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AOS MEUS PAIS 

Every fulfilment is slavery. 

It drives us to a higher 
fulfilment. 

Albert Camus, "The Rebel". 
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ABSTRACT 

This thesis is concerned with two methods of improving 

the reliability of binary data transmission over linear channels 

in situations where the error-rate is essentially determined by 

impulsive noise. 

The first proposed method utilizes a new class of 

signal waveforms which allows the designer to choose at will the 

duration of the transmitted waveforms and to achieve, for a 

given channel bandwidth, the same transmission rate as in the 

conventional systems. The transmitted waveforms overlap in the 

channel but, owing to their autocorrelation and crosscorrelation 

properties, intersymbol interference can be prevented from 

arising at the detector output. This method turns out to be 

useful only in the high signal-to-noise ratio (SNR) region. 

The second method, which is more effective in the low 

SNR region, involves the use of several identical pulses for 

each binary symbol to be transmitted. The proposed decision 

device first detects which pulses are more likely to have been 

strongly corrupted by impulsive noise and then uses this knowledge 

to choose the decision rule. A procedure for calculating the 

optimum number of pulse repetitions when the system includes a 

binary linear forward-acting error-correcting coding scheme is 

also presented. 

The error-rate analysis for the two methods is carried 

out in the presence of Poisson impulse noise and one example of 

non-Poisson impulse noise. In the latter case the results were 

obtained by means of a Monte-Carlo simulation and the exercise 

is intended to provide an indication of the effect of long 

bursts of impulsive noise on the performance of the proposed 

systems. 
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CHAPTER I 

INTRODUCTION 

Dimidium facti qui coepit 

habet: sapere aude. 

Horace, "Epistles". 
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1.1 	THE PROBLEM AND BASIC ASSUMPTIONS 

This thesis contains the results of an investigation 

into the problem of transmitting binary data through a channel 

perturbed by impulsive noise. Impulsive noise consists of 

transient disturbances of random energies separated in time by 
du ring 

random intervals, A  which the background Gaussian noise is the 

dominant noise process. In practice the fraction of time for 

which these transient disturbances show significant amplitudes 

is usually small. However, the amplitudes of the impulsive 

disturbances are generally quite large compared with the peaks 

of Gaussian noise having the same average power as the observed 

noise. This explains why the observed noise usually has a 

first-order probability density function (PDF) with much longer 

tails than a Gaussian PDF of the same variance, and why most of 

the errors are caused by the impulsive component of the noise. 

Fig. 1.1 is the functional diagram of the communication 
systems considered in this thesis. The encoder-decoder is 

assumed to be that part of the system in which a binary linear 

error-correcting code is implemented D-c. Let the encoded 
binary symbols be presented at a constant rate of one every Tl  

seconds to the waveform generator which is assumed to transmit 

a group of L symbols at a time by sending through the channel 

every LT1 
seconds (signalling interval) one of 2

L signal wave- 

forms s (t-kLT1 	
,L 

) (i = 0,1,..., 	k = 	selected 

in some way depending on the corresponding group of L binary 

symbols.
* 

It is further assumed that the channel is linear and 

perturbed by an additive noise n(t) of the type defined above. 

Itfollowsfromthischannelmodelthatifs.(t-kLy is 

transmitted, the received waveform is given by Zik(t-kLT1)+n(t) 

Throughout the thesis, any information-tearing entity is 
termed signal. Signal waveform, waveform or, more often, 
pulse, are names given to analog (continuous-time, 
continuous-amplitude) signals. 



Binary data 
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1 
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generator 

Binary 
encoder 

Fig. 1.1: Basic functional diagram 
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whereZik( t-kLT1
) is the result of a linear operation*  performed 

on s.(t-kLT1). The waveform detector, which is assumed to 

operate in synchronism with the waveform generator, will have to 

decide on the basis of the received waveform Zik(t-kLT1)+n(t), 

and its knowledge of the channel and the transmitter, which group 

of L symbols was transmitted. The waveform Z t-kLT ) may be a ik(  1„ 
highly distorted version of silt-kLT1

) and the overlap of 

consecutive waveforms may prevent the waveform detector from 

always reaching a correct decision, even in the absence of 

noise. In general it is not possible to distinguish between the 

errors caused by the noise and the errors caused by the overlap 

of the received waveforms. Therefore, in searching for a 

method for combatting one cause of errors one tends to lose 

insight into the problem if the other impairment is also present. 

For this reason the channel is assumed throughout this thesis to 

be distortionless, that is, 

Zik(t-kLT1) = asi(t-kLTi-o) 

where a is a constant attenuation and 6 is a constant delay. For 
simplicity, it will often be assumed that a = 1 and 6 = 0. 

Other values of a and 6 are readily accommodated into the theory. 

The techniques described and examined in this thesis are there- 

fore only applicable to those cases where either the effect of 

the distortion introduced by the channel is known to be 

negligible or this distortion has been effectively removed by 
*** 

equalization . In the latter situation the equalizer is 

considered in this thesis as part of the analog channel. 

The subscript k in Zik  accounts for the possibility of 
the channel response depending on the epoch in which 
the transmitted pulse was sent (time-varying channel). 

This overlap accounts for what is usually known as 
intersymbol interference D-2:j. 

*** Equalization is the name given to the technique in which 
any device capable of compensating for the distortion 
introduced by the actual channel is used. 

** 
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The operation of the system depicted in Fig. 1.1 can 

be summarized as follows. The waveform generator should use the 

set of 2L signal waveforms which best counteract the detrimental 

features of the channel in the sense of easing the task of the 

waveform detector. Whenever waveform design and detection fails 

to yield an acceptably low error probability the encoder-decoder 

pair is included in the system. The encoder is intended to add 

extra symbols to the data stream so as to enable the decoder to 

correct most of the errors which occur at the output of the 

waveform detector. 

The generation of the transmitted waveforms generally 

includes the modulation of a single-frequency carrier by a 

baseband waveform. In this thesis it is always assumed that a 

demodulation procedure exists for which the whole modulation-

demodulation operation is linear. For convenience, the modulator 

and the demodulator will be considered parts of the analog 

channel so that the waveform generator and the waveform detector 

can be assumed to operate in the baseband region". The channel 

in Fig. 1.1 can thus be described as a distortionless baseband 

channel. 

In the systems proposed in this thesis the waveform 

generator has the form presented in Fig. 1.2(a). For each group 

of L binary symbols coming from the encoder the serial-to-

parallel convertor applies simultaneously one of two antipodal 

pulses to each filter (e.g. +e for a symbol 0 and -e for a 1). 

For convenience it is assumed henceforth that e(t) = 5(t) 

(Dirac impulse). The waveform generator will thus transmit one 

of the 2
L baseband pulses of the following form: 

L 
silt-kLT1) = 

 

a...f.(t-kLT1)' aid =±1. 

   

The assumption of constant channel attenuation implies 
that the demodulator must be phase-locked to the 
modulator. 
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The waveform detector which will be used has the structure 

shown in Fig. 1.2(b). The samplers shown in this figure are 

assumed to operate simultaneously every Ts  = LT1/M seconds and 

the decision device bases the decision about each group of L 

transmitted symbols on the LM samples obtained within each 

interval of LT
1 
seconds. The integer M is thus the average 

number of samples the decision device uses per transmitted 

symbol. 

In the presence of white Gaussian noise alone it is 

always possible to design the transmitting and receiving filters 

to achieve, with M=1, the minimum error probability corresponding 

to the system constraints (transmission rate, channel bandwidth 

and average transmitted power ) El-3D. Furthermore, the 
above-mentioned filters can be chosen so that each sample S. in 

1  
Fig. 1.2(b) depends only on one transmitted symbol". In this 

case it is said that the samples Si  exhibit no artificial 

intersymbol interference and the decision device consists simply 

of a parallel-to-serial converter presenting samples Si  

sequentially to a zero-threshold detector. 

On the other hand, it is not known whether the system 

structure presented in Fig. 1.2 can achieve the minimum error 

probability in the presence of any type of non-Gaussian noise. 

Nevertheless, most of the systems proposed in the literature 

are essentially based on the structure of Fig. 1.2. The cases 

studied in the literature suggest that in general an attempt to 

optimize the system against a given type of non-Gaussian noise 

necessitates an M >1 and the use of a nonlinear decision device. 

In this case, the decision device processes the samples Si  

nonlinearly in order to obtain the decision statistics. These 

14' The waveforms f.(t) (i=1,2,...,L) are in this case orthogonal 
to one another. The optimum performance is obtained if the 
receivingfilterdescribedbY11.(t) is matched to f.(t) 
(for all i) 

* Called artificial because it results from waveform design 
and not from channel imperfections. 
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are then compared with a set of thresholds according to some 

decision rule. The fact that all the nonlinear operations are 

performed on discrete-time signals makes it easier to avoid 

intersymbol and interchannel interference than in some cases 

studied in the literature
* 

 . 

In a conventional data transmission system both L and 

M have unit values and both f1
(t) and h1

(t) usually have a 

duration of about T1 
seconds. This is not the best solution for 

providing immunity against impulsive noise because it is very 

likely that the response of the receiving filter to an impulsive 

disturbance may have a duration in the order of T1 seconds or 

longer and a peak amplitude which exceeds the response to a 

received data pulse. The use of receiving filters having impulse 

responses hi(t) much longer than 1/W (W being the channel band-

width) has long been recognized as a means of combatting impulsive 

noise :1-41 By increasing the duration of the hi(t) most peaks 

of impulsive noise will eventually be rendered too weak to cause 

error provided that the majority of the impulsive disturbances 

at the receiver input are sufficiently short and spaced apart. 

If this is not the case, one should transmit long waveforms and 

let the decision device neglect the samples that show the highest 

a posteriori probability of being affected by impulsive noise 

In this thesis the results of a theoretical investig-

ation into the use of long waveforms for providing ivauunity 

against impulsive noise are reported. The transmitting and 

receiving filters are assumed to have impulse responses of the 

following form: 

N-1 

a. y(t-iT) 

i=0 

See Chapter III for a further discussion of the 
detector structure. 
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where y(t) is a baseband pulse essentially time-limited to T 

seconds and frequency-limited to the channel bandwidth W. This 

type of filter was chosen for three reasons: (i) ease of 

implementation, (ii) mathematical tractability, and (iii) the 

possibility of realizing a large class of impulse responses, for 

which an at least nearly optimal solution can be expected to 

exist. In the cases where NT >LTl' 
consecutively transmitted 

waveforms will overlap in the channel and thus further care must 

be taken to prevent artificial intersymbol interference from 

arising at the output of the waveform detector. Moreover, the 

overlap of the transmitted waveforms increases the peak trans-

mitted power and thus the length N of these waveforms is limited 

to a value determined by the maximum peak power the system can 

handle. 

Before considering the organization of this thesis a 

few words are in order about the noise models used in the error-

rate analysis of the proposed techniques. It is always assumed 

that the impulsive noise component, as viewed by the decision 

device, can be considered to result from a series of short-

duration spikes (elementary impulsive disturbances) applied at 

the input of the waveform detectors. In some cases it is further 

assumed that the elementary impulsive disturbances occur 

independently in time (Poisson impulse noise). In other cases 

these disturbances are assumed to cluster according to some 

convenient time distribution (non-Poisson impulse noise). All 

these assumptions will be justified in Chapter II. 

1.2 	LAYOUT OF THE THESIS 

In the previous section the subject-matter of the 

thesis was defined in general terms. In this section the contents 

of the rest of this thesis will be described briefly. 

The duration of the spikes is assumed to be much 
shorter than T seconds. 
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Chapter II is devoted to a concise review of the 

literature on impulsive noise characterization and a mathematical 

description of the noise models is presented for use in later 

chapters. 

Chapter III provides a critical survey of the techniques 

that have been suggested in the literature for combatting 

impulsive noise. 

The work described in the next four chapters is believed 

to be original, unless it is specifically ascribed to others by 

the quoting of an appropriate reference. 

In Chapter IV a new class of signal waveforms is 

presented which allows the designer to choose at will the length 

N of the transmitted waveforms without introducing any artificial 

intersymbol interference at the output of the waveform detector 

and to achieve, for a given channel bandwidth, the same trans-

mission rate as is achieved with a conventional data transmission 

system. In a frequency division multiplexed (FDM) system 

interchannel interference can also be avoided. The error-rate 

analysis of this technique in the presence of a Poisson impulse 

noise is carried out in this chapter. The case in which the 

elementary impulsive disturbances tend to occur in bursts (non-

Poisson impulse noise) is postponed until Chapter VI. As the 

title of Chapter IV suggests, the proposed method can only be 

advantageous under conditions of high signal-to-noise ratio (SNR). 

In Chapter V the low SNR case is considered. The 

decision device is assumed to process several samples per trans-

mitted symbol (M > 1) and the possibility of improving its 

performance by first detecting the samples which are more likely 

to have been affected by impulsive noise is investigated. The 

performance of the resulting waveform detector in the presence 

of Poisson impulse noise is evaluated. 
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Chapter VI is devoted to a Monte-Carlo simulation of 

the proposed techniques in the presence of impulsive noise. The 

numerical results obtained in the two previous chapters are 

checked and new results are obtained for one type of non-Poisson 

impulse noise. These new results are intended to show the 

effect of long bursts of impulsive noise on the data transmission 

systems. 

Since the improvement recorded in Chapter V is obtained 

at the expense of either a reduction in transmission rate or an 

increase in channel bandwidth, the use of an encoder-decoder in 

the system was next considered. This possibility is investigated 

in Chapter VII where a method of maximizing the overall trans-

mission rate while keeping the overall error probability below 

a given level is presented. 

Finally, Chapter VIII summarizes the general conclusions 

arising out of the study and examines those questions remaining 

open at the end of the research project. The reader interested 

only in the results of the investigation should turn directly 

to Chapter VIII. 
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CHAPTER II 

CHARACTERIZATION OF IMPULSIVE NOISE 

'When I use a word', Humpty 

Dumpty said in rather a scornful 

tone, 'it means just what I 

choose it to mean - neither more 

nor less'. 

Lewis Carroll, "Through the 
Looking Glass". 
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2.1 	INTRODUCTION 

The nondeterministic impairments present in data trans-

mission systems can be divided into three categories: 

(a) Background noise: 

This noise component is due to ever-present causes, 

most of which are located at the receiver or in the adjacent 

equipment. It includes thermal noise, noise from electronic 

components, "hum" from power supplies, etc. Experience shows that 

in most situations this noise can be successfully treated as if it 

were an additive stationary Gaussian process. Moreover, its level 

is usually too low to seriously affect the error-rate in a data 

system . 

(b) Impulsive noise: 

This noise component is due to causes that act inter-

mittently and that are generally located outside the channel 

under consideration. Impulsive noise, which can generally be 

considered as additive, is troublesome because its time of 

occurrence is unpredictable and the noise pulses observed at the 

input of the decision device generally have a peak amplitude 

which is quite large compared with the peaks of background noise. 

(c) Multiplicative noise: 

As mentioned above, both the background noise and the 

impulsive noise are additive impairments. A third class of 

disturbances, which is due to erratic variations of the trans-

mission system, gives rise to the so-called "multiplicative" 

noise. It includes sudden level fades, momentary equipment 

failure, or circuit interruptions, changes in the phase response 

of the channel, translations of frequency occurring in some 

single-sideband carrier systems, etc. 

The signal-to-background-noise ratio is typically 20 
to 50 dB. 
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This thesis is mainly concerned with waveform design. 

Experience shows that waveform design techniques are quite 

ineffective against multiplicative noise because in this case 

most errors are due to signal "dropouts". Under these catastr-

ophic (and fortunately exceptional) conditions, recourse to 

coding seems to be the only hope :2-1, 40]. As stated in 

Chapter I, only distortionless time-invariant data systems will 

be considered in this thesis and consequently the question of 

multiplicative noise will not arise. 

The rest of this chapter deals with the detailed 

description of the impulsive noise component which, under the 

above conditions, is the major cause of errors. 

2.2 	OBSERVED CHARACTERISTICS OF IMPULSIVE NOISE 

The vast majority of noise pulses observed at the input 

of the decision device are the response of the receiving filter(s) 

to transient disturbances arising from sources which are 

independent from the message-circuit noise sources. For this 

reason it will always be assumed that the impulsive noise is 

statistically independent of the background noise. 

Sometimes the source of impulsive noise generates a 

wideband disturbance composed of a sequence of very short and 

nonoverlapping pulses. In this case the exciting disturbance 

will produce approximately the same effect on a narrow band 

receiving filter as a sequence of Dirac impulses. However, the 

original noise pulses may be so close to each other that consider-

able overlap will occur at the output of the receiving filter. 

Situations also arise in which the original disturbance is 

narrowband (e.g. noise due to intermodulation distortion or 

crosstalk) and, under these circumstances, the noise waveform 

observed at the output of the receiving filter looks very 

different from a sequence of identically shaped pulses. It 
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should be noticed that the shape of an observed noise pulse may 

strongly depend on the point where the exciting pulse has 

entered the message-circuit. Moreover, the number of possible 

noise sources and types of data system is usually very large 

and, in some cases, the noise source or the data system are not 

precisely defined. This is often the case with the telephone 

network. In view of the above, it is clear that any classific-

ation or identification of the observed shapes of the noise 

bursts, in relation to their causes and the type of transmission 

system, is a very difficult task which is bound to produce rather 

imprecise results E2-2131 

Possible causes of impulsive noise are switching 

transients in the telephone plant, lightning storms, ignition 

discharges, crosstalk from adjacent circuits in a telephone cable, 

radio interference in a radio link, power line interference, 

intermodulation products, accidental hits during maintenance work, 

and a multitude of other causes. Because much of this noise is 

man-made, experience shows a close correlation between impulsive 

noise activity and the busy hours of the day. This dependence on 

human activity and the sporadic nature of some natural causes 

make impulsive noise a strongly nonstationary process over long 
often 

periods of observation. Nevertheless the assumption can Abe made 

that the process is stationary on a short-term basis, i.e. over 

periods of about an hour. Periods of this order of magnitude 

are usually taken as measurement intervals. Whether impulsive 

noise may be considered an ergodic process over these short 

intervals is still an open question. In some instances time-

averaging measurements of impulsive noise have been found rather 

inconclusive D-41 
By definition, impulsive noise is a noncontinual type 

of disturbance, that is to say, its sources are not permanently 

active. It thus seems that the simplest way of mathematically 

defining this noise is to give the statistical distribution of 

the time intervals during which the noise sources are active, 
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the distribution of the quiet intervals and the amplitude 

distribution of the noise. 

The measurements of impulsive noise reported in the 

literature are of two types: analog measurements and measurements 

of error statistics. In an analog measurement the noise observed 

at the output of a receiving filter is recorded on magnetic tape, 

usually in the absence of any transmitted signal. Normally the 

only noise recorded is that above a fixed threshold that has a 

very low probability of being exceeded by the background noise 

and is somewhat lower than the normal signal levels. Analog 

measurements make it possible to study both the amplitude 

distribution and the time distributions of the noise. In a 

measurement of error statistics, two identical data generators 

are used, one at the transmitting end of the channel under test 

and the other at the receiving end. As both generators are 

synchronized to each other and produce the same pseudo-random 

sequence of data, it is possible to compare the received and the 

' original messages and record the errors that occur at the 

detector output. Most noise measurements reported in the liter-

ature are of this type mainly because the aim is in most cases 

to devise efficient coding techniques and because the error 

measurements are easier to carry out. As far as the time distrib-

utions are concerned, a close correlation is to be expected 

between the results of both types of measurement. In other 

words, one could expect to find a burst of errors when a burst 

of impulsive noise is recorded and vice versa. However, when 

multiplicative noise is present errors may occur which do not 

correspond to any impulsive noise. For this reason, methods of 

measuring the multiplicative noise have also been proposed in 

the literature E.2-2,5]. 

During each period of activity a source of impulsive 

noise generates a noise burst which, as already stated, may or 

may not look like a sequence of individual pulses. The peak 

amplitudes and the effective durations of the noise bursts at 

the output of a receiving filter vary over wide ranges. The 
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peak amplitudes may be much higher than the normal signal level 

and, on the other hand, they may be so small as to be confused 

with the background noise. Nevertheless, the average peak 

amplitude is usually much larger than that of the background 

noise. The burst durations may be of the order of magnitude of 

the signalling interval and, on the other hand, they may be 

hundreds of times longer. However, the average quiet (inter­

burst) interval is usually much longer than the average burst 

duration. Experience shows that the average noise power is 

generally determined by the background noise whereas the impulsive 

noise determines the error rate [2-27J. 
Measured cUmulative distribution functions of the burst 

durations, quiet intervals and burst amplitudes have been 

presented in several papers [2-6 to 26J. Empirical statistical 

laws have been proposed which seem to fit the experimental data 

with sufficient accuracy for common engineering purposes. These 

empirical laws will be considered briefly in the rest of this 

section. 

A study of analog recordings of impulsive noise is best 

formulated in terms of a formal definition of a burst of noise. 

The following definition is taken from Ref. [2-23J and is 

illustrated by Fig. 2.1. All portions of the noise waveform that 
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remain below a specified observation threshold, designated 

level 2, are considered as part of the background noise until 

level 2 is exceeded. Once level 2 is exceeded, the noise pulse 

is measured starting at the point where level 1 was exceeded (as 

indicated in the figure) and continuing until it returns below 

level 1 and remains below this level for a specified amount of 

time referred to as guard interval. The function of the guard 

interval is to provide a distinction between nodes of a single 

burst and two bursts which occur close together in time. A value 

twice the inverse of the baseband channel bandwidth has been 

found in practice to be a convenient guard interval D-233. The 

function of level 1 is to allow the study of the leading and 

trailing edges of the noise burst. Level 1 is set typically 

10 dB above the r.m.s. value of the background noise
*
. The 

observation threshold (level 2) is typically between 13 and 16 

dB above the r.m.s. value of the background noise and thus the 

probability of it being exceeded by the background noise is very 

low. 

The amplitude distribution of impulsive noise can be 

defined in two different ways: as the probability distribution 

of the instantaneous amplitudes of the noise and as the probability 

distribution of the peak amplitudes of individual noise bursts . 

As the decision device takes in noise samples that do not always 

coincide with the peak amplitudes of the noise bursts, the 

distribution of the instantaneous amplitudes appears to have 
** 

greater meaning . In fact, the peak amplitude is really only 

As already stated, this r.m.s. value is practically the 
same as the r.m.s. of the entire additive noise. 

** In the case of bandpass noise the noise envelope is used 
for the measurement. 

*** This distribution can be obtained by measuring the fraction 
of time for which the rectified noise exceeds an adjustable 
threshold or by studying the noise samples obtained at a 
sufficiently high rate. 
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suitable for specifying short noise bursts, i.e. bursts whose 

duration is in the order of the duration of a data pulse. When 

the burst duration increases the peak amplitude becomes less 

and less meaningful due to the increasing variety of possible 

burst shapes. 

The above definition of noise burst implies that the 

measured amplitude distributions are only the tails of the actual 

distributions. In fact the noise is examined only when it has a 

value above level 1 in Fig. 2.1, i.e. at values which have prob-

abilities of 10
-2, or less, of being exceeded. In practice this 

limitation is of little importance since only the high-amplitude 

disturbances are potentially destructive to data signals. On 

the other hand, the noise bursts of lower amplitude tend to be 

confused with the continual background noise and are thus 

difficult to measure. 

Mertz E.2-11, 20] suggested the use of an empirical 

hyperbolic distribution to describe the observed amplitudes of 

impulsive noise. This means that the probability density function 

(PDF) of the noise amplitude is given by 

P(Iv1) = 11:11.(1 + 	 (1) 

where: 	v = noise amplitude 

n = order of the distribution 

h = bias of the distribution 

The result of the noise measurement is normally the "exceedence" 

probability function (EPF), that is, 

E(x) = ProbElvi 1-2>x] = (1 + 	(2) 

In Ref. E.2-6.] a slightly different expression is proposed for 

the EPF of atmospheric impulsive noise at very low frequencies 

(VLF), which is, 

E(x) = [1 + (x/h)I]-1 	(3) 
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The value of the parameter h in both expressions is normally 

such that it has practically no influence on the tail of the EPF, 

which is represented on a log-log paper by a straight line of 

slope -n. Since the measured values are on this tail, the 

expressions (2) and (3) are equivalent from a practical point of 

view. Values of n ranging from a little over 2 to 20 have been 

measured :2-18]. It can readily be shown that a finite r.m.s, 

value of the noise implies n> 2. 

Other amplitude distributions have been used to describe 

the impulsive noise observed in telephone lines and radio channels 

[2"" 27 to 29]. Among them are the log-normal distribution and 

the distribution whose EPF is 

E(x) = exp[-(x/xdaJ 	(4) 

where 	0 < O. 4; 2  E.2-27] • 

It seems that any of the laws mentioned above can be 

made to fit measured values sufficiently well, provided that the 

distribution parameters are suitably chosen :2-271 Experimental 

data for much higher and lower probabilities of occurrence would 

be necessary to determine which law (if any) is closest to nature. 

As pointed out previously, most measured time statistics 

concern the errors rather than the noise itself. The errors 

caused by impulsive noise, unlike those due to the background 

noise, are strongly correlated and tend to occur in bursts. 

When analog measurements are not available, a definition is 

necessary to identify a burst of errors. Several definitions 

have been proposed in the literature [2-311 In Ref. [2-20 a 

burst of length B and weight W is defined as a sequence of 

B digits, of which W are in error, such that: 

In Ref. E2-301 a log-normal law is used instead of the 
hyperboic law for reasons of mathematical tractability. 
The log-normal law is also used in Ref. E2-8a0 
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The first and the last digits of the sequence are in 

error; 

the error density W/B is higher than a specified 

minimum density £; 

(c) 	the burst length B is the maximum number under the 

previous conditions. 

Those sequences of bits which lie between bursts are called 

"intervals". If L is somewhat higher than the error probability 

due to the background noise", the bursts of errors will coincide 

approximately with those regions of the data stream affected by 

bursts of impulsive noise, provided that the effect of the multi-

plicative noise is negligible. 

The measured cumulative distributions published in Refs. 

E2-21, 22:3 show that long burst and interval lengths have a much 
higher probability of occurrence than a purely random distribution 

of errors would imply. Moreover, in all the channels considered 

in Refs. [2-21, 22: the occurrence of a long sequence of consec-

utive errors or the occurrence of an interval shorter than the 

adjacent bursts are rare events. 

The problem of finding the statistical laws that govern 

the burst durations, the error occurrence within a burst and the 

interval durations has been considered by several authors :2-32]0 

Mertz :2-13, 14, 20] uses hyperbolic laws to fit the experimental 

data concerning the length of the error burst and the length of 

the inter-burst intervals. He also points out, without 

attempting to justify it, that the short-period and the long- 
** 

period distributions often exhibit different parameters . As in 

the case of the amplitude distribution, other empirical laws 

In Ref. :2-22] meaningful results were obtained for 
= 0.05. 

The same effect was pointed out in Ref. [2-7]0 
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have been proposed in the literature. In Ref. E.2-33] the log-

normal distribution is chosen to describe the burst and interval 

durations whereas in Ref. [2-15] the error occurrence is 

described in terms of the Pareto distribution'. 

A study of the literature on impulsive noise measure-

ments suggests strongly that it is impossible to describe by a 

single mathematical theory the experimental facts. This is almost 

certainly due to the great variety of situations encountered in 

practice and to the fact that in most situations the noise is 

strongly non-stationary over periods of several hours. 

2.3 	THEORETICAL MODELS OF IMPULSIVE NOISE 

In a search for methods of combatting impulsive noise 

it is obviously advantageous to have a mathematical description 

of the noise. This description will make it possible to obtain 

the PDF's of the noise samples at the input of the decision 

device, or at least to generate these samples in a computer. If 

possible, the noise model should exhibit those characteristics 

of the observed noise which are believed to determine the 

performance of the data system and, at the same time, it should 

be simple enough to be mathematically tractable. Usually a 

compromise between these requirements is necessary. 

If n
w
(t) is the part of the impulsive noise at the 

input of a baseband receiving filter which is within the band-

width W of the receiving filter, then, according to the sampling 

theorem, 

nw(t) = 2W 	ai 2TEW(t-t.) 1 

where = to + -- 1 o 2W 

The Pareto distribution is in fact a hyperbolic-type 
law with zero bias. 

sin27W(t-ti) 
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and w Ma1  
. = (t.)  1 (7) 

Let h(t) be the impulse response of the receiving filter. It 

can readily be shown that the impulsive noise at the output of 

this filter is given with good approximation by 

rI(t) 7-Y 7 a. h(t-t.) 	(8) 
i.- 00  

The noise n(t) at the input of the receiving filter can thus be 

assumed to be given by 

n(t) = nG(t) + a. o(t-t.) (9) 
1=- 

where nG
(t) represents the background noise. 

