulsive noise it follcws that Pex is
the value of Pel corresponding to a value of p less than unity.
Therefore, in the cases where the conditions (83) and (84) are
satisfied the actual value of Pex is slightly smaller than Pe

Z
and the relation

P % P + P P (102)
e eu X ez

thus gives a tight upper bound on Pe’ This point will be taken
up again in Chapter VI where relation (102) is shown to give a
good approximation, with the help of the results of Monte Carlc

simulations.,

Q) Graphs giving the error probability P defined by
Equation (87).

These graphs are shown in Fig. 5.34.. By comparing
them with the graphs of Fig. 5,18 it can be seen that if Hap
<0 dB, gdB is not very high and M is large then PLB can be
much smaller than Pe, which means that in such case an improve-

ment in the design of the noise detector may be worthwhile., It
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can also be seen that, for high fﬁB and low gdB, the error
probability Pe can be slightly lower than P__ because

I—.IB
" oM M MM
rF B p(lL-p) <p.

R) Graphs giving the value (in dB) of the ratio 0= EO/GW
that minimizes the error probability Peu at the output of the

receiver upper branch,

These graphs are shown in Fig. 5.35. In Case 2 the
value of O is almost independent of the SGNR 0, By comparison
with the graphs in Fig. 5.20 it can be concluded that, if FHB;B
18 dB, the value of 0 that minimizes Peu is smaller than the
value qf b that minimizes P. In view of relation (102), the
value of dthat minimizes Pe thus lies between these two values,
The fact that, for any fixed P > 12 dB,

gl_imoo(Peu/Pe) = 0 (103)
means that the receiver that minimizes the erasure probability
Px is asymptotically optimal as M- 0, However, the numerical

results show that in both of the cases studied the receiver is

nearly optimal whenever de<§ 0 dB.

This section is concluded by mnoting that for high §
the performance of the receiver in the presence of both types of
impulsive noise considered are nearly identical. However, if C
is low and p is high the error probability in Case 1 is much lower
than that in Case 2, This stems from the fact that the Gaussian

PDF has short tails compared with the Cauchy PDF,

5.4 CONCLUSIONS

The numerical results discussed in the previous section
permit a few conclusions to be drawn that are valid in both of
the cases considered. These conclusions are also believed to be

valid for any other amplitude distribution of the impulsive noise
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component., The conclusions are as follows :

(a) If the SINR Mg < 0 dB, the receiver thresholds €. and

1
£, can be set to the same value EO without significantly affect-

ing the performance.

(b) The double~-path receiver is asymptotically optimal as
He=s 0, In different terms, if de<§ZO dB, the values of the
likelihood ratio_ﬁ&si) defined by Equation (14), when Si = Aj:Eo
and €, is given the optimum value, are nearly equal and thus the
noise detection operation can be described with good approximation

by relations (15).

(e) If lyp < 0 dB, the error probability P, is given with
good approximation by
P = P +P..P (104)
e eu x' ez

where Peu is the error probability at the output of the receiver
upper branch, PX is the erasure probability at the same point,
and Pez is the error probability at the output of the receiver
lower branch when this branch is subjected to a continual noise
with the same amplitude distribution as the impulsive noise
component., It can therefore be concluded from relation (104)
that the lower branch of the receiver must be designed as an
optimal receiver to overcome a continual noise, which will

usually be non-Gaussian.

(d) If Hap < 0 dB, the minimization of PX as a function

of EO legds to a value of Pe very close to the minimum the
receiver can achieve, This is related to the fact that both
Peu and PX show quite shallow minima at values of € close to
each other. Since an estimate of PX is easy to obtain while the
receiver is operating, the adaptive receiver that tries to

minimize PX seems quite easy to implement, Since

% As in the previous sections, it is assumed here that the
SGNR\PdB > 12 dB. ‘
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this adaptive receiver will be asymptotically optimal as p —> O.

(e) If HdBQK 0 dB, the minimum erasure probability is only
slightly greater than the probability of M comnsecutive signal

samples being corrupted by impulsive noise. In the case in which
the impulsive noise samples occur independently, with probability

p, it is possible to write

lim P = M
=30 "x b
(£) Let a group of K consecutive samples cof impulsive noise

be called a burst., If R is the average burst length and n is the
average burst-free interval then the probability p of a signal
sample being corrupted by impulsive noise is given by

.
P = ¥¥n

If it happens that n = K> M and thus most bursts have lengths
much greater than M, then the fraction of pulse sequences of
length M which are fully corrupted by dmpulsive mnoise is approx-
imately equal to p, and thus independent of M. Therefore, in
this-case

-~

lim . E.
pH-—=0 "e 2

Under such conditions a scrambler~descrambler pair would be
necessary in order to randomize the occurrence of the impulsive
noise samples at the input of the receiver, and thus make K<™,

In the limit where a perfect randomization is attained

O - - L
K = o and n = 5

since in this case the burst length will follow a geometric

distribution, i.e.
: . i=1
P[:K =i] = (1~ p)pt T,

and the burst-free interval will follow the same type of
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distribution, i.e,
. i-1
Pln=1] = p(lL = p)

These points will be developed further in Chapter VI.
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CHAPTER VI

COMPUTER SIMULATION OF THE IMPULSIVE
NOISE CHANNEL

I can, if the worst comes to the
worst, still realize that the

Good Lord may have created a world
in which there are no natural laws.
In short, a chaos. But that there
should be statistical laws with
definite solutions, i.e. laws that
compel the Good Lord to throw the
dice in each individual case, I
find highly disagreeable.

A, Einstein, quoted in C. Seelig,
“"Albert Einstein'.
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6.1 THE SIMULATION PROBLEM

In several situations considered previously, particul-
arly in Chapter V, problems arose whose numerical solutions could
not be obtained by direct computation. The reasons for the
difficulty were that either analytical expressions were not
available or direct computation based on existing expressions

required too much computer-time,

A way out of these difficulties is sometimes offered
by the so-called Monte~Carlo technicques. In this case the

solution is attained in four steps:

(a) generation of the transmitted data sequence;

(b) generation of the noise, which is then combined
linearly with the transmitted signal to obtain the received

signalj;

(c) application of the detection operation to the received

signal so as to obtain the received data sequence;

(d) comparison of this sequence with the transmitted one
to count the number of errors that have occurred, from which the

required estimate of the error probability is then readily derived.

It is assumed throughout this chapter that the trans-
mitted data sequence is binary and thus step (a) above requires
in general the use of a binary pseudo-random generator, However,
in all cases studied in this chapter the probability of detecting‘
a digit in error is the same whether it is a '"zero" or a '"one"
and, therefore, it is possible and convenient to assume that the
transmitter sends a sequence of identical digits (say, zeros).
It is also assumed in this chapter that the receiver processes
samples of the received signal. Therefore, step (b) of the

simulation procedure can be accomplished by using a pseudo-

random number generator to generate the noise samples, which
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are then combined linearly with the corresponding samples of

the transmitted signal.

The generation of the noise samples usually takes most
of the computer~time in the simulation procedure. Since in order
to obtain a sufficiently accurate estimate of the error probability
it is usually necessary to use a long transmitted data sequence,
the noise structure must be simple enough to permit its gener-
ation in a reasonable amount of time. In what follows an attempt
is made to simplify the structure of the impulsive noise by
maintaining in the simulated time=-series only those character-
istics of the actual noise which appear to affect significantly

the performance of the communication system under test.

Before the- simulation experiment starts it is very
desirable to have an estimate of the number of transmitted digits
required to estimate the error probability with a prescribed
accuracy. Assuming for simplicity that the errors are statist-
ically independent events, the number of errors in n digits
obeys a binomial distribution of mean n Pe and variance nPe(l-Pe),
where Pe is the probability of error. For sufficiently.large n
this distribution becomes approximately Gaussian and thus the
probability of a given number of errors can be easily determined.
The relative error in estimating P_ is given by (x-nPéV(nPe),
where x is the number of observed errors. This relative error

has an approximately Gaussian distribution with zero mean and

standard deviation.d(l—Pe)/(nPe). Thus, to find the probability
P of maintaining a given level of accuracy O it is mecessary to

determine n from the equation

x~nPe
P=Prob[: SOL:\

1 LJKC;—tZ/Z

Lacd

Sy oo

~ dt = O(K) (1)
V/2TT KO i :
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where K = .

This can be written in the form

1 -1 ,
< = Lol | 2)
2 1-Pe
or n = .K Pe (3)

Therefore, if P = 90% and o= 0.1 then

~ 300

% | (4)
The author's experience is that, in order not to exceed an
acceptable amount of computer-time, it is impossible to estimate

error probabiliéf%ﬁfan.order of magnitude less than 10—3.

In the remainder of this chapter the theory for
simulation of certain kinds of impulsive noise is developed and
this is then used to tackle some of the problems which were not

solved in previous chapters.

Sampler
rd
From the : ¥
channel® Gi) H(f) [ -
: (Samples at
Receilver tn = nT)
input filter
Noise
n(t)
Fig., 6.1
6.2 SIMULATION OF IMPULSIVE NOILSE
6.2,1 Poisson impulse noise

An attempt will now be made to find a procedure for
implementing a pseudo~random number generator capable of prod-
ucing a sequence of numbers having the same statistical properties

as the sequence of noise samples at the sampler output in TFig, 6.1.
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In this figure it is assumed that n(t) is an ideal Poisson
impulse noise, that is
a(e) = ) or 6(e-T) (5)
== 00
where the Ti form a sequence of purely random instants to which
corresponds a fixed average repetition rate of V impulses per

second. This means that the time intervals between impulses,

T, = T,,,=T., obey an exponential distribution with PDF
i i+l "i Vx
VvV £ ’ x >0
pp(x) = (6)
o , - x <0

It is possible to show that, under these circumstances, the
number N(t) of pulses occurring in the interval (to, to+t)
is distributed according to the Poisson law, i.e.
K
-Vt (VE

p[nee)=x] - gVt Lk ()
Let {uig be the sequence of noise samples at the sampler output
in Fig. 6.1. As stated in Chapter II, the first-order PDI
pu(x) of the ui's has a characteristic function (CHF) Fuﬂu)

given by

oo
F W) = exp {v[ [F_(h(r))-1]at} - (®)
where Fr(uD is the CHF ofolhe impulse intensities (areas) r,
appearing in Equation (5), and h(t) is the impulse response of
the receiver input filter. Throughout this chapter it is
assumed that the PDF pr(x) corresponding to the CHF Fr(uD is a
symmetric unimodal PDI, thus having a zero mean. It follows

immediately from Equations (15) and (16) in Chapter II that

Eflu,]=0 (9)

and .
o
EE.liU.sz \/EEri:] f h(t+iT)h(t+KT)dt (10)
- OO

. 2 ] -
where the variances E[%i] are assumed toc have the same finite

value. Assuming, as in Chapters IV and V, that h(t) is a
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Nyquist pulse, it becomes apparent that {ui} is an uncorrelated
time-series with zero mean, no matter what other statistical
properties are assumed for {ri}. Hence

o0
2 2 2
ou = Vog. :[2 (t)dc (11)

where oi and Oi are the variances of pu(x) and pr(x) respectively.

It is possible, without any loss of generality, to assume that

j ho(t)dt = 1 - (12)
and h 02 = 02 (13)
ence a - V r

In what follows 1t is assumed that the transfer

function H(f) is real and hence h(t) = h(-t). By defining the

wte
¢

waveforms

£(t)

g(t)

h(t) 6_(%) (14)

h(t) - £(t) (15)

Fu(uD can be factorized as follows:

Fu(uo = FX(uD.FyQU) (16)
where
/2
Fx(uD = exp {VJI EFr@Df(t))"ﬁjdt} (17)
and =1/2
Fy('w) = exp {VJ:: I:Fr(u)g(t)) - l:l dt} (18)

If it is noted that the filter in Fig. 6,1 can be replaced by
two filters in parallel, as shown in.Fig. 6.2, it becomes
obvious that FXQU) and Fy@u) are the CHF's of the noise samples
due to the impulse responses f(t) and g(t), respectively, It
is easy to see that the samples {Xi} , resulting from £(t),

and the samples {yi} , resulting from g(t), have zero means
and variances given by

¢ = o? nz , (19)

X u

% Ga(x) =1 if ’x|‘< 0.5 and zero otherwise.
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f(t) Sampler
| A
o~ ~+— N—»—c
' ‘ Uy TR Y
> glt)
n(t)
Fig, 6.2
and
2 2 2
oy = o (1-7%) (20)
respectively, where
T/2
7 o= [ (o). (21)
-T/2
Moreover, it can easily be seen that
Lim ' -
u)—eooFx(w) = exp(~VT) = q = 1-p (22)
and _
lim N .
1) =00 I‘(uD = 0. | (23)

In Equation (22) the parameter q is clearly the probability of

a sampling instant not being affectedvby any noise pulse of

shape £(t). Since £(t) is limited to a time interval of duration
T, it is obvious that the samples {xig are statistically indep=
endent. The same is not true, in general, for the samples {yig

. which, according to Equation (23), belong to a continual mnoise,
Furthermore, it cannot be concluded from Equation (16) that the

.‘_

samples {x { are statistically independent from the samples {y'g .

If the Nyqu1st pulse h(t) is fairly well designed, the

energy fraction n will be very close to unity and thus O§<ZOi.

When a background Gaussian noise of variance Oi is present its
samples will be included in yu} thus making

03 = 02 + o (L -7 ) (24)

* See Ref, EGwﬁ], page 113,
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The term Oi(l ~ nz) may in some practical cases be of the same

order of magnitude as Oé.

The error probability Pel

where the continual noise component is present alone and the

at the sampling instants

error probability Pe at. the sampling instants where the non-

2
continual component is also present are sketched in Fig. 6.3.

A
q/2
Fig. 6.3
el
\/ Pe
p/2 - >
o
( l
{ |
{ |
{ |
it |
L P=A/0y
Po 1

If 0 > 0_ the SNR p_ at the point where the curves P . and P
X y o) e e

1 2

cross each other is approximately given by

‘p
-%erfc(-g) = %L, - (25)
/E q
assuming that the continual noise component can be closely approx-
imated by a Gaussian process of variance Gi. With the help of

Equation (25), Table 6.1 can be obtained,

TABLE 6.1
P f% (Po)dB
1/8 1.47 3.3
1/32 2,15 6.7
1/128 2.66 8.5
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The total error probability Pe = Pel4.Pe2 is indicated in
Fig. 6.3 by a broken line. In practice the SNR P is greater than
the value }i corresponding to a point* near the elbow of the
curve Pe in Fig. 6.3. Under these conditions Pe is closely

approximated by Pe and thus it is only necessary to simulate

2
the sequence of statistically independent samples {xi}. The way

in which this can be done will now be examined,

Following a similar approach to that used in Section

4,2.4, it is possible to define a normalized impulse response

£,(e) = VT £(¢T)
= VT n(tT) 6, (t) (26)
and a normalized repetition rate
v, = VI | (27)

It thus follows that

i

2
Fo(w) = exp {V, J[F (2 £ (£))-1]at} (28)
X L 3 r /T 1
=2
The noise samples at the output of a filter with impulse response
fl(t) are
X13 = JT X, _ - (29)

and therefore their CHF is given by

F (W) = F_(/Tuw)
x1 X '
= exp {VlEFSl(U))-lj} (30)
where '%
F W) = _£ F_(w £ (e))dt, | (31)

It is obvious that Fsl(uD is the CHF of any noise sample which

is due to one and only one noise pulse of shape fl(t). Since

16
lf fi(t)dt - 7?2 (32)
../2 ’

* In many important cases the value of fﬁ is about 15 dB
or less,
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it can readily be shown that the variance of Fslﬂu) is
2 2 2 . -
Osl = Or N~. Moreover, because Xy = VT X: s the variance of

is

*14

2 2 .2
Op = V1 O 1 (33)
Obviously, the system performance is not altered when the filter

in Fig. 6.1 is replaced by a normalized filter of impulse

response

hy(£) = VT h(eT), (34)

since the signal and the noise at the sampler output are scaled

by the same factor VTO

If it is now assumed that fl(t) is a symmetric unimodal
pulse shape, as shown in Fig. 6.4, the following functions can be

defined:

A
B .
Fig. 6.4
£,(x)
,t
% 0 5
z = fl(t), o<t} (35)
and
t = r(z), 0 <z <B. (36)

It is thus possible to express Fslﬂn) as follows:
1

7]

2 | F_(wE (£))dt

Fslau) 0

B
g~ Fr(ujz)g(z)dz ' (37)
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where the function

g(z) = =~2r'(z) | S (38)

is assumed non-negative within the interval 0<Lz<B and zero

outside. By observing that

B
[ g(z)az = -2[x(®) - r(0)]=1 (39)
0
it can be concluded that g(z) is a probability density function.
Now let
z = Bfv | (40)
so that 1 '
F (W = ] F(wB/A) p(v)av (41)
sl 0 T

where the PDF p(v) is given by
d
p(v) = -2 L [r(a/)]

= -2 (A

v
= 2 (B, (42)
2/~
and thus
2z z2
g(z) = gp(;) (43)

Due to the similarity between Equations (37) and (41) it is

obvious that

1
VA = J. Jl p(v)dv
0
1
=-§—a0f (B9 % p(vav
2 s 2@
= — J- £.(t) (44)
2% o LA (0] - |
In particular, )
v =L (45)

B
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The EPT of p(v) is given by

1
j' p(v)dv
X

~2[ =B/
27 (B/%). O (46)

An important case is the one where h(t) is time-limited

to the interval (~T/2, T/2) and thus ﬂz = 1, In this case h(t)

I

Q(x)

I

I

is a Nyquist pulse if and only if the PDF p(v) is symmetric with
centre of symmetry v = %, The proof of this property is presented
in Appendix 3.1l. Moreover, since under these conditions v =%,

it follows from Equation (45) that B = 2.

ot

It is a well~known result of probability theory that

if the random variable X has PDF p(x) then the random variable

U = QX) = ‘f p(x)dx (47)
X ,

is uniformly distributed in the interval EO,l]. Conversely, if
U is uniformly distributed in [0,1] then X = Q"1(U) has PDF

(48)

p(x) =

Therefore, according to Equations (35), (36) and (46), given the

atalts

ranidom variable (RV) U~ U(0,1) the RV

vo= ) | (49)
BZ 12
has the PDF p(v) defined in Equation (42) and
- Uy = |
£, G| = B/ - (50)

has the PDF g(z) defined in Equation (43).
The positien has now been reached where the procedure
for generating the mnon-continual time-series {Xli} = {xi/f% can

be set as follows:

W See Ref, r6 17, page 146,

%%  Y~U(0,1) means that Y is a RV uniformly dlstrLbuLed
in [0, 1]
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(a) Generate an i?teger k=0 which obeys the Poisson law
l l :

PK = 8 X' (51)
(b) If k>0 generate a random number (RN) Rl with the PDF
pr(x) of the impulse intemsities r, in Equation (5) and a RN v,
with the help of Equation (49) [or a RN z, with the help of
Equation (50)] and then form the product

s, = BR VY (52a)

[or s, = zl] . (52b)
This RN S, has a PDF psl(x) which corresponds to the CHF Fslﬂn)
in Equation (37).
(c) If k>1 generate another (k-1) RN's with PDF p l(x)
and add up the k independent RN's to obtain
k
X, = E S, s k>0 (53)
i=1
When k = 0, set X; = 0. The RN X; has the CHF Fxl(uD since
Equation (30) can be written in the following form
oo
Fxlﬁu) = E Py F (QO (54)
k=0

It should be noticed that in cases where the PDF
Psl(x) can be found in closed form there may be a simpler means
of generating the RN's Si' The previous method differs from
that used in Ref, E6—Zj=. In this reference the overlap of the
noise pﬁlses of shape h(t) is taken into account even when the
time interval between those pulses is longer than T seconds.
Responses from at most fifty moise impulses distributed in time
according to Equation (6) are accumulated at every sampling
instant, This method manages to take into account the statistical

dependence between impulsive noise samples but it turms out that
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it consumes more computer~time.than the procedure described
above. The considerations made previously about Fig, 6.3
indicate that very little difference between the results of the

two methods is to be expected under practical conditiomns,

An alternative approach to simulating Poisson impulse
noise is that used in Chapter V., In fact the non-~continual noise

samples can be expressed as follows

X130 % Ypi 9o | (55)

where the Qi's form a zero~one process defining the time~
distribution of the non-continual noise component and are such

that

P[:Qi 0] = q = exp(-Vl) (56)

and
PEGi=l:|=p=l-q (57)
Since Equation (30) can be written in the form

F (W) = q+pF, W (58)

where 1 1

= d[ex -
Eulﬂu) > [exp(vlFSlQD)) ﬁ] (59)
it becomes clear that Equation (59) gives the CHF of the time~

series {ulig. Notice that, as in Equation (23),

lim _ )
W =0 Ful(w> = 0 (60)

From Equation (58) the relation between the PDF's can be derived:
by () = @ B(x) + b puy (). (61)

In the cases where h(t) is time-limited to [wT/2, T/2] it is
. obvious that pul(x) is the impulsive mnoise PDF at those sampling

instants where at least one noise pulse is present.

Let N consecutive sampling instants be considered and

the number k of those where Gi = 1 be counted., It is obvious
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that k obeys the binomial distribution
Ny k N=k :
py(k) = ()P g (62)

This characterizes the purely random nature of the time~distrib-
ution of the Poisson impulse noise. It can also be characterized
by the distribution of the burst lengths. A burst is defined as
a run of ones in the zero-one process {Gi} and thus the
probability of a burst of length k=1 obeys the geometric

distribution

_ k-1 |
Pk - ap » (63)

If now a gap is defined as a run of zeros, it follows that the
probability of a gap of length n=1 is

n=-1

Q, = Pd - (64)

Therefore, if a procedure is known for generating the RN's k;
n and u, another method is available of simulating the Poisson

impulse mnoise,

It is well~known that

E[k] = kP = 1+1§ = k (65)
k=1

E =) = 1+4 = & 66

[n] E nQ . (66)
n=1

Therefore, it follows that ,
Kk
£+ - P (67)

as would be expected.

6.2,2 Non~-Poisson impulse noise

As has already been pointed out in Chapter II, if the
distribution of the times of occurrence T, in Equation (5) is

non-Poisson the study of the first~order distribution of the
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noise becomes too difficult to be of general practical interest.
However, cases frequently arise in practice where the noise
pulses tend to bunch more than they do in Poisson impulse noise.
In other words, the average burst length k and the average gap
length n tend to be greater than they are in Poisson impulse
noise for the same given ratio

P = = - (68)

In order to gain insight into the performance of data
communication systems when the impulsive noise departs from the
Poisson case, a class of burst noises will now be considered
which appears as a natural generalization of the Poisson impulse
noise., It is first assumed that the PDF of the whlte' time~-series
{ulig in Equation (55) can be well approximated by some known

PDF pul(x). For the distributions of the burst and gap lengths,

respectively, the following negative binomial distributions are

taken:
B, = () ph g (69)
Q = () ()™t Pt | (70)
where k, n=1, v, r>0 and ptq = 1. Note that
My 0t o= h. (70)
It is well~known that
B = 1+vlc3l (72)
n = l+r-193- (73)

It is further assumed that these average lengths satisfy

Equation (68), or equivalently,

kK _p
n - q9 (74)

for any positive v and r. It necessarily follows that

* {ul } is called white if its elements are statistically
independent and identically distributed.
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v = 1+ -g-(r - 1) | (75)

Therefore, if v = 1 it follows that r = 1; that is to say,
Equations (63) and (64) are obtained as a special case. From
Equations (73) and (74):

[

k= r+go (76)

As can be seen, under the previous conditions the time distribution
of the impulsive noise is completely defined by the two average
lengths k and n, since they determine the parameters p, v and

r of the PDF's (69) and (70). Always in practical situations

v> 1l and thus r>1, also, Since usually p<l it is concluded

from Equation (76) that r is approximately equal to the average

burst length.

The CHF's corresponding to the PDF's (69) and (70)

are respectively

Fw) = ¢ e (1 -pg®DV (77)

and

cw) = p" e @ - qe (78)

From these CHF's one can easily derive Equations (72) and (73)

and also
= (B2 + pv/d? (79)
W= (B + qe/p’ (80)
The continual part of the noise is assumed to be

‘white Gaussian noise,

6.3 EXAMPLES OF SIMULATION

In this section five simulation experiments are
described, the aim of which is to provide insight into problems
stated in Chapters IV and V, which could not be solved by using

the methods developed in those chapters., Each experiment was



- 188 -

carried out twice and 50,000 received signal and noise samples
were used each time., In any of the experiments the two error
probabilities obtained for every SNR and number of pulse
repetitions M were found to be very close to each other and for
this reason only their arithmetic mean is plotted in the graphs
presented below. Both sequences of noise samples were generated
with the help of a single generator of pseudo-random number s from
a uniform distribution and it was ensured that the uniform ramndom
numbers used to generate the second sequence came immediately

after those used in the generation of the first noise sequence,

The five simulation experiments were carried out using
a single computer program whose structure is described in
Appendix 3,2, The generation of the required pseudo-random

numbers is discussed in the same appendix.

6.3.1 Experiment 1

This experiment was designed to test the results of
Case Study 2 described in Section 5,3. Thus, the block T in the

lower branch of the recelver was assumed to be linear i.e,
T(x) = x. (81)

The impulsive noise samples were assumed to obey a Cauchy

distribution.

In the graphs shown in Fig., 6.5 each small circle
represents the arithmetic mean of the two error probabilities
computed for a certain SNR and M = 1, 2 or 3; the continuous
curves are the same as those shown in Fig. 5.24(b). It can be
seen that the methods of this chapter and Chapter V lead to

values of the errorprobability which are practically identical.

6.3.2 Experiment 2

This is a repetition of experiment 1 under the conditions

of Case Study 1 described in Section 5.3. The valuas of the
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parameters and the results are shown in Fig. 6.6, where the

ata
3

continuous curves correspond to the approximation

P X P +P P (82)
e eu X ez

and were obtained with the help of‘the graphs plotted in Figs.,
5.28(a), 5.29(c) and 5.33(a). The approximation given by
Equation (82) is thus quite good both in experiments 1 and 2.

€.3.3. Experiment 3

The only difference with respect to experiment 1 is

that in the present case

BZ + (x + A)2

(83)
B2 + (x - &)’ .
i.e., the block T of the receiver is nearly optimum provided the

T(x) = Llog

impulsive noise detection is done with a small percentage of
errors . As in experiments 1 and 4, it is assumed that [ = 1
and thus A is identical to the SINR |L, Moreover, as in experiments

1 and 2, it has been assumed that

V, =-logp = 1/8 (84)

The small circles in Fig. 6.7 represent the arithmetic mean of

the two error probabilities obtained for every SINR and value

of M; the continuous curves are the same és in Fig. 6.5, It is
obvious that, in the range of valﬁes of | considered, optimization
of the block T of the receiver yields very little gain and that

this gain increases as [ increases.

6.3.4 ' Experiment 4

This experiment was intended to test the performance
of the receiver of experiment 1 in the presence of the non-

Poisson type of impulsive noise described by Equations (69) and

% See Chapter V, relation (102).

*%  See in Chapter V the discussion about Equation (92).
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(70). As in experiments 1 and 3 it was assumed that the

ote

samples of impulsive mnoise obey a Cauchy distribution of

parameter {3 and that

M= 1
QdB = (& )dB 32.0 dB
w
and EO
6dB - (8;)dB = 9.0 dB.

Moreover, it was assumed that p = 1/8 and the cases r = 2, 4, 8
and 16 were considered as well as the Poisson case r = 1. 1In
Figs. 6.8 to 6.12 the continuous curves were obtained by the
method of Chapter V for the case r = 1 and each dot, circle or
cross represents the arithmetic mean of two error probabilities
obtained by the Monte~Carlo method. It is obvious that for each
value of M and a given SINR the error probability increases as n
increases and that the 1limit as r —->< does not depend on M, as
explained in Section 5.4(f). This limit is attained wirtually

as soon as ™>M.

6.3.5 Experiment 5

This experiment was designed to test the performance
of the smear-~desmear technique studied in Chapter IV in the
presence of a non-Poisson noise distributed in time according to
Equations (69) and (70) and whose samples follow a Laplace
distribution of variance Oi. No Gaussian mnoise was assumed
present (i.e. Oé = 0) and, as in the four previous experiments,
M= 1, 1In the case where r = 1 (Poisson noise) the method of
Chapter IV van be used to compute the error probability by
substituting in Equation (105) of that chapter

p (W) = q+pF W) (85)

where FXQD) is the Laplace CHI:

% See Chapter V, Equation (79).
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2 2
Ox W -1
P W = (142 (86)
and
2 1
g = =
- N ‘(87)

In Fig. 6.13 the continuous curves were obtained by the previous
method. 1In Figs, 6.13 to 6,18 each dot represents the arithmetic
mean of two error probabilities obtained by simulation for
N=1, 2, 4, 8 or 16 and a given value of the SINR
A
S
g = (88)
o Vp

where AS, as already defined in Chapter IV, is the magnitude of

the signal samples at the input of the decision device, As in

experiment 4, it was assumed that p = 1/8.

By comparing the graphs shown in Figs. 6.13 to 6.18 it
can be seen that, as the average burst length increases, the
curves corresponding to different values of N become closer.,
This fact means that, for a required level of error probability
(Lower than, say, 10—3), the SNR improvement corresponding to a
given N will become smaller and smaller as the impulsive noise
deviates more and more from the purely random case., Moreover,
the harmful effect caused by the smear~desmear technique, for
low SINR, gets weaker as the average length k of the noise

“bursts increases,

6.4 CONCLUSIONS

From the examples of simulation studied in the previous
section the following important statements can be derived, which
are believed to be valid under much broader conditions than those

assumed in Section 6.3:

(a) The efficiency of the rate reduction method studied in
Chapter V decrcases as the average length k of the impulsive
noise bursts increases, If k»M>1 the error probability is

very close to that obtained for M = 1, Therefore, the addition
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of a scrambler-descrambler pair to the data system will signif-
icantly improve the efficiency in the presence of a strongly
non~Poisson impulse noise, provided the noise-sample density

p is low enough,

(b) The error probability estimated by the Monte-Carlo
method is very close to the value given by Equation (82) for
those cases where Hap < 0 dB., This statement is believed to be
valid for any type of impulsive noise since the definitioms of
Peu’ PX and Pez are independent of the particular amplitude or
time distribution assumed for the noise.

(c) When Hap < 0 dB the optimization of the block T
shown in Fig. 5.4 has a practically negligible effect on the
error probability. As KB increases the probability PeZ in
Equation (82) will decrease and the velative reduction in P

will increase,

(d) In the case of the smear-desmear technique developed
in Chapter IV, the effect of a non-Poisson impulse noise is to
reduce the SNR improvement obtained with a given value of N in
the presence of Poisson impulse noise. This can be explained
in the following way: for very low SNR each noise pulse is
very likely to cause an error by itself and thus the bunching
of the noise pulses will reduce the fraction of data bits which
they affect, and consequently will reduce the error probability;
on the other hand, if the SNR is well above the threshold of
improvement the noise samples in a burst strengthen the
capability of each other to cause an error, thereby resulting
in a higher error probability than in the Poisson case., Here
again the use of a scrambler-descrambler pair will pfove
beneficial in the range of SNR's where the technique turns out
to be useful., The importance attached to the Poisson impulse

noise in Chapters IV and V is thus justified,
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CHAPTER VII

THE USE OF CODING IN VERY NOISY CHANNELS

Use not vain repetitions,
as the heathen do: for they
think that they shall be heard

for their much speaking.