The impulsive noise often originates in the bandpass 

section of the channel. If the impulse response of the front-end 

filter of the receiver is r(t) cos(27,fc t+), fc being the 

carrier frequency, it is possible to show that the impulsive 

noise at the demodulator input can be written in the following 

form (see Ref. E:2-34.1 Sec. 2.3): 

nB(t) = 

 

AK r(t - tK)cos(2TCfc t - (1)K) 	(10) 

   

k=-00 

This relation is the bandpass equivalent to relation (8) and can 

be derived following a similar procedure. This bandpass noise 

can be split into two components in phase quadrature, that is, 

nB(t) = nG(t)cos(wct+ao) +ns(t)sin(Wct + ao ) (11) 

where 	nc(t) = 

and 	nS(t)  = 

	

AK  cos(l'K+ ao)r(t - tK) 	(12) 

	

sin0K-Fadr(t tK) 	(13) 
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If ao is suitably chosen, the noise at the demodulation output 
will be n (0 and will thus have the form in Equation (8). This 

completes the proof that the impulsive noise at the output of 

an equivalent baseband receiving filter of impulse response h(t) 

can always be expressed as in Equation (8). In many cases the 

receiving filter has an impulse response whose amplitude is 

very small outside an interval in the order of 1/W seconds 

duration. It thus follows that each noise sample delivered to 

the decision device can be approximated by a linear function of 

a small number of amplitudes ai  [see Equation (7)]. To complete 
this model, it is reasonable to assume that the amplitudes ai  

have zero value outside the time intervals corresponding to the 

noise bursts. An alternative approach used later in this thesis 

is to assume that the samples of impulsive noise at the input of 

the decision device have negligible amplitude when outside the 

noise bursts. The noise can thus be defined by the distribution 

of the samples within the noise bursts, the distribution of the 

burst lengths and the distribution of the gaps between bursts. 

Other models of impulsive noise have been proposed in 

which the elementary noise pulses do not occur periodically 

D-12,35,36.1 The simplest and most important example is the 
so-called Poisson impulse noise. In this case the amplitudes 

a. in Equation (8) are statistically independent of one another 

and also of the instants t. and these instants form a Poisson 

sequence of rate V per second D-37]. If the amplitudes ai  are 
identically distributed, and their characteristic function (CHF) 
is Fa(u), it can be shown [2-35: that the CHF of the noise 
samples at the output of the receiving filter is 

00 

Fr  (u) = exp f Vf EFa  (-uh(t ) )-1] dt1 
-c, 

(14) 

In most cases it is not possible to find a closed-form expression 

for F
r
(u) [..2-3]. The situation is even more complicated when the 

times ti  are distributed according to a non-Poisson law. 
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The mean and autocorrelation of the process defined by 
Equation (8) can be readily obtained under the following 
assumptions: 

Theamplitudesa.are uncorrelated random variables 
with zero mean and variance a2;  

The amplitudes ai  are statistically independent of the 

instautst-andtheelerneritanriloiseptases.a.h.(t-t.) occur 
at a uniform average rate of V per second. 

It is shown in Ref. :2-39] that under these assumptions 

EErI(.4] = 0 	 (15) 
and 

2 EE.I(t).rI(t+T)]=va,
0 
 la(t)ht-FT)dt 	(16) 

It thus follows that the power spectral density of r1(t) is 
given by 

RI(f) = V C° IH(f)12 

where H(f) denotes the transfer function of the receiving filter. 
The impulsive noise at the input of this filter thus has a 
uniform power spectral density (white noise). In the case of a 
Poisson impulse noise Equations (15) and (16) can be derived 
directly from Equation (14) and the highest-order characteristic 
functions, as shown in Ref. 12-37-1 

CPC) 



- 34 - 

CHAPTER III 

A SURVEY OF EXISTING TECHNIQUES FOR 

COMBATTING IMPULSIVE NOISE 

A man must see, do and think 
things for himself, in the face 
of those who are sure that they 
have already been over all that 
ground. In science, there is 
no substitute for independence. 

J. Bronowski, "Science and 
Human Values". 
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3.1 	INTRODUCTION 

Since impulsive noise can often be described by a 

large-variance amplitude distribution , to increase the trans-

mitted energy per symbol is a very inefficient method (from a 

power standpoint) of improving the system performance. Another 

alternative is the use of signal waveforms with a long duration 

relative to the average effective duration of the noise bursts 

[3-1:]. There are three mechanisms by which this method may 

provide an improvement. Firstly, if the impulse responses of 

the receiving filters have long duration, a single elementary 

disturbance will be spread out and therefore the noise peaks will 

be reduced. Secondly, if a burst of elementary disturbances 

occurs, the smeared responses of each filter will overlap and, 

according to the central limit theorem, the PDF of the resulting 

noise will have shorter tails. Thirdly, if the transmitted 

waveforms have long duration the receiver can weight the samples 

of the received waveform in accordance with the a posteriori 

probability of them being corrupted by impulsive noise. Since 

in practice the noise bursts usually have a low density , the 

receiver can generally obtain a sufficiently large number of 

reliable samples on which to base the decision. 

If it is decided to maintain the data-rate while 

increasing the duration of the data pulses, then obviously the 

pulses must overlap in the channel. There are cases in which 

the overlap prevents the receiver from achieving any improvement 

and in these cases, in order to obtain some improvement, it is 

necessary to reduce the data-rate. 

The remainder of this chapter is a brief and critical 

survey of the waveform design and detection techniques that have 

This means that the ratio of the standard deviation to the 
median of the absolute value of the noise is much higher 
than for a Gaussian distribution. 

** Here "density" means "fraction of time in which the signal 
is strongly affected by impulsive noise". 
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been proposed in the literature for use in one-way communication 

systems perturbed by impulsive noise. 

3.2 	ORTHONORMAL FUNCTION CODING 

In this case N mutually orthogonal waveforms, essentially 

time-limited to NT seconds, are sent simultaneously through the 

channel every NT seconds. Each group of K binary digits produced 

by the data source will thus be transmitted by means of a wave-

form of the following type: 

N 

s.(t) = aij  Ti(t) 	(1) 

j=1 

(i = 1,21..0,2K), where the 9i(t) belong to an orthonormal set 

of functions and are essentially time-limited to NT seconds. 

The choice of the orthonormal set {43.(t)1 and the way of assigning 

the coefficients aij  
to a given group of K binary digits define 

the coding scheme. In this section, as in Refs. [3-3/ 11],  it 

will be assumed that K=N and that each term in Equation (1) 

represents one of K binary digits. The corresponding optimum 

receiver for use in the presence of white Gaussian noise alone 

contains a set of filters matched to the waveforms q).(t), the 

outputs of which are sampled every NT seconds E3-2.J. The samples 

obtained in this way are the estimates of the coefficients aij , 

and the decision about each transmitted binary digit is then 

made by comparing the corresponding sample with a known threshold 

value. All the threshold values will be zero if 1a..1 = a, for 13 
all i and j, in which case Equation (1) becomes 

N 

s.(t) = E
lj
.. p.(t) (2) 

with E..13 = +1 and i = 1,2,...2
N 

— 

It is shown in Ref. E.3-2] that in the presence of white 

Gaussian noise the error probability achieved with the previous 

technique does not depend on the particular set {q,)(01 chosen. 
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However, in the presence of impulsive noise the error probability 

is in general dependent on the orthonormal set of functions used 

but the exact form of this dependence is not usually known. It 

will be shown in Chapter IV that in the case of Poisson impulse 

noise a good design strategy is to choose e 	so 

that the N subintervals of T seconds duration contain nearly the 

same fraction of the total unit energy. In the presence of non-

Poisson types of noise it is also shown in Chapter IV that this 

may not be th.e best distribution of energy for the functions 	 ) 

The error-rate analysis of this technique in the 

presence of Poisson impulse noise was carried out in Refs. D-3,10 

for the following orthonormal set of functions: 

2TC(no+j)t 
0.5-Zt<NT 

0, otherwise, j = 1,2,.0.,N.  

This signalling scheme is equivalent to having N binary PSK 

adjacent subchannels, each one having a bandwidth N times smaller 

than the overall channel bandwidth. For a fixed average trans-

mitted power the energy per symbol in each subchannel conserves 

its value as N increases, but the amplitude of the impulse 

response of each subchannel decreases proportionally as laR. 

Moreover, as N increases the data-rate and the required bandwidth 

maintain their values and no intersymbol interference is intro-

duced. 

By analysing the results presented in Refs. 

it can be concluded that an increase in N will only lead to an 

error-rate reduction if the SNR exceeds a critical threshold 

which decreases as N increases. This is readily understood if 

one notes that: 

(a) 	for sufficiently low SNR's, a given isolated noise 

pulse will cause more errors if N>1 than if N = 1; 

pr Tr cos NT (3) 
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(b) 	as N increases, the noise at the input of the decision 

device tends to become Gaussian because many long impulsive 

disturbances overlap at a given instant. Therefore, a 

reduction in the probability of a high noise magnitude is 

obtained at the expense of an increase in the probability 

of a low noise magnitude. It should therefore be expected 

that, as the amplitude distribution of the impulsive 

disturbances at the receiver input deviates from a Gaussian 

distribution, the improvement obtained for a given N and an 

SNR above the critical threshold will be reduced. 

A disadvantage of this technique is that the peak 

amplitude of the transmitted signal is proportional to tiSio  For 

large N this transmitted signal will exhibit a nearly Gaussian 

amplitude distribution. 

Another method of designing a set of orthonormal 

functions overlapping not only in time but also in frequency will 

be used in Chapter IV. It consists of designing the functions 

p.(t) as sequences of similar pulses, i.e. 

N-1 

p.(t) =J1(t  iT) 	(4) 

i=0 

where y(t) is a pulse essentially time-limited to T seconds and 

frequency-limited to the channel bandwidth W. 

	

3.3 	NOISE-SMEARING TECHNIQUE 

The structure of the data system in this case is shown 

in Fig. 301. 

Noise, n(t) 
0 

Sampler 

Into the 
decision 
device 

in R( f) S(f) 

Transmitting 	Receiving 
filter 	filter 

Fig. 3.1: 
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For convenience, ein(t) is a signalling sequence of 

positive and negative unit impulses which recur at intervals of 

T seconds duration. The receiving filter is designed so as to 

spread out the impulsive noise energy and thus reduce the noise 

peak amplitude at the input of the decision device. In order to 

avoid intersymbol interference the transmitting filter is 

designed so that the overall transfer function S(f).R(f) is the 

Fourier spectrum of a pulse whose samples obtained at intervals 

of T seconds duration are all zero but one. 

This technique was first proposed in Refs. [3-5,E] but 

no procedure was given there for optimally designing the filters. 

In Ref. [34] an amplitude-response IR(01 was derived which 

minimizes an upper-bound on the impulse response r(t) of the 

filter. This upper-bound is given by 
roo 

	

IR(f)1 df 	kW! 	 (5) 

where the equality holds if the filter has a linear phase-

response. Since this optimization technique is obviously insens-

itive to phase, no optimum phase-response could be obtained in 

Ref. c)-7]. In Ref. C.34] another amplitude-response R(f) was 
obtained by minimizing the error probability of a system using 

an approximate PDF for the impulsive noise. This technique is 

also insensitive to the phase of R(f) and the results are 

approximately the same as in Ref. D-7]. The beneficial effect 
a nonlinear phase-response may have on the performance of the 

system is analysed in Ref. E:3-8] for some special cases. 

The best optimization procedure presented in the 

literature is the one in Ref. E3-9]  because it takes into account 

both the amplitude-response and the phase-response of the 

receiving filterc  The approach followed in this reference can 

be regarded as an extension of that in Ref. E3-7..] and consists 
in minimizing the functional 

00 

	

FE(t): = 	r2. 
 
n(t)dt 	 (6) 
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If n is sufficiently large only the largest peaks in r(t) will 

make an appreciable contribution to the integral and if, further-

more, one peak is slightly higher than the others it will 

predominate. The value of the largest peaks of r(t) will 

therefore be minimized, regardless of their location. No 

general solution of this problem was presented in Ref. D-9] and 

the particular impulse response presented there does not lead to 

a better performance than the class of waveforms given in 

Chapter IV, which have the form in Equation (4). Since no 

constraint is placed on the effective duration of r(t) (or on 

the peak transmitted power) no unique optimum solution should 

be expected from the optimization procedure used in Ref. [3-9]. 

It is important to point out that a reduction in the 

highest peak of r(t) does not necessarily minimize the number of 

errors produced by several noise impulses. The general problem of 

'minimizing the error probability under the constraints of 

average and peak transmitted powers still remains unsolved. 

Until its solution is found it seems that the best one can do is 

to try families of waveforms optimizing their parameters for 

minimum error probability under the channel constraints. This 

is the approach followed in Chapter IV. 

3.4 	NONLINEAR AND NOISE-CONTROLLED RECEIVERS 

In this section some attempts to optimize the receiver 

in the presence of impulsive noise are considered. The trans-

mitter will be assumed to send through the channel nonoverlapping 

waveforms somewhat longer than the average impulsive disturbance 

at the output of the receiver front-end filter. 

It is well known that the optimum receiver for use in 

the presence of Gaussian noise alone is linear. On the other 

hand, in the presence of impulsive noise, the most efficient 

receivers are in general nonlinear. Two intuitive approaches 

to the design of these nonlinear receivers have been proposed 
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in the literature D-10 to 16]: 

(a) The inclusion of nonlinear saturating elements (noise 

clippers)in the receiver; 

(b) disturbance-triggered, gating-out schemes, whereby the 

receiver signal path is interrupted at some suitable stage 

when a noise pulse is recognized. 

In both cases the receiver can be described by means 

of the diagram shown in Fig. 3.2, where the block B contains the 

nonlinear elements. In a typical noise-clipping scheme the non-

linear block consists of a clipper arranged to clip off as much 

of the noise as possible without running into the danger of 

clipping the signal between the noise pulses. The smoothing 

filter (block C) then suppresses the frequency components out of 

the frequency-band of the desired signal D-11:0 

In a typical noise-gating-out scheme the nonlinear 

block B comprises two signal paths with a comion input, one of 

which is essentially a noise-detecting circuit and the other a 

circuit whose operation is controlled by the first one. The 

noise-detecting branch gates out completely the controlled branch 

whenever the amplitude of the received signal-plus-noise exceeds 

a threshold set somewhere above the expected level of the signal. 

The desired signal emerges from the controlled branch with "holes" 

which are then smoothed out by filter C D-10]. Since these 

"holes" will have a duration in the order of W
-1 seconds, or 

longer, (W Hertz being the bandwidth of the front-end filter A) 

it can be concluded that the previous techniques can only be 

effective if W-1 is somewhat smaller than the signalling interval 

(T1 
seconds), that is, the bandwidth W must be somewhat greater 

than the bandwidth of the data pulses D-12,161. 

When the nonlinear bloCk B is a zero-memory device its 

ideal transfer characteristic is as shown in Fig 0 3.3. If the 
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data pulses have an approximately rectangular shape and W-1  <<T
1 

then the waveform obtained at the output of block B will display 

shapes like those in Fig. 3.4, where the noise pulses were 

assumed to have peak amplitudes much greater than the signal 

amplitude So If further the smoothing filter is matched to the 

data pulses" it can readily be concluded from Fig. 3.4 that an 

error may only occur if T1  < 2T. Therefore the previous schemes 

can only be efficient when the fraction of the signalling 

interval occupied by the noise pulses at the output of the 

front-end filter is sufficiently small. 

In the previously quoted references no attempt was 

made to optimize the receiver in a decision theoretic sense. 

This was done in Refs. 1:3-17 to 241 where optimum and suboptimum 

nonlinear receivers for use againstnon-Gaussian.noise were 

derived. In Ref. [3-20] it is assumed that the input bandwidth 

W of the receiver is several times as large as the bandwidth of 

the data pulses. In data transmission it is more convenient to 

shorten the elementary pulses to about W-1 seconds duration and 

to transmit each data symbol by means of M consecutive pulses 

D-17]. The waveform received for each data symbol will thus be: 

M-1 

v(t) = + >---  f(t ... Kt) + n(t) 	(7) 

k=0 

where f(t) stands for the elementary pulse shape and n(t) for 

the noise process. The corresponding receiver is shown in 

Fig0  3.5(a) and, apart from the zero-memory nonlinearity (ZNL) 

and the storage device, is assumed to operate in the conventional 

manner E3-7]. The receiving filter is designed so that the 

samples delivered to the zero-memory nonlinear device exhibit 

no interpulse interference. When n(t) is a continual non-

Gaussian noise the zero-memory nonlinearity is designed optimally 

Under the previous assumptions this means that the 
smoothing filter performs an integration operation. 
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as follows E3-20j. Let ZK (K = 1,2, ...,M) be the samples corr-

esponding to a given data symbol. In the absence of noise either 

ZK +S or Z
K 
= -S. The log-likelihood ratio is thus 

logA = > log  	(8) p(ZK + S) 
K=1 

where p(.) is the PDF of the noise samples at the output of the 

receiving filter. Therefore if the shape of the nonlinearity is 

G(Z) = log 217 S)  
p(2 + S) 

it follows that the output of the storage device immediately 

after the Mth sampling instant is the value of logA. The thresh-

old device will decide in favour of one symbol if logik..;? 0 and 

in favour of the other symbol if log.A.< 0. 

A typical shape of G(Z) for a large-variance noise 

amplitude PDF is shown in Fig. 3.5(b)0 There is a striking simil-

arity between this and the characteristic given in Fig. 303(b), 

but in the case of Fig. 3.5(b) the suppression of the contributions 

to the decision statistic that are much larger than the signal 

amplitude is carried out in an optimal manner. 

The optimization of the receiver shown in Fig. 3.5(a) 

against an additive combination of Gaussian and impulsive noise 

was attempted in Ref. :3-17]0 It was shown there that an optimum 

number of pulse repetitions can be found which depends on the 

relative proportion of the two noise components, and on the 

amplitude and time distributions of the impulsive noise. 

In Ref. E3-181 the possibility was considered of the 

the detector producing an erasure symbol when the decision stat-

istic falls into certain regions of ambiguity (null-zone 

detection). A special encoding operation must thus be performed 

at the transmitter which will enable the receiver to replace the 

erasure symbols. 

M p(zK  s) 

(9) 
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3.5 	NOISE-CANCELLING RECEIVERS 

In these receivers a cancelling device is connected in 

parallel with part of the main signal path and the outputs of the 

two parallel blocks are subtracted from each other to obtain a 

substantial reduction in the overall response to an impulsive 

disturbance. Two schemes have been proposed in the literature. 

In the first scheme the branches in parallel are bandpass 

amplifiers with the same centre frequency but the cancelling 

amplifier has a bandwidth somewhat larger than the other one 

D-16]. This scheme is nothing but a special case of the noise-

smearing techniques considered in Section 3.3. 

In the second scheme the cancelling device accepts the 

noise from a channel through which no signal is transmitted and 

performs a frequency-shifting operation which transfers the noise 

spectrum to the frequency-band of the signal before subtraction 

takes place [3-25,261 

In both cases a significant improvement is only possible 

if the responses of the two branches in parallel to almost every 

impulsive disturbance have nearly equal phases and nearly 

identical envelopes. In practice, the set of possible impulsive 

disturbances is generally too large for these conditions to be 

satisfied. 

3.6 	CONCLUDING REMARKS  

All the systems analysed above have an equivalent 

structure to that in Fig. 1.2 except those in which a nonlinear 

analog operation is performed on the received signal (Fig. 3.2). 

In these cases the elimination of intersymbol interference 

entails the use of a signalling rate below that which the band-

width usually permits. This is not so in Fig. 1.2 because there 

the analog waveforms are sampled before being nonlinearly processed. 
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The techniques described previously can. be subdivided 

into two main categories: those in which the system attempts to 

make the non-Gaussian noise appear Gaussian and then uses the 

optimum receiver for Gaussian noise, and those in which the 

receiver directly exploits the specific characteristics of the 

non-Gaussian noise. The first category includes the systems 

considered in Sections 3.2 and 3.3 in which the receiving filters 

have long impulse responses and are thus capable of averaging out 

the contributions of several noise impulses. As stated before, 

these systems are only advantageous for sufficiently high SNR's. 

The second category includes the systems considered in Section 

3.4 in which the receiver front-end filter has a short impulse 

response and the long transmitted waveforms are nonoverlapping 

to avoid intersymbol interference. These systems provide a 

lower data-rate than the previous ones but, on the other hand, 

they are particularly efficient in the low SNR region. The 

reason is that in this region the receiver will find it easier 

to recognize the impulsive noise in the background formed by 

the signal and the Gaussian noise. 
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CHAPTER IV 

PROPOSED SIGNAL DESIGN: 	- HIGH SNR 

The weak have one weapon: 
the mistakes of those who 
think they are strong. 

Georges Bidault. 
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4.1 
	

INTRODUCTION 

In the previous chapter three methods of combatting 

impulsive noise were described which employed data signals much 

longer than the average duration of the noise pulses. These meth-

ods were described as the smear-desmear technique (Section 3.3), 

the orthonormal function coding (Section 3.2) and the long non-

overlapping signal technique (Section 3.4). It was pointed out 

in Chapter III that 	both the smear-desmear 	technique 

and the orthonormal function coding (OFC) can yield a significant 

improvement in the presence of impulsive noise provided that its 

amplitude PDF has reasonably short tails and the SNR exceeds a 

certain critical threshold. Below this threshold the conventional 

system performs better and the required improvement can only be 

achieved by using long non-overlapping signals, with a consequent 

reduction in signalling rate. An improvement of this long non-

overlapping signal technique, which is particularly efficient 

in the case of a noise amplitude PDF with long tails, will be 

presented in Chapter V. 

In this chapter a modification of the smear-desmear 

concept, which turns out to be more efficient than the procedures 

described in the literature, is studied. Before beginning this 

study it is helpful to show that the OFC method, the proposed 

method and the conventional smear-desmear technique can be viewed 

as aspects of a more general signal design scheme. 

In the conventional binary data system one of two 

antipodal 	pulses +s(t) is transmitted every T seconds. The 

signal s(t) can be written as 

s(t) = 	Ls  y(t) 
	

(i) 

where Es 
is the energy of s(t) and y(t) is a pulse with unit 

energy, essentially time-limited to T seconds. If it is 

assumed that the transmission channel is distortionless then, 
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as is well known, the probability of detecting a single trans-

mitted pulse in error in the presence of white Gaussian noise 

is minimized when the receiving filter is matched to the waveform 

s(t). In this case the receiving filter will thus have an 

impulse response h(t) given by, say, 

h(t) = y(tT - 	 (2) 

for some integer 2, and consequently a transfer function H(f) 

given by 

H(f) = Y"(f) exp(-j2T-CkTf) 
	

(3) 

When a sequence of data pulses is transmitted, it is possible to 

show that, under the assumed conditions, the error probability 

is minimized if the pulse y(t) is designed so as to avoid any 

intersymbol interference :4-11 The overall impulse response of the 

system depicted in Fig. 4.1, whose frequency spectrum is given by 

S(f) H(f) = VE: 1Y(f)1 2  exp(-j2TEVTO 	(4) 

should thus have a non-zero sample at the instant tg  = 2,T and 

zero samples at all instants tn  = nT, n 	This property will 

be expressed by saying that y(t) is a Nyquist pulse. One case 

where this complete elimination of the intersymbol interference 

is achieved is that where IY(01 2  belongs to the family of 
raised-cosine frequency characteristics :4-1]. It is obvious 

that the same result is obtained when IY(f)1 2  is the spectrum 

of a waveform which is exactly time-limited to the interval 

[-T,TJ and is continuous at the extremes of this interval. It 

will be shown in Section 4.2 that a transmission free from 

intersymbol interference is also possible when y(t) belongs to 

a class of pulses which will be called perfect Nyquist pulses. 

These pulses have the additional property of allowing the trans-

mission of a maximum number of channels within a given bandwidth 

without any interchannel interference. 
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In the orthonormal function coding scheme N mutually 

orthogonal signals sK(t), K = 1, 2, **op N, are sent simultan-

eously every NT seconds, with either polarity. If the signals 

sK(t) have the same energy Es then sK(t) can be written as 

sK(t) = y (0 	 (5) s K 

where the yK(t), K = 1,2,...,N, form an orthonormal set of 

functions. Thus, the possible transmitted waveforms in an 

interval of duration NT seconds are 
N 

gilt) = Es  yK(t)  3_1(  (6) 
K=1 

i = 1,2,...,M, where EiK  = +1 and M
N
. The choice of the  — 

signals g.(t) to be transmitted determines the coding scheme. 

Henceforth it will be assumed that no redundancy is introduced 

intothesignals. gl(t), i.e. M = 2
N
, and further that the 

coefficients EiK stand for the N binary digits to be transmitted 

every NT seconds. In data transmission, a natural way of choosing 

the orthonormal set brK(t)1 is to take some Nyquist pulse y(t), 

essentially time-limited to T seconds, and design yK(t) so as 

to occupy the whole interval D,n1t.] in the following way: 

N 

yK(t) = 	. y(t + T - jT) 	(7) 

The choice of the elementary pulse y(t) is usually governed by 

bandwidth requirements and ease of generation. It should be 

noted that if N = 2n  then the OFC technique is a special case 

of a more general method where L = 2
K 
 signals (O<K<n) are 

transmitted simultaneously, their transmission being initiated 

every LT seconds. When K<Th the coefficients aKi  must fulfil 

additional conditions in order to avoid any intersymbol inter-

ference. The case in which L = 2 is in fact the signalling 

method proposed later in this chapter, with the choice of L = 2 

being adopted on account of its associated ease of implementation. 
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The structures of the transmitter and receiver corresponding 

to this case are identical to those shown in Fig. 4.2 where 

G(f) and H(f) represent a conventional filter set. These 

structures are easy to generalize for any LI>2. The performance 

of the optimum receiver in the presence of white Gaussian noise 

does not depend on the coefficients aKj 
provided that they are 

chosen so as to prevent any intersymbol.interference. Such 

performance is in fact the same as that of the conventional 

system shown in Fig. 4.1. Therefore the signal design method 

described previously may only be useful in the presence of non-

Gaussian types of noise. All these points will become more 

obvious after studying the case in which L = 2 in Section 4.2. 

If it is desired to transmit a single long signal every 

T seconds then the so-called smear-desmear technique results. 

This scheme, which has already been studied in detail in Chapter 

III,can be viewed from a slightly different viewpoint. The 

block diagram shown in Fig. 3.1 can be modified by breaking the 

transmitting filter S(f) and the receiving filter R(f) into 

two elements as follows: 

s(f) = M(f).G(f) 
	

(8) 

and 
	

R(f) = H(f).N(f) 
	

(9) 

where G(f), H(f) represent the matched filters of a conventional 

system and M(f), N(f) represent a smear-desmear filter set (see 

Fig. 4.3). 

              

M( f) 

    

G(f) H(f) 

    

N(f)  

        

              

              

              

0 
Noise S(f) 	 R(f) n(t) 

Fig. 4.3 	Smear-desmear technique. 
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If, in order to avoid intersymbol interference, the 

condition 

S(f)0R(f) = G(f).H(f)exp(-j0J15) 
	

(10) 

is satisfied, then 

M(f).N(f) = exp(-j()15) 

that is, the overall effect of M(f) and N(f) is simply a time 

delay. If, further, the system is to be optimized against white 

Gaussian noise, the filters M(f) and N(f), as G(f) and H(f), 

should be matched to each other, i.e. 

N(f) = M*(f)exp(-j(05) 	(12) 

and thus, according to Equations (11) and (12), 

IWO = IN(f)I = 1 	 (13) 

within the frequency band of interest. The filters M(f), N(f) 

should thus be designed as complementary delay filters [4-111 

In general a criterion of optimization against impulsive noise 

will lead to amplitude characteristics [M(01 and !NMI which 

are not uniform over the frequency band of interest and thus the 

resulting system will not be optimum in the face of white 

Gaussian noise. This implies that the optimization criterion 

should take into account the relative importance of the Gaussian 

and impulsive noise components. If, as suggested in Ref. 

the filters M(f), N(f) are designed on the basis of tapped 

delay lines and thus signals of the form in Equation (7) are 

transmitted at intervals of T seconds, it is obvious that the 

intersymbol interference cannot be eliminated. It follows 

that in this case the optimization procedure should take into 

account the three system impairments: white Gaussian noise, 

impulsive noise and intersymbol interference . The task is 

It has been recognized in Ref. E4-3] although in a 
different context, that an optimum receiving system 
may give rise to a certain amount of intersymbol 
interference. 
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much simpler when using the method proposed later in this 

chapter, whereby the intersymbol interference can be eliminated 

and at the same time the system can be optimized against the 

impulsive noise component without increasing the error probab-

ility due to the background Gaussian noise. 