. The New Testament, St. Matthew,
6.7,
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7.1 INTRODUCTION

It may be concluded from the results of Chapter V that
in the cases where the SINR flis low and the density p of impulsive
noise samples is high (say, in the order of 10fl), the attainment

of a low error rate (i.e. less than 10"5 bit-error rate) at the

receiver output gives rise to a transmission rate factor that
may be considered to be too low for many data transmission
applications. Alternatively, in these cases, an attempt can be
made to achieve the desired bit-error rate by using a powerful
forward error-correcting code alone. If, however, the erxors
to be corrected occur randomly at a rate as high as, say, 10"1,
achievement of an output bit-error rate lower than 10'-5 demands
the use of a code with a rate that may be lower than that
obtained by pulse repetition, for the same output bit~error

rate, For this reason it is proposed in this chapter to use a

combination of the repetition method (Chapter V) with a forward

FAN Y

error-correcting code . If, as in most practical circumstances,
the errors to be corrected tend to cluster in bursts or bursts
of bursts, a random error—correcting code will not perfcrrm well
and a single-burst or multiburst error-correcting code must
therefore be used. A major shortcoming of these non-random
error~-correcting codes is the high sensitivity of their perform-
ance to the details of the bit-error structure. For this reason
only random error-correcting codes are considered henceforth and
the errors from the channel are assumed to have been randomized
before decoding by some scrambling (reordering) operation on the
data pulses prior to transmission, followed by restoration of
the original ordering prior to decoding at the receiver. This
scrambling-descrambling operation is intended to make the

channel appear to the decoder as a random~error channel.

%  Transmission rate factor is the ratio between the actual
transmission rate and the channel capacity.

Wk All the random error-correcting codes considered in this
chapter are binary linear block codes.
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The combination of the repetition method with a random
error-correcting code may be described as follows (see Fig. 7.1
for functional diagram). A binary information stream is
presented to the encoder, k bits at a time. The encoder adds
n-k redundant check bits such that up to t random errors can be
corrected by the decoder placed at the receiver terminal. Prior
to transmission, each bit of the coded data stream 1is repeated
M times and the resulting data stream is made to pass through
an interleaver which is the unit used in practice to perform the
scrambling operation referred to above. At the receiving terminal
the received samples are unscrambled by passing them through a
second interleaver unit referred to in Fig. 7.1 as the descrambler.
The samples are then presented to the double-path detector
developed in Chapter V, which makes a decision based on each
sequence of M samples, and the resulting binary data stream 1is

then passed on to the decoder for error correction.

An interleaver can be described by a rectangular array
of digital storage elements with R rows and S columns. At the
transmitting terminal the data is read into the interleaver on
a row-by-row basis and when the array is full the data is read
out on a column-by-column basis. Thus, adjacent bits in a block
of S bits at the input of the interleaver are separated in trans-
mission by R-1 bits. At the recelving terminal the data is fed
into the descrambler on a column-by-column basis and is then
restored to its original ordering by reading out on a row-by-row
basis. Since the descrambler is normally implemented by a
digital device, it will have to be preceded by an analog-to-
digital converter, The number of binary storage elements in
the descrambler is Bu = RSN, where RS is the total number of
quantized samples that can be stored in it and N is the number
of elements occupied by each sample. It is possible to reduce
the total storage capacity needed by performing both the inter-

leaving and the descrambling operations in two steps, as



Data Encoder _|Repeat each Interleaver Shaping -
source 1 (n,k,t) bit M times (R,S) filter -
4
- Noise °———->CI-
Data Decoder Double-path Descrambler Sampler and Receiving
sink (n,k,t) detector (R,S) A/D converter | filter
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indicated in Fig. 7.2. 1In this figure the interleaver unit
alters thevordering of the coded data stream, the restoration to
the original ordering being carried out at the receiver,before
decoding,by descrambler 2., The second interleaving operation
entails simply repeating each block of g bits M times with
descrambler 1 at the receiver reassembling the received samples
corresponding to M identical transmitted bits before presentation
of these to the double-path detector. If, as pointed out in
Ref. E?-Z], the number 1, of columns in the interleaver in

Fig. 7.2 is equal to the code block length n, then, from the
point of view of consecutive errors, the interleaving operation

redefines the code as (nln, n k, nlt). This means that when a

1

burst of nlt errors occurs within an interleaved block of nln
bits at the input of descrambler 2 (Fig. 7.2), then at the

decoder input these errors are dispersed over n, code words with

1
t in each word, and can therefore be corrected. By suitably

choosing the interleaving factor n, it is possible to reduce

the number of code words with morelthan t errors (while dec~
reasing the number of words with no errors) and thus allow the
random error~-correcting code to provide a significant reduction
in received-data error-rate., The design of the scrambling
operations thus entails the choice of interleaving factors ny and

n, which maximize the randonmess of the impulsive noise locations

ai the input of the double-path detector and the randommess of

~the error locations at the decoder imput, given the encoding
parameters n, k and M, the maximum permitted transmission delay,
the maximum complexity allowed for the interleaver-descrambler
units and, of course, the time statistics of the impulsive noise.
The details of the design can be found in Refs, E7"l, 2, 8]. In
these references interleaved block coding is shown to be one of the
best techniques for combating burst-type error patterns. Pierce-

et al. [ 7-8 ] noted that "only bit-interleaved block coding (has)

consistentiy provided significant performance gains over the
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entire range of HF modem~channel conditions considered".,

It is important to point out that an interleaver is not
necessarily implemented by an array of digital storage elements,
It is obviously more convenient in practice to use the so-called
synchronous interleavers E7-9j in which a symbol is read out each

each time a symbol is read in.

In the following sections no limitations are imposed on
transmission delay or system complexity and it is assumed that
the time statistics of the noise or the errors at the points of
interest can be considered nearly random in order to assure a
good performance of the double-path detector and the decoder.

In Section 7,2 bounds on the improvement factor* of the decoder
are derived, which are later used in Section 7.3 to analyze the

performance of the overall system.

7.2 - BOUNDS ON THE DECODER PERFORMANCE

The exact calculation of the bit~error probability Pe
at the output of the decoder in Fig. 7.2 is in general a very
difficult task [7-10]. If, however, some restrictions on the
error distribution and the type of decoder are made, reasonably
tight bounds on Pe can be easily derived. In the following, it
is assumed that the bit-errors occur independently at the decoder
input. Moreover, it is assumed that the decoder produces at the
output the k informationrbits of the codeword U closest, in the
Hamming sense, to the received n~tuple V if U and V differ in
t positions or less; otherwise the decoder will just let ‘
through the first k bits of the received block V. Although sub-
optimum, this decoder is believed to provide an estimate of Pe
which is sufficiently accurate for the purposes of this chapter.
As a matter of fact, it is known that the most efficient decoders

only attempt to correct up to t errors [7—l£]°

* The improvement factor is defined as the average fraction
of input errors corrected by the decoder.
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Let us now compare the above-defined decoder with the
so-called maximum~-likelihood decoder, which, under the assumed
conditions, minimizes the error probability E7—12]. The
maximum~-likelihood decoder will, in any case, decode the
received block into that codeword that differs from it in the
fewest positions. If the number of errors e in the received
block is mnot greater than t, the above decoding rule is never
ambiguous because there is always one and only one codeword at a
minimum distance e from the received block. Thus, in this case
(e<t) all errors will be corrected. 'Given an arbitrary n-tuple
V whose nearest codeword U1 is at a distance i, either no other
codeword is at a distance i from V or at least one more codeword
U2 is at a distance i from V. It is thus possible to define Ai-
as the number of n~tuples of the first type and Bi as the number
of n~tuples of the second type, for a fixed minimum distance i

(from some codeword). From the above considerations it follows that
B. = 0 for i<t

and that Ad is the number of codewords, that is

= Zk.
o

Moreover, in the code standard array E7-13] the number of cosets
whose coset leader has weight i is given by (Ai + Bi)2~k. Given
one of these cosets, if there are in it two or more n-tuples of
minimum weight any one of them may be taken as coset leader.
Thus, there are A:.L2-'k cosets for which the coset leader is t&e
only n-~tuple in the coset having a minimum weight i and Bi2

cosets each with more than one word of minimum weight,

If e errors occur and e>t all errors will be corrected
at the decoder if an n-tuple of the first type with a minimum
distance i = e is received. For n-tuples of the second type
having a minimum distance i = e the decoding rule is ambiguous

and correct decoding is not always achieved. For those cases
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where the received n~tuple has a minimum distance 1 <e correct
decoding is mever possible. In order to obtain bounds on Pe

for the maximum~likelihood decoder the probabilities of these
three events must therefore be known or at least bounded., Since
this knowledge is not readily obtainable in the general case, it
is mecessary to consider the suboptimum decoder defined above.

As stated above, this decoder first finds the minimum distance i
from the received n~tuple V to a codeword and then either produces
the information bits of some codeword nearest to V if i<t, or the
first k bits of the received n-~tuple if i>t. It thus follows
that incorrect decoding can only occur if the number of errors

e in V is greater than t and that three cases are then possible:

(a) i = e and the average number of errors at the decoder

output is then 51 = ke/n;

(b) t<i<e and the average number of output errors is then

the same as in (a), i.e. 82 = ke/n;

(e) " i<e, i<t and the average number of output errors 83

is then bounded as follows :
dk/n <83< (2e -~ 1)k/n

where d = 2t+1 is the minimum distance of the code, If the
input errors occur independently with probability Pys the bit-
error probability Pe at the decoder output is therefore bounded

as follows:

d ' n
1 n e n~-e , d n, e n-e
P, > = E e() py(1 =~ pp)- " += E ()p;(1-py)
e=t+1 e=d+1
and n
2 E n e n-e
P <; e(e) pl(]- - Pl) e
e=t+1

* E?e upper bound follows from the triangle inequality
7"']-4 e
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On defining ql=]_—p1 and

Tl
E(n, ©, py) = g (D aj
i=r

it can be shown that

s}
1 S .oy 1 mel i
n / l(i) p]. ql - p]_ E(n ]-’ t9. pl)
i=t+1 .
The bounds given above then become

,Pe > Py E(n-1, t, Pl)"Pl E(n-1, 4, Pl) +

d
o E(n, d+1, pl) (1)

and
P, < 2p; E(n-l, t, py) . (2)

Since the binomial exceedence probabilities E(n,r,p]) satisfy

the following relation
n E(n"l’t’Pl) = (n‘t)E(nst9P1)+t E(nst'l'lyp]_)
the lower bound (1) can therefore be rewritten
d
P > p;E(n-1,t,p;) +q E(n-1,d,p;) -~ (1- =) E(n,d,p;).

Since in all practical situations t >p;n, the contribution from the
last two terms of the lower bound is very small compared to the

first term. Thus it is possible to write

- By comparing the bounds (2) and (3) it may thus be concluded
that the above method provides a fairly accurate estimate of the

bit~error rate at the output of the suboptimum decoder.

7.3 EVALUATION OF THE SYSTEM PERTFORMANCE

From the results of Chapter V it can be concluded that
the bit=error probability 2 at the input of the decoder in Fig,

7.2 is bounded as follows

M
p]_<P /2,
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p being that fraction of received samples in which the impulsive
noise occurs with an amplitude high enough to cause an error. In

oS

this section a worst-case analysis is done by assuming that”

M
p]. = P /2 (4)
and '

Pe = 2P1 E(n-1, s, Pl)- (5)

Given the values of n, M and p it is possible to calculate the
minimum value of the argument s for which the value of Pe given

by Equation (5) is smaller than, say, 10-5. Then, by using the

ot
L)

table”  in Ref. [7-7], the parameters (n,k,t), t>s, of some
existing code can be found which maximize (or nearly maximize) the

overall transmission rate

R = ﬁ% bits per transmitted pulse. (6)

This procedure was used to obtain Table 7.1 where it is assumed

that, for some integer 121, p = 2”1 and thus
P1= 2-3, j =Mi+1. (7)

From Table 7.1 values of R can be derived corresponding
to several values of m and M, These values of R are presented
in Table 7.2, The parameters of the best cyclic codes under the
conditions of Table 7.1, together with the optimum value of M

and the rate R achieved, are shown in Table 7.3.

It is interesting to compare the values of R shown in
Tables 7.2 and 7.3 with the capacity of the binary symmetric
channel between the encoder output and the decoder input., This

capacity, in bits per transmitted pulse, is given by
Cy = (1 + pjlogyp; + q;log,q; )/M - (8)

where p; = 1 - q, is given in Equation (4). If pl==2-J it can

be shown that

% A limit situation where Equation (4) is exactly satisfied
is considered in the last pages of subsection 5.2,3,

Hedk The modifications to this table due to results from Refs,
E7~3,4,5,6] have been taken into account.
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Mi 1 2 3 4. 5 6 7. 8 9. 10 11 12

7 - - - - 1,3 1 1,3 | 1,2 | 1,2 1,2 1,2 1,2 1,2
9 - - - 1,4 1,3 + 1,3 | B2,2 2,2 2,2 2,2 2,2 2,2
15 - - 1,7 1,5 | B2,4 | #s,3 5,3 1 87,2 7,2 7,2 7,2 7,2
17 - - 1,7 2,5 3,4 | 6,3 6,2 | Po,2 9,2 9,2 9,2 9,2
21 - - 1,8 | ®2,6 | ®s,4 | 10,3 10,3 { 12,2 | 12,2 | 12,2 12,2 12,2
23 - 1,11 | 1,8 2,6 5,5 | 6,6 | P12,3 | 14,2 [ 14,2 | 14,2 14,2 14,2
25 - 1,12 | 1,8 3,6 | 6,5 | 7,4 | 12,3 ] 152 152 | 15,2 15,2 15,2
27 - 1,12 | 1,9 5,6 7,5 | 9,4 | 1,3 | 17,2 17,2 [ 17,2 | 17,2 17,2
3 - 1,13 | 2,9 | %,7 |*u1,5 | 12,6 [ P16,3 [A2,2 | 21,2 | 21,2 21,2 21,2
- 33 - 1,16 | 52,10 | 6,7 |®u1,5 | B13,4 | 18,3 |Be2,2 | 22,2 | 22,2 22,2 22,2
35 - 1,14 | 2,10 | 7,7 | 13,5 | 15,4 | 20,3 | 24,2 | 24,2 | 24,2 | 24,2 24,2
39 - 1,15 {52,110 | 9,7 | 16,5 | 19,4 | 23,3 | 28,2 | 28,2 | 28,2 | 28,2 28,2
41 - 1,16 | 3,11 | 6,8 | 13,6 | B21,4 | 25,3 | 25,3 ] 30,2 | 30,2 | 30,2 30,2
43 - 1,16 | 3,11 | 7,8 |{Bis,6 | 22,4 | 27,3 | 27,3 | 31,2 | 31,2 31,2 31,2
45 - 1,17 [ %,11 | 9,8 | 15,6 | 24,4 | 29,3 | 29,3 | 33,2 | 33,2 | 23,2 33,2
47 - 1,17 | 3,12 | 10,8 | 16,6 | 25,4 | 31,3 | 31,3} 35,2 | 352 | 35,2 35,2
49 - 1,17 | &412 | 12,8 | 18,6 | 26,4 | 32,3 | 32,3 | 37,2 | 37,2 | 37,2 37,2
51 - 1,18 | 5,12 | 12,8 | Pi9,6 | 24,5 | 34,3 | 34,3 | 39,2 | 39,2 | 39,2 39,2
55 - 1,19 | 6,13 | 12,9 | 22,6 | 28,5 | 38,3 | 38,3 | 43,2 | 43,2 | 43,2 43,2
57 - 1,19 | 6,13 | 14,9 | 24,6 | 30,5 | 33,4 | 40,3 | 45,2 | 45,2 | 45,2 45,2
63 1,31 | 1,21 |%7,14 | Pro,0 | B28,7 | %36,5 | %39,4 |Bus,3 | Psi,2 | 51,2 51,2 51,2
65 1,32 | 2,21 | 8,14 | 18,10 | 20,7 | 37,5 | 41,4 | 47,3 [ Ps3,2 | s3,2 | 53,2 53,2
127 1,56 | 4,33 {%29,21 |%43,14 | 21,0 | %85,6 | 92,5 [%106,3 | 106,3 [f113,2 | 113,2 | 113,2
255 1,9 |%21,55 |%47,33 [M15,21 ['155,123]2187,0 [ %207,6 [*223,4 | #231,3 [P23e,2 | 239,2 239,2
511 | 1,170 | #a1,00 ['130,55 [*241,33 |*340,20 [*394,13) A439,8 |Pus7,6 | 2475,4 |Pasa,3 | Pa03,2 493,72
1023 | 1,315 ['111,172{*278,96 [*523, 55 [*708, 32 [*838,19 |*903,12 [%943,8 | A973,5 |2983,4 | #993,3 | A1003,2

TABLE 7.1: VALUES

(K,s)

-1 -5
p=2""; py=p'/2; 2p,E(n-1,s,p;)<107°< 2p E(n-1,5-1,p,).

A

BCH codes;

B

: other cyclic codes.
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TABLE 7.2:

VALUES OF R=k/AMn) DERIVED FROM TABLE 7.1

If Mi>16 . . pl<10'5 and R=1/M.

n M 1=1 2 3 4 > [4 7 8 9 10
T - - 0,000 0.0606 0.133 0.333 0.333 0.4006 0,466 0.4006
Z - 0.033 0. 10606 0.233 0,233 0,233 0,233
3 0.022 0. 111 0. I55 | 0.1I55 0.155
15 4 0.016 0. 110 0.116
5 0.076 0,093 0.093
b 0.09%5 0.077
7 0,047 0.060
B 0,058
1 - - 0,04 0.095 0,238 0,476 0.376 0.571 0.571 0,571
Z - 0,047 0.238 L2306 0.250 0.286 0,286
3 0.01I6 0,155 0.I90 | 0.I90 0.190
‘21 [ 0.024 0.I43 0.143
5 0.047 0.11% 0.11%
[ 0,079 0.095
7 0.063 0.520
B 0.07L
1 - 0.043 0.043 | 0.057 0,217 0,261 0.522 0,609 0,609 0.609
0.022 0,033 0.130 0.304 0,304 0. 304 0.304
3 0.01% 0.057 0,203 0,203 0.203
23 [ 0.022 0.157 0,152
) 0,043 0.122 0,122
[ 0.043 0,10T
7 0.074 0,087
8 0.065
I - 0,032 0.004 0.193 0,354 0,387 0.516 0,677 0.677 0,677
Z 0.016 0,096 0.193 0. 338 0,338 0,338 0.338 .
. 3 0.0721 0.129 0.225 | 0.225 0.225
31 4 0.048 0,109 0,109
5 0,070 U. 135 T. I35
6 U.06% U. 113
7 0.074 0,097
8 0.085
1 0,016 0,016 0,111 0,301 0.444 0.571 0,619 0.730 0,809 0,809
2 0.008 0,151 0.235 0.365 0,405 0,405 0.405
. 3 0,037 0.190 0.270 0.270 0,270
:63 4 0.075 0,182 0.292
: 5 0.058 0.162 0,162
[4 0.095 0.135
7 0,083 0.115
8 0,091
1 0,003 0,031 0,223 0.338 0,559 0.669 0,724 0,834 0.834 0,890
2 0,016 0,169 0.334 0.417 0,445 0.445 0,445
3 0,076 0.223 0,278 0.296 0.296
127 4 0.085 0,209 0,222
5 0,112 0,173 0,173
6 0,112 0,143
7 0,103 0,127
8 0,104
1 0.004 0,082 0.184 0.451 0.608 0,733 0,812 0,874 0.906 0,937
2 0.045 0,225 0. 366 0.437 0,468 0,468 0.468
3 0.061 0,244 0,302 0.312 0.312
255 4 0,112 0.2?8 0,234
5 0.121 0,137 0.187
6 0.122 0,156
7 0.116 0,134
8 0.109
1 0.002 0,060 0,254 0.472 0,665 0.771 0,859 0,894 0,930 0,947
2 0.030 0,236 0,335 0,447 0.474 0,482 0.482
, 3 0.085 0.257 0.310 0.322 0,322
1511 4 0.118 0,223 0.241
. 5 0,133 0,139 0.193
6 0.128 0.161
7 0.123 0.13%
8 0.112
1 - 0.108 0,272 0.511 0.692 0.819 0,882 0,922 0,991 0,961
2 0,054 0,259 0,409 0,461 0,450 0.490 0.490
3 0.091 0.273 0,317 0,320 0,326
p 4 0.127 0,230 0,245
1023 5 0.138 0,192 0.196
6 0,136 0,163
7 0.120 0.140
8 0,115




TABLE 7.3: Parameters for the best éyclic codes

Upper values: k,t,M; lower value: maximum rate R=k/(Mn); t>s (see Table 7.1)

A: BCH codes B: other cyclic codes
* 1 2 R 6 7 10
15 7,2,8 | 7,2,4 | 5,3,2 7,2,2 | 7,2,2 | 5,3,1 | 5,3,1 | 7,2,1 | 7,2,1 | 7,2,1
0.058 A| 0,116 0,116 A| 0,233 | 0,233 | 0,333 | 0.333 | 0.466 | 0,466 | 0.466
91 ,3,6 |1 9,3,3 19,3,2 }12,2,2 |12,2,2 }{9,3,1 | 9,3,1 |12,2,1|12,2,1}12,2,1
B 0.071 B| 0,143 | 0,214 0,286 B| 0,286 | 0,428 | 0.428 | 0.571 | 0,571 | 0.571
23 12,3,7 {12,3,4 |12,3,3 |12,3,2 |12,3,2 {12,3,2 {12,3,1 |12,3,1}12,3,1}12,3,1
0.074 B} 0,130 | 0,174 | 0,261 | 0.261 | 0,261 | 0,522 | 0,522 | 0.522 | 0.522
31 21,2,8 [21,2,4 }21,2,3 121,2,2 | 11,5,1 | 11,5,1|Ll¢,3,1 }21,2,1}21,2,1]21,2,1
0.085 A| 0,169 | 0.225 | 0,338 [0.354 A} 0.354 {0,516 A| 0,677 | 0.677 | 0.677
63 36,5,6 | 30,5,3 136,5,2 |46,3,2 |28,7,1 | 36,0,1 139,4,1 |40,3,L|51,2,115L,2,1
0.095 A[0,190 |0.285 |0.365 B}0.444 B} 0,571 [0.619 A| 0,730 }0,809 A] 0,809
127 85,6,6 [ 85,6,3 |85,6,2 |106,3,2171,9,1 [ 85,6,1192,5,1 |106,3,1[106,3,1}113,2,1
0.112 A| 0,223 | 0.334 (0,417 A]0.559 A| 0,669 | 0,724A| 0,834 | 0,834 | 0.890A
255 187,9,¢(187,9,31187,9,2{15,21,1{[55,13,1]187,9,1[207/,6,1 |223,4,1}231,3,11239,2,1
0.122 A} 0.224 | 0,336 [0.451 A{0,608 Aj 0,733 {0.812 A}0.874 A|0,906 A] 0,937 A
511 340,20,5p94,13,33%4,13, 2241, 36,1B40,20,13%94,13,11439,8,1 {457,6,11475,4,1[484,3,1
0.133 A|0.257 A} 0,385 |0.472 A] 0.665 | 0,771 {0,859 A[0.894 A[0,930 A|0.947 A
1023 708,34,5838,19,3838,19, 2523, 55,1708, 34,1838,19,1903,12,1[943,8,11973,5,1[983,4,1
0.138 AJ0.273 A} 0,409 |0.511 A} 0.692 | 0.819 10,882 A|0.922 A|0.951 A|0.961 A

- 02C -
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~ j =5,
Cy M » 320

In Table 7.4 the values of CM are given for several values of p
and M. It can be scen that for large n and p = %, the value
M = 5 entails a rate reduction with respect to the case where

M =1 of at least

C5
T - 1002 = 93.6%.
1
Similarly, for p= % and M = 3,
C3
— . 100% = 68.2%
Cl
and for p = % and M= 2,
C
T e 100% = 70.5%.
1

In practice, by using a powerful BCH code (n>127) the following

results can be achieved:

R/C]_3' 0.5 if 1/64 <p <%,
and

3

R/C; > 0.7 if 2x 107 < p<l/64,

and at the same time an error probability Pe lower than 10_5 at
the data sink can be ensured. In Refs., E7~l,8] a value R/Clﬁi
0.50 is considered acceptable in practice if the channel error
rate p/2 lies between 10"2 and 10”3. By using the system
described in this chapter it is possible to satisfy the same

requirement in cases where the channel error rate is much higher,

If coding is mot used it is mnecessary that

- -12 p
2
in order to achieve

5

P <10 °,

e P1
The maximum rates attainable in this case are shown in Table
7.5, As can be seen, the transmission rates shown in Table 7.3
for small n are quite close to those in Table 7.5. Thus,

combination of the repetition method with an error~correcting



TABLE 7.4

Values of G given by Equation (8)

u /2 | 1/4 | s booi/1ef 132 |- 1/6n | /108 1/256
0.188 | 0.456 | - 0.662 | -0.799--| 0.883-| -0.934 | -0.963 | - 0.980
0.228 | - 0,400 - | 0,467 | - 0,490 | - 0,497 -| - 0,499 - | - 0,499 - | - 0.499
0.220 | 0.311 | 0.329 | 0.333 | 0.333 | 0.333 | 0.333 | 0.333
0.200 | 0.245 | - 0.249 |- 0,249 - | - 0,249 - | - 0.249 | - 0.249 - | - 0.249 -
rrrrr 0,176 | - 0,199 - | - 0,199 - [--0,199 - |- 0,199 - |- 0.199 - | - 0,199 - | - 0.199
0.155 | 0.166 | 0.166 | 0.166 | 0.166 0.166 0.166 | 0,166 -
0.137 | 0.142 | 0,142 | 0.142 |- 0.,142-| 0.142- | 0.142 | 0.142
0.122 - | 0.124 - | - 0,124 - | 0,124 --| 0,124 | 0.124 | 0.124 | 0.124

- 2CC -



TABLE 7.5

M >16/(-logp) = a, M<a+ L, - p /2 <10
-log,p 1 2 3 L} -5 F 6 7 8 9 10
M 16 8 6 4 4 3 3 2 2 2
R=1/M 0.062 | 0,125 | 0.166 | 0.250 | 0,250 | 0.333 | 0.333 | 0,500 | 0.500 | 0.500

- £¢C -
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code can only increase the rate significantly if the code length
is large., By using a powerful code the transmission rate can be
increased by a factor of about 2, with respect to the case where

the repetition method is used alone,

7.4 CONCLUSIONS

If the probability p of a receiﬁed signal sample being
corrupted by a strong impulsive noise is high, the analysis of
the previous section shows that the best form of error control
from the point of view of transmission rate is an optimized
combination of the repetition method developed in Chapter V with
error=-correcting coding. In fact, by comparing Tables 7.2 and
7.5 it can be seen that for each value of n there is a probab-
ility'pO such that if P>P, the rate corresponding to M = 1 and
the best binary linear code is lower than the rate obtained with
the repetition method alone. As can be seen, P, increases as n

increases; for example:

R

n = 15 . P, 1/64

n = 1023 Sooop, 1/8,

It can be further concluded that for p>p_ and n small (say,

n = 20) the combination of the repetition method with coding
provides a transmission rate close to that achieved with the
repetition method alone (although for different values of M>1),
However, by choosing a large code length a significant increase
in transmission rate can be achieved in cases where pf5po. For
lower values of p and arbitrary code length it turns out that

the maximum transmission rate is obtained for M= 1,

More specifically, if a BCH code of length n=>127 is
used, it is possible to choose the parameters n, k and M in such
a way that the transmission rate R = k/(Mn) meets the following

ale
0y

requirements 3

* C, is the capacity of the binary channel when only one
pilse is transmitted per symbol (M = 1),
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R/ClgO.S if 1/64<p <k
and

3

R/C; > 0.7 if 2x10 7 < p < 1/64

while the error probability at the decoder output is kept below
10-5. The previous requirements are normally considered accept-

able in practice E7-~1,8:lo

As explained in Section 7.1, the previous statements
are only valid if the impulse noise samples at the input of the
double-path detector and the bit errors at the decoder input
can be assumed to occur independently. In order to satisfy these
conditions with good enough approximation it will often ber
necessary to perform an interlacing operation on the encoded
data sequence prior to transmission. As explained in Section
7.1, interlacing is usually easier to implement in two steps:
first by placing an interleaver at the output of the encoder,
and secondly by transmitting the M pulses corresponding to a

given data bit at a wide distance apart.
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CHAPTER VIII

CONCLUSIONS

And suppose we solve all the
problems it presents., What
happens? We end up with more
problems than we started with,
Because that's the way problems
propagate their species. A problem
left to itself dries up or goes
rotten. But fertilize a problem
with a solution -~ you'll hatch

out dozens,

N.I'. Simpson, "A Resounding Tinkle"
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8.1 SUMMARY OI' CONTRIBUTIONS

Most of the conclusions arising out of the work
described in the previous four chapters have already been
summarized there. In this chapter the original results of the
investigation are reviewed with the same general approach as
that adopted in Chapter I, and using the terminoldgy and notation

introduced in that chapter.

8.1.1 Smearing technique

In Chapter IV the transmitter was assumed to send
through the channel, every LT seconds, one of 2L signal waveforms

of the form L
si(t - kLT) = E Otijfj(t - kLT)V (1)

(i=0, 1, ..., 25-1; &
Esee Fig. l.2(a)]
N-1
B0 = ) ayy(e - D). 2)
A=0
In this way a group of L binary symbols,represented by the coeff-

0, 1, 2, ...) where aij = +1 and”

icients aij (j =1, 2, vosy, L), can be transmitted simultaneously
at every signalling instant kLT (k = 0, 1, 2,...). The elemen-
tary pulse y(t) was assumed to be essentially time-limited to T

seconds and frequency-limited to the channel bandwidth W.

The receiving filters [ see Fig. l.2(b)] were assumed
to have impulse responses given by
N-1

hj(t) = Z bjﬂy(t - 0T) (3)
£=0 _

* It can always be assumed, without loss of generality,
that N is even and that if a, = 0 then a5 (N-1) # 0
for any j. J J_
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(j =1, 2, «ee, L). The analysis of the system under the assump=
tion that intersymbol interference is to be avoided at the

detector output has led to the following conclusions:

(a) Given N>1 the optimum performance is obtained for
L>1;
(b) Very little (if any) improvement in symbol~error rate

can be obtained by using L>2,

For this reason only the case L = 2 was studied in detail., The
correlation between the errors obtained at the detector output
may, however, be different for other values of L, particularly

in the presence of long noise bursts.

Throughout this study the decision device was assumed
to use just one sample per symbol (M = 1), The reason for this
is that for M>1 no system could be devised which was free from
" intersymbol interference at the detector output, apart from some
trivial examples equivalent to the case L = M = 1, The decision
device was further assumed to consist simply of a parallel-to-

serial converter followed by a zero-threshold detector,

Thus defined, the system will show mno intersymbol
interference at the detector output if and only if the samples
delivered to the decision device exhibit no artificial intersymbol
interference. A criterion was derived in Chapter IV for choosing
the elementary pulse y(t) and the coeffigionts an and bjn in
Equations (2) and (3) in such a way as to satisfy the above
necessary and sufficient conditions and furthermore to avoid any
interchannel interference in a frequency-division multiplexed
(FDM) system. There are grounds for supposing that in the
presence of Poisson impulse noise the optimum sequences of
coefficients iéjﬁl and {bji§(2 =0, 1, «.., N-1) are nearly

oo

uniform . For this reason a technique was devised for generating

* A sequence of numbers with equal absolute values is
termed uniform.
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uniform sequences which can be used in the system. The intuitive
reason behind the use of uniform sequences is that, for given N
and y(t), the responses of the receiving filters to an isolated
noise impulse will have nearly the minimum peak amplitudes
obtainable, provided that y(t) is approximately time-limited to

T seconds, However, this may not be the case when a burst of

" noise impulses is considered.