ANALYSIS OF THE PROPOSED TECHNIQUE 

Major Assumptions 

In this section a new signal design technique to be 

used in the presence of impulsive noise is developed. Throughout 

the study it is assumed that the modulation scheme is linear, 

which makes it possible to analyze any channel in terms of its 

equivalent baseband response [“]. Binary data are assumed to 

be transmitted by means of antipodal waveforms which give rise 

to no intersymbol interference when the transmission channel is 
divas on 

assumed distortionless. In the case of a frequencyAmultiplexed 

(FDM) system it is further assumed that no interchannel inter-

ference occurs. For these reasons Nyquist pulses play an 

important part in the signal design and thus deserve detailed 

consideration. 

4.2.2 	Some properties of Nyquist pulses  

A Nyquist pulse of signalling period S is defined 

here as any waveform s(t) for which 
00 

AK  = 	s(t) s"(t ± Ko)dt
J -co 
.0 -j2ITKET 
f s(f) s*(f) 8 	df 

E s 	if K = 0 

0 	otherwise, 
(14) 

where K is an integer and 5 is some real number. Furthermore, 

s(t) is defined to be a perfect Nyquist pulse of parameters 

( jot 5) if 

4.2 

4.2.1 
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j4Rnpt 
s(t) s t+Ki5) E 	dt 

co 
= 	S(f 	2np) S"(f) E 	df 

-00  

E
s 	

if n = K = 0 
 

 

0 	otherwise (15) 

where n, K are integers and 

Q= S, p= 2, 1 or k 	(16) 

Two perfect Nyquist pulses, s(t) and r(t), of parameters (2,5) 

will be said to be associated with each other if 
00 	j4Rhpt 

B
Kn 

= 	s(t) r"(t + KS) E 	dt 
-00 
00 	-j2RKElf 

= J S(f - 24) 11-(f) 6 	df = 0 	(17) 
-co 

for any pair of integers (n,K) and 0. 14p15. 

In the previous definitions s(t) and r(t) are not 

necessarily real signals. In fact if s(t) is a real Nyquist 

pulse it is obvious that s(t) exp(j4R24) is also a Nyquist pulse 

for any integer V. Moreover, it follows immediately from 

Equation (15) that if s(t) is a Nyquist pulse of parameters 

(j),15) then its spectrum S(f) is a Nyquist pulse of parameters 

cp, 20. Therefore 
s1(t) = 
	p: g 2t  6  p  \02 , 

is a Nyquist pulse of parameters (,p,5) with the same energy as 

s(t). The pulse si(t) given by Equation (18) will be called 

the dual of s(t). The spectrum of si(t) is thus given by 

Sl(f) =bgZ s-( ,v 

Furthermore, it is very easy to show that if s(t) and r(t) are 

perfect Nyquist pulses associated with each other, then As(t)+ 

Br(t) is a perfect Nyquist pulse for any complex constants A 

(18)  

(19)  
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and B. Henceforth, unless otherwise stated, use will be made 

only of real perfect Nyquist pulses. By making n = 0 the analysis 

can easily be extended to any real Nyquist pulse since Equation 

(14) is the special form of Equation (15) for n = 0. 

The construction of an FDM data system on the basis of 

some perfect Nyquist pulse is an easy matter in view of Theorem 

1 stated below. In presenting it here it is intended mainly to 

make clear the meaning of the parametersy and 0 used in the 
above definitions. 

Theorem 1 Given the real baseband perfect Nyquist pulse s(t) 

of parameters (j ,b), it is possible to transmit the pulses 

+G 
o 
 s(t - K5), +gn

(t-K5) and +h. (t K5), where 
— 	 — 

gn(t) = Gns(t) cos(4T1n0t + at) 	(20) 

11.(t) 	 sin(41-Ci43t + a.) 	(21.) 

n,i = 1, 2, 3, ••• 
K = 0, +1, +2, 0.., 	R = 1 

s) 

and detect them without any interpulse interference. 

Therefore, by sending the pulses at a rate of 1/5 

per second, it is possible to transmit JJ(2L + 1)13 Baud in the 
bandwidth CO, (2L+1)13]Hertz, for any integer 	thereby 

achieving a transmission rate of J)  Baud/Hertz. 

The following two theorems are the basis of the signal 

design method introduced later in this section. Their proofs 

are presented in Appendix 1.1 together with the proof of 

Theorem 1. 

Theorem 2 Two real baseband perfect Nyquist pulses, s1(t) and 

s2(t), of parameters (j), 5), which are associated with each 

other, can be used simultaneously as in Theorem I without giving 

rise to any mutual interference. 

It can be concluded as a corollary that no pair of 

associated Nyquist pulses can be found for which j) = 2 Baud/ 



y(t iT) 
	

(22) sa(t) 

Consider now the sequences of N real Nyquist pulses 

N-1 

1=0 

sb( t )  bi+1 
y(t - iT) (23) 
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Hertz, otherwise it would be possible to exceed the Nyquist 

rate. 

and 

i=0 

The elementary waveform y(t) is assumed to be a perfect Nyquist 

pulse of parameters (J91, T) having unit energy. Thus if 

2 a2 
, = 	N, 	(24) 

1=1 	1=1 

the parameter Es  is the energy of both salt) and sb(t). By 

introducing two infinite sequences 	and 	N can be 

defined, with no loss of generality, as the smallest even 

integer such that ai  = bi  = 0 when 1<1 or i>N. 

Theorem 3 The real waveforms sa(0 and s
b(t) given by Equations 

(22) and (23), y(t) being a Nyquist pulse of parameters (1),T), 

are Nyquist pulses of parameters (p/2, 2T) if and only if 

a.1 1 a.+2K = 0, 	any K 0 	 (25) 

and 

bi  bi+2K  = 0, 	any K-11 0. 	(26) 

The same waveforms sa(0 and sb
(t) are associated Nyquist 

pulses if and only if 

b. a.1+2K = 0 any K. (27) 

Thus, according to Theorems 2 and 3, the pulses 

defined by Equations (22) and (23) make it possible to transmit 
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at the rate achieved when using the Nyquist pulse y(t) and the 

signalling method of Theorem 1. 

The following two theorems, whose proofs are presented 

in Appendix 1.1, provide a method of finding pairs of associated 

Nyquist pulses. 

Theorem 4 If s(t) is a symmetric or antisymmetric real waveform, 

time-limited to E-T/2, T/2D, then s(t) is a perfect Nyquist 

pulse of parameters (1,T) if and only if 

s2(t) 
r  T a(T) 
	

(28) 

2E
s  s2(t)  + s2(t-T/2) = -y-, 	05,;t=;T/2 	(29) 

where Es 
is the energy of s(t). 

Theorem 5 If s(t) is a real symmetric Nyquist pulse of para-

meters (1,T), time-limited to [-T/2, T/2], then the anti-

symmetric pulse 

r(t) = 	Ga(t/T) sgn t 	(30) 

is a perfect Nyquist pulse associated to s(t). 

At this point it may be helpful to give a few examples 

of Nyquist pulses, some of which will be used later in this 

chapter. The simplest form of Nyquist pulse known is the 

rectangular pulse of duration T: 

cl//, It' < T/2 
1 s/(t) = 	 = G =.1  a vT 	, Itl > T/2 	(31) 

In order to prove that s1(t) is a perfect Nyquist pulse of 

parameters (2,T) it is sufficient to note that 

A 	= 	G (t/T)exp(j2iln)dt on 	-co a 

sLnKal  - 0, 	n 0 TEn 
1 	 n = 0 
	

(32) 
I■11■01■41■1■8•••••■ 

G
a
(x) = 1, if Ixl<0.5; Ga(x) = 0, if lx1 > 0.5. 

and 
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The spectrum of s1(t) is given by 

S 
(f)  = 	

S1 	T{) 1. 	 Tf 
and thus 

s2(t)  = 	S  (-1-)  T 1 2 

vT  Titir 

= 1  sinc(t/T) 

(33)  

(34)  

is another Nyquist pulse of parameters (2,T). As a second 
example, consider the unit energy pulse 

s3(t) = T Galt/T) cos(TLt/T) 
	

(35) 

Since 
2 	1 	Tit s3(t) = -(1 + cos-) 

it follows,according to Theorem 47 -that s3(t) is a Nyquist pulse 
of parameters (1,T). Its spectrum is given by 

2 r--  cosT1Tf  S (0 = - v2T 	 (36) 3  TL 1 - (2fT)2 

from which another Nyquist pulse of parameters (1,T) can be 
derived: 

2t s4(t) = T  S3(-7) 

4 cos(2T-Ct / T) (37) 
Tc1/1 1 - (4t/T) 

As a further example, consider the following antisymmetric 
pulse: 

s5(t) = ; Ga(t/T)sin(TWT) 	 (38) 
Since 

s5(T/2 	I ti ) Ga  (t/T) ssf-ri t = sa  (t) 

it follows, according to Theorem 5, that the pulses s3(t) and 
s5(0 are associated perfect Nyquist pulses of parameters (1,T). 
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Therefore, according  to Theorems 1 and 2 it is possible to 

transmit both orthogonal pulses s3(t) and s5(t) in the baseband 

and modulate by the same pulses two carriers in quadrature at 
2n_ 

each of the frequencies --Hz' 
 n = 1,2,..., thereby achieving  

T  
the maximum possible rate of 2 Baud/Hz overall. The spectrum of 

the pulse s5(t) is given by 

S5(f) = -jB5(f) 	 (39) 

where 
B 	vu s2ETEL 
5 	= 	TETf - (2fT)

2 

This result makes it possible to add another Nyquist pulse to 

the list, namely:  

= 	B (2tN  
s6(t) T 5'T ' 

2 cos(2llt/12 	(4t/T)2  
/—*2iTt/T vT 	(4t/T) 

It is not difficult to show that the duals of two associated 

Nyquist pulses are also associated with each other. Therefore 

s4(t) and s6(t) form a pair of associated Nyquist pulses. In 

view of Theorem 4 the symmetric pulse 

s7(t) = gjl - 21C Ga(t/T) 	(41) 

is another perfect Nyquist pulse of parameters (1,T)9 Therefore, 

according  to Theorem 5, the antisymmetric pulse 

s8(t) = T/TT Ga*sgn t 	(42) 

is also a perfect Nyquist pulse of parameters (1,T) which in 

addition is associated with s7
(t). The duals of s7(t) and 

s8(t) form another pair of associated pulses but, since their 

mathematical expressions are quite complicated, they will not 

be dealt with here. 

2 

(40) 
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4.2.3 	Proposed signal design 

As stated above, the signal design proposed in this 

chapter consists of sending every 2T seconds the associated 

Nyquist pulses defined by Equations (22) and (23), the waveform 

y(t) being a Nyquist pulse essentially time-limited to T seconds. 

As expressed by Theorem 3, in order to avoid any artificial 

intersymbol interference resulting from the overlap of the 

transmitted waveforms, the sequences A = f.ail and B = tbi  should 

satisfy the conditions (25), (26) and (27). Sequences satisfying 

Equations (25) and (26) are termed self-orthogonal sequences and 

those satisfying Equation (27) are called associated sequences. 

The diagram shown in Fig. 4.2(a) makes it possible 

to satisfy these conditions. In this figure it is assumed that 

a train of Dirac impulses 

11(t) = (a. 5 t iT), 	ct. = +1 — (43) 
i.-00  

representing the binary symbols, is applied at the input. The 

serial-to-parallel converter (SPC) is assumed to generate the 

impulse trains 

(t) = 	a2K  5(t- 2KT) 
	

(44) 

and 
K=-00 

 

 

112
(0 = 	CC2K-1

5(t-2KT), (45) 

      

K=- 

which are applied to the inputs of the tapped delay lines La 
and Lb 

respectively. The output of the shaping filter, whose 

transfer function is 

G(f) 	Y(f), 	 (46) 

is signal 
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s(t) = Ksa(t-2KT)+0cK-1  sb  (t-2KT
)] 	(47) z  

K=-00 

where s
a(0 and sb(t) are given by Equations (22) and (23). 

This signal s(t) is transmitted through a channel which is 

assumed to be distortionless and, after being corrupted by the 

noise n(t), it is applied to the receiver, whose block diagram 

is shown in Fig. 4.2(b). The front-end filter is assumed to 

have the transfer function 

H(f) 	Y*(f) exp(-j2TT2TO 	(48) 
■FT 

for some integer Z, and is thus matched to the transmitter shaping 

filter. It is shown in Appendix 1.2 that if the artificial 

intersymbol interference is to be avoided, the tap gains of the 

transmitter and receiver delay lines must satisfy the following 

relations: 

bi  ri+2K 	a.1 s.I+2K = 0, any K 
	

(49) 

r. 	 1 1+2K 	 b1  . s i+2K = 0, K 	0. 	(50) 

It is shown in Appendix 1.3 that if fad is a self-orthogonal 

sequence then the relations (27) and (49) are satisfied if and 

only if 

b. = b(-1)1 aN-1+1 
	 (51) 

r 	
= r(-1)1 N-11-1 
	 (52) 

si = s(-1)i a  N-i+1 
	 (53) 

for some constants b, r and s. It can thus be concluded that 

r.1  = G a.1 	
(54) 

and 	si 
= H b., 	 (55) 

1 

for some constants G and H, and that the relations (50) are 
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automatically satisfied. The two samplers in Fig. 4.2(b) are 

assumed to operate at the instants 2KT, for any integer K, and 

the resulting samples are presented serially to the decision 

device by means of a parallel-to-serial converter (PSG). 

The general solution to the problem of finding the 

sequences A = tai3, B = b. , R = tril and S = Isi3 so as to 

minimize the error probability due to a non-continn,q1 noise 

could not be found. It is shown in Appendix 1.2 that in the 

case of a white Gaussian noise the error probability attains its 

minimum value, for a given transmitted power, if and only if the 

relations (54) and (55) are satisfied for any subscript i, that 

is, if and only if the delay lines Lr  and Ls  are matched to La  

and Lb 
respectively. Since the filters G(f) and H(f) are 

matched to each other the whole system is then optimum with 

respect to white Gaussian nOise. The magnitudes of the signal 

samples produced by the samplers 1 and 2 in Fig. 4.2(b) are 

given respectively by 

A
l = Ns 

I  a.r. = IGI VE- 	 1 	
(56) 

E 

and 	A
2 

b.s. = IHI VE—,  (57) 

provided that y(t) has unit energy and the relations (24) are 

satisfied. Without any loss of generality it is possible to 

set IGI = IHI = 1 so as to obtain the simple result 

A
l 

= A2 
= A

s 
= ‘/E 	(58) 

From the results in Appendix 1.2 it can further be concluded 

that the error probability due to white Gaussian noise does not 

depend on the pair of associated self-orthogonal sequences 

A = fail and B = fb.s chosen. This is certainly not the case in 

the presence of impulsive noise. An attempt at optimization 

against impulsive noise is made later in this chapter. 
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To conclude this section a method of constructing 

pairs of associated self-orthogonal sequences is presented. 

The method is based on the following theorems whose proofs are 

given in Appendix 1.3. 

Theorem 6 If A = tai3 is a self-orthogonal sequence, the 

sequence B = Ibi\ determined by 

= (-1)1 a
N-i+1' 
	 (59) 

i = 1, 2, 00., N, is also self-orthogonal and the two sequences 

are associated with each other. 

Theorem 7 If A and B are associated self-orthogonal sequences, 

C = [A,B and D = t-A,B1 are also associated self-orthogonal 

sequences . 

According to these theorems, it is possible to start 

with the sequences X0  = Yo  = [11 and construct two associated 

self-orthogonal sequences of length N = la, n?1, by means of 

the recurrence relations: 

XK  = tcosp..XK..1, sin0—. . YK-11  

YK  = 
YK-11 

(60)  

(61)  

where the µK, K = 1, 2, ..., n, are arbitrary real numbers. It 

is obvious that the sequences An = i5 Xn and Bn = 	Yn 
satisfy 

the relations (24). In general a self-orthogonal sequence which 

satisfies the conditions (24) has N/2 degrees of freedom for it 

is subjected to a total of N/2 conditions. Therefore, if n>2 

the previous rule cannot produce all the self-orthogonal sequences 

of length N = 2n. The associated self-orthogonal sequences 

A = t2, -1, -5/3, 1/3, 3/2, 2, 1, 21 	(62) 

B = {2, -1, 2, -3/2, 1/3, 5/3, -1, -21 	(63) 

Here 	-A = [-al, -a2, 	-aN1 and 

C = {al, a2, GOO, aN, 131, b2, eee, bN/0 

and 
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are an example of sequences that cannot be constructed by 

using the previous rule. So far it has not been possible to 

find a systematic rule" for generating sequences like those 

given in (62) and (63). However, the class of sequences gener-

ated by relations (60) and (61) will be found later to be large 

enough for the purposes of this chapter-. 

The class of uniform self-orthogonal sequences plays 

an important role in the remainder of this chapter. A sequence 

will be called uniform if all its elements have the same magnitude. 

If the set of parameters f[11
.1 in the relation (60) are given the 
) 

N = 2 	 11 possible combinations of values . = TE -a. with ai  = +1 4 	— 
i = 1, 2, ..., n, then a set of N mutually orthogonal vectors are 

obtained which can be grouped in N/2 pairs of associated uniform 

sequences. In this way the examples presented in Table 4.1 can 

be obtained quite easily. In Appendix 1.3 a group of permutation 

operations is defined, by means of which a total of (n-1): - 1 

other sets of uniform self-orthogonal sequences can be derived 

from the basic set obtained by using the rule just described. 

By using a direct search procedure it has been possible to show 

that the previous rules generate all the possible uniform self-

orthogonal sequences of length N = 2n, nE  c..4. The method is 

possibly exhaustive for any value of n but no formal proof has 

been found for this conjecture. 

The possibility of constructing uniform self-orthogonal 

sequences whose length 	N is not a power of 2 has also been 

investigated. This investigation has led to the following 

theorem, the proof of which is given in Appendix 1.4 

Theorem 8 The length N of a uniform self-orthogonal sequence 

must either be 2 or a multiple of 4. 

By systematic rule is meant one in which the sequence 
elements are given in terms of a set of parameters 
fp..1corresponding to the degrees of freedom of the 
generator sequence (60). 
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Table 4.1 

Some basic sets of uniform self-orthogonal 
sequences 

N= 2: al  a1 a2 

1 1 1 

-1 1 -1  

al  a 2  al  a2 a3 
a4 

1 1 1 1 -1 1 

1 -1 1 1 1 -1 

-1 1 1 1 1 

-1 -1 1 -1 -1 -1 

N= 4: 

N= 8: 

a1 a2  03  al  a2  a3  a4  a5 a6 a7 a8 

1 1 1 L 1 -1 1 -1 1 

1. 1 -1 1 1 1 1 -1 

1 -1 1 1 

1 -1 1 -1 

1 1 1 

-1 1 1 1 -1 

-1 -1 1 1 

-1 -1 -1 1 -1 
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In Appendix 1.4 the relationship between the self-

orthogonal sequences and Golay's complementary series :4-4] is 

established. The N-long sequences A = [a and B = b
i) 
 are 

complementary if and only if [4-4:: 

( 0, 	j 0 
(ai 	+ 	bi+j) = 	( 

( 2N, j = 0 
(64) 

1=1 

 

It has been possible to prove that the pairs of associated 

uniform self-orthogonal sequences form a subclass of the comp-

lementary binary sequences studied by Golay. Let P and Q 

designate the numbers of -1's in two associated self-orthogonal 

sequences. Without any loss of generality it can be assumed 

that" Q, P < N/2 and that P 	It is proved in Ref. E4-4] 

that the length of the sequences must be expressible as a sum 

of at most two squares, that is 

N = R
2 + S2 	R CS  

and that, 

N R + S 
2 

N R S  Q - 	2 

If N = 2 then R = S = 1 and thus P = 1, Q = 0. If N>2 it is 

easy to show that N cannot be a multiple of 4 unless both R and 

S are even numbers. If R and S are chosen such that R = 2K 

and S = 2L, then 

N = 4(K2  + L2) 	 (65) 

P = 2 -K+ L 	 (66) 

and 	Q = 	- K L, 	 (67) 

where K and L are any integers such that K;?,L. It should be 

noted, however, that the previous necessary conditions are not 

P 

If P (or Q) > N/2 the sequence should be multiplied by -1. 
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sufficient for the existence of associated self-orthogonal 

sequences. Up to the length 128 the only values of N that 

satisfy the above conditions are the powers of 2 and the values 

in the following list, where the corresponding K and L are within 

brackets: 

20(2,1), 36(3,0), 40(3,1), 52(3,2), 

68(4,1), 72(3,3), 80(4,2), 100(5,0 

or 4,3), 104(5,1), 116(5,2). 

When N is not a power of 2, self-orthogonal sequences have only 

been discovered for those cases where N = 10.2n, n 1. It is 

easy to see that if two complementary sequences are interleaved, 

a self-orthogonal sequence is obtained. In this way sequences 

of length N = 10.2n, n;?1, may be derived by starting with the 

complementary sequences of length 10 which can be generated as 

explained in Ref. E4-4J. By using the two basic pairs of 

complementary sequences of length 10 given in Ref. [4-4J the 

following self-orthogonal sequences of length 20 are readily 

obtained: 

- + + + + - + + + - + + + 	- +1 
+ + + + + - + + + + + w - - -Fi 

(+ stands for +1 and - stands for -1). A list of all the self-

orthogonal sequences of length 20 is given in Appendix 1.4. It 

is easy to see that given a self-orthogonal sequence A of length 

N = 4M, the two sequences of length 2M which by interleaving 

reproduce A, are complementary sequences. Since complementary 

sequences do not exist for 2M = 18, as shown in Ref. E4-4], it 

is obvious that uniform self-orthogonal sequences of length N = 

36 cannot exist. This fact proves the non-sufficiency of 

condition (65). 

It is important to point out at this stage that non-

binary self-orthogonal sequences can be constructed for any even 

Complementary sequences have only been discovered with 
lengths 10 or a power of 2 [A-4]. 
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length. For example, in the case N = 6 there exist two basic 

pairs of associated ternary self-orthogonal sequences with a 

single zero element, from which all others may be derived by 

reversing them or altering the signs of their nonzero elements. 

These two pairs of sequences are: 

+ + 0 + + 	+ + 0 - + - 
and 

+ + - 0 - + 	+ + + 0 - +. 

If in either of these pairs one of the zeros is replaced by +1 

and the other by -1, then two sequences are obtained which, 

together with those given by Equations (52) and (53), satisfy 

the relations (49) and (50) and can thus be used as transmitted 

sequences. However, since they are not associated self-orthogonal 

sequences, it follows that Equations (54) and (55) are not 

satisfied in this case. Moreover, according to Equations (56) 

and (57), 

4 r-- 
Al  = A2  = As  = 6- vEs  

instead of Equation (58) . 

4.2.4 	Performance evaluation 

The expression for calculating the error probability 

of the system described before, in the presence of Poisson 

impulse noise, is derived next. This noise model is used here 

since it is by far the simplest of the very few models for which 

the computation of the error probability can be carried out 

without recourse to noise simulation. Although the Poisson 

noise model represents reasonably well certain types of noise 

encountered in practice (e.g. VLF atmospheric noise, FDM cable 

systems disturbed by Corona "pops", etc.), there are many 

important circumstances in which this is not the case (e.g. non-

Poisson HF atmospheric noise, impulsive noise in telephone 

-A- Itisassumedthatia.1
1= lb.1 = Ir.1=ls.1 =1 

if 1 -c i <N. 
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facilities, etc.). However, it is felt that the qualitative 

conclusions drawn below will hold in any real situation. The 

performance in the presence of non-Poisson impulse noise is 

considered in Chapter VI by means of a Monte Carlo-type of 

simulation. It is important to point out here that the assump-

tion of a purely random (Poisson) time structure of the noise 

can be made more realistic if the samples of the transmitted 

signal are scrambled before transmission and then descrambled 

at the receiver. The scrambler would be placed immediately 

before the shaping filter G(f) and the descrambler would be 

placed immediately after the receiving filter H(f) (see Fig. 

4.2). It has been reported [4-5, 6, 7] that the use of scrambling 

in conjunction with error-control coding techniques is often 

useful in making the error performance less sensitive to 

changes in bit-error structure. In fact, since the existing 

burst-error-correcting codes are very sensitive to these changes, 

it is often advisable to choose an error-correcting code 

designed for random errors and use it in conjunction with a 

scrambling-descrambling system. However, in the case of the 

system under study the situation is not the same in that the 

detection is made on a bit-by-bit basis and thus the average 

error rate is the parameter that defines the system performance. 

The question thus arises as to whether the Poisson impulse 

noise is more or less harmful than a non-Poisson-type of noise, 

for the same fraction of signal samples corrupted by impulsive 

noise. Some examples studied in Chapter VI are intended to 

give insight into the problem of deciding whether scrambling 

should be used at both the coding and/or modulation levels 

rather than at the coding level only. In Chapter VII the use 

of scrambling at the coding level is considered. 

It is shown in Appendix 1.2 that if the coefficients 
la 

ai  in Equation (43) are statistically uncorreAted and equally 

likely to take on the value +1 or -1, then the average trans-

mitted power Ps in Fig. 4.2(a) is given by 
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E
s P

s 
= 

2 N T 

N 
j v  2 a2 + b2) . 	. 	(t)dt 

 

(68) 

1=1 
If y(t) has unit energy and the relations (24) are satisfied, 

then 

Ps 

E
s (69)  

If y(0) is the peak value of y(t) it is easy to conclude from 

Equntions (22), (23) and (47) that the peak transmitted power 

Pm is given by 
Es 

Pm  = — Z
2 
 y2(0) (70)  

where Z is the largest of 

N/2 

K=1 

N/2 

Z2 = 	(1a2K-11 	1/32K-11) 	(72) 

K=1 

and tbil are uniform sequences then 

PM  ==-1- E
s 
N y2(0) = P NTy2(0) 

Henceforth it will be assumed that 

(73) 

N N 

(la2Kl 	1b2K1) (71)  

and 

2 
r. = 1 

1=1 	1=1 

s.
2  
 = N 	(74) 

and thus Irk = 1s1 = 1 in Equations (52) and (53). Therefore, 

according to Equations (56), (57) and (69), the signal samples 

magnitude at the input of the decision device is given by 

Ai  = A2  = As  =Y1Fs  =WITT 	(75) 

where the parameter -\( is such that 

If y(t) is limited to the interval D-T/2, T/2] the 
relation (70) is valid with equality sign. 
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a (-1)
J

b 	4. 	N 	(76) N..j1  = -1- 1( 

j=1 
and thus 0 <1--YCl. The parameter y will take its maximum value 
1 ifandonlyifthesequencesta.land tb.lare associated self- ]. 
orthogonal sequences. In this case, as shown previously, 

r. = a., 	s. 	b. 
1 	1 	1 	1 (77)  

It is necessary at this point to consider in a little 

more detail the description of the noise. As stated previously, 

a Poisson impulse noise is assumed present at the input of the 

receiver :Fig. 4.2(b)], that is, 

C.0 

n(t) = 	r. (t - I. )  
1 	1 

1=••• oo 

(78)  

where the T. form a sequence of purely random instants to 

which corresponds a fixed average impulse repetition rate of V 

impulsespersecond.Theimpulseiritensities(areas)r.are 

assumed to be statistically independent and are assumed to obey 

a symmetric unimodal PDF pr(x) with zero mean and finite 

variance 5
2
. The characteristic functions (CHF's) of the noise 

samples obtained at the points a and b in Fig. 4.2(b) are given 

respectively by : 

Fa(w) = exp [Vi D'r(cosa(t))- l]dt 	(79) 

and 

F0.1)) = expVic.cFr(tzsb(t))-1:dt1 	(80) 

where V is the average impulse repetition rate, Fr
(('J.)) is the 

CHF corresponding to pr(x) and sa(t), sb(t) are given by 

Equations (22) and (23) with Es  = 1, that is, 

N-1  

sa
(t) = VICT. i=0 

. a +1  y(t 	iT) 	(81) 

See Chapter II, Equation (14). 
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N-1 

sb(t)= I bi+1 y(t - iT) (82) 

Given the 

and Fb
(W) 

variance 

have have the 

i=0 
2 
r of pr(x), the variances of both Fa

(■:4) 

value 

2 	2 
0.a = V 0"r (83) 

since sa(t) and sb(t) are unit energy waveforms. In order to 

make the expressions of Fa(co) and Fb(ca) more suitable for 

computation they can be written in terms of 

V
1 

= VT 	 (84) 

and 	y/(t) = \Fr y(xT) 	 (85) 

Note that V1 
is the average number of noise impulses occurring 

within a signalling period T and that y1
(x) is a unit-energy 

Nyquist pulse essentially time-limited 

easy to show that 

Fa(W) = exp (Vi  j 

Fa(W) = exp 	j 

where 

sal(x)  = 	
sa(xT) 

sbl(x) = Tr sb(xT) 

(-0,. 