The error-rate analysis of the system designed on the
basis of uniform sequences of coefficients has shown that a
critical SNR exists above which the technique is beneficial and
below which it can only be harmful, Furthermore, above this
critical SNR the error-rate (a) decreases as N increases, and
(b) is lower when the PDF of the energy (within the channel band-
width) of the elementary disturbance has a short tail, and (c)

increases with the average duration of the noise bursts ,

It can readily be concluded from Equations (1) and (2)
that the combined waveform transmitted over the chamnel has the
following form:

o

ZE: Aky(t - kT)

k=0
where the Ak constitute a multilevel sequence, It follows from
the conclusion (c) above that a reduction in error-rate can be
obtained in the presence of strongly non-Poisson types of noise
by performing a scrambling operation on the Ak at the transmitter
followed by the inverse operation at the receiver, In fact,
after being subjected to the scrambling-descrambling operation

the noise will look more like a Poisson impulse noise.

® It is assumed in this chapter that, as the noise charac-
teristics change, the error probability of the conventional
system (L = M = 1) remains constant,
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The smearing of the responses of the receiving filters
to an elementary impulsive disturbance, in the attempt to
decrease their peak amplitudes, is the underlying principle in
the method just described., When using this principle, other
authors have always assumed that L = 1, Their results suffer

from the following limitations:

(a) If pulses of the form in Equation (2) are used, as in
Ref, ES—ij, intersymbol interference cannot be eliminated when
L= 1;

(b) If a frequency-domain approach is used, as in Ref,
E8—2], the resulting "optimum" waveforms seem difficult to

realize and show no advantage over the ones proposed here.

8.1.2 Rate-reduction technique

The case in which the decision device has available
more than one sample per transmitted symbol (M>1) was considered
in Chapter V. In this case a receiver capable of avoiding any
intersymbol intefererence could only be devised under the
assumption that the transmitted waveforms are essentially mon-
overlapping. To this effect it was assumed that L = 1 and that

M-1
f() = ) ay(e-i) %)
i=0
In order to prevent the samples delivered to the decision device
from exhibiting any intersymbol interference it was further

assumed that
h(£) = by y(t) (5)

The above waveform design has already been used in
the literature but the associated decision device was meant
for a moise governed by the same PDF at all sampling instants,
and thus needing mo time distribution in its characterization

(continual noise) E8~3J, In the presence of impulsive mnoise the
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decision device should be able to distinguish between the samples
affected by impulsive noise and the samples affected mainly by
Gaussian noise. In the proposed decision device a block termed
noise detector fulfils this function and directs each sample,
according to its type, to one of two branches where the accepted
samples are processed nonlinearly to obtain two decision
statistics. The decision about the transmitted symbol is
normally based on the decision statistic resulting from the
samples that are more likely to have been affected mainly by
Gaussian noise., If the magnitudeiof this decision statistic,
however, is much smaller than the magnitudes of the signal samples
it must be concluded either that the noise detector has failed in
some samples* or that all the M samples have been corrupted by
impulsive noise. In either of these cases a second decision
statistic must be employed which is computed from the samples
which are most likely to have been affected by impulsive noise,
By computing this second decision statistic from all M samples a
simpler receiver structure can be obtained at the expense of a

slight increase in error-rate (see Section 5.2.3 and Appendix 2.1).

The error~rate analysis was carried out in Chapter V
under the assumption that the coefficients ajs in Equation (&)
have equal values., The same types of noise were used as for

the smearing technique and the following main results obtained:

(a) The error-rate decreases as the number, M, of pulse

repetitions increases;

(b) For a given M>1 the improvement obtained, with respect
to the conventional system (M = 1), increases as the SNR decreases,

owing to the higher efficiency of the noise detector at low SNR's;

(c) For given M>1 and SNR the error=-rate increases as the
average noise-burst length increases, thus suggesting the use of

a scrambling-descrambling operation as in the previous section;

* It follows from the analysis in Chapter V that under normal
conditions these samples are most likely afifected by
impulsive noise.

N
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(d) If the SNR is sufficiently low then
=z kL
Pe 2 Py

where Pe is the error probability at the output of the waveform
detector and PX is the probability of both decision statistics

being necessary for making a decision.

This last result suggests a means of making the receiver
adaptive in the presence of a non=-stationary impulsive noise., In
fact, the receiver parameters can be adjusted so as to minimize

the estimate of PX and thus approximately minimize Pe.

It was shown in Chapter VII that if a powerful ervor-
correcting code is added to the above system a higher transmission:ﬁ
rate is obtained for a fixed error-rate. It was further concluded
that, if the fraction of signal samples strongly affected by
impulsive noise is low, the maximum transmission~rate 1is

achieved when M = 1,

8.2 SUGGESTIONS FOR FURTHER RESEARCH

Some unanswered questions which could be the starting

point of further research are outlined below.

8.2,1 Smearing technique

A means of increasing the parameter M would be a useful
achievement., This would possibly lead to an improved decision
device and could perhaps be effected by increasing the number of

receiving filters.,

Bounds on the error probability in the presence of
non-Poisson types of noise should be derived. These bounds
would provide a means of calculating the sequences of coefficients
{ajé} and {bjgi used in Equations (2) and (3). For this purpecse
a methed of generating any set of sequences with the required
autocorrelation and crosscorrelation properties would be quite

useful,
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After having solved the above problems the use of a
scrambling~descrambling operation should be compared with the
use of non-uniform sequences. To show that these two methods
are not equivalent, it it sufficient to point out that, for a

given average transmitted power, uniform sequences give rise to

ofs
o~

the maximum peak transmitted power .

8.2,2 Rate~-reduction technique

In this area of research the most important problem
is the development of more efficient noise detectors, In the
case of non~Poisson types of noise the noise detector should
decide which samples are more likely to have been strongly
corrupted by impulsive noise by analysing simultaneously the

entire group of M samples,

Methods of implementing adaptive receivers in the
presence of non=-stationary impulsive noise also seem to desexve

consideration,

A
-

% See Equation (70) in Chapter IV, -
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APPENDIX 1

* In this appendix the references to the main text
pertain to Chapter IV, unless otherwise stated.
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1.1 PRCOF OF THEOREMS 1 AND 2

If the pulse gn(tnkS) of Fourier spectrum
G () g ITWOE _
n

G Jo : i [o] o :
= —2“[8 T s(f-20B)+ € 1 S(f+2nB)] g~32T00E

is received and if the receiving filter has the impulse respomnse

ri(t -mQ) where

r (£) = R, _x""’(-t>cos(mi[3 £-Y,)

and thus
R,

-iY. . Y. .
R, (£) '%[E g X (£-2if3) + SJ + x"(f+2iB):|,

then the signal samples at the instants 20 at the receiving

I

filter output are given by
(= @] . :
[ o tom, () gI2HE T MO g, (A1)

If x(t) = s(t) these samples are zero except for n=1i and {= kt+m

in which case their values are
- L : -
r = anRnEScos('\(n ah). |
If WL = Q) then gn(t) and rn(t-mé) are matched impulse responses
Tt

and rn is maximum. If Yn =c1n + 5 the two carriers are in

quadrature and r, = 0. This proves Theorem 1,
If now x(t) and s(t) are associated Nyquist pulses the
integral (A.l) is zero for any values of the integers involved

in it, which proves Theorem 2,

PROOF OF THEGCREM 3

Since

A

~ J4TCLR
) =§ Sa(t)s;(t-i- 2KT) g BE ar

- OO \

E . :
__s e K jattifBe o
== E aa. le(t mT)y (t-nT-2kT) g dt

-
m,n

. £,
= — L E a_ ¢
N Yy Yok

n
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and -
_ e j["n:'th
Bkl = J sa(t)sb(t+ 2kT) € dt
Es E
TN Ey bnan+2k
n
where 3 =ﬁl,l:, the theorem follows.
PROOF OF THEOREM 4
Since s(t) is time-limited to [-T/Z, T/Zj the condition
(15), with §= T, is fulfilled for any k#0. For k=0
T/2
Aon = f sz(t)cosmh.;,tdt
-T/Z \P
E , n=0
_ s
0, n# 0.
Therefore, if P = 2,
E
2 S t
E_/T, |t|< 1/2
o, lt|>1/2.
If p=1, A _ can be written as follows:
on
T/2
A =2 f sz(t) é’-T-E-]CEdL
on
0 .
and thus, in the interval [ -T/2, T/2],
E OO
s*(t) = =2 + E b_sin(*2 |t )
n=1
where
T/2
4 2 . 4TInt
bn = -,-I-(\)Ja s“(t) 31ant.
Equation (A.2) shows that
2 Eg
s7(t) = = + P(e)
where P(t) is antisymmetrical in EO,T/Z] with respect to the
point t = T/4. Therefore
E

2 T, _ s
s™(t - 3) = %

-~ P(t), 0t ST/2

(A.2)
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and v
sz(t) + Sz(t-T/Z) = ZES/T, O0<tE<T/2.
PROOF OF THEOREM 5
T/?
A =2 yf rz(t) coséHEEdt
on 0 T
T/2
=2 f sz(% - i) cos g
0 T
T/2
_ 2 4Tx ,
= 2 df s“(x) cos T dx = E 60n
where 6on is the Kronecker delta.
T/2
_ T . ATnt
B = 2 (\)f s(t) s(2 t) sin = dt
T/4 .
= 2(—1)n j S(I + %) s(z - X) sinéggédx
4 4 1
~T/4 ,
= (0, any n,
since

£(x) = s<{; + x) s(% - x)

is an even function.

1.2

According to the'description given in the main text,
the detection of the coefficient o of Equation (43) is based on
the sample produced at t = LT by the sampler 1 [Fig. 4.2(b) ],

the value of which is,

ES ES
%0 =W > Do > a5 Tigok TR E %or-1 _;_ __biri+2k
& i

k i

Similarly, the detection of the coefficient G’l is based on the

sample produced at t = ET by the sampler 2, which is given by



k i
+ -5 a a.s
N 2k 17i4+2k’

k i
Therefore, if Equations (49) and (50) are valid, it follows that
ZO = aOAl, and Z—l‘= C_L__lA2 Esee Equations (56) and (57)] and no

intersymbol interference arises.

If the noise n(t) in Fig. 4.2(b) is assumed to be

Gaussian and to have a constant power spectral density Oi, then

the noise variances at the outputs of the samplers 1 and 2 are

respectively
co 2
2 _ Z‘J 2 _ _g
0] =0, _Oozr(t)dt = 3 E
and 02
02=02jz(t)dt=—o- 52
2 0 S o N 1
where
1
Z (t) = — r, h(t-1iT)
T /R £ i
i
1
Z (t) = — s. h(t ~-1iT).
S ﬁ : 1

If the signal samples are assumed to have constant magnitudes Al

and A2, it is easy to show that those n01se variances attain the
minimum values Oi = GZOS nd Og G Gf if and only if Equations
(54) and (55) are satisfied.

Now let expression (68) be derived under the conditions

specified in the main text, which imply that
<Xxn(xm:> = Gnm (Kronecker delta). (A.3)

On defining [ see Eqnation (47)7]

s (L) = Z[ k54 (£~=2kT) + & k1 b(L 21<T):\

k=~L
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then

ao
lim _1 2
P o= e T J;SL(t)> dt.

According to Equation (A, 3)

L
<si(t)>== Z [:si(t - 2kT) + si(t - 21<T)]

k==L
and thus, since
o2 E Es 2
j s_(t)de = —-l;-\]—— Z aj (A.4)
i: 2 E Es - 2
jmsb(t)dt = -3%\]- Z bs, (A.5)

i
the expression (68) follows,
Whenever sa(t) and sb(t) are associated Nyquist pulses,
the argument used in deriving Equations (A.4) and (A.5) can
also be used to derive Equation (68) with no restrictions imposed

on the data sequence {ui}.

If in Fig. 4.2(b) the noise n(t) is a white Gaussian
noise of spectral density US then the noise autocorrelation
function at the output of the receiving filter H(f) is

Rl('E) = og ior:(t) h(t - T)dt.

Similarly, the autocorrelation function at the output of the

delay line Lr is

Ra(‘c) = 03[ Zr(t) Zr(t - T)dt.

Therefore, if h(t) and Zr(t) are Nyquist pulses it follows that,
for i # 0,

|
(@)

Rl(iT)

- and

il

Ra(ZlT) 0.

These relations mean that two noise samples iT seconds apart at
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the receiving filter output or 2iT seconds apart at the delay

line output are statistically independent,

1.3 PROOF OF THEOREM 6

X = E by by = z AN=itl N-i-2k+l
T I
- § %35 %j-2k°

j |
Thus the sequence B is self-orthogonal. Defining N as the

smallest even integer (N = 2L) such that a, = 0 when i<l or

i>N, then

e Z Z (DY 8y i1
Z( 5 A 2M-p41

where £ = N=-i+l and M = L+k=21., Therefore

fl

M oM
2
Y = - E (-1) &y AoMap+l E (- l) oM-0+1
{=1 g= M—l—l
M
- (-1’ + ) (-1l
= - Tt 8 AoMep+l TR 8y FaMai+L
=1 3=1
=0, = 2M=~0+1,

Therefore, A and B are associated sequences.

PROOF OF THEOREM 7

Defining

(all other elements being zero) it is obvious that C is self-

C = {al,az, ¢ o0 ;aN,

orthogonal., Now note that, in view of Equation (59),
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i N+l
d, = (-1)" b (-1)"Ta, = -a,

N-it+l

for i<N, and thus Theorem 6 completes the proof.

Given the self-orthogonal sequence A =

states that, for any b,

IR |
by = p-1)"ay ;4

is a solution of the linear system of equations

E bi Aok = 0, any k.

i
It can be proved as follows that any solution of

{ai}, Theorem 6

(A.6)

this system

satisfies Equation (A.6) for some b. In matrix notation this

system takes on the following form for N = 8:

ag 0 0 0 0 0 b2
ac  ay ag 0 0 0 b3
a, ag ac a5 ag 0 0 b/1L
a, aj a, ag ac a5 ag bS =

0 a, a, aj a, ag ac b6

0 0 0 a, a, aq a, b7
_O 0 0 0 0 a, a%.J%_

It can be assumed without any loss of generality

The first equation of the system then gives

b
- - -L
by = - ag 27
which implies that b1740 (otherwise bl==b2==0).

of the system (A.7) is given by

a. ag 0 0 0
85 a 87 a
D=ag. |23 % %5 76 7.8
al 8.2 613 8.4 8.5 86
0 0 al az a3 a4
0 0 0 a a

v

&g

a3 _
-b, | a; (A.7)

0

0

0
that ag #0,

The determinant
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Since alaéo and/or a2740 it is obvious that the last three rows
of D, as well as its first three, are linearly independent.
Moreover, since A = {ai} is a self-orthogonal sequence, any of
the first three rows is orthogonal to any of the last three.

Therefore D#¥ 0 and the system (A.7) has a unique solution, which

is
b ;
1 i
b, = - Zfl; (=1)" ay 549

The previous proof can be easily extended to any (even) value

of N,

The group of permutation operations referred to in the
main text can be described as follows. Consider a vector W and
divide it into L pairs of components:

n

w=1{p N=2L=2.

The basic operation T, consists in writing the odd pairs first

1
and the even ones next:

TV = {Bys Py wees Ppgs Pps Brs owees Bfo
If now W is divided into M = 2™ parts (m = 2, 3, ..., n=2),
that is

W= {wl, W
the relation

T W = {lel, T Wy eees T wMYS

defines a new operation Tm. In all cases where n<5 the

g0 wees Wyl

following properties were proved to exist by direct verification:

(a) All different products of the operations T,, T,,c..,T

l,
form a group of (n-1)! operations, the identity operation being

n-2

one of them.

(b) Any operation of this group gives rise to an orthogonal
set of self~orthogonal sequences when applied to the uniform
self-orthogonal sequences of the basic set generated by Equation

(60).
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No general proofs could be found for these proper-

ties which are conjectured to be valid for any value of N.

The previous operations were also applied to many
non~uniform sequences generated by Equations (60) and (61) and
the resulting sequences were self-orthogonal when and only when

e

the starting sequences had symmetrical envelopes .