-co 

to 1 second. 

[Fr(W sal(x))-1:dx  

[Fr( — sbl(x))-1]dx 
/11  

N-1 

It is very 

(86)  

(87)  

(88)  

(89)  

= I 	a.1+1 y1(x-i) 

i=0 

N-1 

= bi+1  yl(x-i) 

i=0 

If pa(Z) and pb(Z) are the PDF's corresponding to FaM and 

Fb
(W) respectively, then the error probabilities corresponding 

to the transmission paths of the system under study are: 
oo 

Pa  = j pa(Z)dZ 	 (90) 

See Chapter II, Equation (16). 

As 
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f 00 
and 	Pb = j pb

(Z)dZ 
A
s 

The overall error probability is then 

P
e 

= 1 —(Pa  + Pb) 2  

(91)  

(92)  

It is often convenient to work with probability distributions 

having unit variance, which, in this case, have CHF's 

Fr 1(w)=  Fr(Whar) 	(93) 

Fa (W)= Fa(w/Ga) 	(94) 
l 

 

and 	Fb 	= FID(W5a), 	(95) 
1 

with PDF's p 
rl
(x), pal(x) and pb1(x) respectively. The new 

expressions resulting in this case are 

Fa (G))= exp t V EP (6-1  s_ (t))-1] l 

	

-co 
[Fr 

	ct 

= exP{V1 Jr:Fri/71(c° 
sa (x))-1]dx} (96) 
1 

00 

Fb (W)= exp V I LF 	s,(t ))- dt1 
l -co r1F 

and 

00 
= exp tVlJEF - rill.); 1 

P
a ▪ 1/41°° 

B 
p
al
(x)dx 

Pb pb  (x)dx 
B s 

1 

(97)  

(98)  

(99)  

where \IP T y S2  
VO
r 

(100)  

The parameter (1) is the magnitude of the signal samples at a 

point where the noise samples have unit variance and is referred 

to henceforth as signal-to-noise ratio. 
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In view of equations (96) and (97), it is obvious that 

if y
1
(t) is used instead of y(t), at a transmission rate of 

1 Baud, then the error probability P
e 
is not altered, provided 

that the average impulse repetition rate is given the value V1 
instead of V and the variance 0r

2  
 is kept unchanged. In fact, if 

the pulse y1(t) given by Equation (85) is used the signal sample 

magnitudes become 

As  = A 
-1 	s 

and the SNR is given by 
Asi 	A 

s  
CI)1 - 	  r ■,5 	0 IC)  1 	r 

The error rates given in Section 4.3 were calculated directly 

from the CHF's Fa 
1 
 (CD) and Fb 1(W) using the method presented in 

Ref. E.4-4.1. A brief description of the method is given in 

Appendix 1.5 and the method used to compute the expressions (96) 

and (97) is described in the same appendix. It is important to 

point out that if the Nyquist pulse yl(x) is limited to the 

interval [-1/2, 1/2] then the noise samples obtained at intervals 

of T sec at the output of the receiver front-end filter H(f) are 

statistically independent. This agrees with the fact that if 

y1(x) = yl(x)Ga(x) then Equations (96) and (97) can be rewritten 

in the following form 
N  

Fa (W) = I 1 01(ai 
1 	1=1 

Fb (W) = I I 01 (ID r..0) 
i=1 

where, as shown in Appendix 1.5, 

(101)  

(102)  

r2  
0
1

(0)) = exp f v •-• i J  LFT, ( CL)- yi  (x))-i]dx3 	(103) V1 
2 	-1 /TT - 

Thus,ifia.al 	
are fbil ae associated sequences, then 

See footnote on page 59 
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Fa (W) = 
b1
(6)) 

1 

and if further they are uniform sequences, then 

F
a1

(C'.1)) = F
bl 	

1\1 (W) = E0
l(W): 

(104)  

(105)  

which, in view of Equation (103), depends only on V
1 
and N 

through the product V1N. 

In all the error rate calculations described in 

Section 4.3 uniform self-orthogonal sequences were used. For 

reasons explained in Appendix 1.5, it is conjectured that these 

sequences are optimal or nearly optimal in the presence of 

Poisson impulse noise, provided that the signal-to-noise ratio 

exceeds a certain critical value which decreases for increasing 

N. It is shown in the same appendix that in the case of non-

Poisson types of noise the minimization of the error probability 

can lead to sequences .(ail and tbi3 which are not uniform. 

4.3 	DISCUSSION OF NUMERICAL RESULTS 

The computations were carried out with three differ-

ent Nyquist pulses of parameters (1,T) used for y(t) in 

Equations (81) and (82). These are the pulses s3(t), s4(t) 

and s6
(t) given by Equations (35), (37) and (40). In view of 

Theorem 5 (subsection 4.2.2) and Equation (103) it is obvious 

that the pulse s5(t) given by Equation (38) will give rise to 

the same performance as its associated pulse s3(t). In the 

case of s4(t)  the data system has the same overall impulse 

response as in Ref. [4-9]. 

Four types of PDF were assumed for the intensities 

(areas) of the noise impulses: 

(a) 	Gauss PDF: 
2 

1 
pr(x) . • 	exp( 

C/r127 	
207- 

(106)  
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(b) Laplace PDF: 

pr(x) = 

	

	1 exp(-  IL/I) 

ari7
r  

(c) Generalized Cauchy PDF: 

Pr( ( 	TOD 	2n x) = IL sin(IL) 	1  
1 + (x/b)

2n 

(n integral.; b > 0). 

(107)  

(108)  

(d) 	Cauchy-type PDF: 

1"(v + 	x 
P 	= 	(1 + 	 ) 	(109) r  

afit.  r(v) 	a  

(v >0; 	a >0). 

The Gauss and Laplace PDF's have also been used in Ref. E4-9]. 
Their CHF's are respectively)  

2 FrFr(W) (1r  = exp(- -2- (A) ) 	 (110) 

and 	2 

	

Q2 
Fr(6)) = (1 + 

a
T 2 )-1 
	 (111) 

As their names indicate the third and the fourth distributions 

are modifications of the so-called Cauchy distribution which 

corresponds to the values n = 1 and v = 2. The CHF corresponding 

to the PDF (108) is 

.).-..1 

F (W) = sin(-11--).Lexp(-b 'WI sin2 -4-1TC) . r 	2n 	 2n 
s=0 

. sin( 2 s2+n1 n+ b10)1cos2-s2±In) 

If n>1 the variance is given by 

r/2 	b2 

r =  1-7-77671T7E7 

In the case of PDF (109) the CHF is given by 

2 tal0 Nv K (am)  
Fr((.0) = r(v)  %, 2 	v  

(112)  

(113)  

(114)  



Fr (W)= 
	
ICI (1+ 	n°  

(211) 
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where K T(.) is the modified Bessel function of the second kind. 

It should be noted that the variance of the Cauchy-type distrib-

ution is not finite, unless v>1. In this case it can easily be 

shown that the variance is given by, 

,2 	
2 

'r = 2(v
a 
 1)' 	

v>1 	(115) 
 

It can also be shown that if 

= n 	 .(116) 

for any integer n;?1, then Fr((0 can be written in the following 

form: 

(2n-K)Tk  
/2a 1 (n-K):R 01)

K
) (117) 

K=1 

We notice that the important hyperbolic PDF discussed in Section 

2.2 and the PDF's (108) and (109) have identical variations in 

the regions where the noise magnitude is large. These are the 

regions of particular interest in the present study. This fact, 

and the simple form of the CHF's (112) and (117), were the 

reasons for choosing the corresponding distributions. It should 

be noted, however, that for large n these distributions show 

completely different behaviour, since in the case of the 

generalized Cauchy PDF, 

lim  
n...4( 	(x) 	

1 
- 	G ( 	(118) 

2 Or 	
a X 

2 o'r  

and, in the case of the Cauchy-type distribution, 

2  
lim  pr 
	

x 
(x) = 	exp(- 	(119) 

01.1
5ft 	2Or 

where, in both cases, CI
2 is the fixed value of the variance. 

The CHF corresponding to the rectangular PDF is given by, 
sinGoa 17 

Fr  (W) = 	
r 	 (120) 

Ir 

It can readily be concluded from Equation (105) that 

the probability of error for a given SNR does not depend on the 
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particular sequences [a. and {ID:\ used provided that they are 

associated uniform self-orthogonal sequences and, in addition, 

y(t) is time-limited to E-T/2, T/2]. It has been assumed in 
the computations that these conditions exist. In those cases 

where y(t) is not time-limited to E-T/2, T/2] the numerical 
results have shown that the error probability Pe  depends only 

slightly on the assumed pair of sequences and that the differences 

are too small to be indicated on the performance curves (Figs. 

4.4 to 4.20). Moreover, the probabilities Pa 
and Pb 

defined by 

(90) and (91) are slightly different when y(t) is not limited to 

E-T/2, T/2] but the numerical results have shown that both tend 
rapidly to Pe  as N increases. The graphs of the error probability 

P versus the signal-to-noise ratio (I) :see Equation (100)] are 

presented in Figs. 4.4 to 4.20 for different values of V1  and N 

(or V
1
N) . On account of the fact that when dealing with the 

modified Cauchy distributions and the pulses s4(t) and s(0 

the computation time is prohibitive, the graphs corresponding 

to these conditions were not obtained. By analysing Figs. 4.4 

to 4.13 it can be concluded that the effect of the shape of the 
elementary pulse y(t) on the error probability is not important 

from a practical standpoint, at least in those cases where y(t) 

is essentially limited to the signalling period T and the system 

bandwidth W, which are both assumed fixed. 

By comparing the graphs presented below, it can be 

seen that the performance of the smearing technique is strongly 

dependent on the shape of the PDF Pr
(x). This point can be 

illustrated by finding the smallest value of N = 2n  capable of 

giving Pe
<10-4 for each pr

(x) referred to above, under the 

conditions: 

y(t) = s3(t), 

V1 	(1)dB = = 1/32, 	20 dB 

* 
	

See end of Section. 
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The following values are obtained from the performance curves: 

(a) Gauss PDF (see Fig. 4.4): 

V1N = % 
1N 	4 	 N = 8 

(b) Laplace PDF (see Fig. 4.9): 

N = N 	16 %2- 

(c) Generalized Cauchy PDF (see Fig. 4.14): 

N 

	

V1N = 4 	= 128  

(d) Cauchy-type PDF (see Fig. 4.18): 

V
1
N = 8 • 

• • N = 256 

cases, approximately 10
-3. It thus follows from the above 

example that the value of N necessary to achieve a required 

performance at a given SNR can vary widely with the change in 

pr
(x). In Table 4.2 the values of N obtained above, together 

with the values corresponding to another two SNR's, are given. 

As can be seen, the minimum value of N for a required performance 

and a given PDF pr(x) can also vary over a wide range as a 

result of a change in SNR. If the SNR is too small the reduction 

in the error probability, obtained by increasing N up to an 

acceptable limit, may be too small to be of any practical 

interest (see Table 4.3). In this table the values of the error 

probability Pe  corresponding to a SNR of 14 dB are presented for 

several values of N. 

These facts indicate that .the designer of a smear-

desmear system should start by choosing the maximum acceptable 

value of N on the basis of factors like peak transmitted power 

or system complexity. Then the improvement in the SNR necessary 

to achieve a certain error probability Pe, with respect to the 

conventional system (N = 1), should be evalu3ted. Table 4.4 

gives some values of the SNR improvement for Pe = 10
-4 

and 

V1  = 1/32. It can be seen that the SNR improvements for the 

It should be noticed that the value of Pe for N = 1 is in all 



- 82 - 

Table 4.2 

Minimum values of N = 2n for P .<7.." 10-4 

Ey(t) = s3(t), v1  = 1/32] 

d 

P. 
14 dB 20 dB 26 dB  

Gauss 128 8 1 

Laplace 256 16 2 

Gen. Cauchy 
(n=2) 16384 	. 128 	' 2 

Cauchy-type 
(n=1) 32768 256 	. 4 

Table 4.3 

Variation 	of  P with .N —e 
[y(t) = s3(t), v1  = 1/32, TdB = 14 dB] 

N 
P 

1 8 32 128 512 

Gauss 4.8 x 
10-3  

3.8 x 
10-3  

6.0 x 
10-4  

7.0 5.x 
10-  

5.5 x 
10-6  

3.8 x 4.81 1.73 2.7 x 2.03   
Laplace 10-3  10-  10-3  10-4  10-  

Gen. Cauchy 3.8 x 3.0 x 1.8 	? 9.7 x 4.8 x 
(n=2) 10-3  10-3  10-  10-4  10-4  

Cauchy-type 3.1 x 3.3 x 2.2 x 1.3 x 6.6 x 
(n=1) 10-3  10-3  10-3  10-3  10-4 
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Table 4.4 

SNR improvement in dB 

Ey(t) = s3(t), V1  = 1/32, Pe  = 10-43 

N 

Pr(x) 
32 64 128 	' 256  

Gauqs, 9.4 10.6 11.8 12.4 

Laplace 9.0 10.8 12.2 13.5 

Gen. Cauchy 
(n=2) 4.8 5.8 6.7 7.6 

Cauchy-type 
(n=1) 4.2 5.1 6.0 7.0 

If (PN  is the SNR necessary to achieve Pe = 10
-4 

with signals of length N,.this table gives the 

improvement (1)11dB (PN,dir 
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Fig. 4.9: 	y(t)=s3(t), Laplace PDF. 
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Fig. 4.12: 	y(t)=s6(t),V1=3/4, Laplace PDF. 
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• Fig. 4.17: 	y(t)=s3(t), Rectangular PDF, Equation (118). 



SNR CI) 
FdB 

Fig. 4.18: 	y(t)=s3(t), Cauchy-type PDF (n=1). 
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Fig. 4.19: 	y(t)=s3(t), Cauchy-type PDF (n=2). 
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Fig. 4.20: y(t)=s3(t), Cauchy-type PDF (n=3 
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Gaussian and Laplace PDF's are approximately twice those 

obtained for the other two distributions. 

In view of the previous considerations, it can be 

concluded that a somewhat precise knowledge of the properties 

of the noise amplitude distribution must be obtained before any 

conclusion can be drawn about the efficiency of the proposed 

signal design technique. The longer the tails of the PDF pr(x) 

the lower the SNR improvement corresponding to a given value of 

N. In fact, since the improvement stems from the fact that the 

combination of several noise samples tends to become Gaussian, 

the farther pr(x) is from being Gaussian the larger the value 

of N necessary to achieve a certain SNR improvement. 

4.4 	CONCLUSIONS 

From the results presented previously the following 

conclusions can be drawn concerning the performance of the 

proposed signalling method in the face of Poisson impulse noise: 

(a) The method is only efficient if the signal-to-noise 

ratio exceeds a certain threshold which decreases for increasing 

signal length N. For lower SNR's the conventional system, 

obtained by removing the smearing delay-lines (case N = 1 in the 

error probability graphs),performs better. This stems from the 

fact that in a strongly non-Gaussian noise the high amplitudes 

normally have a greater probability, with respect to a Gaussian 

noise with the same variance, but the reverse is true for the 

low amplitudes. The receiver delay-lines tend to render the 

noise Gaussian and thus its effect can be harmful for low SNR's. 

In coding theory the same kind of SNR threshold arises below 

which the coded system has a higher probability of error than 

does the uncoded system. 

(b) The error probability depends on the elementary pulse 

y(t) but, on account of the results, it is believed that the 
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effect is not important from a practical viewpoint, provided that 

y(t) is essentially limited to the fixed signalling period T and 

a fixed bandwidth W corresponding to the system bandwidth. 

(c) There are grounds for conjecturing that, given the 

elementary pulse shape and the signal length N, then, provided 

that the SNR exceeds the threshold referred to in (a), the 

minimization of the error probability will lead to a pair of 

self-orthogonal sequences which are uniform, or nearly uniform. 

Below that SNR threshold the conventional system (N = 1) gives 

a better performance than the proposed signal design. The 

variation in P
e due to changing the pair of uniform sequences 

has been found negligible to the extent that it is not possible 

to show the difference on Figs. 4.4 to 4.20. The analysis in 

Appendix 1.5 suggests that in the presence of strongly non-

Poisson noise the optimization will lead to strongly non-uniform 

sequences. In this appendix, a noise with a non-Poisson 

distribution of impulse arrival times is defined for which the 

uniform sequences can be proved not to minimize the error 

probability. 

(d) The system performance was found to depend strongly on 

the amplitude distribution of the impulsive noise. This is due 

to the fact that the degree to which the noise becomes Gaussian, 

for a given signal length N, depends on how far the probability 

distribution of the accumulated noise samples is from the Gaussian 

distribution. 

(e) By comparing the graphs presented in Figs. 4.5 and 4.6 

with the graphs published in Ref. E4-93, which are reproduced in 

Fig. 4.21, it can be concluded that for NI:::!8 the signals proposed 

here perform better than the signal used in this reference. It 

should be noted also that the proposed system is much easier to 

implement than the one suggested in Ref. E4-9:1. 
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CHAPTER V 

PROPOSED SIGNAL DESIGN: II - LOW SNR 

Do not put all your 

eggs in one basket. 

Proverb, 18
th 

Century. 
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5.1 
	

INTRODUCTION 

In the previous chapter the transmission rate was 

maintained at the value which can normally be achieved, for a 

given channel bandwidth, in the presence of background Gaussian 

noise,alone. It was concluded that for this transmission rate, 

and in the presence of impulsive noise, the smear-desmearing 

technique results in an improvement in system performance when the 

signal-to-impulsive-noise ratio (SINR) is greater than a critical 

threshold, but that below this threshold the method gives rise 

to a deterioration of performance. 

In this chapter attention is focused on the low SINR 

case. The technique proposed consists in transmitting a number 

of pulses per data element and trying to optimize the detection 

operation performed at the receiver. Although this idea is not 

new (see Section 3.4) an attempt will be made in this chapter to 

improve the detection operation in the presence of impulsive 

noise. The technique will obviously lead to a reduction in 

transmission rate or, if the transmission rate is to be maintained, 

an increase in necessary bandwidth. 

In this chapter it is assumed that the noise possesses 

the following main characteristics: 

(a) It is a non-continual noise (see Section 2.3) in the 

sense that each one of its samples can be drawn from one of 

several amplitude distributions, according to some time distrib-

ution which gives the amplitude distribution to be used at each 

sampling instant; 

(b) A fraction of the noise samples is due to the background 

Gaussian noise alone and the other samples include, in addition, 

the contribution from the intermittent (impulsive) causes of 

noise; 

(c) The level Of the background Gaussian component is 

usually much lower than that of the impulsive components of the 
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* 
noise . 

In view of these characteristics, it seems reasonable 

to try and detect first the presence of the impulsive noise and 

then to use this knowledge to improve the signal detection. This 

concept is depicted in Fig • 5.1. Depending on whether the noise 

detector decides that the incoming sample has been corrupted by 

impulsive noise or not, that sample will follow either the lower 

or upper branch of the receiver, respectively. These two 

branches should be designed in much the same way as the receiver 

shown in Fig • 3.5. That is, the sample values within each 

interval MT seconds long are accumulated after being optimally 

processed by a memoryless devices" (S and T in Fig. 5.1) and the 

resulting value is fed into a decision device. The decision 

device in the upper branch is best designed as a null-zone 

detector because, if the accepted samples nearly cancel one 

another after accumulation, it is very likely that the noise 

detector has made a wrong decision in a large number of samples. 

For this reason, the decision device in the upper branch will 

produce an erasure symbol x at its output whenever its input is 

close enough to zero. In this instance the switch at the receiver 

output will choose the symbol coming from the lower branch, whose 

decision device is the usual single threshold detector. 

The difference between the present approach and that 

described in Section 3.4 can be summarized as follows. The 

single-path detector of Section 3.4 (Fig. 3.5) is optimum under 

the assumption that the noise samples are independently drawn 

from the same statistical distribution (white continual noise). 

On the other hand, the detector now being proposed aims at 

exploiting the non-continual nature which is characteristic of 

impulsive noise. In order to achieve this, the detector cannot 

In this chapter it is assumed that the impulsive noise 
samples are drawn from a single statistical distribution 
which represents the effect of all intermittent causes 
of noise. 

* * Usually a nonlinear device. 
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treat identically all the noise samples and therefore it must 

incorporate some criterion for distinguishing between the 

Gaussian and the impulsive noise components. The criterion to 

be used in the following sections is the difference between the 

levels of these noise components. 

5.2 	ANALYSIS OF THE PROPOSED TECHNIQUE 

5.2.1 	or assumptions  

As mentioned before, each binary digit is to be trans-

mitted by means of a sequence of M pulses which will be assumed 

identically shaped. The transmitted signal corresponding to the 
ith digit thus has the following form: 

M-1  
si lt) = 0i  Es 

 

aKy(t-KT), 	0.1  = +1 
	(1)  — 

   

K=0 

where y(t) is assumed to be a Nyquist waveform (see Section 

4.2.2) thus avoiding interference between pulses. It is further 
assumed that y(t) has unit energy and that 

M-1 

a2 = M 	 (2) 

K=0 

Therefore, as in Section 4.2.4, the average transmitted power 

is given by 
E 

Ps = s 
	

(3) 

The information is transmitted at a rate of 1/MT bit/sec since 

the pulse sequences are assumed non-overlapping. 

As in the previous chapters the channel is assumed to 

be ideal (distortionless). At the receiver input the signal is 

additively corrupted by a combination of white Gaussian noise, 

ni(t), and Poisson impulse noise, n2(t); that is, 

It may be possible to devise more efficient noise detectors 
which exploit other distinguishing features of the 
impulsive noise bursts. 



- 109 - 

n(t) = n1(t) + n2(t) 	(4) 

where 

n2(t) = 	r. 5(t-Ti)  (5) 

In order to simplify the problem, it is assumed through-

out this chapter that the receiver input filter has an impulse 

response 

h(t) = y(PT - 	 (6) 

(for some integer £) which is precisely time-limited to an interval 

of duration T. This assumption implies that the samples of 

impulsive noise produced by the sampler in Fig. 5.1, at the 

instants to 
= nT (n integer), are statistically independent. 

Since y(t) is a Nyquist pulse, the samples of Gaussian noise 

are also statistically independent (see Appendix 1.2). It thus 

follows from the discussion at the end of Section 4.2 that the 

coefficients aK 
in Equation (1) must have unit values, i.e. 

aK = +1 for any K. 

If p is the probability that the samples of the 

received signal are corrupted by impulsive noise, then the 

combined PDF of the noise samples is 

P11(x) = q Pw(x) 	P Pz(x) 
	

(7) 

where q = 1-p, pw(x) is the Gaussian noise PDF and pz(x) is the 

PDF of the noise samples affected by at least one noise impulse. 

In what follows both pw(x) and pz
(x) are assumed to be symmetric, 

unimodal, PDF's which are completely known. The probability p 

is also assumed known. 

Due to the purely random occurrence of the noise pulses 

in time, the probability pm(i) of having i samples corrupted by 

impulsive noise in a sequence of M signal samples is given by 

the well known binomial distribution: 

See Section 4.2, Equation (78). 
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PM(i) = 
(1;1) pi qM-i 

(8)  

In this chapter only small values of M are considered, namely 

1.1:6, since for higher values the system becomes very inefficient 

in terms of transmission rate and thus is not suitable for data 

transmission. If a low M gives an unacceptably high error 

probability the combination with coding appears to be the best 

alternative. This point will be considered further in Chapter VII. 

It is also further assumed that the signal-to-Gaussian- 

noise ratio (SGNR) defined by 
E 

PdB 	10 log 10 a2 
w 

2 
(0w 

being the variance of the Gaussian noise) is greater than 
12 dB in which case the error probability of the receiver in the 

presence of Gaussian noise alone is much less than 10
-5 and thus 

most errors occur when impulsive noise is present. 

5.2.2 The noise detector 

  

As explained in Section 5.1, the noise detector in 

Fig. 5.1 aims at detecting the presence of the impulsive component 

of the noise in the background formed by the transmitted signal 

and the white Gaussian noise. In the following analysis it is 

assumed that this aim is to be achieved by using only the inform-

ation contained in the samples of the received waveform at the 

instants t
o 

= nT (n being an integer). The optimum detector 

would in general be expected to process continuously the received 

waveform but its analysis is naturally much more difficult than 

that of the suboptimum detector considered below. 

Let the samples delivered by the sampler in Fig. 5.1 

be termed Si  (i = 0, 1, 2, ..., M-1) and let the parameter O. 

indicate the presence (0.1 	
.th 

= 1) or absence (91.  = 0) of the 

impulsive disturbance at the 	sample. We can then write 

AS. = 	0. 4-w. + u. O. 1 	1 1 	1 1 (9)  



where A = 1E-  is the signal sample magnitude , 0. = +1 accounts  - 
for its polarity, w. is the white Gaussian noise sample and u.e. 

is the impulsive component of the noise. Instead of Equation 

(9), it will be found more convenient to write 

S. 1 
A0i  + wi 	if G.

1  = 0 

A0i 	
zi 	

if G. = 1 
(10) 

  

where w. and z. are distributed according to the PDF's pw(x) 

and pz(x) respectively. As defined above 

P[G. = 1]=p 

and 
	

PE Q. = 0j= 1 p= q 

In order to calculate the required likelihood ratio we 

first note that 

PC:Si/0i  = 0; 01.2] = pw(Si-A0i) 

PE si/oi = 1; soi] = pz(si  mid 
and therefore 

PES.
3./0.=0j= 

(12) 

P [01: Pw  (Si  - AOi)  

(13)  

s./e. =1] = 	PE 0. :lp 3. 	1 	z 
0.=+1 - 

The likelihood ratio on which the detector is based is by 

definition [5-1] 

(si) - 
PESi/0i=11 

(14)  
PE Si/9i=0] 

If 6. is.the decision made about the value of G. we can express 

the receiver action in the following terms: 

See Section 4.2, Equation (58), where As means the same 
as A. 
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if A(Si) < A 	decideb‘.1  =0 . 

If A(Si) > A 	decide 	6. = 1; 	
( 15) 

As is well known [5-1], the threshold X can be expressed as 

follows: 

qC, 
= 9. 'y 

PCm 
(16) 

whereCf isthecostofdeciding8.
1 
 =1 when actually G. = 0 

andCra isthecostofdecidingg.
1
=0whenactually0.=1. A zero 
 1 

value is assumed for the cost of any correct decision. For the 

purpose of minimizing the probability of error in the signal 

detection, making Cf = Cm does not necessarily lead to the 

optimal receiver. This question will not be pursued further at 

this point but will be taken up later in this chapter when the 

performance of the overall receiver is considered. 

In the remainder of this chapter it will be assumed 

that 

P 0i  = -1-1] = P E 0i  = 	= 
	 (17) 

In view of Equation (14) it is thus possible to write 

pz(Si+A) + pz(Si-A) 	
(18) 

Since pz(x) and pw
(x) are symmetric unimodal PDF's it follows 

that 

AKS.) = 1  -S.) 
and that p 

z 	
(A) 

A( 0 ) = p(A) 

(19)  

(20)  

In the cases of interest, the probability of the event zi:›A 

is much higher than that of the event wi>A and thus 

A( 0 ) 	1 	 (21) 

The symmetry expressed by Equation (19) is a direct 
consequence of Equation (17). 
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By comparing Equations (9) and (10) it can be concluded that 

z. = w. + u. and thus 1 	1 

Cz(W) = Cw((.0).CuM, 

where C 
z 
 , C

w 
 and Cu are the characteristic functions (CHF's) of 

the random variables z, w and u respectively. Therefore, 

1R J 
 CW)dw 

Pz(°')  = 2 	w
(W)C 

u
( 

 

< 1 

	

TL 	
c w (co) lc

u 
 (c0)1dcb 

poo 

	

2T1 
	C w(CO)c1C0= Pw(0), 
	(22) 

where the second inequality follows from the fact that ICuM 
From Equation (18) we obtain 

p (0) + pz(2A) 
A(A) = t5177-70777 	(23) 

In most practical situations 

p (2A) 	pz(2A) 

75 	p 	(0) <- 1  
Z • 

and thus 

pz(2A) 	pz(0) 

pw(2A) > p (0)* 

If as-:ipz(2A) is such that 

a 	pz(0) 	a + pz(0) 

727 - T70) TTT) Pw(0) 

then, in view of relations (22) to (24), 

pz(0) 
553 	_A(A) < 213:(0) ‹.2 

pw(0) 
(25) 

(24) 

There are cases, like those studied in Section 5.3, where the 

reason behind relations (21) and (24) also implies that 



and 

If 6w is the variance of the Gaussian noise samples then 

E2 a+  = 1/2 erf(-) +1/2 erf(-) 
C5 	 ‘,/7 

w 	 w 

(33) 
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AKA) ‹< 1. 	 (26) 

The previous considerations serve to justify the typical graph 

of function A(x) shown in Fig. 5.2. From this figure it can 

be seen that the decision rule expressed by relations (15) can 

be reformulated in the following terms: 

If -E1 - A< E2  decide 4.o 
1 	(27) 

otherwise decide 0. = 1 . 1 

The new thresholds E
1 
 and E

2 
are obviously positive functions of 

the threshold X in the decision rule (15). 

The performance of the noise detector can be described 

by the probabilities 

cc = PEo. = lie. = 
	 (28) 

and 
= proi  = 0 Ioi  = 	 (29) 

In view of equation (19) a can be expressed in the following 
manner: 

(30) 
where 

and 
	a+ = PE6i = op si> 0  I ei = 0, 0i= -1-1: 

	
(31) 

a_ = P 	= 0, si< 0 I 9i= 02 Oi  = +1] 
	

(32) 

2A-E1 	2A-FE2  
= 1/2 erfc(-----) 1/2 erfc(----) 

qw 	Ow V-2-  
(34)  

Since usually .A%0N,7, it is assumed hereafter that Ck<I=OL1_ and 

therefore that 

as 1 -- a+-  
El 	E2  

1/2 erfc(—) + 1/2 erfc(---) 

w1 	Cw 

(35)  
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Also, in view of Equation(19) it follows that 

P = 	+ P_ 	(36) 

where 

13+  = PE4i  = 0, si>0 I ei  =1, Oi  = +1] 	(37) 

13_ = PE6i = oy S.<0  I gi  = 1, O. = +1] 	(38) 

These probabilities can be expressed in terms of the exceedence 

probability function (EPF) of the random variables Z./K , K 
z Z 

being some appropriate dispersion parameter of pz(x). Since 

this EPF is given by 

and 

Qz(y) = Kz  p (K x)dx 
y 

it follows that 

= 1  - Qz(77
l 
 ) Qz(T

2 
 ) 

2A-E1 
	

2A+ 
E2  

= Qz(7) Qz(  Kz  

and 

(39)  

(40)  

(41)  

In the following subsection it is shown that the error 

probability at the receiver output is a function of the above-

defined probabilities. It is important to note at this stage 

that these probabilities can be readily expressed in terms of 

the following parameters: 

Signal-to-Gaussian-noise ratio (SGNR): 

A P =  aw 
Signal-to-impulsive-noise ratio (SINR): 

A 

z 

Impulsive-to-Gaussian-noise ratio (IGNR): 

5E. 

(42)  

(43)  

(44)  

In the numrical examples considered later, if the 
variance 0 of pz(x) is finite then Kz = z. Otherwise 
Kz is assumed to be the median of 

 
° 
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(d) 	The ratios 51 = E1Alw and b2 = E
2
/0
w• 

5.2.3 	The double-path detector 

As outlined in Section 5.1 the noise detector studied 

above produces two outputs, 

g. = Si.(1 3.) 

and 
h. = S 1 	S. .®i  

(45)  

(46)  

which are directed to the blocks S and T (Fig. 5.1) respectively. 

Letd.denotetheith transmitteddigitOorOanda.denote 1 
the corresponding binary digit produced at the receiver. output. 

It will be assumed henceforth that 

95i  (47) 

In terms of the notation in Fig. 5.1 the performance of the 

double-path detector can be described as follows: 

M-1 

	

= 0 if X = 	S(g 	> 0  
A 	 i=0 
d. 	 (48) 
1 K. = 1 if X 5 X2< 0 

if X2< X <= Xl' 

X
1 
and X2 

being the thresholds of the null-zone detector. In 

the last case the null-zone detector produces an erasure symbol 

(i.e. K. = ;).and the decision rule is 
1 

M-1 
if Y = 	T(hi ) > 0 

d. . i 
	i=0 
	

(49) 
1 	if Y 

In view of Equation (19) it can be seen that the error probability 

Pe ofthereceiverinFig.5.1isthesamewhetherd.=0 or 1 
d.
1 
 = 1, that is 
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Pe  =PR = 	oi  = +1]-= PE = 0 1 	= -1] (50) 

Therefore, Uy assuming that a message element " 	was trans- 

mitted, the error probability, Pe, can be expressed as follows: 

P
e 

= Peu + Px 
P
ex 
	 (51) 

where Peu 
and P

x 
are the probabilities of obtaining a 1 and an 

erasure symbol x, respectively, at the output of the upper 

branch, and Pex 
is the probability of obtaining a 1 at the 

output of the lower branch when an erasure symbol is delivered 

by the upper branch. In terms of the notation in Fig. 501, 

these probabilities can be defined formally as follows: 

Peu = PEKi = 1  0i  = +1] 	
(52) 

Px  = PE Ki  = x I Oi  = +1] 	(53) 

Pex = PETii = 1 Ki = x, 0 = +1] 	(54) 

To obtain an expression for Pe 
in terms of the receiver 

parameters is, in the general case, an intractable problem. In 

order to understand better the difficulties involved, let it be 

assumed for ease of exposition that El  = E2  = £0 and that the 

block S in Fig. 5.1 has the transfer function shown in Fig • 5030 

In this case S(gi) = +A + vi  for some vi  such that 	po  and 
thus the output from the accumulator 1 (Fig. 5.1) can be written 

as follows: 

M-1 

:EI S(gi) = KA + oK  

i=0 

where 	K = 0, +1, +2, aloe, +14 and 

JO
K

I < 
0' 

the meaning of 10  being explained in Fig. 5.3. When K 51  0 
the null-zone detector should decide in favour of 0 or 1 

according to the sign of K (Ki  = 0 if K>0 and Ki  = 1 if K<0). 

However, if K = 0, all the information about the signal has 
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been destroyed by the noise and thus an erasure symbol should 

be produced, The determination of the optimum thresholds for the 

null-zone detector is a quite difficult problem unless the slope 

of the straight lines in Fig. 5.3 is chosen such that mp
0  A/2. 

In fact, only in this case is it possible to decide without 

error whether K = 0 or K 0. For this reason it will be assumed 

henceforth that the receiver is of the simplified form in which 

the block S shown in Fig. 5.1 is assumed to be a hard limiter, 

i•e• 

if gi  > 0 

S(gi) = 	 (55) 

-A 	if gi < O. 

In this case, po  = 0. 

Since usually the SGNR 0 >12 dB, the performance odB 
of the lower branch of the receiver will be essentially deter-

mined by the impulsive component of the noise. Thus, the input 

h. to the block T in Fig. 5.1 can be drawn directly from the 

sampler output. The corresponding block diagram is shown in 

Fig. 5.4, where the noise detector and the transfer function 

S(g1) have been merged into the block R defined by: 

f 	A <E2 

	

+A 	if-E
l
<S1.- 

	

R(Si) = -A 	if - E2  < Si-FA < El  

0 	otherwise. 

(56) 

The null-zone detector thus produces an erasure symbol x when 

its input is zero and a symbol 0 or 1 when its input is positive 

or negative, respectively. It is important to note that in.  

Fig. 5.4 the path passing through the block T is exactly the 

single-path detector discussed in Section 3.4. The upper branch 

is intended to improve the performance by exploiting the non- 

continual 	nature of the noise n(t) as already explained in 

Section 5.1. 



Fig. 5.4: 	Sim lified version of the  receiver.  

R(Si ) 

T(S i ) 

Switch 
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Decision 
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detector 

K. 
1 
Symbols 1,0,x 

Input 
filter 
H(f) 

Noise 
n(t) 

AccumulatoI-->  Threshold 
2 	detector 

1. 1 
Symbols 1,0 T 
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Now let P
eg 

be defined as the probability of error at 

the output of the lower branch of the receiver and P ez  as the 

probability of error at the same point when the noise at the 

output of the sampler in Fig. 5.4 is replaced by a. continual 

noise of PDF p
z
(x). Hence 

Peg 	PErli = 1 I di  = 0J 	(57) 

and Pez is the value taken by PeE 
when p = 1. The numerical 

results presented in Section 5.3 support the following important 

relations 

P
ex 	p ez 
	 (58) 

P
x 
P
ex C  PeZ C  Pex 
	 (59) 

Relation (58) means that, in most cases where the upper branch 

fails to reach a decision, all the M samples are affected by 

impulse noise, assuming of course that the noise detector is 

performing sufficiently well. The same numerical results 

referred to above show that for low SINR's the two terms in 

Egivition (51) are such that 

Peu 
<:‹P

x
P
ex 	

(60) 

This relation, together with (58), suggests a means of making 

the receiver adaptive in cases in which p changes with time. 

In these cases the parameters E1  and E2  would be chosen so as 

to minimize the erasure probability Px  which can be estimated 

during the actual operation of the receiver. This question will 

be considered again in Section 5.3. It can be further concluded 

that the performance of the whole receiver depends mainly on the 

performance of the noise detector through the value of Px 
and on 

the design of the block T in Fig. 5.4 through the value of 

P 	P
ez
. 

EX 

The expressions for calculating the probabilities 

defined by Equations (52) to (54) will now be derived. Let 

(see equation (45)). 
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P4. = PEgi >0 I of = +1] 	(61) 

P- = PE gi < 0 I Oi  = +1] 	(62) 

and 
	Po  = P [: gi  = 0 I Oi  = +1] 	(63) 

According to Equation (45), if gi  = 0, then either ®i = 1 or 

S = 0, the latter event having a zero probability. If the 

definitions of the probabilities in Equations (30) and (36) are 

taken into account then it follows that 

and 

1-] 1 
= qc + p(1 - 

P.+ = 	= 0, Si> 0  1 Oi 14: 

= qa+ + PP+ 

= PDi  = 0, Si<0  1 	= 

= 1 - Po - P.{- 

= qa + pp_ 

If now, in the expansion*  
L 	/. m. n. 

. (P+Po+P+)
M  = > N. P-1 1  P o  1  P+  1  

(64)  

(65)  

(66)  

(67)  
1=1 

the terms in which 2.:>n. are selected P is obtained and if the 
1 1 	eu  

termsinwhich2-1  = n. are selected Px 
is obtained. Thus: 

F 
1 

a. b. c. 
Peu 

= 	F.1  P 1  Pot P+1 	1 1 	a. > c. 	(68) 

1=1 
and d, e. f. 1 	1 

Px 	
G.1  P 

	Pot P+  ' 	d.1  = f. 

	

3. 	
(69) 

1=1 

An algorithm for computing Peu 
and P

x 
is presented in Appendix 

2.1. If Ct‹-----.1 and pp <,.-<q then, as shown in the same appendix 

If for i V K either e. V PIK  or m. 74  , 	

1 
or both, it can 

be shown that L = 2(M1+ 1). (M + 	bbviously g. + m. 1 
+ n. = 14 for any i. 

1. 
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the product 
PxPex 

is given with good approximation by 

G 	d. e f. 
1 i 1 

P 
x 

 P ex 
G. P 	P

o  P+ Eei 
 (e
i 
 A) 	(70) 

L=1 

where E
n
(x) is the exceedence probability function (EPF) of the 

sum of n independent random variables each one of these being 

the response of the block T in Fig. 5.4 to a noise sample z with 

PDF pz(x). Since the derivation of the relations (68) to (70) 

is based on a trinomial probability distribution :see Equation 

(67)] it follows that they are only valid when the signal samples 

corrupted by impulsive noise are distributed in time in a purely 

random way. 

The numerical examples studied in Section 5.3 show that 

if 0.-1 >A the values of E1 
and E

2 
that minimize the error probab-

ility P
e 
are very close to each other. Therefore, it is 

important from a practical point of view to consider the sub-

optimum receiver where 

E
l 

= E
2 
. E0 

 

and E
0 
 is chosen so as to minimize the error probability Pe. 

Even in this simpler case it has not been found possible to 

obtain an expression for the optimum value E0 
 owing to analytical 

difficulties. In the next section the optimization of the 

receiver is carried out with the help of computational techniques. 

If it is assumed that the SINR p is very small, the 

order of magnitude of the optimum value of E0  can easily be 

obtained. In fact, from Equations (40) and (41) it follows that 

l 
---mom ---mom

n 	= 	= 0 
z 	

K1 
K -> K

z 

and thus, according to Equations (64) to (66), 

lim 
0 P+ - qg+ 

lim 
0  P = qa - 

Um p0 	qa 

0 
P.'°"'> 0 
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If E
l 
= E

2 
= E

0 
 in Equation (34) and it is assumed that E0  <-<2A 

then it can readily be shown. that 

A2  
exp(-2 -7) 

a 
 

Relation (35) can now be written as 

/ E0 N 
(72) 

wV7 

If the SGNR p is high enough (say, An>12 dB) relation (71) 

shows that a_ will have a negligible value and thus all terms 

in Equation (69) will be negligible except that for which di  = 

f.=0.Moreover,sinceal, all terms in Equation (68) are 

very small. According to relation (58) 

lim 	lim 
P = 

p.--) 0 ex 	11-3u ez 
It thus follows that 

lim p 	 1 lira 

p.—) 0 e 	
P  u x 

2 n 	 VOM  
lim P M 

= v 0 

For small a 

p.- 

lim P

e 	
1/2 pM(1 + MO) 

-)  

and thus, if Map, the performance is close to the best that 
can be expected. More specifically, if 

E n  
M erfc(---`=—) = 	 (73) 

ow4. 10 

then P
e 
can be written as 

Pe 
m 

-2-  p (74) 

Another important limiting case is that in which the 

Gaussian-noise variance 
2 
 i ° s negligible. From Equations (33) 

and (34) it follows that 

0 

Ow  



- 125 - 

lim lim CC = 1 and 	CC = 0 
w--> 0 + 	 --> 0 - 

Therefore, according to Equations (40), (41), (65) and (66), 

lim 	E  

	

jp-.3.0 	
O P+  = 1 - 2 p Qz(T) 	(75) 

2A- 	z 2A+ E 

- 
lim 
.___. 00  ... P = P Qz(.-7 

E0
—) P Qz( 	

0
-1Z--) 	(76) 7  z 	z 

Let 110  and 111  be defined as the values of the SINR for which 

A 
[cif Px1 	›_. 0 	if µCµ0 = K2-  

	

0 	E
0 
 =0 	z 

and 

Al 
[d

d 
 e 	if 	= 

	

0 	= EO 0 

the values of Px and Pe being those obtained for 6w  = 0. Thus 

it can be stated that Px (or Pe) attains a minimum value at 

E0  = +0 provided that p. < pLo  (orti;V1). For higher SINR's this 
minimum value will be attained at some E0  > 00 In Appendix 2.2 

it is shown that 

where 

X1  
P = 

x1.1 iY±MX0j 

p

z 

 (0) 

T" = 1  p(2A) 

j = 0, 1. 	(77) 

       

(a. - 1)0F. 
i=1 

G 

XKj = 

 

(di  K) .G [E ( j ) + jEei(ei  .A j  

 

i=1 
if n = 0 

if n 0 

the notation of Equations (68) to (70) being assumed. The 

above relations are sufficient to enable the functions 
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p„0  = fo(p) and pl  = f1(p) to be plotted for any value of M>1. 

These functions are plotted in Figs. 5.5 and 5.6 for M = 2 and 

M = 3 and for the following  forms of pz(x): 

(a) 	Case Study 1 - Gaussian PDF: 
2 

pz(x) = L_l_ exp(-) 	(78) 

Z 	
2qz 

(b) Case Study 2 - Cauchy PDF: 

P 	1  
Pz(x) 	

0
2 
+ x

2 
(79) 

The dispersion parameter Kz has been 
given the values OKZ and p,. 

respectively. The computations have shown that the values of o 
and 1-1.1 

for M>3 are greater than those given by the graphs in 

Figs. 5.5 and 5.6 for the same value of p. 

By using  Equations (75) and (76) it can be concluded 

that for 0 = 0 and E0 
 = +0 

P = q, 	P = 0 	(80) 

and thus P0 
 = 1 - P+ P_ = p. Equations (68) and (69) will 

thus give 

Peu = 0, and Px 
= pM 
	

(81) 

The previous value of Px  shows that the upper branch of the 

detector only fails to reach a decision when all the M received 

samples are affected by impulsive noise. Therefore, in this 

case 

Pex 
= Pez 	

(82) 

It should be noted that if 	0 then relation (74) becomes 

an exact equality. 

The previous results can be summarized by saying  that 

if a = 0 and E0 
 = +0 then a . p = 0 and thus the noise detector 

performs ideally. When Gaussian noise is present the noise 
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detector should be designed so as to obtain (if possible) 

	

PD. = 	 cict 
	(83) 

and 
	

ip: 9. = 	re. = 0] = pi3 ‹.<1. 	 (84) 

These conditions mean that the upper branch of the detector will 

accept most samples corrupted by Gaussian noise alone and 

virtually none of those corrupted by impulsive noise. It thus 

follows from these conditions that 

where 
P
e 

= P
x
.P
ez 

P 	
M 

x = p 
 

(85)  

(86)  

If the SINR ti is low enough, conditions (83) and (84) can be 

satisfied with the noise detector described in Section 5.2.2. 

If this is not the case, an attempt should be made to develop 

more efficient noise detectors as suggested at the end of 

Section 5.1. In any case 

P
e 

pM.P
ez 

= PLB' 	
(87) 

where the value PLB 
 corm sponds to ideal performance of the 

, ** 
noise detector (IQ = p 	0). 

5.3 	DISCUSSION OF NUMERICAL RESULTS 

In this section the analysis will be continued for 

the two cases referred to in Section 5.2, namely: 

(a) 	Case Study 1 

In this case the noise samples affected by impulsive 

noise are assumed to follow the Gaussian PDF of Equation (78). 

With K
z 
 = 

	
in Equation (39) it follows that 

erfc(-3-7-) 	 (88) 

Note that if, by varying Co, the probability G'. decreases 
then increases and vice versa. 

If_,Lci _3 2,57->0 dB the error probability P can be slightly 
lower Lhan PLB 

as the numerical results
e 
  in the next 

section show. 

Qz( Y)  
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(b) 	Case Study 2 

In this case the noise samples affected by impulsive 

noise obey the Cauchy PDF of Equation (79). With Kz  defined as 

the median of the random variable 1z1 then 

Kz = R 	 (89) 

and Equation (39) gives 

Qz(Y) = 2 - 131-  tg-1Y. 
	 (90) 

Case 1 is presumed to be a favourable one due to the fast 

variation of pz(x) for high x. On the other hand, since the 

Cauchy distribution has an infinite variance, Case 2 must be a 

rather unfavourable one. 

In both cases the block T in the diagram of Fig. 5.4 

has been assumed linear, i.e. 

(91)  

In Case 1 this would be the optimum shape for T(x), if the 

presence of impulsive noise could be detected with no error, and 

is obviously nearly optimum if conditions (83) and (84) are 

satisfied. In fact, under these conditions the noise detecting 

operation is nearly ideal and therefore the lower branch of the 

receiver processes a stream of samples corrupted by an almost 

continmPl noise with PDF p
z
(x). As shown in Section 3.4, the 

optimization of the block T of the receiver thus leads in 

Case 2 to the following nonlinear transfer function": 

Pz(x  - A)  
T(x) = log pz(x  A)  

02 + (x + A)2 

(92)  = log 

 

 

 

See Section 3.4, Equation (9). 
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Since the determination of the noise PDF at the output of such 

nonlinear device is too difficult a task to be done analytically, 

only the linear transfer function is considered in this chapter. 

The performance that can be obtained by using a nonlinear block T 

will be estimated in Chapter VI with the help of Monte Carlo 

techniques. 

The fact that both the Gaussian and the Cauchy distrib-

utions are stable makes it very easy to find the expressions of 

the EPF E (y) involved in relation (70), in the case where 

T(x) = x. These expressions give: 

Case Study 1: 

A I  
En(nA) = 	erfc(.5.- ) 

z 

= Qz(P-1:171), 

Case Study 2: 

A 

crz 

(93) 

1  
En(nA) = 1 - 2 	TE tg-1  

A 
= Qz()Y 	= F. 

(94) 

As can be seen, in Case 2 En(nA) turns out to be independent of n. 

In the graphs presented in Chapter IV the SINR was 

defined as ratio of r.m.s. values, i.e. 

= 

	

1),c113 	20  log10  -IL- - udB - 10 loglop. 	(95) 

15113  

It was shown in that chapter that the smear-desmear technique 

	

gives a significant improvement only if

-  
qidB 	

10 loglop, 	 (96) 

that is, if 

 

A (97) 1-1 = 
0"z 

   

For the definition of stable distribution, see Ref. D-21 
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In this chapter interest is centred only on the low SINR cases, 

that is to say, those cases where 

P'dB 4-=_
-  0 dB 	 (98) 

while still maintaining a SGNR J3dB > 12 dB, so as to have the 

impulsive noise as the only important cause of errors. 

Consider now the analysis of the graphs presented 

below paying particular attention to the differences and simil-

arities between the two cases being studied. These graphs can 

be grouped into several classes which may be described as follows. 

A) Graphs giving the values (in dB) of the ratios al  = 

E1  /0.w  and 
62 = E2  Al that minimize the error probability, Pe, 

versus EdB = - fpdB - 	
for several values of dB. 

These graphs are shown in Figs. 5.7 and 5.8 for Case 1 

and in Figs. 5.9 and 5.10 for Case 2. It should be recalled 

here that the abcissa of these graphs is the impulsive-to-Gaussian 

noise ratio (IGNR) defined by Equation (44). As in all the other 

graphs presented below, the following high value of p has been 

assumed: 

1 	- log p = 
that is, 

p = 0.118. 

It can be concluded that, in the low SINR cases 

defined by relation (98), the parameters El  and E2  differ very 

little from each other and can thus be set to a common value 

E
0 
 without significantly affecting the receiver performance. 

B) Graphs giving the value of the minimum error probability 

corresponding to the ratios 61 = El/O and 52  = E2Alw  given by 

the graphs of class (A). 

These graphs are shown in Fig. 5.11. They show that 



444:: 

;Iiii;iii itiili 





10 

S+--t--t 



'dB ;rm:r ~rm;; ~TIU ~!~im\m:m; mmm ;~~:mj mmm ~mm~ ;i~~;i wmm 1m m: imm~ ~m;m~liftnm!m:'m0i 
-;p- tYft :tP~: ~+H'!~+~ifF~ 8i8: ?8n2~ ::;:r~;~: ~UlH j;l*t~~~P. ~1:PHfW~8~ 

5 

IJ;~tJ:j=:,.~r. ~~!= _!~_:~!~~f~:! II~~ 
SdB 



S--// 



- 138 - 

for high values of the IGNR very little can be gained by 

increasing the SGNR,p. 

C) 	Graphs giving the value of the erasure probability, Px, 

under the conditions of the previous graphs. 

These graphs are shown in Fig. 5.12 and are quite 

similar in shape to those of the minimum error probability. 

0) 	Graphs giving the parameters :see Equation (18)3: 

1 
= EA(A E

1  ) 
	

(99) 
and 

Y2 = 2A(A E2
) 	 (100) 

calculated under the conditions of the above graphs. 

These graphs are shown in Figs. 5.13 and 5.14 for 

Case 1 and in Figs. 5.15 and 5.16 for Case 2. They show that 

for p.dB<<0 dB the parameters Y
1  and .\/'2 

differ very little from 

each other. This means that for very low SINR p. the optimal 

receiver must indeed be preceded by a noise detector as shown in 

Fig. 5.1. In other words, the receiver structure of Fig. 5.1 is 

asymptotically optimal as the IGNR tends to infinity. 

All graphs in classes (A) to (D) were computed by using 

a minimization subroutine to minimize the function Pe 
= f(EE

2
) 

defined by Equations (51), (68) and (70). In all graphs 

discussed below the parameters E1 
and E2 

are assumed to be set 

to a common value E0. 

E) 	Graphs giving the value (in dB) of the ratio 5= Eo/Ow  
that minimize the error probability Pe, versus the IGNR dB' for 

several values of the SGNR )cIB° 

These graphs are presented in Fig. 5.17 and show that 

if condition (98) is satisfied the optimum value of Eo  can be 

obtained with good approximation by using the curve corresponding 

to 
 PdB 12 dB. If p = 0.118 then Equation (73) gives the 

following values of 5dB1 
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M 2 3 4 5 6 

sdB 
8.8 9.2 9.4 9.6 9.8 

Ascanbeseen,thesevaluesof. 5dB are quite close to each other 

and to those given by the graphs in class (E). 

F) Graphs giving the minimum error probability correspond-

ing to the value of E0 
 given by the graphs in the previous class. 

These are shown in Fig. 5.18 and can be seen to give practically 

the same values as those in Fig. 5.11. Therefore the restriction 

El = E2 = E0 
 has no practical consequences in the range of 

parameters considered. 

G) Graphs giving the erasure probability, Px, correspond-

ing to the minimum error probability. 

These graphs are presented in Fig. 5.19. Here again 

the values given by these graphs are very close to those given 

by the graphs of Fig. 5.12. 

H) Graphs giving the value (in dB) of the ratio 5 = Eo/aw  

that minimizes the erasure probability Px. 

These graphs are presented in Fig. 5.20 and have a 

similar shape to those shown in Fig. 5.17. When [_tdB<<: 0 dB the 

optimum value of 6 is practically independent of jp and is very 

close to the value given by Equation (73). On the other hand, 

ifµd
B»0 dB the minimization of Px  leads to 5 =p, that is, 

E
o 
attains its maximum value, A. 

I) Graphs giving the minimum erasure probability, Pxmin. 

These graphs are shown in Fig. 5.21 and can be seen 

to give values which are practically identical to those given 

by the graphs of Fig. 5.19. 

J) Graphs giving the error probability corresponding to 

the minimum erasure probability given by the previous graphs. 
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These graphs are shown in Fig. 5.22 and can be seen to 

give values which are practically identical to those plotted in 

the graphs of Fig. 5.18. It can thus be concluded from the 

graphs discussed above that if 

pa > 12 dB and adB 
 <0 dB 

.  

then the minimization of the erasure probability Px, as a 

function of E0, will lead to an error probability Pe very close 

to the minimum given by the graphs in class B. 

In the graphs discussed below, each curve corresponds 

to a fixed value of the parameter E. 

K) Graphs giving the error probability Pe  versus the 

SGNR pa, for a fixed value of the IGNR CdB° 

These graphs are shown in Figs. 5.23, 5.24 and 5.25 

for the values dB 
= 20.0, 32.0 and 44.0 dB, respectively. In 

each graph the continuous curves correspond to a value 5= Eo/aw  

close to the optimum for the assumed CciB  and pcm  = 12 dB; the 

dots correspond to odB  - 3.0 dB and the small circles correspond 

to 5dB + 3.0 dB. It can be seen that the error probability 

exhibits a quite shallow minimum as a function of b. 

L) Graphs giving the erasure probability Px  under the 

same conditions as the graphs in class K. 

These graphs are presented in Figs. 5.26, 5.27 and 

5.28 and the graphical conventions are the same as for the 

graphs of class K. The curves of Px  show a point of inflexion 

at pa  = CdB, that is, H'dB 0 dB. The difference between the 

values of P at a low and a high value of dB  decreases as dB 
increases, and for high values of c113  relation (86) is valid 

for any pdB  within the range of interest, in accordance with 

the theory of Subsection 5.2.3. 

M) 	Graphs giving the error probability of the upper 

branch of the receiver, P.  , under the conditions of the two 
eu 

previous classes of graphs. 
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They are shown in Figs. 5.29 and 5.30. By comparing 

them with the graphs of class K it can be concluded that, 

within the range of parameters considered, the contribution of 

the upper branch of the receiver for the error probability is 

always smaller than the contribution of the lower branch, that 

is, 

Peu 
< Px

.P
ex
. 

For high values of cdB  it can be further concluded that Peu  is 

negligible compared with Pe. 

N) 	Graphs giving the probability Pex  defined in subsection 

5.2.3 and calculated with the help of relations (69) and (70). 

These graphs are shown in Fig. 5.31 for Case 1 and in. 