1.4

Given the N~-long binary sequence A = {ai%, a, = #l,
it is sometimes more convenient to use instead a sequence X = {xi}
of zeros and ones obtained as follows

{O if a, = +1
i

X, =
1 1 ifa, = -1
1

It is easy to see that if A is self-~orthogonal then its length N
must be even and the elements of X must satisfy the following

)
WS

relations :

2r
(mod 2) Z(Xi@KN-Zr+i) =
i=1

provided that 2<2r<N. However, the sequence

1, r odd

o, T even

x={10101111}

satisfies the previous relations but does not correspond to a

self~orthogonal sequence.

PROOF OF THEOREM 8

For r = 1 the above relations give

Xy & X, ® Xyl & Xy = 1

x 8%, 8 x3 @ x, @ xy 30 Xy @ Xy O xy=0

ot
EAY

The sequence {Iai|g is called the envelope of {aiga

%%  The sign @ denotes modulo 2 addition,



- 24l -

By adding the two previous relations it can be concluded that
X3 @ x, @ xy 3 Oxe, = 1.

This process may be continued to show that, for any k such that

22k <N,

Xok-1 @ X @ Xyipea1 @ Fyograr =L (A.8)

This relation shows that in a self-orthogonal sequence A the

vectors

(@paqr 2) and (ay oy g5 aN-21<+2)
must be orthogonal. Let it now be proved that if N = 2n>2

then n cannot be odd. In fact, if
N = 2(2M - 1), M>2
then Equation (A.8) above will give for k = M

¥ore1 @ Fop @ Xy D xgy = 1

which cannot be true. It thus follows that n = 2M and that N = 4M,
q.e.d.

The relationship between associated self-orthogonal
sequences and complementary sequences can be expressed by the

following theorem.

Theorem: If two binary self-orthogonal sequences are associated

with each cther then they are complementary .

Proof: Due to Equation (51) in the main text, the autocorrel-
ation functions of A = {afgand B = {b{s are related as follows:
_ . i i
N-7 :
() = >___ Py Pii;
yor}
Ne s
_ i it
= E L7 ag g GL7 Ay
i=1

% See definition (64) in the main text.
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On making N-i~j+l = r it follows that

N=
h, (3) = (-1)] i a8y

i=1

(-1)7 n_(3), 0<j<N.

il

Since A is self-orthogonal it is possible to write
ha(21<) = 0, 0 <2k<N,
It thus follows that
ha(j) + hb(j) = 0, 0<j<N
and thus A and B are complementary sequences, q.e.d.

By considering the complementary sequences of length 10
given in Ref. [4~4] it can be concluded that the converse of the

previous theorem is not true.

The following table gives the basic self-orthogonal
sequences of length 20 beginning with two-l's.

TABLE 4,5 : Self~orthogonal sequences of length 20,
T T S U AU SR
T N 4 - m et ==t mt -t
T MO T T S S
e . T S
i T T T T
e e T T S T U S
T T e T Tk Al BT
R T ST s s ST S S S
I T S S R T
I T S S S A T T T
e S T T T e o sl S S
T T T T T i i S S
I N T T T T T T ST SR S
I S R s T T ST ST S S
R T T T T T S S
T T I NP SR S R R

* The listed sequences together with those associated with
them can be reversed to produce a total of 64 sequences.
If then these sequences are multiplied by =1, the 128
possible binary self-~orthogonal sequences of length 20
are obtained,
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1.5

Given the CHF F(u) corresponding to the PDF f(x), it

is possible to calculate the exceedence probability function (EPF)
o

Q.(x) = | £(y)ay
X _
without first calculating f(x). For reasons explained in Ref.

E&-Sj, the best way is to take an appropriate reference CHF

G(u), whose EPF Qg(x) is known,-and to calculate

sG) = J L) = s ay = 0G0 = @ )
X
instead of Qf(x). It is easy to show that
oo jux dx
S(u) = | s(x) €

_ F(w) =c(u)
ju

]

and that, for real F(u) and G(u), S(0) = 0. A computer program
hés been written to find s(x) by applying the Fast Fourier
Transform algorithm to the samples of S(u). A symmetrical
Laplace PDF was taken as g(x).

Now let sl(x) be either sal(x) or sb](x) and Fl(u) be
either Fal(u) or Fbl(u) Esee Equations (96) and (97)]. On

defining
1
: %
D, (u) = fF (= s (x+1i))dx
i -1 rl VQE' 1
and N+L~1
F(ukexp {Vl E [Di(u)-l:l}
i=-L

it can be shown that

_ lim
Fp(u) = Ftw.
If instead of using FlL(u), for which FlLGxﬁ = exp[}Vl(2L+N)]==hL,

one uses the CHF
(w) = by

- 2
1 hL

I‘lL

R (u) =
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for which RLQ)9 = 0, the accuracy of the numerical results is
improved, Defining QrL(X) as the EPF of RL(u), then the EPF of
Fl(u), for x>0, is given by

' lim '
Under the assumed conditions the numerical results were found

sufficiently accurate for L = 2,

If the elementary pulse.y(x) is time-limited to T
sec then '
D,(u) = | F_ (—=E—Tyax = H(—-), (A.9)
e ] \/le‘ VN
and thus Equations (101), (102) and (103) follow, The non-zero
semi-invariants corresponding to Equations (10l) and (102) are

respectively'EA-lQJ

2k
Aok = Mok 23
i
and By = KZk by, k=1,
i
where the KZk are semi~invariants of the CHF ¢l(u):
V
Ny = '"""LE Mok fmyik(x)dx’
(VlN) - 0o

the HZk being the even-order moments of prl(x)° It can be shown
that A2k and B2k’ k>1, attain their minimum value under the
conditions (24) when a, =b,=1,1i=1, 2, ..., N, which means
that the noise PDF is closest to the Gaussian PDF when uniform
sequences are used, As the error probability computations have
shown, the fact that the noise tends to become Gaussian is
beneficial when the SNR exceeds a certain threshold and thus it
appears that uniform or nearly uniform sequences should yield
the minimum error probability for SNR's above this threshold.
Moreover, it can be shown that the fraction of errors due to a

single noise impulse is minimized if uniform sequences are used
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and the SNR is sufficiently high. In fact, if one and only
one noise pulse is observed, the noise CHF is given byﬁ Esee

Equation (A.9)] N

1 au
H,(u) = < E H(—=—=)
1 N
i=1 VN
and the corresponding PDF and EPF are respectively

N
h, (x) = == 1 h(..x_\/.—li)
1 VN 2;; ai ai

N
QG =% ) Q(féﬁj)

i=1
where h(x) and Q(x) are the PDF and EPF of H(u). It can be

shown that if

a%r Ey3h(y)___| <0 for y>A
then Q;(B) is minimum if a, =1,i=1,2, ..., N, and B> A//N.

It may seem advisable to minimize the error probability,
as a function of the parameters a, by using some numerical
optimization technique., Yet, the enormous computation time it

would take renders this method impractical.

Up to now the noise pulses were assumed to occur in a
purely random way. To conclude this appendix a case of non-
Poisson noise, where the minimization of the error probability
may lead to strongly non-uniform transmitted sequences A = {ai}
and B = {bi;,is considered., It is assumed that the impulse
response of the receiving filter in Fig. 4.2(b) is time~limited
to E}T/Z, T/2_]. Thus, each noise pulse affects only one signal
sample. Moreover, the following time structure is assumed for

the noise:

(a) The noise pulses occur in bursts in such a way that

each burst affects L consecutive signal samples.

* This CHF corresponds to a noisc obtained by normalizing
to unit variance the noise observed at the point a in
Fig. 4.2(b) under the assumed conditions,
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(b) Each noise~free interval contains at least N-1 signal

samples,

Therefore, each N~long received sequence is either noise~free or

affected by one and only one noise burst.

The noise samples at the input of the delay lines in
Fig. 4.2(b) are assumed to obey a Gaussian distribution with
variance Oi. Since each noise burst can have M = N+L-1 different
positions with respect to the referred delay lines, the noise
samples obtained at the point a in Fig. 4.2(b) can have any of

=1, 2,000y, M, given by
Z§:
=1

where [@. ] is a Mx N matrix of zeros and ones. Therefore,

the variances Oi

Zlﬁ%wzd

the average error probability is given by

1 - A
PeL = > erfc(\/E . )
i=1 i
On making
x, = z°
) 1ij
Si = X aij Xj : (A.10)
j=1
and AS
o= =
O
it follows that "
o= L
PeL = oM erfc(ﬁ s ).
| i=1 i
The problem is thus to minimize PeL assuming that the variables
x; are constrained by Equation (74), that is

E Xj = N, (A.11)

j=1



It is thus possible to write, according to the method of the

Lagrange multipliers,

j=1
M
oX kL
X. ZMN[ X, aij “7\:]“ 0 (A.12)
] i=1 -
M
2 oX, ..
and axa a};k - H2 _—>_ 5 sl. %k (A.13)
i 4MN o7 i i
2
where X, = —=— J? exp(~ —5
T VIR s; 285
BXj Xl H2
and -6-5-“ = -'-(-‘2- - 3).
i i Si

In matrix notation Equation (A.12) takes on the following form:

%00 0= ALV, (4.14)

where Vj =1, j=1, 2, ..., N,
If L = 1 then Exij] is the N x N identity matrix and
thus

Therefore the variables S, have the same value which, according
to Equations (A.10) and (A.1l1), is given by

It can finally be concluded from Equation (A,lB) that, if L = 1
and p.3>/§7ﬁ, the uniform self~orthogonal sequences minimize the

error probability PeL'

Now consider the following particular case:

The matrix bxijj is in this case



1 0 0 O
1 1 0 O
[aij] =0 1 1 0
0 0 1 1

0 0 0 1]

and the system (A.l14) can be written as follows:

+ X, = A

l 2 _ _
X =\ . (217 % =%

2 3 % = X
X3+ 4 = A o)z e

X, + X, =\.
X4 Xe =\ 1 2
Therefore:

2 2
Sl = 83 Xl = x2 + x3
2 2 *

2 2
82 S4 Xl + x2 = X3 + X4‘

o

On taking into account Equation (A.11) it finally follows that

X, =x, = 4/3

1 4
Xy = Xg = %
T R
S§=SZ=%.

In view of Equation (A.13), the previous values correspond to a
minimum of P o1, Provided that [ >V/3/2 = 1,225, According to
Equations (77), a pair of optimum associated self-orthogonal

sequences that can be transmitted is thus

The above method can be used for other values of L and N. The

* Note that the values x, correspond to sequences with
symmetrical envelopes.
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optimum envelope {Iril} obtained will always be symmetrical but
in some cases no self-orthogonal sequence exists with this
envelope., This means that in general the constraints of self-
orthogonality must be included in the formulation of the

optimization problem.
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APPENDIX 2~

ale
rAY

In this appendix, the references to the main text pertain
to Chapter V, unless otherwise stated.
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2.1

In order to calculate the probabilities Peu and PX by
means of Equations (68) and (69) in the main text, a method is
needed for calculating the coefficients in the expansion of

(a + b + c)M. In order to find this method it is first noted that

(a+b+c)2 = (a+btc)(at+btc) = + b.a

a + c.b + c.c,

a.a + a.,b + a.c
+ b.b + b.c + ¢
For M = 3, the above expression is simply'multiplied by (atbtc),
and so on., If every time combining factors or terms are avoided
then a sum of 3M terms, which are all the possible permutations
of the elements a, b and ¢ in M positions, is obtained. 1In order
to obtain these 3M permutations, the simplest way is to generate,
one after the other, the integers from zero to 3M-l, written in
base 3. In Equation (67), ﬂi’ m. and n, can thus be interpreted
as the number of 0's, 1's and 2's, respectively, in the M-digit
integer under consideration; the coefficient Ni is the total

number of integers corresponding to the same set (Ei, m, ni).
The relation (70) can be justified as follows, If
o<1 and PR << q , (A, 1)

then, according to Equations (64) to (66),

P, %gq, P_=pB and Py ¥ p(1 - B). (A.2)
Assuming that ¢i = +1, in the case of an outcome of probability
d, e. £,
i i i _
Gi P_ PO P+ y di = fi’

the following samples are obtained at the sampler butput in
Fig, 5.4 : di samples of values -~A + aj’ fi samples of values
A + Bk and e samples of values A +'Yn, where _€2<:au<:€

j v
n€l<ZBk<1€9 and A + 82<1‘A#Yn]<ZA~€ In view of relations (A.2)

1° _
it may be concluded that the f, samples A+Bk are most likely

affected by Gaussian noise alone, and that all the other samples
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are most likely affected by impulsive noise. Because\de:>12 dB,
most of the errors occur when impulsive noise is present and thus
the fi noise samplesﬁi'may be neglected. The e, noise samplesY£
will be replaced by e, independent random variables with PDF
pz(x). The random variables Uj can either be neglected or
replaced by d.l independent random variables with PDF pz(x). In
the first case the relation (70) is obtained. 1In the second case
the contribution from the aj is overestimated and the following

approximation is obtained
G

. di e, fi

PP ZGiP— PP, Eki(eiA) (A.3)
i=1

where ki = di+ei. In the numerical examples discussed in

Section 5.3, the values given by relations (70) and (A.3) were

found to be mearly equal. This is due to the fact that in these

examples P:ﬁZPO and thus the cases in which diD>O have a much

lower probability than those in which di = fi = 0, This is in

agreement with the comments made about the relation (58) in the

main text.

It is important to note that the conditions (A.l) are,
from a practical viewpoint, equivalent to the conditions (83) and

(84) since usually q ¥ 1,

2,2

In this section, Equation (77) in the main text is
proven, . If El = 82 = EO and Ow = 0 then, according to
Equations (33), (34), (40) and (41),

a, = 1 o = 0
1 - 2QZ(€O/kZ)

w0
+
I

and 28 - €, 28+ €
Q (-—q;;-> = Q, ()

Z
Z

o)
i
il
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Equations (75) and (76) then follow., Now note that

lim
EO->OB" 0

and thus
A .
P[6. =1]e, =1]=1-B — 1
Therefore, if EO = 0 the upper branch of the receiver will only
fail to reach a correct decision when all samples are affected

by impulsive noise, that is, when

1im
EO—»O Peu =0
and
lim P = M
EdéO x P

In view of the above-mentioned Equations (75) and (76) it follows

that, for 0_ = 0,
\

P | = q P =0
+l50~90 Igo—éo
P = p
0l€0~90
dp
+
= e g = PP (0)
dEO EO 20 z
dP_
= = 2p p,(2A)
dEO 80—90 z
dPO
T | € —s0 = ~2P p,(0) - 2p p,(24).
01 O
On using Equation (69) the result
SRS d,-1 e, f. dP_
. = § 46, P00 Py PuogEs t
0 p 0
i=1
i d; e.-1 f, dP,
E eJ Gl P_ PO P+ I +
> 0
i=1
¢ di e fl—l dP+
§ B G P B B

is obtained., On defining
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1 ifn=20
g(n) =
0 if n# 0,

it follows that
dPX

de

L M-l
0 = 2 "‘-lo P q pz(2A>

2 M X, pM[pZ(O) +p_(24)]

where G
Xeo = Z g(di-k)ci, k = 0, 1.
i=1
e EEE =0 for M=\l
_dgo €O~—>O 0

it is easy to derive Equation (77) for j = 0. The expressions
resulting from the minimization of Pe are labelled by j = 1 and
are easily derived by noting that, in Equation (68), a,=1,

which entails that

dPeu M
I =2p Yp(24)
0 Eo-eo
I
where Y = E g(aiwl)Fi.
- i=1
Due to the similarity between Equations (69) and (70)
d
—_—(P P )
dEO X ex | 30*90

can be found simply by replacing G, by GiEei(eiAl) in dPx/dEOE%r90°

Equation (77) will then follow,

2,3

In this section, the method of calculating the error

probability P_,, defined by Equation (57), is explained.

If in Fig. 5.4 the block T is assumed linzar, the
CHF FnGD) of the noise samples at the input of the threshold

detector is, according to Equation (7), given by
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F @ = (qF (@) +pF (w))
M
- ) e ) )
i=0

where pM(l) is given by quﬁtlon (8) and

Fw(w) = exp(- -2— )
In Case 1 9
GZ 2
F @) = exp(- 5 o)
and thus M _ gz 9
@) = ) py() exp(- 5t o)
where i=0 :
2 2 Oz
Ei = M+ i({° - 1), §=O.—"'w.

Therefore, in Case 1

i (1) erfc(—g——/ﬁ_)

i=0
where P = A/OW. If p =1, all the pM(i) are zero except for
= M and thus

pofe=

P, = L eLfc(‘g M)
In Case 2
FZ(OO) = exp(-B|w|)

and thus in order to calculate Peﬁ the method developed in
Chapter IV can be used or those noise samples due to the Gaussian
noise component alone can be neglected, provided that de > 12 dB

and {>>1. The latter method gives
M ,

n ne . i
F (@) E Pyli) F ()

- 1=0
M

= ? Py (1) exp(~ Bilw]|)

i=0
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and thus

Pez = PM(i) ("]2'.' - % tg-l M‘Ip),

e

i=1

where P= A/B. If gdB 220 dB and Pip > 12 dB, the previous
method of computing Pe£ is accurate enough. If, however,
‘PdB‘@iIZ dB, it is not possible to neglect the noise samples of
variance Gé and Pei will have to be calculated directly from

Fn(w), as explained in Chapter IV. It is easy to see that in

Case 2
_Ll_1_ -1p

Finally, it is important to point out that, in both
cases studied, if the noise samples of variance Oé are neglected,
the expression obtained for Py depends on P and [, only through

the ratio MU = p/g.
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APPENDIX 3

o,
-

In this appendix the references to the main text
pertain to Chapter VI, unless otherwise stated.
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If h(t) is time~limited to the interwval [T/Z, T/2] then
£,(t) = VT h(tT)

According to Theorem 4 in Chapter IV, h(t) will be a Nyquist
pulse if and only if fi(t)—l is an odd.function with respect
to the point t = % in the interval EO,%]. From Equations (35),
(36) and (40) it follows that

Lt H®
B2 B2

and
t = r(B/v) = s(v).
Therefore, h(t) will be a Nyquist pulse if and only if s(v)-%

is an odd function with respect to the point v = % in the

interval EO,l]. From Equation (42) it follows that
p(v) = -2

and thus it can be concluded that h(t) is a Nyquist pulse if
and only if p(v) is an even function with respect to v = % in

the interval [b,l].

3.2 COMPUTER PROGRAM  FOR MONTE CARLO SIMULATION

The computer program used to calculate the results
of Section 6.3 will now be described., The program is based on

the following assumptions:

(i) The impulsive noise at the receiver input is modelled
as a sequence of Dirac impulses with statistically independent

intensities (see Section 2.3);

(ii) The impulse response of the receiving filter is time-

limited to an interval of T seconds duration.

‘ Under these conditions the noise samples delivered to
the decision device are statistically independent and can be

generated within a reasonable time of coemputation.,
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The listing of the program 1is included at the end
of this appendix. The program  structure is as follows:

(a) Main routine: PROGRAM MONTE
Control parameters: ICASE, LCASE, MODE.

ICASE controls the use of the subroutines RANGE and RANGEl (see
below) which generate the sequence of noise samples., If ICASE
= 1 or 2 the samples of a Poisson impulse noise are generated.

In these cases the random variables u in Equation (55) are

1i
assumed to have unit variance, that is
2 2 ——
= V = . =
Oul lor/p 1 * Of p/Vl'

When ICASE = 3 or 4 the random variables u,, are drawn directly
from a prescribed distribution. Foxr ICASE = 3 the time distrib-=
ution defined by Equations (63) and (64) is used whereas for

ICASE = 4 the time structure is given by Equations (69) and (70).

If LCASE = 1 the background noise is assumed absent.
If LCASE = 2 a background Gaussian mnoise is considered but its
contribution to the noise samples that include impulsive noise

is neglected.

The parameter MODE controls the subroutines DCSN and
ZNL (see below).

Other parameters:

PU=p, QU= gq.

When ICASE < 4, p can take any value between 0 and 1,
When ICASE = 4 an easy generation of the random integeré k and
n defined by Equations (69) and (70) imposes that p be given by
the reciprocal of an integer denoted by LU in the program.

The parameter r in Equation (70) is denoted by LR.
RNUL = V., see Equation (27).

SIGMA = §_ if ICASE = 1 or 2;
= 1 if ICASE = 3 or 4.
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When ICASE = 3 or 4 the parameter SIGMA denotes a
dispersion parameter of the random variables Uy which is chosen

as the parameter kz in Chapter V (see footnote on page 115).

A: magnitude of the signal samples,
ADB expresses A in dB:
A | ADB = 20 loglOA.
B = A//p. |
BDB expresses B in dB and thus gives the ratio between
the average signal power and the average impulsive noise power

whenever the latter is finite.

SIGMW = OW, standard deviation of the background

Gaussian noise.

RAW = lﬁJw and thus gives the impulsive-to~Gaussian

noise ratio as defined in Chapter V, Equation (44).
RAWDB expresses RAW in dB.

EPSI is the receiver parameter EO (see experiments

1 to 4).
Z = EO/OW; ZDB expresses Z in dB.

The subroutines RANGE and RANGEl generate JK noise
samples each time they are called. By calling them NTOTAL times,
a total of NTOTALxJK samples can be generated,

When the system described in Chapter IV is being
simulated the parameters Ml, M2 and N are given the following

values:
ML = M2 = 1, N=2 .

The parameter N is the length of the self-orthogonal
sequences, All the values of L from L1 to L2 are considered,
When the system described in Chapter V is being studied the

following values are used:
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L1 = L2 = 1 S N=1,

The parameter M is the number of pulse repetitions.

All the values of M from Ml to M2 are considered.

(b) SUBROUTINE RANGE (KS, R, ICASE, LCASE, FFX).

This subroutine generates KS noise samples which are
stored in the array R, If ICASE = 1 or 2 the method described
by Equations (51) and (53) is used to generate samples of Poisson
impulse noise., If ICASE = 1, the subroutine RANDI (see below)
generates values which are distributed according to psl(x)o 1f
ICASE = 2, RANDI generates values which obey the PDF pr(x).

LCASE has the same meaning as above,

The argument FFX represents the function

FFX(U) = [£,(u/2)| /B

Esee Equation (49)]. In all the simulation experiments studied

in Section 6.3 the following case was considered:
FFX(U) = cos(MU/2).

This case corresponds to the pulse given by Equation (35),
Section 4.2. FUNCTION FFX(X) is only used when ICASE = 2,

RNU1, QU, SIGMA and SIGMW are inpﬁt parameters to this
subroutine through a COMMON statement.

(c) SUBROUTINE RANGE1l (KS, LCASE, R)

When ICASE = 4 this subroutine is called to generate
KS mnoise samples which are stored in the array R. The burst
and gap lengths are selected according to the probability
distributions (69) and (70). It is assumed that the parameter r
is an integer and that p is the reciprocal of some integer { > 1.
Therefore v = 1 + (2-1)(xr-1) is an integer. Under these conditions

both the gap and the burst lengths obey a Pascal distribution,
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SIGMA, SIGMW, LR and LU are input parameters to
this subroutine through a COMMON statement. ‘

(d) SUBROUTINE CARLO (NTYPE, MODE, N, M, SS, ADB, NT,
R, JK, NX, NE)

This subroutine is intended to add the noise to the
signal, simulate the decision procedure and count the number of
errors, NE, observed in NT data bits. The arguments MODE, N, M
and ADB have the meaning explained in (a)., The array R contains
JK noise samples., When N>1 the array SS contains a self-
orthogonal sequence of length N which represents the received
signal samples associated with each one of the data bits, This
array SS is generated by subroutines SOFGEN and SIGNAL (see
below). If NIYPE = 1 all the components of SS have the same
absolute value. This value of NTYPE was assumed in experiment

5 (see Subsection 6.3.5).

When N = 1 also NX = 1, When N>1 the argument NX is
the number of signalling intervals between two consecutive
transmitted self-orthogonal sequences. In experiment 5 the

value NX = 2 was taken,

(e) SUBROUTINE SOFGEN (KM, NR, IND, N)

This subroutine generates an integer array N containing
a self-orthogonal sequence whose elements have unit absolute
value, The method of generation is that used in Section 4.2.3
to construct Table 4.1, The dimension of the array N must be a
power of 2, the exponent of which is M. If KM>2 the array IND
(of dimension KM-2) must be given before calling this subroutine,
In order to obtain the sequences of Table 4,1 all the components
of IND must be set equal to unity. By choosing a different

array, subjected to the conditioms
1 < IND(L) € L+1

(L=1, 2, ..., KM~2), the sequences of the other orthogonal
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sets (see Appendix 1.3) can be generated. The integer NR is
the order of the generated sequence N within the orthogcnal set
specified by the array IND. Before this subroutine is called,
the input arguments KM, NR aﬁd IND must thus be specified. If
sequences of length greater than 64 are required, the dimension

of the array NB (see listing) must be increased.

(£) SUBROUTINE SIGNAL (NTYPE, KM, IS, DIR, S)

Before calling this subroutine the subroutine SOFGEN
must be called to generate a self-orthogonal sequence 1IS. The

argument KM has the same meaning as above,

If NTYPE = 1 the output array S is simply set equal to
IS, If NTIYPE >1 the array S also depends on the afray DIR, In
this case the array S is generated according to Equations (60)
and (61) in'Ghapter IV and the array DIR is related to the
parameters |, (i=1, 2, ..., KM) in these equations in the

following way:
B, = (1 = DIR(K))TL /4.

The output vector S has a length equal to the number of its

components,

(g) FUNCTION FFX(X)

See section (b) above.

(h) SUBROUTINE DCSN (MODE, M, A, RX, IE)

The input arguments MODE, M and A have already been
defined in (a). The input array RX contains the M noise samples
delivered to the decision device for a given data element,

These noise samples are calculated by subroutine CARLO which
calls DCSN to make the decision. The output argument IE is

equal to unity when an error occurs and to zero otherwise.
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If MODE = 1 a linear decision device is simulated,
2 the
3 the

which is optimum against Gaussian noise. If MODE

receiver shown in Fig., 3.5 is simulated. If MODE

receiver shown in Fig. 5.4 is simulated.

EPSI (see (a) for definition) is an input parameter

to this subroutine through a COMMON statement.

(i) FUNCTION ZNL (X, Y, MODE)

This subroutine is called by DCSN to simulate the
blocks ZNL and T shown in Figs. 3.5 and 5.4 respectively. The
argument X represents the magnitude of the signal samples which
was denoted by A above. The argument MODE has the same meaning

as above,

(3) Random~number generators
SUBROUTINE RANDI (NN, SIGMA, A, B)

- This subroutine generates NN (1 or 2) values of a
random variable with dispersion parameter SIGMA, as explained in
(a). If NN = 1, only A is generated and if NN = 2, both A and B
are generated. This subroutine calls another random-number

generator in accordance with the distribution required.

FUNCTION RANF(X) and
FUNCTION UNIF(X)

The values given by these two functions are uniformly
distributed in the interval (0,1). RANF is included in the
system library of the computer CDC 6400 on which this program
was run. The program was tested in situations for which an
exact solution is known. It was found out that the agreement
between the results of the simulation and theexactsQlution
improved when RANF was replaced by UNIF in some program  state=-
ments., It is believed that this improvement stems from the more

accurate behaviour of UNIT near the limits of the interval (0,1).
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SUBROUTINE NORMAL (NN, SIGMA, A, B)

This subroutine generates NN values of a Gaussian
variate with zero mean and standard deviation SIGMA, 1If NN =1,

only A is generated and if NN = 2, both A and B are generated.
SUBROUTINE LAPLAC (X)

In this case, the value X of a Laplace variate with

zero mean and unit variance 1s generated.
SUBROUTINE PASCAL (P, L, K)

The integer K obeys a Pascal distribution, that is,

Prob [K] = () (=B)(1-p)"

It

(K=0, 1, 2, ...) .
SUEROUTINE POISSN (P,K)
The integer K obeys a Poisson distribution, that is,
Prob [K] = exp(-P) (P /K!)
(R=10, 1, 2, v.0)s
SUBROUTINE CAUCHY (X)

The random number X obeys a symmetrical Cauchy PDF

such that the absolute value of X has unit median.

A detailed description of the simulation techniques

underlying the previous five subroutines can be found in Refs.

[6-3,4].
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PROGRAM LISTING (FORTRAN IV)

PROGRAM MONTE (INPUT,OQUTPUT, TAPES5=INPUT,TAPE6=0UTPUT)
DIMENSION R(4000)
DIMENSION IND(4),IR(64),DIR(6),55(64),LE(40,6,6),KT(6,6)
COMMON RNU1,QU,SIGMA,SIGMW,EPSI,LR,LU
EXTERNAL FFX
ICASE=3
LCASE=2
MODE=3
C NOW SET VALUES OF PU, QU, RNUL
IF(ICASE.EQ.4) GO TO 201
RNU1=1.0/8.0
QU=EXP (-RNU1)
PU=1.0-QU
GO TO 202
201 CONTINUE
LU=8
PU=1.0/FLOAT(LU)
QU=1.0-PU
RNU1=-ALOG(QU)
202 PUL=-10. *ALOG10(PU)
WRITE(6,152) PU,PUL,QU,RNUL
152 FORMAT (1X,8E15.5)
JK=2000
LR=4
Ll=1
L2=1
M1l=1
M2=3
RAWDB=32.0
ZDB=9.0
IL=40
MTOTAL=25
NTYPE=1
YK=112111716655168.0
C XK=2,0%%48
XK=281474976710656.0
R=1
IND(1)=IND(2)=IND(3)=1
WRITE(6,420)
WRITE(6,200) ICASE,LCASE,MODE
200 FORMAT (1X,8115)
WRITE (6,420)
IF(ICASE.EQ.4) WRITE (6,200) LU,LR
ADB1=12.0-RAWDB
ADB2=26.0~-PUL
CF=0.115129254649702
IF(LCASE.EQ.1) GO TO 510
RAW=EXP (RAWDB*CF)
SIGMW=1.0/RAW
Z=EXP(ZDB*CF)
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151

162
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140
160

420

142

143

190
100
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EPSI=Z7%SIGMW

WRITE(6,710)

WRITE(6,152) RAW,EPSI

DO 151 L=L1,L2

DO 151 M=ML,6M2

DO 151 I=1,IL

LE (I,M,L)=0

ZK=RANF (YK)

SIGMA=1.0

IF(ICASE.LT.3) SIGMA=SQRT(PU/RNU1)
DO 160 K=1,MIOTAL

IF (ICASE.LT.4) CALL RANGE(JK,R,ICASE,LCASE,FFX)
IF(ICASE.EQ.4) CALL RANGEL(JK,LCASE,R)
DO 140 L=L1,L2

KM=L-1

N=2%IM

CALL SOFGEN(KM,NR,IND,IR)

CALL SIGNAL(NTYPE,KM,IR,DIR,SS)
NX=1

IF(N,GT.1) NX=2

DO 161 M=ML,M2
KT(M,L)=INT(FLOAT(JK+NX-N)/FLOAT(NX*M))
DO 162 I=1,IL
ADB=ADB1+FLOAT(I+I-2)
IF(ADB.GT.ADB2) GO TO 161

CALL CARLO(NTYPE,MODE,N,M,SS,ADB,KT(M,L),R,JK,NX,NE)
LE(I,M,L)=LE(I,M,L)+NE

CONTINUE

CONTINUE

CONTINUE

DO 141 L=L1,L2

N=2**(L—l)

DO 192 M=M1,M2

WRITE(6,420)

FORMAT(1X//////)

WRITE(6,142) N,M

FORMAT(12X,4H N=,14,11X,4H M=,1I4)
WRITE (6,143)

FORMAT(1X//)
FAT=1.0/FLOAT(MTOTAL*KT(M,L))