Fig. 5.32 for Case 2. In view of Equation (94) it is easy to 

conclude that in Case 2 

1 1 -1 
Pex = 	

— II tg 	9 2  
(101) 

and thus the Pex 
curves in Fig. 5.32 are horizontal translations 

of each other. 

0) 	Graphs giving the error probability Pet  at the output 

of the lower branch of the receiver. 

These graphs are presented in Fig. 5.33 for Case 1 

and in Fig. 5.32 for Case 2. The method used for calculating 

PeE 
is explained in Appendix 2.3. It should be noted that the 

curves for dB 
= 32 dB can be obtained from those for dB = 44 dB 

by translating the latter 	12 dB to the left. The same method 

can be used for any other CdB < 44 dB for reasons explained in 

Appendix 2.3. It is important to note that Pet  is the error 

probability of a linear receiver which bases its decision on a 

long signal, as in the case of Chapter IV. Fig. 5.33 shows 

again that to render the noise Gaussian by accumulating noise 

samples is only beneficial for high SINR. Moreover, Fig. 5.32 

shows that the use of long signals cannot be of any help in the 

case of a Cauchy amplitude distribution. 
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P) Graphs giving the error probability Pet  at the output 

of the lower branch of the receiver shown in Fig. 5.4, when all 

samples are corrupted by impulsive noise, that is, when p = 1. 

These graphs are shown in Fig. 5.33(a) for Case 1 and 

in Fig. 5.32 for Case 2. The expressions for Pet  are given in 

Appendix 2.3. As can be seen, Pez  is only a function of p, M 

and 	In view of relation (101) it follows that in Case 2 

P P • 
ez 	ex 

This relation is also true in Case 1, as can be seen by comparing 

the graphs in Figs. 5.33(a) and 5.31. These graphs give a value 

of P
ex 

slightly higher than the value of P
ez
, which is due to the 

error of the approximation given by relation (70). Since the 

noise detector makes some errors in detecting the presence of 

the samples corrupted by impulsive noise it follows that Pex is 

the value of P
ei 

corresponding to a value of p less than unity. 

Therefore, in the cases where the conditions (83) and (84) are 

satisfied the actual value of Pex 
is slightly smaller than P  

and the relation 

Pe 	Peu + PxPez 
	 (102) 

thus gives a tight upper bound on P. This point will be taken 

up again in Chapter VI where relation (102) is shown to give a 

good approximation, with the help of the results of Monte Carlo 

simulations, 

Q) Graphs giving the error probability PLB  defined by 

Equation (87). 

These graphs are shown in Fig. 5.34.. By comparing 

them with the graphs of Fig. 5.18 it can be seen that if dB 
‹:"--0 dB,dB 

is not very high and M is large then PLB can be 

much smaller than Pe
, which means that in such case an improve-

ment in the design of the noise detector may be worthwhile. It 
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can also be seen that, for high pa and low Cdir the error 

probability P
e 
can be slightly lower than PLB 

because 

P
x 	

P
o 	PM(1 -p)M < PM. 

R) 	Graphs giving the value (in dB) of the ratio 5= o/aw 

that minimizes the error probability Peu at the output of the 

receiver upper branch. 

These graphs are shown in Fig. 5.35. In Case 2 the 

value of 5 is almost independent of the SGNR2. By comparison 

with the graphs in Fig. 5.20 it can be concluded that, if PdB";?. 
18 dB, the value of 15 that minimizes Peu 

is smaller than the 

value of El that minimizes P. In view of relation (102), the 

value of 5 that minimizes P
e 
thus lies between these two values. 

The fact that, for any fixed p
a 

> 12 dB, 

lim 
( (Pe

u/P
e
) = 0 	 (103) 

!oo

means that the receiver that minimizes the erasure probability 

P
x 

is asymptotically optimal as 	0. However, the numerical 

results show that in both of the cases studied the receiver is 

nearly optimal whenever< 0 dB. 

This section is concluded by noting that for high 

the performance of the receiver in the presence of both types of 

impulsive noise considered are nearly identical. However, if 

is low and pis high the error probability in Case 1 is much lower 
than that in Case 2. This stems from the fact that the Gaussian 

PDF has short tails compared with the Cauchy PDF. 

5.4 	CONCLUSIONS 

The numerical results discussed in the previous section 

permit a few conclusions to be drawn that are valid in both of 

the cases considered. These conclusions are also believed to be 

valid for any other amplitude distribution of the impulsive noise 
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component. The conclusions are as follows : 

(a) If the SINR p..dB < 0 dB, the receiver thresholds Ei  and 

E2 can be set to the same value C°  without significantly affect-

ing the performance. 

(b) The double-path receiver is asymptotically optimal as 

0. In different terms, if IldB‹<0 dB, the values of the 

likelihood ratioAKS) defined by Equation (14), when S
i 
= A+E 

o 
and c

o 
is given the optimum value, are nearly equal and thus the 

noise detection operation can be described with good approximation 

by relations (15). 

(c) If  hldB <0 dB, the error probability Pe  is given with 

good approximation by 

P
e 

= P
eu 

+ P
x
.P
ez 
	 (104) 

where Peu  is the error probability at the output of the receiver 

upper branch, Px  is the erasure probability at the same point, 

and P
ez 

is the error probability at the output of the receiver 

lower branch when this branch is subjected to a continuRl noise 

with the same amplitude distribution as the impulsive noise 

component. It can therefore be concluded from relation (104) 

that the lower branch of the receiver must be designed as an 

optimal receiver to overcome a continucl noise, which will 

usually be non-Gaussian. 

(d)If 
 P'dB 

< 0 dB, the minimization of Px  as a function 

of E
0 
 leads to a value of P

e 
very close to the minimum the 

receiver can achieve. This is related to the fact that both 

P
eu 

and P
x 
show quite shallow minima at values of E0 

 close to 

each other. Since an estimate of P
x 
is easy to obtain while the 

receiver is operating, the adaptive receiver that tries to 

minimize P
x 
seems quite easy to implement Since 

As in the previous sections, it is assumed here that the 
SGNR 

PdB 
>12 dB. 
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lim 1 P 	P p.-4 0 e 	2 x' 

this adaptive receiver will be asymptotically optimal as p 	0. 

(e) If IA
dB
<7<0 dB, the minimum erasure probability is only 

slightly greater than the probability of M consecutive signal 

samples being corrupted by impulsive noise. In the case in which 

the impulsive noise samples occur independently, with probability 

p, it is possible to write 

(f)  

lim P= pM. p. 0 x 
Let a group of K consecutive samples of impulsive noise 

be called a burst. If R is the average burst length and n is the 

average burst-free interval then the probability p of a signal 

sample being corrupted by impulsive noise is given by 

P = 
K + n 

If it happens that ;;;?R1-,!› M and thus most bursts have lengths 

much greater than M, then the fraction of pulse sequences of 

length M which are fully corrupted by impulsive noise is approx-

imately equal to p, and thus independent of M. Therefore, in 

this case 

lim P 	2  Pe 	2.  

Under such conditions a scrambler-descrambler pair would be 

necessary in order to randomize the occurrence of the impulsive 

noise samples at the input of the receiver, and thus make KIM. 

In the limit where a perfect randomization is attained 

T. <  = 	and n = 
1 

1 
1 
 p 

since in this case the burst length will follow a geometric 

distribution, i.e. 

, 
PE K = 	= 	- PIP11  / 

and the burst-free interval will follow the same type of 
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distribution, i.e. 

P r n = 	= p(1 
These points will be developed further in Chapter VI. 
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CHAPTER VI 

COMPUTER SIMULATION OF THE IMPULSIVE 

NOISE CHANNEL 

I can, if the worst comes to the 
worst, still realize that the 
Good Lord may have created a world 
in which there are no natural laws. 
In short, a chaos. But that there 
should be statistical laws with 
definite solutions, i.e. laws that 
compel the Good Lord to throw the 
dice in each individual case, I 
find highly disagreeable. 

A. Einstein, quoted in C. Seelig, 
"Albert Einstein". 
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6.1 	THE SIMULATION PROBLEM 

In several situations considered previously, particul-

arly in Chapter V, problems arose whose numerical solutions could 

not be obtained by direct computation. The reasons for the 

difficulty were that either analytical expressions were not 

available or direct computation based on existing expressions 

required too much computer-time. 

A way out of these difficulties is sometimes offered 

by the so-called Monte-Carlo techniques. In this case the 

solution is attained in four steps: 

(a) generation of the transmitted data sequence; 

(b) generation of the noise, which is then combined 

linearly with the transmitted signal to obtain the received 

signal; 

(c) application of the detection operation to the received 

signal so as to obtain the received data sequence; 

(d) comparison of this sequence with the transmitted one 

to count the number of errors that have occurred, from which the 

required estimate of the error probability is then readily derived. 

It is assumed throughout this chapter that the trans-

mitted data sequence is binary and thus step (a) above requires 

in general the use of a binary pseudo-random generator. However, 

in all cases studied in this chapter the probability of detecting 

a digit in error is the same whether it is a "zero" or a "one" 

and, therefore, it is possible and convenient to assume that the 

transmitter sends a sequence of identical digits (say, zeros). 

It is also assumed in this chapter that the receiver processes 

samples of the received signal. Therefore, step (b) of the 

simulation procedure can be accomplished by using a pseudo-

random number generator to generate the noise samples, which 



P = Prob [1 	 ,-;. a] 
nPe 

Ka 2 

—1-1" f 
e-t /2 dt  

= y (Ka) 
v 2TC -Ka. 

determine n from the equation 
x-nP

e 

(1) 
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are then combined linearly with the corresponding samples of 

the transmitted signal. 

The generation of the noise samples usually takes most 

of the computer-time in the simulation procedure. Since in order 

to obtain a sufficiently accurate estimate of the error probability 

it is usually necessary to use a long transmitted data sequence, 

the noise structure must be simple enough to permit its gener-

ation in a reasonable amount of time. In what follows an attempt 

is made to simplify the structure of the impulsive noise by 

maintaining in the simulated time-series only those character-

istics of the actual noise which appear to affect significantly 

the performance of the communication system under test. 

Before the- simulation experiment starts it is very 

desirable to have an estimate of the number of transmitted digits 

required to estimate the error probability with a prescribed 

accuracy. Assuming for simplicity that the errors are statist-

ically independent events, the number of errors in n digits 

obeys a binomial distribution of mean n Pe 
and variance -nPe(1-Pe

), 

where Pe 
is the probability of error. For sufficiently, large n 

this distribution becomes approximately Gaussian and thus the 

probability of a given number of errors can be easily determined. 

The relative error in estimating Pe  is given by (x- nP)/(nPe), 

where x is the number of observed errors. This relative error 

has an approximately Gaussian distribution with zero mean and 

standard deviation117:1777(71-37. Thus, to find the probability 

P of maintaining a given level of accuracy a it is necessary to 



(4) 
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where 
nP
e 

1-P
e 

This can be written in the form 

K = 1 icri(p)  

2 1-Pe 
or 	n = K 

e 

Therefore, if P = 90% and 0(= 0.1 then 

, 300 
n 

The author's experience is that, in order not to exceed an 

acceptable amount of computer-time, it is impossible to estimate 
. ie s 

error probabilitA  of an order of magnitude less than 10
-3 

In the remainder of this chapter the theory for 

simulation of certain kinds of impulsive noise is developed and 

this is then used to tackle some of the problems which were not 

solved in previous chapters. 

Pe 

From the 
channel°  

Receiver 
input filter 

Sampler 

Xco_  

(Samples at 
tn = nT) 

H(f) 

Noise 
n(t) 

Fig. 6.1 

6,2 	SIMULATION OF IMPULSIVE NOISE 

6.2.1 	Poisson impulse noise 

An attempt will now be made to find a procedure for 

implementing a pseudo-random number generator capable of prod-

ucing a sequence of numbers having the same statistical properties 

as the sequence of noise samples at the sampler output in Figs  6.1. 
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In this figure it is assumed that n(t) is an ideal Poisson 

impulse noise, that is 

n(t) = 	ri  5(t Ti) 
	

( 5 ) 
1 

where the T. form a sequence of purely random instants to which 

corresponds a fixed average repetition rate of V impulses per 

second. This means that the time intervals between impulses, 

Ti = T.1+1i' obey an exponential distribution with PDF 
=V 

{v. E

x
X >0 

p
T
(x) = 	 (6) 

0 , 	x c 0 

It is possible to show that, under these circumstances, the 

number N(t) of pulses occurring in the interval (to, to o 
is distributed according to the Poisson law, i.e. 

PEN(t)=K:= E-vt (V t)
K 	

(7) 

Let1.1.1 be the sequence of noise samples at the sampler output 
1). 

in Fig. 6.1. As stated in Chapter II, the first-order PDF 

pu(x)oftheu.1
's has a characteristic function (CHF) Fu

(CO) 

given by 

Fu(W) = exp [VI r(flh(t))-Cdti 
	(8) 

where Fr(W) is the CHF of the impulse intensities (areas) ri 
appearing in Equation (5), and h(t) is the impulse response of 

the receiver input filter. Throughout this chapter it is 

assumed that the PDF pr(x) corresponding to the CHF Fr(w) is a 

symmetric unimodal PDF, thus having a zero mean. It follows 

immediately from Equations (15) and (16) in Chapter II that 

E Cu . 	 ( 9 ) 
and 

ED
1
.0
K 
 1= V.E . .f h(t+iT)h(t+KT)dt 

II 1-
2-7  

1 	
(10) r-  

1-F,J 
2-1 

r wherethevariancesE L.ae assumed to have the same finite 

value. Assuming, as in Chapters IV and V, that h(t) is a 
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Nyquist pulse, it becomes apparent that !u. is an uncorrelated 

time-series with zero mean, no matter what other statistical 

properties are assumed for iri1. Hence 

, 0'2 = V. 	t)dt 	(11) 
- co 

where 0u
2 
and 0r

2 
 are the variances of pu

(x) and p
r(x) respectively. 

It is possible, without any loss of generality, to assume that 

00 
h2(t)dt = 1 	 (12) 

and hence 02 u = VO2r 
	 (13) 

In what follows it is assumed that the transfer 

function H(f) is real and hence h(t) = h(-t). By defining the 

waveforms 

f(t) = h(t) Ga(T) 
	

(14) 

g(t) = h(t) - f(t) 
	

(15) 

F
u(0i) can be factorized as follows: 

where 

and 

Fu(W) = Fx(W).F (CO) 

_T/2 
Fx(CO) = exp f v 	EF (Wf(t))-1-jdt1 

-T/2 r 

(16)  

(17)  

F 	c (W) = exp 	
CO 

r(Wg(t)) - 	dt1 	(18) 

If it is noted that the filter in Fig. 6.1 can be replaced by 

two filters in parallel, as shown in Fig. 6.2, it becomes 

obvious that F
x
(.0 and F (CO are the CHF's of the noise samples 

due to the impulse responses f(t) and g(t), respectively. It 

is easy to see that the samples[x1 , resulting from f(t), 

and the samples fyil , resulting from g(t), have zero means 

and variances given by 

0 = 02 11
2 

(19) 

Ga(x) = 1 if I x 1 < 0.5 and zero otherwise. 
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Fig. 6.2  

and 

0
2 
= 0u 	- 11

2 2 , 

respectively, where 

2 	
rT/2 2  

= 	h (t)dt. 
-T/2 

Moreover, it can easily be seen that 

lim F (w) = exp(-VT) = q = 1-p 
LO--)oo x 

and 
lim 

F (w) = 0. 	 . 	(23) 
y 

In Equation (22) the parameter q is clearly the probability of 

a sampling instant not being affected by any noise pulse of 

shape f(t). Since f(t) is limited to a time interval of duration 

T, it is obvious that the samples N3 are statistically indep-

endent. The same is not true, in general, for the samples 

which, according to Equation (23), belong to a continual noise. 

Furthermore, it cannot be concluded from Equation (16) that the 

samples fxil are statistically independent from the samples iy13 . 

If the Nyquist pulse h(t) is fairly well 

energy fraction 2 will be very close to unity and 

When a background Gaussian noise of variance G
2 is 

sampleswil.lbeincludedin.thus making 

0
2 

= 0
2 
+ 0

2
u  (1 - 112

) w  

designed, the 

thus G
2

<=1"--0
2
. y x 

present its 

(24) 

See Ref. :6-1], page 113. 
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The term 0
2
(1 - 1

2) may in some practical cases be of the same 

order of magnitude as 0
2
w 

The error probability Pel at the sampling instants 

where the continual noise component is present alone and the 

error probability Pe2  at the sampling instants where the non-

continu1 component is also present are sketched in Fig. 6.3. 

If 
x>> Uy  the SNR ro 

at the point where the curves Pel and Pe2 
cross each other is approximately given by 

2 	2q' 	
(25) 

12-  
assuming that the continual noise component can be closely approx- 

imated by a Gaussian process of variance C
2
. With the help of 

Equation (25), Table 6.1 can be obtained. 

TABLE 6„1 

P Jo  (Po)dB 

1/8 1.47 3.3 

1/32 2.15 6.7 

1/128 2.66 8.5 

1 	Po — erfc (---) 



- 179 -- 

The total error probability Pe 
= Pel +Pe2 is indicated in 

Fig. 6.3 by a broken line. In practice the SNR p is greater than 
the value p corresponding to a point" near the elbow of the 
curve P

e 
in Fig. 6.3. Under these conditions Pe is closely 

approximated by Pe2  and thus it is only necessary to simulate 

	

the sequence of statistically independent samples 	The way 

in which this can be done will now be examined. 

Following a similar approach to that used in Section 

4.2.4, it is possible to define a normalized impulse response 

f
1 	

= 11 f(tT) 
= 	h(tT) Galt) 	(26) 

and a normalized repetition rate 

V1  = VT. 	 (27) 

It thus follows that 

-15 
Fx(W) = exp fV1 SEF (IL  

	

r(  r
_ f1

(0)-1:jdt - 	(28) 
-% 	vT 2 

The noise samples at the output of a filter with impulse response 

f
1
(t) are 

xli = fr xi  

and therefore their CHF is given by 

Fx1(co) = Fx(r/T 

= exp [VITFs10.0-1:1 
where 

$ Fs1(03) = 	j F r (0i f1  (t))dt. 
2 

(29)  

(30)  

(31)  

It is obvious that Fs1
(.0) is the CHF of any noise sample which 

is due to one and only one noise pulse of shape f1
(t). Since 

f f1(t)dt =
2 	 (32) 

In many important cases the value of PI  is about 15 dB 
or less. 



- 180 - 

it can readily be shown that the variance of Fsl
(A) is 

2 	
2 !2. Moreover, because x1i = 	xi, the 

 
variance of 

x is 

2 2 
0
2 

= V
1 
Or xl 

(33) 

Obviously, the system performance is not altered when the filter 

in Fig. 6.1 is replaced by a normalized filter of impulse 

response 

h
1
(t) = VT h(tT), 
	 (34) 

since the signal and the noise at the sampler output are scaled 

by the same factor T. 

If it is now assumed that f1(t) is a symmetric unimodal 

pulse shape, as shown in Fig. 6.4, the following functions can be 

defined: 

and 
	z = f 1 	0 C t 	 (35) 

t = r(z), 
	0 ‹; z 	B. 	(36) 

It is thus possible to express Fs1
0.0 as follows: 

Fsi(w) = 2 J Fr((ifi(t))dt 
0 

B 
= z)g(z)dz 

0 r 
(37) 



- 181 - 

where the function 

g(z) = -2r'(z) 	 (38) 

is assumed non-negative within the interval 0.‹,;.z<B and zero 

outside. By observing that 

B g(z)dz = -2[i(B) - r(0)J = 1 	(39) 
0 

it can be concluded that g(z) is a probability density function. 

Now let 

z = B/ 
	

(40) 

1 
Fsl(U) = J F r

(u)BiNi) p(v)dv 	(41) 
0 

where the PDF p(v) is given by 

p(v) = -2 -kr  Er(1347): 

= - ri(Bisr.) 

B g(iolvv)/-. , 
2/TT 

(42)  

2z z2 

B 
g(z) = 	p(-2.) 

B 

Due to the similarity between Equations (37) and (41) it is 

obvious that 

vot = 	v
a 

p(v)dv 
0 
, 

f (Bro2a p(v)dv 
B2Ct 0 

2  r L  0-1  dt. 20C 	1\ 1-1  B 

In particular, 

(44) 

= 
B
2 
	 (45) 

so that 

cr 

and thus 

(43)  
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The EPF of p(v) is given by 

1 
Q(x) = f p(v)dv 

= -2 E  r(BA7)] l  x  

= 2 r (BI/)7). 	 (46) 

An important case is the one where h(t) is time-limited 

to the interval (-T/2, T/2) and thus 112 = 1. In this case h(t) 

is a Nyquist pulse if and only if the PDF p(v) is symmetric with 

centre of symmetry v = 2. The proof of this property is presented 

in Appendix 3.1. Moreover, since under these conditions N77 = 

it follows from Equation (45) that B = i2. 

It is a well-known result of probability theory' that 

if the random variable X has PDF p(x) then the random variable 

r 
U = Q(X) = j p(x)dx 	(47) 

X 

is uniformly distributed in the interval 00,11 Conversely, if 

U is uniformly distributed in Eo,c then X = Q-1(U) has PDF 
p(x) = 1Q1(x)I. 	 (48) 

Therefore, according to Equations (35), (36) and (46), given the 

random variable (RV) U-sU(0,1) the RV 

V 	
1 2 U 
71(7) 	 (49) 

B 
has the PDF p(v) defined in Equation (42) and 

Z = 10)1 = B/ 	 (50) 

has the PDF g(z) defined in Equation (43). 

The position has now been reached where the procedure 

for generating the non-continual time-series 	= [xWil can 
be set as follows: 

See Ref. F6-10, page 146. 

Y--U(0,1) means that Y is a RV uniformly distributed • 
in :0 1.] 
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(a) 	Generate an integer k;?-0 which obeys the Poisson law -V integer 
 

p = 
6 1 1 (51) k: 

(b) 	If k> 0 generate a random number (RN) R1  with the PDF 

pr(x)ofthelmpulseintensitiesr.in Equation (5) and a RN V
1 

with the help of Equation (49) Eor a RN Z1  with the help of 

Equation (50)] and then form the product 

S = B R 
1 	1 1 

Cor S
1  = R1 Z1]. 

(52a)  

(52b)  

This RN Si  has a PDF psi(x) which corresponds to the CHF Fsi(W) 

in Equation (37). 

(c) 	If kl>1 generate another (k-1) RN's with PDF psi(x) 

and add up the k independent RN's to obtain 

k 

Si, 	k > 0 	 (53) 

i=1 

When k = 0, set X1  = 0. The RN Xi  has the CHF Fxi(W) since 

Equation (30) can be written in the following form 

F
xl
(W) = 	Pk F1:1(". 
	(54) 

k=0 

It should be noticed that in cases where the PDF 

P
sl
(x) can be found in closed form there may be a simpler means 

ofgeneratingtheWsS..The previous method differs from 

that used in Ref. E6--2], In this reference the overlap of the 

noise pulses of shape h(t) is taken into account even when the 

time interval between those pulses is longer than T seconds. 

Responses from at most fifty noise impulses distributed in time 

according to Equation (6) are accumulated at every sampling 

instant. This method manages to take into account the statistical 

dependence between impulsive noise samples but it turns out that 
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it consumes more computer-time than the procedure described 

above. The considerations made previously about Fig. 6.3 

indicate that very little difference between the results of the 

two methods is to be expected under practical conditions. 

An alternative approach to simulating Poisson impulse 

noise is that used in Chapter V. In fact the non-continual noise 

samples can be expressed as follows 

= u11 9. 
x1i 	11 1,  

(55) 

where the 0.'s form a zero-one process defining the time- 

distribution of the non-continual noise component and are such 

that 

PE9. 	q = exp(41) 	(56) 

and 

PEO. = 	= p = 1 - q 	(57) 

Since Equation (30) can be written in the form 

F
xl
(a) = q + p Ful(co) 	(58) 

Fu1 (w) = 
	Eexp( V1

F
sl
((0))4] 	(59) 

it becomes clear that Equation (59) gives the CHF of the time-

series li
1. Notice that, as in Equation (23), 

lim F (W) = 0 	 (60) CO-4m u, 

From Equation (58) the relation between the PDF's can be derived: 

Px1 (x) = q 5(x) + p pui(x). 
	(61) 

In the cases where h(t) is time-limited to D-T/2, T/2] it is 

obvious that pu1(x) is the impulsive noise PDF at those sampling 

instants where at least one noise pulse is present. 

Let N consecutive sampling instants be considered and 

thenumberkofthosewheree.=1 be countecL It is obvious 

where 



EEk] = 	k Pk  = 1 + 2  = K 	(65) 
q 

k=1 
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that k obeys the binomial distribution 

pN(k)  = ,N, k qN-k 
.1() P  

(62) 

This characterizes the purely random nature of the time-distrib-

ution of the Poisson impulse noise. It can also be characterized 

by the distribution of the burst lengths. A burst is defined as 

a run of ones in the zero-one process {G.1 and thus the 

probability of a burst of length k;?-1 obeys the geometric 

distribution 

P = q pk-1 
	

(63) 

If now a gap is defined as a run of zeros, it follows that the 

probability of a gap of length n;>.-1 is 

Qn = p qn-1 	
(64) 

Therefore, if a procedure is known for generating the RN's k, 

n and u. another method is available of simulating the Poisson 

impulse noise. 

It is well-known that 

E[n] = n Qn  = 1 + 	= n. 	(66) 

n=1 

Therefore, it follows that 

K  
R h 

as would be expected. 

(67) 

6.2.2 	Non-Poisson impulse noise 

As has already been pointed out in Chapter II, if the 

distribution of the times of occurrence Ti 
in Equation (5) is 

non-Poisson the study of the first-order distribution of the 
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noise becomes too difficult to be of general practical interest. 

However, cases frequently arise in practice where the noise 

pulses tend to bunch more than they do in Poisson impulse noise. 

In other words, the average burst length -I.< and the average gap 

length n tend to be greater than they are in Poisson impulse 

noise for the same given ratio 

P = k + 	
(68) 

In order to gain insight into the performance of data 

communication systems when the impulsive noise departs from the 

Poisson case, a class of burst noises will now be considered 

which appears as a natural generalization of the Poisson impulse 

noise. It is first assumed that the PDF of the white time-series 

[1111.1 in Equation (55) can be well approximated by some known 

PDF pui(x). For the distributions of the burst and gap lengths, 

respectively, the following negative binomial distributions are 

taken: 

Pk 
= / -V 	...p )k-1 qv 

\k-11
\ ( 
` 

Qn = (nrl)  (-14)n-1 Pr 

where k , n> 1, v r> 0 and p+q = 1. Note that 

(-v.1  
k` 	

= 
 N.. • i• 

It is well-known that 

k = 1 +vE 
q 

; = l+ra 

(69)  

(70)  

(70) 

(72)  

(73)  

It is further assumed that these average lengths satisfy 

Equation (68), or equivalently, 

q' 
	 (74) 

for any positive v and r. It necessarily follows that 

Lu 	is called white if its elements are statistically 
inciependent and identically distributed. 
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v = 1 + 2(r - 1) 	 (75) 

Therefore, if v = 1 it follows that r = 1; that is to say, 

Equations (63) and (64) are obtained as a special case. From 

Equations (73) and (74): 

t = r + 2. 	 (76) 

As can be seen, under the previous conditions the time distribution 

of the impulsive noise is completely defined by the two average 

lengths K and n, since they determine the parameters p, v and 

r of the PDF's (69) and (70). Always in practical situations 

v-„2-?1 and thus r;1_, also°  Since usually p‹:--1 it is concluded 

from Equation (76) that r is approximately equal to the average 

burst length. 

The CHF's corresponding to the PDF's (69) and (70) 

are respectively 

F(W) = qv  E5W  (1 - p EjW)-v 	(77) 

and 

G(W) = pr Jew (1 - q Eiw)-r, 	 (78) 

From these CHF's one can easily derive Equations (72) and (73) 

and also 

k2 = (K)2  + pv/q2 
	

(79) 

n2 = 61)2 qr/p2 	 (80) 

The continual part of the noise 
	

is assumed to be 

white Gaussian noise. 

6.3 	EXAMPLES OF SIMULATION 

In this section five simulation experiments are 

described, the aim of which is to provide insight into problems 

stated in Chapters IV and V, which could not be solved by using 

the methods developed in those chapters. Each experiment was 
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carried out twice and 50,000 received signal and noise samples 

were used each time. In any of the experiments the two error 

probabilities obtained for every SNR and number of pulse 

repetitions M were found to be very close to each other and for 

this reason only their arithmetic mean is plotted in the graphs 

presented below. Both sequences of noise samples were generated 

with the help of a single generator of pseudo-random numbers from 

a uniform distribution and it was ensured that the uniform random 

numbers used to generate the second sequence came immediately 

after those used in the generation of the first noise sequence. 