DO 100 I=1,IL
ADB=ADBI+FLOAT(I-+I-2)
IF(ADB.GT.ADB2) GO TO 192

A=EXP (ADB*CF)

BDB=ADB+PUL

B=EXP(BDB*CF)
PE=FAT*FLOAT(LE(I,M,L))
WRITE(6,190) A,ADB,B,BDB,PE
FORMAT(1X,2(2EL5.5,5X),EL5.5)
WRITE(6,710)



710
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FORMAT(1X)

CONTINUE

CONTINUE
WRITE(6,420)
YR=AINT(RANF(-1, )*XK)

" WRITE(6,998) YK

FORMAT(1X,F22.1)
STOP
END

SUBROUTINE RANDI(NN,SICMA,A,B)
CALL CAUCHY(A)

A=A*STGMA

IF(NN,EQ.1) RETURN

CALL CAUCHY(B)

B=B*S IGMA

RETURN

END

FUNCTION FFX(X)

FFX = C0S(1.5707963267948966%*X)
RETURN

END

FUNCTION ZNL(X,Y,MODE)

COMMON RNUL,QU,SIGMA,SIGMW,EPSI
GO TO (100,100,200),MODE
CONTINUE

ZNL=X

RETURN

CONTINUE

ZNL=X

RETURN

END

SUBROUTINE RANGE(KS,R,ICASE,LCASE,FFX)
DIMENSION R(KS)

COMMON RNU1,QU, SIGMA,SIGMW,EPSI
IF(ICASE.EQ.2) SIGMA=SIGMA*1.414213562373095
KR=KRX=0

DO 800 L=1,KS

R(I)=0.0
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IF(ICASE.EQ.3) GO TO 730
CALL POISSN(RNUL,LX)
IF(LX.EQ.0) GO TO 750
IF(KR.EQ.0) GO TO 700
R(I)=BB

KR=0

LX = LX~1

IF(LX.EQ.0) GO TO 800
KR=MOD(LX, 2)
JL=(LX-KR)/2

IF(JL.EQ.0) TO GO 600

DO 500 J=1,JL

CALL RANDI(2,SIGMA,AA,BB)
IF(ICASE.EQ.1) GO TO 510
AA=AA*TFX(RANF(0.0))
BB=BB*FFX(RANF(0.0))
R(I)=R(I)+AA-+BB

CONTINUE

IF(KR.EQ.0) GO TO 800
CALL RANDI(2,SIGMA,AA,BB)
IF(ICASE.EQ.1) GO TO 520
AA=AA*FFX(RANF(0.0))
BR=BB*FFX(RANF(0.0))
R(I)=R(I)+AA

GO TO 800

XX+UNIF(0.0) :
IF(XX.LT.QU) GO TO 750
IF(KR.EQ.Q) GO TO 740
R(I)=BB

KR=0

GO TO 800

CALL RANDI(2,SIGMA,AA,BB)
R(I)=AA

KR=1

GO TO 800

IF(LCASE.EQ.1) GO TO 800
IF (KRX.EQ.0) GO TO 720
R(I)=DD

KRX=0

GO TO 800

CALL NORMAL(2,SIGMW,CC,DD)
R(I)=CC

KRX=1

CONTINUE

RETURN

END
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SUBROUTINE RANGE1l(KS,LCASE,R)
DIMENSION R(KS),KR(2),PX(2),LX(2),BR(2)
COMMON RNU1, QU,SIGMA,SIGMW,EPSI,LR,LU
NC=0

PX(2)=1.0/TFLOAT(LU)

PX(1)=1.0-PX(2)

KR(1)=KR(2)=0

LX(1)=LR

LX(2)=14+(LU-1)*(LR~1)

CONTINUE

DO 800 I=1,2

CALL PASCAL(PX(I),LX(I),KK)

KK=KK+1

IF(I.EQ.1. AND.LCASE.EQ.1) GO TO 710
IF(KR(I).EQ.0) GO TO 700

NC=NC+1

R(NC)=BB(I)

IF(NC.EQ.KS) RETURN

KR(I)=0

KK=KK-1

IF(KK.EQ.0) GO TO 800

KR(I)=MOD(KK,2)

JL=(KK-KR(I))/2

IF(JL.EQ.0) GO TO 600

DO 500 J=1,JL

IF(I.EQ.1) CALL NORMAL(2,SIGMW,AA,BB(1l))
IF(I.EQ.2) CALL RANDI(2,SIGMA,AA,BB(2))
NC=NC+1

R(NC)=AA

IF(NC.EQ.KS) RETURN

NC=NC+1

R(NC)=BB(I)

IF(NC.EQ.KS) RETURN

CONTINUE

IF(KR(I).EQ.0) GO TO 800

IF(I.EQ.1l) CALL NORMAL(2,SIGMW,AA,BB(1))
IF(I.EQ.2) CALL RANDI(2,SIGMA,AA,BB(2))
NC=NC+1

R(NC)=AA

IF(NC.EQ.KS) RETURN

GO TO 800

DO 720 J=1,KK

NC=NC+1

R(NC)=0.0

IF(NC.EQ.KS) RETURN

CONTINUE

GO TO 100

END
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SUBROUTINE CARLO (NTYPE,MODE,N,M,SS,ADB,NT,R,JK,NX,NE)
DIMENSION SS(N),R(JK)
C DIMENSION RX(M)
DIMENSION RX(20)
M1=M:*NX
NE=ID=0
CF=0.115129254649702
B=EXP (ADB*CF )*SQRT(FLOAT(N))
DO 500 K=1,NT
IP=ID _
DO 160 I=1,M
SUM=0.0
DO 190 J=1,N
TERM=R (IP+J)
IF (NTYPE.EQ.2) TERM=TERM*SS(J)
190 SUM=SUM+TERM
RX(I)=SUM
160 IP=IP+NX
" CALL DCSN(MODE,M,B,RX,IE)
NE=NE+IE
500 ID=ID4M1i
RETURN
END
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SUBROUTINE SOFGEN(KM,NR,IND,N)

IF(KM.LE.2) ARRAY IND IS NOT USED

DIMENSION IND(KM-2),N(ND),NB(ND) WHERE ND=2%*%*KM

MAKE SURE THAT KM.GE.0 AND 1.LE.NR.LE.ND
1.LE.IND(L).LE, (L+1)

DIMENSION IND(1),N(1)

DIMENSION NB(64)

IF(KM.GT.0) GO TO 600

N(1)=1

RETURN

DO 100 J=1,KM

NB(J)=-1

DO 410 1=1,NR

DO 200 J=1,KM

NB(J)=-NB(J)

IF (NB(J).EQ.1) GO TO 200

GO TO 410

CONTINUE

CONTINUE

N(1)=N2=1

DO 420 I=1,KM

N1=N2+N2+1

DO 400 J=1,N2

NX=N1-J

N(NX)=N(J)

IF(NB(I).EQ.~1) N(NX)=-N(NX)

NB(I)=-NB(I)

N2=N2-+N2

IF(KM.LT.3) RETURN

ND=27*KM

NL=KM-2

KT=KM-1

DO 530 I=1,NL

NG=IND(L)-1

IF(NG.EQ.0) GO TO 530

NV=2#%%(KT-L)

IL=2%%(L=NG)

KL=2**NG

NX=KL*NV

NY=NX-+NX

NS=0

DO 560 L=1,IL

N1=N2=NS

DO 550 K=1,KL

DO 520 J=1,NV

NB(N1+J)=N(N2+7J)

NB(N1+NX+J)=N(N2+NV+J)

N1=N1+NV

N2=N1-+NV
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560 NS=NS+NY

DO 540 J=1,ND
540 N(J)=NB(J)
530 CONTINUE

RETURN

END

SUBROUTINE SIGNAL(NTYPE,KM,IS,DIR,S)
IF (NTYPE.EQ.1) S IS SET EQUAL TO IS
IF (NTYPE.GT.1) S DEPENDS ALSO ON DIR
DIMENSION IS(ND),DIR(KM),S(ND)
DIMENSION IS(1),DIR(1),S(1)
ND=2:%KM
IF (NTYPE.GT.1) GO TO 600
DO 500 I=1,ND
500 S(I)=FLOAT(IS(I))
RETURN
600 SN=SQRT(FLOAT(ND))
C HI=PI/4.0
HI=0,7853981633974483
LJ=1
S(1)=1.0
DO 200 I=1,KM
DIR(I)=1.0-DIR(I)
KJ=LJ+LJ+1
X=HI*AMOD(DIR(I), 4.0)
A=CO0S(X)
B=SIN(X)
DO 300 J=1,LJ
S(KJ-J)=S(J)*B
300 S(J)=S(J)*A
200 LJ=LJ+LJ
DO 400 L=1,ND
400 S(I)=SIGN(S(I),FLOAT(IS(I)))*SN
RETURN
END

(oMo N

SUBROUTINE DCSN(MODE,M,A,RX,IE)
DIMENSION RX(M)
COMMON RNUL,QlJ,SIGMA,SIGMW,EPSI
IE=0
SUM=0.0
Go TO (100,200,300),MODE
100 TEST=-A*FLOAT(M)
DO 400 L=1,M
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SUM=SUM+RX(I)

GO TO 600

TEST=0.0

DO 500 I=1,M
XX=A+RX( 1)

SUM=SUM+ZNL (XX,A,MODE)
GO TO 600

TEST=0.0

BB=A+A

- IT=0

DO 700 I=1,M

AA=RX(I)+BB
IF(ABS(RX(I)).LT.EPSI) IT=IT+1
IF(ABS(AA).LT.EPSI) IT=IT-1
IF(IT.EQ.0) GO TO 810
IF(IT.LT.0) IE=1

RETURN

DO 800 I=1,M

XX=A+RX(I)
SUM=SUM+ZNL(XX,A, MODE)
IF(SUM.LT.TEST) IE=1
RETURN

END

FUNCTION UNIF(X)
UNIF=RANF(0.0)
UNIF=UNIF+RANF(0.0)
IF(UNIF,GT.1.0) UNIF=UNIF-1.0
RETURN

END

SUBROUTINE NORMAL(NN,SIGMA,A,B)
DISTRIBUTION N(O,SIGMA**2)
IF(NN.EQ.1) ONLY A IS GENERATED
IF(NN.EQ.2) BOTH A AND B ARE GENERATED
A AND B ARE INDEPENDENT VARIATES
Y=RANF (0. )

Z=RANF(0.)

X=6,28318530717958%*Z
AA=SQRT(-2.*ALOG(Y))
AA=AA*SIGMA

A=AA*COS(X)

IF(NN.EQ.1) RETURN

B=AA*SIN(X) '

RETURN

END

ot P e A 3 7 BRSO P, P P




- 278 -

SUBROUTINE LAPLAC(X)
C  LAPLACE DISTRIBUTION
C UNIT VARIANCE
R=RANF(0.0)
R=0.707106781186548*ALOG(R)
X=RANF(0.0)-0.5
X=SIGN(R,X)
RETURN
END

SUBROUTINE PASCAL(P,L,K)
PX=1.0/AL0OG(P)
K=0 -
DO 100 I=1,L
RX=ALOG(UNIF(0.0))
100 K=K+INT(RX*PX)
RETURN
END

SUBROUTINE POISSN(P,K) .
K=0
B=EXP(~P)
TR=1.0
300 TR=TR*XUNIF(0.0)
IF(TR-B) 100,200,200
200 K=K+1
GO TO 300
100 RETURN
END -

SUBROUTINE CAUCHY(X)
XeoosoCAUCHY VARIATE
ABS(X) HAS UNIT MEDIAN
PI=3,141592653589793
R=RANF(0.0)-0.5
X=TAN(PI*R)

RETURN

END

o0
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N.B. The previous listing corresponds to the first run of
Experiment 1 (see Subsection 6.3.1). In the second run the
constant YK (see statement 34 of the main routine) should be
given the value written out in the first run so as to ensure
that the basic random-number generator RANF will start where it

stopped in the first run, as stated in Section 6.3.

For the other experiments the following modifications
should be introduced and in some cases the basic parameters should

be reset:

Experiment 2:

SUBROUTINE RANDI (NN,SIGMA,A,B)
CALL NORMAL (NN,SIGMA,A,B)
RETURN

END

Experiment 3:

FUNCTION ZNL(X,Y,MODE)
COMMON RNUL,QU,SIGMA,SIGMW,EPSI
GO TO (100,100,200),MODE
100 CONTINUE
ZNL=X
RETURN
200 CONTINUE
AA=1, O+ (R+Y ) %2
BB=1.,0+(X=-Y )
RETURN
END

Experiment Ly

The same program structure as in Experiment 1.

Experiment 5:

SUBROUTINE RANDI (NN,SIGMA,A,B)
CALL LAPLAC(A)
" A=A%SIGMA

IF(NN.EQ.1) RETURN

CALL LAPLAC(B)

B=B*S ICMA

RETURN

END
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GL.OSSARY OF SYMBOLS AND TERMS

vector
matrix
determinant

Kronecker delta (if i=j then 6

lJ-—O)

Dirac delta function with spike at t=t

1; if i#j then

error function [ See Ref. [2-36], p. 336]
complementary error function‘

energy of the signai s(t)

expected value of the random variable x

exponential function where € is the natural base
of logarithms

frequency

= Ce(e)]"

complex conjugate of g(t) |
rectangular pulse (=1 if |t]|<<0.5; =0 if lt]| >0.5)

imaginary part of the complex number z (if z=a+jb

then Im[z]

imaginary unit

estimate of ki

natural logarithm

logarithm to the base b

likelihood ratio

number of combinations of i out of n
sample waveform of a noise process

a linecar code capable of correcting t random errors

(n = code length, k = number of information digits)
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angular frequency (radians per second)
probability of error
peak transmitted power

average transmitted power

S
P[ﬁ] = Prob[ﬂ] probability of the event E

HElc]

probability of the event E conditioned on the
occurrence of the event C

ﬂ:El,...,En’Cl,...,Cm] probability of the simultaneous occurrence

Rd:é]
S(£)
sinc X
sgn x

t

t =t -mT
n o
§=<:x:>

|21

R

N\

@ (mod 2)

* (on line)

* (superscript)complex conjugate of a number (i.e. z")

of the events El”"’E conditioned on the
simultaneous occurrence of the events

Cl,.l.’Cm.
real part of z

Fourier transform of s(t)

sinTx
T

signum function (=1 if x>0; =0 if x <0)

continuous time

discrete time (n=...,—2,~l,0,l,2,...)
mean value of the random variable x
modulus of the complex number z
approximately equal

greater than or approximately equal
less than or approximately equal
much greater than

much less than

therefore

modulo 2 addition

convolution

ots
"
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A/D converter analog-to-digital converter

CHF characteristic function

EPF exceedence probability function [See page27, £q. @]
FDM frequency-division multiplex

HF _ high frequency_

IGNR impulsive-to=Gaussian~noise ratio
OFC orthonormal function coding

PDF probability density function

PSC : parallel-to-serial converter
r.m.s value root-mean-square value

SGNR signal-to-Gaussian-noise ratio
SINR signal~-to-impulsive-noise ratio
SNR .. signal~to-noise ratio

SPC serial~to~parallel converter

VLF very low frequency
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Baud - signalling rate of one pulse per second.
Hertz (Hz) - frequency of one cycle per -second.
Analog signal ~ continuous-time waveform with continuous amplitude.

Baseband waveform - analog waveform essentially frequency~limited
to an interval (0,F) for a given F.

Discrete-time signal - any signal that is defined only at the
instants t =t nT (p=1...,-2,-1,0,1,2,...) for some T.

Non-continual noise - a noise defined in terms of a given time
distribution and exhibiting different properties in
adjacent intervals of time,

Threshold detector - ény device that makes a binary decision by
comparing the input voltage with a threshold wvalue.

Null-zone detector - any device that only makes a binary decision
when the input voltage is outside the interval defined
by two threshold values., TFor an input voltage inside
this interval (null-zone) no decision is made and an
erasure (or null) symbol is produced.

Decision device - that part of a receiver which decides on each
transmitted symbol on the basis of a set of decision
statistics obtained from the received signal.
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