The five simulation experiments were carried out using 

a single computer program whose structure is described in 

Appendix 3.2. The generation of the required pseudo-random 

numbers is discussed in the same appendix. 

	

6.3.1 
	

Experiment 1 

This experiment was designed to test the results of 

Case Study 2 described in Section 5.3. Thus, the block T in the 

lower branch of the receiver was assumed to be linear i.e. 

T(x) = x. 	 (81) 

The impulsive noise samples were assumed to obey a Cauchy 

distribution. 

In the graphs shown in Fig. 6.5 each small circle 

represents the arithmetic mean of the two error probabilities 

computed for a certain SNR and M = 1, 2 or 3; the continuous 

curves are the same as those shown in Fig. 5.24(b)0 It can be 

seen that the methods of this chapter and Chapter V lead to 

values of the error probability which are practically identical. 

	

6.3.2 	Experiment 2 

This is a repetition of experiment 1 under the conditions 

of Case Study ldescribed in Section 5.3. The values of the 
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parameters and the results are shown in Fig. 6.6, where the 

continuous curves correspond to the approximation 

Pe 	
Peu 

+ P
x 
P
ez 	

(82) 

and were obtained with the help of the graphs plotted in Figs. 

5.28(a), 5.29(c) and 5.33(a). The approximation given by 

Equation (82) is thus quite good both in experiments 1 and 2. 

6.3.3, 	Experiment 3 

The only difference with respect to experiment 1 is 

that in the present case 

2 
P2 T(x) = log y + (x + A)

2 
(83) 

0 + (x A)
2 

i.e. the block T of the receiver is nearly optimum provided the 

impulsive noise detection is done with a small percentage of 

errors"'. As in experiments 1 and 4, it is assumed that p = 1 

and thus A is identical to the SINR 11. Moreover, as in experiments 

1 and 2, it has been assumed that 

V
1 

= - log p = 1/8 
	

(84) 

The small circles in Fig. 6.7 represent the arithmetic mean of 

the two error probabilities obtained for every SINR and value 

of M; the continuous curves are the same as in Fig. 6.5. It is 

obvious that, in the range of values of 11 considered, optimization 

of the block T of the receiver yields very little gain and that 

this gain increases as p. increases. 

6.3.4 	Experiment 4  

This experiment was intended to test the performance 

of the receiver of experiment 1 in the presence of the non-

Poisson type of impulsive noise described by Equations (69) and 

See Chapter V, relation (102). 

** See in Chapter V the discussion about Equation (92). 
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(70). As in experiments 1 and 3 it was assumed that the 

samples of impulsive noise obey a Cauchy distribution
* 
 of 

parameter 0 and that 

and 

= 1 

= 
w 
dB 

60)  
5dB = ( dB 

w 

= 32.0 dB 

9.0 dB. 

Moreover, it was assumed that p = 1/8 and the cases r = 2, 4, 8 

and 16 were considered as well as the Poisson case r = 1. In 

Figs. 6.8 to 6.12 the continuous curves were obtained by the 

method of Chapter V for the case r = 1 and each dot, circle or 

cross represents the arithmetic mean of two error probabilities 

obtained by the Monte-Carlo method. It is obvious that for each 

value of M and a given SINR the error probability increases as r 

increases and that the limit as r 	does not depend on M, as 

explained in Section 5.4(f). This limit is attained virtually 

as soon as r>>M. 

6.3.5 	Experiment 5  

This experiment was designed to test the performance 

of the smear-desmear technique studied in Chapter IV in the 

presence of a non-Poisson noise distributed in time according to 

Equations (69) and (70) and whose samples follow a Laplace 

distribution of variance Y . No Gaussian noise was assumed 
2 

present (i.e. 0
w 
= 0) and, as in the four previous experiments, 

= 1. In the case where r = 1 (Poisson noise) the method of 

Chapter IV can be used to compute the error probability by 

substituting in Equation (105) of that chapter 

01(w) 
	

q 	p Fx(.0) 
	

(85) 

where F
x
(0.9 is the Laplace CHF: 

See Chapter V, Equation (79). 
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Fig. 6.12 t~ 
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and 

0
2 W2 

 
Fx(W) 	(1 + 

L./
2 
 = 1  
x 	pN 

(86)  

(87)  

In Fig. 6.13 the continuous curves were obtained by the previous 

method. In Figs. 6.13 to 6.18 each dot represents the arithmetic 

mean of two error probabilities obtained by simulation for 

N = 1, 2, 4, 8 or 16 and a given value of the SINR 
A s 

= 	 (88) 

where A
s as already defined in Chapter IV, is the magnitude of 

the signal samples at the input of the decision device. As in 

experiment 4, it was assumed that p = 1/8. 

By comparing the graphs shown in Figs. 6.13 to 6.18 it 

can be seen that, as the average burst length increases, the 

curves corresponding to different values of N become closer. 

This fact means that, for a required level of error probability 

(lower than, say, 10-3), the SNR improvement corresponding to a 

given N will become smaller and smaller as the impulsive noise 

deviates more and more from the purely random case. Moreover, 

the harmful effect caused by the smear-desmear technique, for 

low SINR, gets weaker as the average length 17 of the noise 

bursts increases. 

6.4 
	

CONCLUSIONS 

From the examples of simulation studied in the previous 

section the following important statements can be derived, which 

are believed to be valid under much broader conditions than those 

assumed in Section 6.3: 

(a) 	The efficiency of the rate reduction method studied in 

Chapter V decreases as the average length R of the impulsive 

noise bursts increases. If iL- M:-->1 the error probability is 

very close to that obtained for M = 1. Therefore, the addition 
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Fig. 6.16 	p = %, r = 8. 
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of a scrambler-descrambler pair to the data system will signif-

icantly improve the efficiency in the presence of a strongly 

non-Poisson impulse noise, provided the noise-sample density 

p is low enough. 

(b) The error probability estimated by the Monte-Carlo 

method is very close to the value given by Equation (82) for 
AI 

those cases where kdB < 0 dB. This statement is believed to be 

valid for any type of impulsive noise since the definitions of 

P , P and P
ez are independent of the particular amplitude or eu x 

time distribution assumed for the noise. 

(c) When < 0 dB the optimization of the block T 

shown in Fig. 5.4 has a practically negligible effect on the 

error probability. As IldB  increases the probability Pez in  
Equation (82) will decrease and the relative reduction in Pez  

will increase. 

(d) In the case of the smear-desmear technique developed 

in Chapter IV, the effect of a non-Poisson impulse noise is to 

reduce the SNR improvement obtained with a given value of N in 

the presence of Poisson impulse noise. This can be explained 

in the following way: for very low SNR each noise pulse is 

very likely to cause an error by itself and thus the bunching 

of the noise pulses will reduce the fraction of data bits which 

they affect, and consequently will reduce the error probability; 

on the other hand, if the SNR is well above the threshold of 

improvement the noise samples in a burst strengthen the 

capability of each other to cause an error, thereby resulting 

in a higher error probability than in the Poisson case. Here 

again the use of a scrambler-descrambler pair will prove 

beneficial in the range of SNR°s where the technique turns out 

to be useful. The importance attached to the Poisson impulse 

noise in Chapters IV and V is thus justified. 
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CHAPTER VII 

THE USE OF CODING IN VERY NOISY CHANNELS 

Use not vain repetitions, 

as the heathen do: for they 

think that they shall be heard 

for their much speaking. 

. The New Testament, St. Matthew, 
6.70  
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7.1 	INTRODUCTION 

It may be concluded from the results of Chapter V that 

in the cases where the SINR /1 is low and the density p of impulsive 

noise samples is high (say, in the order of 10M1), the attainment 

of a low error rate (i.e. less than 10
-5 bit-error rate) at the 

receiver output gives rise to a transmission rate factor that 

may be considered to be too low for many data transmission 

applications. Alternatively, in these cases, an attempt can be 

made to achieve the desired bit-error rate by using a powerful 

forward error-correcting code alone. If, however, the errors 

to be corrected occur randomly at a rate as high as, say, 10
-1, 

achievement of an output bit-error rate lower than 10
-5 demands 

the use of a code with a rate that may be lower than that 

obtained by pulse repetition, for the same output bit-error 

rate. For this reason it is proposed in this chapter to use a 

combination of the repetition method (Chapter V) with a forward 

error-correcting code
**

. If, as in most practical circumstances, 

the errors to be corrected tend to cluster in bursts or bursts 

of bursts, a random error-correcting code will not perform well 

and a single-burst or multiburst error-correcting code must 

therefore be used. A major shortcoming of these non-random 

error-correcting codes is the high sensitivity of their perform-

ance to the details of the bit-error structure. For this reason 

only random error-correcting codes are considered henceforth and 

the errors from the channel are assumed to have been randomized 

before decoding by some scrambling (reordering) operation on the 

data pulses prior to transmission, followed by restoration of 

the original ordering prior to decoding at the receiver. This 

scrambling-descrambling operation is intended to make the 

channel appear to the decoder as a random-error channel. 

Transmission rate factor is the ratio between the actual 
transmission rate and the channel capacity. 

All the random error-correcting codes considered in this 
chapter are binary linear block codes. 
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The combination of the repetition method with a random 

error-correcting code may be described as follows (see Fig. 7.1 

for functional diagram). A binary information stream is 

presented to the encoder, k bits at a time. The encoder adds 

n-k redundant check bits such that up to t random errors can be 

corrected by the decoder placed at the receiver terminal. Prior 

to transmission, each bit of the coded data stream is repeated 

M times and the resulting data stream is made to pass through 

an interleaver which is the unit used in practice to perform the 

scrambling operation referred to above. At the receiving terminal 

the received samples are unscrambled by passing them through a 

second interleaver unit referred to in Fig. 7.1 as the descrambler. 

The samples are then presented to the double-path detector 

developed in Chapter V, which makes a decision based on each 

sequence of M samples, and the resulting binary data stream is 

then passed on to the decoder for error correction. 

An interleaver can be described by a rectangular array 

of digital storage elements with R rows and S columns. At the 

transmitting terminal the data is read into the interleaver on 

a row-by-row basis and when the array is full the data is read 

out on a column-by-column basis. Thus, adjacent bits in a block 

of S bits at the input of the interleaver are separated in trans-

mission by R-1 bits. At the receiving terminal the data is fed 

into the descrambler on a column-by-column basis and is then 

restored to its original ordering by reading out on a row-by-row 

basis. Since the descrambler is normally implemented by a 

digital device, it will have to be preceded by an analog-to-

digital converter. The number of binary storage elements in 

the descrambler is B
u 

= RSN, where RS is the total number of 

quantized samples that can be stored in it and N is the number 

of elements occupied by each sample. It is possible to reduce 

the total storage capacity needed by performing both the inter-

leaving and the descrambling operations in two steps, as 



Data Encoder Repeat each Interleaver Shaping 
source (n,k,t) bit M times 

--> (R,S) filter 

Noise 

Data Decoder Double-path Descrambler Sampler and Receiving 
sink (n,k,t) detector (R,S) A/D converter filter 

Fig. 7.1  
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indicated in Fig. 7.2. In this figure the interleaver unit 

alters the ordering of the coded data stream, the restoration to 

the original ordering being carried out at the receiver,before 

decoding,by descrambler 2. The second interleaving operation 

entails simply repeating each block of n3 bits M times with 

descrambler 1 at the receiver reassembling the received samples 

corresponding to M identical transmitted bits before presentation 

of these to the double-path detector. If, as pointed out in 

Ref. D-2], the number n2  of columns in the interleaver in 

Fig. 7.2 is equal to the code block length n, then, from the 

point of view of consecutive errors, the interleaving operation 

redefines the code as (nin, nik, nit). This means that when a 

burst of n
1
t errors occurs within an interleaved block of n

I
n 

bits'at the- input of descrambler 2 (Fig. 7.2), then at the 

decoder input these errors are dispersed over ni  code words with 

t in each word, and can therefore be corrected. By suitably 

choosing the interleaving factor n
1 

it is possible to reduce 

the number of code words with more than t errors (while dec-

reasing the number of words with no errors) and thus allow the 

random error-correcting code to provide a significant reduction 

in received-data error-rate. The design of the scrambling 

operations thus entails the choice of interleaving factors n1  and 

n3 which maximize the randonmess of the impulsive noise locations 

at the input of the double-path detector and the randonmess of 

the error locations at the decoder input, given the encoding 

parameters n, k and M, the maximum permitted transmission delay, 

the maximum complexity allowed for the interleaver-descrambler 

units and, of course, the time statistics of the impulsive noise. 

The details of the design can be found in Refs. [7-1, 2, 8]. In 

these references interleaved block coding is shown to be one of the 

best techniques for combating burst-type error patterns. Pierce 

et al. E7-8J noted that "only bit-interleaved block coding (has) 

consistently provided significant performance gains over the 
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entire range of HF modem-channel conditions considered". 

It is important to point out that an interleaver is not 

necessarily implemented by an array of digital storage elements. 

It is obviously more convenient in practice to use the so-called 

synchronous interleavers [7-9] in which a symbol is read out each 

each time a symbol is read in. 

In the following sections no limitations are imposed on 

transmission delay or system complexity and it is assumed that 

the time statistics of the noise or the errors at the points of 

interest can be considered nearly random in order to assure a 

good performance of the double-path detector and the decoder. 

In Section 7.2 bounds on the improvement factor of the decoder 

are derived, which are later used in Section 7.3 to analyze the 

performance of the overall system. 

7.2 	BOUNDS ON THE DECODER PERFORMANCE 

The exact calculation of the bit-error probability Pe  

at the output of the decoder in Fig. 7.2 is in general a very 

difficult task E7-10]. If, however, some restrictions on the 

error distribution and the type of decoder are made, reasonably 

tight bounds on Pe  can be easily derived. In the following, it 

is assumed that the bit-errors occur independently at the decoder 

input. Moreover, it is assumed that the decoder produces at the 

output the k information bits of the codeword U closest, in the 

Hamming sense, to the received n-tuple V if U and V differ in 

t positions or less; otherwise the decoder will just let 

through the first k bits of the received block V. Although sub-

optimum, this decoder is believed to provide an estimate of Pe 
which is sufficiently accurate for the purposes of this chapter. 

As a matter of fact, it is known that the most efficient decoders 

only attempt to correct up to t errors D-11]. 

The improvement factor is defined as the average fraction 
of input errors corrected by the decoder. 
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Let us now compare the above-defined decoder with the 

so-called maximum-likelihood decoder, which, under the assumed 

conditions, minimizes the error probability E7-123. The 

maximum-likelihood decoder will, in any case, decode the 

received block into that codeword that differs from it in the 

fewest positions. If the number of errors e in the received 

block is not greater than t, the above decoding rule is never 

ambiguous because there is always one and only one codeword at a 

minimum distance e from the received block. Thus, in this case 

(e <t) all errors will be corrected. Given an arbitrary n-tuple 

V whose nearest codeword U
1 

is at a distance i, either no other 

codeword is at a distance i from V or at least one more codeword 

U2 
is at a distance i from V. It is thus possible to define A. 

asthenumberofn-tuplesofthefirsttypeandB.as the number 

of n-tuples of the second type, for a fixed minimum distance i 

(from some codeword). From the above considerations it follows that 

B. = 0 
1 

for i <t 

and that A is the number of codewords, that is 

A = 2k. 

Moreover, in the code standard array [7-13] the number of cosets 

whose coset leader has weight i is given by (AL. + B.)2
-k. Given 

one of these cosets, if there are in it two or more n-tuples of 

minimum weight any one of them may be taken as coset leader. 

Th
us,thereareA.2-k cosets for which the coset leader is the 

only
k 

cosets each with more than one word of minimum weight. 

If e errors occur and e>t all errors will be corrected 

at the decoder if an n-tuple of the first type with a minimum 

distance i = e is received. For n-tupies of the second type 

having a minimum distance i = e the decoding rule is ambiguous 

and correct decoding is not always achieved. For those cases 
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where the received n-tuple has a minimum distance i<ze correct 

decoding is never possible. In order to obtain bounds on P
e 

for the maximum-likelihood decoder the probabilities of these 

three events must therefore be known or at least bounded. Since 

this knowledge is not readily obtainable in the general case, it 

is necessary to consider the suboptimum decoder defined above. 

As stated above, this decoder first finds the minimum distance i 

from the received n-tuple V to a codeword and then either produces 

the information bits of some codeword nearest to V if i ,sZt, or the 

first k bits of the received n-tuple if i>t. It thus follows 

that incorrect decoding can only occur if the number of errors 

e in V is greater than t and that three cases are then possible: 

(a) i = e and the average number of errors at the decoder 

output is then El  = ke/n; 

(b) t<Zi<Ze and the average number of output errors is then 

the same as in (a), i.e. E 2 = ke/n; 

(c) i<.- t and the average number of output errors E3  

is then bounded as follows : 

dk/n -5,*--Ey"--:; (2e - l)k/n 

where d = 2t+ 1 is the minimum distance of the code. If the 

input errors occur independently with probability p1, the bit-

error probability Pe  at the decoder output is therefore bounded 

as follows: 

     

n  
e(e) 

P1(1 	 (:)P1(1-Pi)n-e  

e=d+1 

 

1 
P > 
e 

   

  

e=t+1 

and 

  

n 

  

\-11.'"e 
Pe <: 	\> eq.) pT(1 	pli e n 	 

e=t+l 

The upper bound followS from the triangle inequality 

D-141e 
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On defining q1 = 1- pi.  and 

E(n, r, p1) = 

it can be shown that 

1 	i n-i _ i(1) p1  (11 	- p1  E(n-1,t„p ) 

i=t+1 

The bounds given above then become 

Pe  > P1  E(n-1, t, pd-pi  E(n-1, d,  Pi) + 

- E(n, d+1, p
1) 

and 

P
e
< 2p

1 
E(n-1, t, p1) 

Since the binomial exceedence probabilities E(n,r,p]) satisfy 

the following relation 

n E(n-1,t,p1) = (n-t)E(n,t,p1)+t E(n,t+1,p1) 

the lower bound (1) can therefore be rewritten 

Pe > p1E(n-1,t,p1)+q1E(n-1,(1,p1) (1-.Pa-)E(nIdl p1). 

Since in all practical situations t >pin, the contribution from the 

last two terms of the lower bound is very small compared to the 

first term. Thus it is possible to write 

Pe  5> p1E(n-1,t,p1). 	 (3) 

By comparing the bounds (2) and (3) it may thus be concluded 

that the above method provides a fairly accurate estimate of the 

bit-error rate at the output of the suboptimum decoder. 

7.3 	EVALUATION OF THE SYSTEM PERFORMANCE 

From the results of Chapter V it can be concluded that 

the bit-error probability p1  at the input of the decoder in Fig. 

7.2 is bounded as follows 

131 
	pM/2, 

(1)  

(2)  



by Equation (5) is smaller than, say, 10
-5
. Then, by using the 

table
* 
 in Ref. [7-7], the parameters (n,k,t), tis, of some 

existing code can be found which maximize (or nearly maximize) the 

overall transmission rate 

p being that fraction of received samples in which the impulsive 

noise occurs with an amplitude high enough to cause an error. In 

this section a worst-case analysis is. done by assuming that 

P1 = PM/2 	 (4) 

and 

Pe  = 2p1  E(n-1, s, p1). 	(5) 

Given the values of n, M and p it is possible to calculate the 

minimum value of the argument s for which the value of Pe 
given 

- 217 - 

R = Mn bits per transmitted pulse. 	(6) 

This procedure was used to obtain Table 7.1 where it is assumed 

that, for some integer i;)1, p = 2 i  and thus 

pi  = 2j, 	j = Mi + 1. 	(7) 

From Table 7.1 values of R can be derived corresponding 

to several values of n and M. These values of R are presented 

in Table 7.2. The parameters of the best cyclic codes under the 

conditions of Table 7.1, together with the optimum value of M 

and the rate R achieved, are shown in Table 7.3. 

It is interesting to compare the values of R shown in 

Tables 7.2 and 7.3 with the capacity of the binary symmetric 

channel between the encoder output and the decoder input. This 

capacity, in bits per transmitted pulse, is given by 

CM  = (1 + pilog2p1  +q1log2q1)/M 	(8) 

where pi  = 1 - qi  is given in Equation (4). If pi = 2-j it can 

be shown that 

A limit situation where Equation (4) is exactly satisfied 
is considered in the last pages of subsection 5.2.3. 

The modifications to this table due to results from Refs. 
[7-3,4,5,6] have been taken into account. 
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6. 

........,;..,....z, 
1 2 3 4 5 .6 7 8 9. 10 11 12 

7 	: - : - - - 1,3 1,3 1,2 1,2 1,2 1,2 1,2 1,2 

9 	: -. - - 	• 1,4 1,3 - 	1,3 B2,2 2,2 2,2 2,2 2,2 2,2 

. 	' 	15  - - 1,7 1,5 82 ,4 
A 
5 	3 , 5,3 

A
7,2 7,2 7,2 7,2 7,2 

17 -  - 	. 1,7 2,5 3,4 6,3 6,3 B9 B9,2 9,2 9,2 9,2 9,2 

21 	, - - 1,8 82,6 B5,4 10,3 10,3 12,2 12,2 12,2 12,2 12,2 

23 - 1,11 1,8 2,6 5,5 6,4 812,3 14,2 14,2 14,2 14,2 14,2 

25 - 1,12 1,8 3,6 6,5 7,4 12,3 15,2 15,2 15,2 15,2 15,2 

27 - 1,12 1,9 5,6 7,5 9,4 14,3 17,2 17,2 17,2 17,2 17,2 

31 - 1,13 2,9 
A
6,7 A11,5 12,4 A16,3 A21,2 21,2 21,2 21,2 21,2 

	33 - 1,14 B2,10 6,7 811,5 813,4 18,3 B22,2 22,2 22,2 22,2 22,2 

35 - 1,14 2,10 7,7 13,5 15,4 20,3 24,2 24,2 24,2 24,2 24,2 

39 - 1,15 82,11 9,7 16,5 19,4 23,3 28,2 28,2 28,2 28,2 28,2 

41 - 1416 3,11 6,8 13,6 B21,4 25,3 25,3 30,2 30,2 30,2 30,2 

43 - 1,16 3,11 7,8 
13
15,6 22,4 27,3 27,3 31,2 31,2 31,2 31,2 

45 - 1,17 B4,11 9,8 15,6 24,4 29,3 29,3 33,2 33,2 33,2 33,2 

47 - 1,17 3,12 10,8 16,6 25,4 31,3 31,3 35,2 35,2 35,2 35,2 

49 - 1,17 4,12 12,8 18,6 26,4 32,3 32,3 37,2 37,2 37,2 37,2 

51 - 1,18 5,12 12,8 B19,6 24,5 34,3 34,3 39,2 39,2 39,2 39,2 

55 .- 1,19 6,13 12,9 22,6 28,5 38,3 38,3 43,2 43,2 43,2 43,2 

57 - 1,19 6,13 14,9 24,6 30,5 33,4 40,3 45,2 45,2 45,2 45,2 

63 1,31 1,21 A7,14 619,9 B28,7 A36,5 
A
39,4 B46,3 A51,2 51,2 51,2 51,2 

65 1,32 2,21 8,14 18,10 29,7 37,5 41,4 47,3 B53,2 53,2 53,2 53,2 

127 1,54 4,33 A29,21 A43,14 A71,9 
A85,6 A92,5 

A
106,3 106,3 A113,2 4113,2 113,2 113,2 

255 1,94 A21,55 A47,33 A115,21 A155,13 A187,9 A207,6 A223,4 A231,3 A239,2 239,2 239,2 

511 1,170 A31,96 4130 ,55 1 4241,33 4340,20 1 4394,13 A
439,8 A457,6 A475,4 

A
484,3 

A
493,2 493,2 

1023 1,315 4111,172 '278,96 A52355 A708,32 A838,19 A90312 A9438 A9735 A983,4 A993,3 A1003,2 

TABLE 7.1: VALUES (K,$)  

p=2-l; p1=p11P; 2p1E(n-1,s,p1)<=10-5-C-2p1E(n-1,s-1,p1). 

A: BCH codes; 	B: other cyclic codes. 





TABLE 7.3: Parameters for the best cyclic codes 

Upper values: k,t,M; lower value: maximum rate R=k/(Mn); t>s (see Table 7.1) 
A: BCH codes 	B: other cyclic codes 

.---r>'---■,, 
1 2 3 4 • 5 6 7 8 9 10 

15 7,2,8 
0.058 A 

7,2,4 
0.116 

5,3,2 
0.116 A 

7,2,2 
0.233 

7,2,2 
0.233 

5,3,1 
0.333 

5,3,1 
0.333 

7,2,1 
0.466 

7,2,1 
0.466 

7,2,1 
0.466 

91 9,3,6 
0.071 B  
12,3,7 
0.074 B 

9,3,3 
0.143 
12,3,4 
0.130 

9,3,2 
0.214 
12,3,3 
0.174 

12,2,2 
p0.286 B 
12,3,2 
0.261 

12,2,2 
0.286 
12,3,2 
0,261 

9,3,1 
0.428 
12,3,2 
0.261 

9,3,1 
0.428 
12,3,1 
0.522 

12,2,1 
0.571 
12,3,1 
0.522 

12,2,1 
0.571 
12,3,1 
0.522 

12,2,1 
0.571 
12,3,1 
0.522 23 

31 21,2,8 
0.085 A 
36,5,6 
0.095 A 

121,2,4 
0.169 
36, 	,3 
0.190 

21,2,3 
0.225 
., 	, 

0.285 

21,2,2 
0.338 
Oy 	, 

0.365 B 

11,5,1 
0.354 A 
:y 	, 

0.444 B 

11,5,1 
0.354 
0, 	, 

0.571 

16,3,1 
0.516 A 
',4, 

0.619 A 

21,2,1 
0.677 
9 1 	,1 

0.730 

21,2,1 
0.677  
1,2,1 

0.809 A 

21,2,1 
0.677  
51,2,1 
0.809 63 

127 85,6,6 
0.112 A 
187,9,6 
0.122 A 

85,6,3 
0.223 
187,9,3 
0.224 

85,6,2 
0.334 
187,9,211 
0.336 

106,3,2 	71,9,1 	85,6,1 
0.417 A 0.559 A 	0.669 

,21,1155,13,1187,9,1 
0.451 A 0.608 A 	0.733 

92,5,1 
0.724A 
207,6,1 
0.812 A 

106,3,1 
0.834 
223,4,1 
0.874 A 

106,3,1 
0.834 
231,3,1 
0.906 A 

113,2,1 
0.890A 
239,2,1 
0.937 A 255 

511 340,20,5394,13,3 94,13,224.1,36,n40,20,1394,13,1 439,8,1 457,6,1 
0.133 A 0.257 A 	0.385 	0.472 A 	0.665 	0.771 	0.859 A 0.894 A 

475,4,1 
0.930 A 

484,3,1 
0.947 A 

1023 
708,34,5838,19,3c38,19,21523,55,1708,34,138,19,1903,12,1943,8,1 
0.138 A 0.273 A 	0.409 	10.511 A 	0.692 	0.819 	0.882 A 0.922 A 

973,5,1 
0.951 A 

983,4,1 
0.961 A 
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1 - pi(j + 1.442) 
y j:?5. 

In Table 7.4 the values of CM  are given for several values of p 

and M. It can be seen that for large n and p = 1/2, the value 

M = 5 entails a rate reduction with respect to the case where 

M = 1 of at least 
C
5 

100% = 93.6%. 
Cl 

Similarly, for p = w and M = 3, 
C
3 
- . 100% = 68.2% C
1 

and for p = 3/4 and M = 2, 
C2 
- . 100% = 70.5%. 
Cl 

In practice, by using a powerful BCH code (n X127) the following 

results can be achieved: 

R/C1  5-  0.5 
	

if 	1/64 < p 	1/29  

and 

R/Ci  > 0.7 	if 	2 x 10-3‹ p,„‹.1/64, 

and at the same time an error probability Pe lower than 10
-5 

at 

the data sink can be ensured. In Refs. E7-1,3 a value R/C1
ct 

0.50 is considered acceptable in practice if the channel error 

rate p/2 lies between 10
-2 

and 10
-3. By using the system 

described in this chapter it is possible to satisfy the same 

requirement in cases where the channel error rate is much higher. 

If coding is not used it is necessary that 

16  
M.  ?  -log2p 

in order to achieve 

P
e 
= p

1
<10

-5
. 

The maximum rates attainable in this case are shown in Table 

7.5. As can be seen, the transmission rates shown in Table 7.3 

for small n are quite close to those in Table 7.5. Thus, 

combination of the repetition method with an error-correcting 

C
M M 



TABLE 704 

Values of CM  given by Equation (8) 
_ • - 	........ 

1/2 1 4 1/8 - - 1/16 	 1/32 -  - - - - 1/64, - - -1/128 1/256 

1 0.188 0.456 0.662 - 	0.799 - - -0.-883 0.934 - -0.-963 - 0.980 

2 0.228 0.400 . 	0.467 - 0.490 - 0.497 - 0.499 - - 0.499 - 0.499 . 

3 0.220 0.311 0.-329 - - -0.333 - - -0.-333 - 	0.333 - 0.333 0.333 - 

4 0.200 0.245 0.249 0.249 - 0.249 0.249 0.249 0.249 - 

5 0.176 	 0.199 0.199 -  0.199 -  - 0.199 .  0.199 -  0.199 0.199 

6 
_ . 

0.155 0.166 0.166 0.166 0.166 0.166 0.166 0.166 

7 0.137 0.142 0.142 0.142 0.142 0.142 0.142 0.142 

8 0.122 0.124 00 124 0.124 	 0.124 0.124 0.124 0.124 



 

TABLE 7.5 

   

M 16/(-log2p) = a, M <a + 1, p = p 12 < 10-5 

     

-'log2p 1 2 3 4 5 6 9 10 

M 16 8 6 4 4 3 3 2 2 2 

[ 	R=1/M 0.062 0.125 0.166 0.250 0.250 0.333 0.333 0.500 0.500 0.500 



- 224 - 

code can only increase the rate significantly if the code length 

is large. By using a powerful code the transmission rate can be 

increased by a factor of about 2, with respect to the case where 

the repetition method is used alone. 

7.4 	CONCLUSIONS 

If the probability p of a received signal sample being 

corrupted by a strong impulsive noise is high, the analysis of 

the previous section shows that the best form of error control 

from the point of view of transmission rate is an optimized 

combination of the repetition method developed in Chapter V with 

error-correcting coding. In fact, by comparing Tables 7.2 and 

7.5 it can be seen that for each value of n there is a probab-

ility po  such that if p>po  the rate corresponding to M = 1 and 

the best binary linear code is lower than the rate obtained with 

the repetition method alone. As can be seen, po  increases as n 

increases; for example: 

n = 15 
	

Po 1/64  
n = 1023 	..po  = 1/8. 

It can be further concluded that for p5po  and n small (say, 

n = 20) the combination of the repetition method with coding 

provides a transmission rate close to that achieved with the 

repetition method alone (although for different values of M>1). 

However, by choosing a large code length a significant increase 

in transmission rate can be achieved in cases where pf5po. For 

lower values of p and arbitrary code length it turns out that 

the maximum transmission rate is obtained for M = 1. 

More specifically, if a BCH code of length n;?127 is 

used, it is possible to choose the parameters n, k and M in such 

a way that the transmission rate R = k/(Mn) meets the following 

requirements : 

C
1 

is the capacity of the binary channel when only one 
pulse is transmitted .per symbol (M = 1). 
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R/C1  r> 0.5 if 1/64 < p 

and 

R/Ci  > 0.7 if 2 x 10
-3 < p 1/64 

while the error probability at the decoder output is kept below 

10
-5. The previous requirements are normally considered accept-

able in practice E7-1,8D. 
As explained in Section 7.1, the previous statements 

are only valid if the impulse noise samples at the input of the 

double-path detector and the bit errors at the decoder input 

can be assumed to occur independently. In order to satisfy these 

conditions with good enough approximation it will often be 

necessary to perform an interlacing operation on the encoded 

data sequence prior to transmission. As explained in Section 

7.1, interlacing is usually easier to implement in two steps: 

first by placing an interleaves at the output of the encoder, 

and secondly by transmitting the M pulses corresponding to a 

given data bit at a wide distance apart. 
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CHAPTER VIII 

CONCLUSIONS 

And suppose we solve all the 
problems it presents. What 
happens? We end up with more 
problems than we started with 
Because that's the way problems 
propagate their species. A problem 
left to itself dries up or goes 
rotten. But fertilize a problem 
with a solution - you'll hatch 
out dozens. 

N.F. Simpson, "A Resounding Tinkle" 
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8.1 	SUMMARY OF CONTRIBUTIONS 

Most of the conclusions arising out of the work 

described in the previous four chapters have already been 

summarized there. In this chapter the original results of the 

investigation are reviewed with the same general approach as 

that adopted in Chapter I, and using the terminology and notation 

introduced in that chapter. 

8.1.1 	Smearing technique 

In Chapter IV the transmitter was assumed to send 

through the channel, every LT seconds, one of 2
L 

signal waveforms 

of the form 	L 

silt - kLT)= 	a..f.(t 	kLT) 	(1) 

j=1 

[see Fig. 1.2(a)] 

(i = 0, 1, ..., 2 -1; k = 0, 1, 2, ...) where (X..ij = +1 and 

N-1 

f.(t) = 	a. y(t - ET). 	(2) 

2=0 

In this way a group of L binary symbols,represented by the coeff-

icients a1j (j = 1, 2, ..., L), can be transmitted simultaneously 

at every signalling instant kLT (k = 0, 1, 2,...). The elemen-

tary pulse y(t) was assumed to be essentially time-limited to T 

seconds and frequency-limited to the channel bandwidth W. 

The receiving filters Dee Fig. 1.2(b): were assumed 

to have impulse responses given by 

N-1 

(t) = bj!y(t 	T) (3) 
g=o 

It can always be assumed, without loss of generality, 
that N is even and that if a. = 0 then 0 

J0 	
aj(N-1) 

for any j. 
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= 1, 2, ..., L). The analysis of the system under the assump-

tion that intersymbol interference is to be avoided at the 

detector output has led to the following conclusions: 

(a) Given N>1 the optimum performance is obtained for 

L>1; 

(b) Very little (if any) improvement in symbol-error rate 

can be obtained by using L>2. 

For this reason only the case L = 2 was studied in detail. The 

correlation between the errors obtained at the detector output 

may, however, be different for other values of L, particularly 

in the presence of long noise bursts. 

ThroughOut this study the decision device was assumed 

to use just one sample per symbol (M = 1). The reason for this 

is that for M>1 no system could be devised which was free from 

intersymbol interference at the detector output, apart from some 

trivial examples equivalent to the case L = M = 1. The decision 

device was further assumed to consist simply of a parallel-to-

serial converter followed by a zero-threshold detector. 

Thus defined, the system will show no intersymbol 

interference at the detector output if and only if the samples 

delivered to the decision device exhibit no artificial intersymbol 

interference. A criterion was derived in Chapter IV for choosing 

the elementary pulse y(t) and the coefficients a. and b.1 in 

Equations (2) and (3) in such a way as to satisfy the above 

necessary and sufficient conditions and furthermore to avoid any 

interchannel interference in a frequency-division multiplexed 

(FDM) system. There are grounds for supposing that in the 

presence of Poisson impulse noise the optimum sequences of 

coefficients [a. 1 and [b. /(Q = 0, 1, 'so, N-1) are nearly 
R.) 

uniform . For this reason a technique was devised for generating 

A sequence of numbers with equal absolute values is 
termed uniform. 
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uniform sequences which can be used in the system. The intuitive 

reason behind the use of uniform sequences is that, for given N 

and y(t), the responses of the receiving filters to an isolated 

noise impulse will have nearly the minimum peak amplitudes 

obtainable, provided that y(t) is approximately time-limited to 

T seconds. However, this may not be the case when a burst of 

noise impulses is considered. 

The error-rate analysis of the system designed on the 

basis of uniform sequences of coefficients has shown that a 

critical SNR exists above which the technique is beneficial and 

below which it can only be harmful. Furthermore, above this 

critical SNR the error-rate (a) decreases as N increases, and 

(b) is lower when the PDF of the energy (within the channel band:- 

width) of the elementary disturbance has a short tail, and (c) 

increases with the average duration of the noise bursts".  

It can readily be concluded from Equations (1) and (2) 

that the combined waveform transmitted over the channel has.the 

following form: 

Aky(t - kT) 

k=0 

where the Ak  constitute a multilevel sequence. It follows from 

the conclusion (c) above that a reduction in error-rate can be 

obtained in the presence of strongly non-Poisson types of noise 

by performing a scrambling operation on the Ak  at the transmitter 

followed by the inverse operation at the receiver. In fact, 

after being subjected to the scrambling-descrambling operation 

the noise will look more like a Poisson impulse noise. 

*** It is assumed in this chapter that, as the noise charac-
teristics change, the error probability of the conventional 
system (L = N = 1) remains constant. 



- 230 - 

The smearing of the responses of the receiving filters 

to an elementary impulsive disturbance, in the attempt to 

decrease their peak amplitudes, is the underlying principle in 

the method just described. When using this principle, other 

authors have always assumed that L = 1. Their results suffer 

from the following limitations: 

(a) If pulses of the form in Equation (2) are used, as in 

Ref. 	intersymbol interference cannot be eliminated when 

L = 1; 

(b) If a frequency-domain approach is used, as in Ref. 

-2], the resulting "optimum" waveforms seem difficult to 

realize and show no advantage over the ones proposed here. 

8.1.2 	Rate-reduction technique 

The case in which the decision device has available 

more than one sample per transmitted symbol (M>1) was considered 

in Chapter V. In this case a receiver capable of avoiding any 

intersymbol intefererence could only be devised under the 

assumption that the transmitted waveforms are essentially non-

overlapping. To this effect it was assumed that L = 1 and that 

M-1 

f
1 	

= 	a y(t iT) 	(4) 

i=0 

In order to prevent the samples delivered to the decision device 

from exhibiting any intersymbol interference it was further 

assumed that 

h
1
(t) = blo

y(t) 
	

(5) 

The above waveform design has already been used in 

the literature but the associated decision device was meant 

for a noise governed by the same PDF at all sampling instants, 

and thus needing no time distribution in its characterization 

(continual noise) C8-3j, In the presence of impulsive noise the 
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decision device should be able to distinguish between the samples 

affected by impulsive noise and the samples affected mainly by 

Gaussian noise. In the proposed decision device a block termed 

noise detector fulfils this function and directs each sample, 

according to its type, to one of two branches where the accepted 

samples are processed nonlinearly to obtain two decision 

statistics. The decision about the transmitted symbol is 

normally based on the decision statistic resulting from the 

samples that are more likely to have been affected mainly by 

Gaussian noise. If the magnitude of this decision statistic, 

however, is much smaller than the magnitudes of the signal samples 

it must be concluded either that the noise detector has failed in 

some samples or that all the M samples have been corrupted by 

impulsive noise. In either of these cases a second decision 

statistic must be employed which is computed from the samples 

which are most likely to have been affected by impulsive noise. 

By computing this second decision statistic from all M samples a 

simpler receiver structure can be obtained at the expense of a 

slight increase in error-rate (see Section 5.2.3 and Appendix 2.1). 

The error-rate analysis was carried out in Chapter V 

under the assumption that the coefficients an  in Equation (4) 

have equal values. The same types of noise were used as for 

the smearing technique and the following main results obtained: 

(a) The error-rate decreases as the number, M of pulse 

' repetitions increases; 

(b) For a given M>1 the improvement obtained, with respect 

to the conventional system (M = 1), increases as the SNR decreases, 

owing to the higher efficiency of the noise detector at low SNR's; 

(c) For given M2>1 and SNR the error-rate increases as the 

average noise-burst length increases, thus suggesting the use of 

a scrambling-descrambling operation as in the previous section; 

It follows from the analysis in Chapter V that under normal 
conditions these samples are most likely affected by -
impulsive noise. 
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(d) 	If the SNR is sufficiently low then 

P
e 	Px 

where P
e 
is the error probability at the output of the waveform 

detector and P
x 

is the probability of both decision statistics 

being necessary for making a decision. 

This last result suggests a means of making the receiver 

adaptive in the presence of a non-stationary impulsive noise. In 

fact, the receiver parameters can be adjusted so as to minimize 

the estimate of Px 
and thus approximately minimize Pe. 

It was shown in Chapter VII that if a powerful error-

correcting code is added to the above system a higher transmission-

rate is obtained for a fixed error-rate. It was further concluded 

that, if the fraction of signal samples strongly affected by 

impulsive noise is low, the maximum transmission-rate is 

achieved when M = 1. 

8.2 	SUGGESTIONS FOR FURTHER RESEARCH 

Some unanswered questions which could be the starting 

point of further research are outlined below. 

8.2.1 	Smearing technique 

A means of increasing the parameter M would be a useful 

achievement. This would possibly lead to an improved decision 

device and could perhaps be effected by increasing the number of 

receiving filters. 

Bounds on the error probability in the presence of 

non-Poisson types of noise should be derived. These bounds 

would provide a means of calculating the sequences of coefficients 

ta.l. 	 1- and tb. 	used in Equations (2) and (3). For this purpose 
Jk) 

a method of generating any set of sequences with the required 

autocorrelation and crosscorrelation properties would be quite 

useful. 
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After having solved the above problems the use of a 

scrambling-descrambling operation should be compared with the 

use of non-uniform sequences. To show that these two methods 

are not equivalent, it it sufficient to point out that, for a 

given average transmitted power, uniform sequences give rise to 

the maximum peak transmitted powers. 

8.2.2 	Rate-reduction technique 

In this area of research the most important problem 

is the development of more efficient noise detectors. In the 

case of non-Poisson types of noise the noise detector should 

decide which samples are more likely to have been strongly 

corrupted by impulsive noise by analysing simultaneously the 

entire group of M samples. 

Methods of implementing adaptive receivers in the 

presence of non-stationary impulsive noise also seem to deserve 

consideration. 

See Equation (70) in Chapter IV. • 



234 - 

APPENDIX 1 

In this appendix the references to the main text 
pertain to Chapter IV, unless otherwise stated. 



- 235 - 
1.1 	PROOF OF THEOREMS 1 AND 2 

If the pulse gn(t-k8) of Fourier spectrum 

Gn(f) 6--12/Th5f  

G  
-Li [ 
	

0 	-j211kElf 
= -E n S(f-2n3)+E 	- S(f+2)..] 

2 

is received and if the receiving filter has the impulse response 

rift -mb) where 

rift) = R. x (-t)cos(47i(3 t - Y. ) 

and thus 
R. [ -V. , 	iYi 

Riff) = --?-"E 1 X- (f -21_0+ E 	X-(f +25.0)1, 

then the signal samples at the instants E5 at the receiving 

filter output are given by 

Gn(f)Ri(f) E-127(2 -k-m)5f  df. 	 (A.1) 

If x(t) = s(t) these samples are zero except for n.=i and .g..= k+m 
in which case their values are 

rn = ;-2-G n Rns E cos("Yn - an). 

If 	= an then gn(t) and rn(t-mo) are matched impulse responses 
and rn is maximum. If yn =n 2  + the two carriers are in 
quadrature and rn = 0. This proves Theorem 1. 

If now x(t) and s(t) are associated Nyquist pulses the 

integral (A.1) is zero for any values of the integers involved 

in it, which proves Theorem 2. 

PROOF OF THEOREM 3 

Since 

j4TUOt sa(t)sa(t+2kT) 6- 	. 	dt 
.. . 

Es 	
S ;( aman 	t-mT)y (t-nT-2kT) Ei4ft43€  dt = 

n 5 

E s  
N -y 

  

 

a a n n+2k 

 

11 
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and 

= 	sa(t)sbi (t+2kT) E ill:11213t  dt 

E 
= 	E N y nan+2k 

n 

where 	= J-5 1  -,f, the theorem follows. 

PROOF OF THEOREM 4 

Since s(t) is time-limited to E-T/2, T/2] the condition 
(15), with 5= T, is fulfilled for any k O. For k= 0 

T/2 2  
Aon = 	s (t)cosiAr dt 

-T/2 

	

Es , 	n=0 

	

0, 	n 4 O. 

Therefore, if JJ = 
E s2(t)  = 	Ga(tr.)  

If fJ = 

	

Es/T, 	I t 	T/2  

	

0 , 	It I> T/2. 

Aon can be written as follows: 
T/2 t \ 	1In Aon = 2 J 	s2 (t) cos4--71--dt 

0 
and thus, in the interval [.T/2, T/2], 

where 

s2(t)  = Ts bnsin( 41;n itI) (A.2) 

L  T/2 
bn 	T = 	s"

0  
(t) sin4T+,t-dt. 

0 
Equation (A,2) shows that 

s2(t) .71;2  (At) 

where CO is antisymmetrical in 1-0,T/2D with respect to the 
point t = T/4. Therefore 

s2(t - -T ) = 	k.p(t), 	Oft 2 
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and 
s2(t) 	s2( t-T/2) = 2Es/T, 	0$,-;t(*--:T/2. 

PROOF OF THEOREM 5  
--T72 

A
on 

= 2 f 	r2(t) cos 4Taltdt  

0 

T/2 
= 2 f 	s2(2- t) cos tdt 

0 

= 2 Jr s200 cosL°112Ldx 
0 

T/2 	
= Es bon 

where on is the Kronecker delta. 

T/2 
B
on 2 	2 s(t) s( - t) sin4 -ant---dt =  

0 

T/4 
2(-1)n 	s(I + x) 	- x) sin 41-Cnx ----dx 

4 -T/4 

= 0, any n, 

since 

f(x) = 	+ x) 	- x) 

is an even function. 

1.2 

According  to the‘description given in the main text, 

the detection of the coefficient a
b 
of Equation (43) is based on 

the sample produced at t = 2T by the sampler 1 EFig. 4.2(b)], 

the value of which is, 

Z = o N a.
2k a.I 1  r. 	+ --- +2k 

0(
2k-1 	

b.r. 1+2k 
k 

Similarly, the detection of the coefficient cc 1  is based on the 

sample produced at t = ET by the sampler 2, which is given by 



a2k -1 b.s. 1+2k 

2 	2 	') 
minimum values 01 

= G2'  0 and 0
2
2 
 = H

2  if and only if Equations 
0 	0 

(54) and (55) are satisfied. 

If the signal samples are assumed to have constant magnitudes Al  

and A2, it is easy to show that those noise variances attain the 
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lc 

N 	
a
2k 

  

 

a.s. 1 1+2k7 

 

k 

   

Therefore, if Equations (49) and (50) are valid, it follows that 

Z 	CC A 	and Z-1' 0 	l' 	
= C

Ll
A
2 Dee Equations (56) and (57)] and no 

intersymbol interference arises. 

If the noise n(t) in Fig. 4.2(b) is assumed to be 

Gaussian and to have a constant power spectral density 020, then 

the noise variances at the outputs of the samplers 1 and 2 are 

respectively 

and 

where 

2 0
1  

02
2 

2 = 	
0 

0 
02 

2 
2 	ao 	2 

Z (t)dt - —N 	r  r .  -.0 

02 
2 2 j 
Z(t)dt = 	S. 
s 

Zr(t) = 
IST" 

Zs(t) = 
1171 

 

r. h(t - iT) 

s. h(t-iT). 

 

 

Now let expression (68) be derived under the conditions 

specified in the main text, which imply that 

canum=> = 5 	(Kronecker delta). 
TIM 

On defining pee Equation (47)1 

s/(t) = 2ks a(t-2kT)+ 
 a2k_lsb(t-2kT) 

k=-L 

(A.3) 
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then 00 

4LT 
P
s L1  00 1 
	2 
j.<8L(t)> dt. 

----  -00 
According to Equation (A.3) 

L 

 

‹s12,(t›= 

k=-L 

2k.T)-1- sb2(t 2kT)] 

 

and thus, since 

    

E E rs2a(t)dt - 
-.0 

E E 
v.°
sb2(t)dt = 

NM CO 

   

 

2 
a. 1 

  

 

b.
2  
, 

   

the expression (68) follows. 

Whenever sa(0 and sb(t) are associated Nyquist pulses, 

the argument used in deriving Equations (A.4) and (A.5) can 

also be used to derive Equation (68) with no restrictions imposed 

on the data sequence toci1. 

If in Fig. 4.2(b) the noise n(t) is a white Gaussian 

noise of spectral density 00  then the noise autocorrelation 

function at the output of the receiving filter H(f) is 

Similarly, the autocorrelation function at the output of the 

delay line Lr  is 

Ra(T) = OLT Zr(t) Zr(t - T)dt. 

Therefore, if h(t) and Zr(t) are Nyquist pulses it follows that, 

for i / 0, 

R1(iT) = 0 

and 

Ra(2iT) = 0. 

These relations mean that two noise samples iT seconds apart at 

fc,0 
R
1
(T) = G  

h(t) h(t 	T)dt. 
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the receiving filter output or 21T seconds apart at the delay 

line output are statistically independent. 

1.3 	PROOF OF THEOREM 6 

Xk 	bi bi+2k = 	a . 	a . 
N-1+1 N-1-2k+1 

a. aj 	. -2k 
J 

Thus the sequence B is self-orthogonal. Defining N as the 

smallest even integer (N = 2L) such that ai  = 0 when i<1 or 

1.2>N, then 

Y
k 
= > b. a. 

1+2k 
(-1)1 a 

21, -i+1 ai+2k 

2M 

= (-1) a a
2M-I+1 

k=1 

  

where 2, = N-i+l and M = L+k:.;?-1. Therefore 
2M 

Y
k 
= 	(-1) a2  a 2m-v+i 

 

( 1)1  a2  a2m_2+1  

   

Z=1 	 2.=m+1 
M 
	

M 

= (-1) a.Z a2M-t+1 (-1)j  aj  a 2M-j+1 

= 0, 	j = 2M- V+ 1. 

Therefore, A and B are associated sequences. 

PROOF OF THEOREM 7 

Defining 

C= 

(all other elements being zero) it is obvious that C is self-

orthogonal. Now note that, in view of Equation (59), 



[b2—  

3 
b
4 
b5 
b6 
b7 
b8  
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d. = (-1)1 
 bN-i+1 

= (-1)NA-1a. = -a., 

for i<N, and thus Theorem 6 completes the proof. 

Given the self-orthogonal sequence A = fail, Theorem 6 

states that, for any b, 

bi = b(-1) 	 (A.6) 

is a solution of the linear system of equations 

bi  ai+2k  = 0, 	any k. 

It can be proved as follows that any solution of this system 

satisfies Equation (A.6) for some b. In matrix notation this 

system takes on the following form for N = 8: 

—
a8  0 0 0 0 0 0 

a6  a7 a8 0 0 0 0 

a4 a5 
a6 a7 a8 0 0 

a2 a3  a4 
a5  a6 a7  a8 

0 a1  a2  a3  a4  a5 a6 
0 0 0 a1  a2 a3 a4 
0 0 0 0 0 al  a2 

— 	 — 

= -b1 

r.

3 

71 

a5  

a 

al 
0 

0 

0 

(A.7) 

It can be assumed without any loss of generality that as.i O. 

The first equation of the system then gives 
b1 b2 = - as  a7 

which implies that b1 0 (otherwise b1= b2= 0). The determinant 

of the system (A.7) is given by 

D = a 

a7 
a5 
a3 

al  

0 

0 

a8 
a6 

a 4 

a2  

0 

0 

0 

a7 
a 
5 

a3 

al  

0 

0 

a8 

a6 

a4  
a2 
0 

0 

0 

a7 

a, 
D 

a3 
a
l 

0 

0 

a8 

a6 
a4 
a
2 
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Since a
1
/0 and/or a2

/0 it is obvious that the last three rows 

of D, as well as its first three, are linearly independent. 

.[a.} 	a self-orthogonal sequence, any of 
the first three rows is orthogonal to any of the last three. 

Therefore D/0 and the system (A.7) has a unique solution, which 

is 

bi 	
1 - 	(-1)1 a

N-i+1. al  
The previous proof can be easily extended to any (even) value 

of N. 

The group of permutation operations referred to in the 

main text can be described as follows. Consider a vector W and 

divide it into L pairs of components: 

W  = 121' P2' 	
N = 2L = 2n. 

The basic operation T
1 
consists in writing the odd pairs first 

and the even ones next: 

T1W = fpl, P3, ..., PL-1, P2, P4, ..., PO. 

If now W is divided into M = 2
m-1 
 parts (m = 2, 	of*, n-2), 

that is 

W  = M' W2, 
the relation 

TmW = IT1141, T1W2, 	Tlyml 

defines a new operation T
m
. In all cases where n-5.7,-.5 the 

following properties were proved to exist by direct verification: 

(a) All different products of the operations Ti ,T2'...,Tn-2 
form a group of (n-1)o operations, the identity operation being 

one of them. 

(b) Any operation of this group gives rise to an orthogonal 

set of self-orthogonal sequences when applied to the uniform 

self-orthogonal sequences of the basic set generated by Equation 

(60). 
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No general proofs could be found for these proper-

ties which are conjectured to be valid for any value of N. 

The previous operations were also applied to many 

non-uniform sequences generated by Equations (60) and (61) and 

the resulting sequences were self-orthogonal when and only when 

the starting sequences had symmetrical envelopes'. 

1.4 

Given the N-long binary sequence A = [ail, a. = +1, 1) 	— 
it is sometimes more convenient to use instead a sequence X = {xi} 
of zeros and ones obtained as follows 

	

O 	if a. =+1 
1 

Xi  =1 

	

(1. 	if a_1  = -1 

It is easy to see that if A is self-orthogonal then its length N 

must be even and the elements of X must satisfy the following 
** 

relations : 

(mod 2) 	i2"N-2r+i) 
i=1 

provided that 2-5Z2r<ZN. However, the sequence 

X = [1. 0 1 0 1 1 1 

satisfies the previous relations but does not correspond to a 

self-orthogonal sequence. 

PROOF OF THEOREM 8  

For r = 1 the above relations give 

xi  9 x2  fl xN-1 9 xN  = 1 

For r = 2: 

x1  9x2  9x3  9x4 9xN-3 9xN-2 9xN-1 9xN  = 0 

The sequence [iail is called the envelope of 

** The sign (3 denotes modulo 2 addition. 

	

0, 	r even 

	

{i, 	

r odd 
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By adding the two previous relations it can be concluded that 

x3  CO x4  E9 xN 3 8 xN..2 = 1. 

This process may be continued to show that, for any k such that 

2.<2k<N, 

x2k-1 9  x2k 9 xN-2k+1 xN-2k+2 a-- 1 
	 (A.8) 

This relation shows that in a self-orthogonal sequence A the 

vectors 

(a2k-1' a2k) and (aN-2k+1' aN-2k+2 

must be orthogonal. Let it now be proved that if N = 2n2>2 

then n cannot be odd. In fact, if 

N = 2(2M - 1), 	M ;?-2 

then Equation (A.8) above will give for k = M 

x2M-1 ® x2M ® x2M-1 (4) x2M 	1  

which cannot be true. It thus follows that n = 2M and that N = 4M, 

q.e.d. 

The relationship between associated self-orthogonal 

sequences and complementary sequences can be expressed by the 

following theorem. 

Theorem: If two binary self-orthogonal sequences are associated 

with each other then they are complementary". 

Proof: 	Due to Equation (51) in the main text, the autocorrel- 

ationfunctionsofA=Nand B = lb
1)
Z, are related as follows: 

N-i 

h (j) = b1  . b1. . +.] 
1=1 

(-1)1 
aN-1+1 

(-1)14-i  a
N-i-j+1* 

See definition (64) in the main text. 
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On making N-i-j+l = r it follows that 
N-* 

hb(j) = (-1)j 	a a r r+j 
1=1 

= 	ha(j), 

Since A is self-orthogonal it is possible to write 

ha(2k) = 0, 	0 <2k<N. 

It thus follows that 

ha(j) + hb(j) = 0, 	0 <j ‹N 

and thus A and B are complementary sequences, q.e.d. 

By considering the complementary sequences of length 10 

given in Ref. E.44]  it can be concluded that the converse of the 

previous theorem is not true. 

The following table gives the basic self-orthogonal 

sequences of length 20 beginning with two 

TABLE 4.5": 	Self-orthogonal sequences of length 20. 

MI WM 	 + 

+ + 	 - - + - + + 	+ 
+ + 	 + - + 	+ + + - 
4. 4. 	  + 	- - + + - + 	+ 
+ + + + - - + 	- + 	+ 	+ + 
+ + + + 	+ 	- + - 	+ + + - 
+ + + + - - + + + - + + + + - + - + 
+ + + + 	+ + + + + - + + + + - 
+ + - + + + + + + + + + + 	+ 
+ + + - + + + 	+ + + + + + - + - 
+ + 	+ + + + + + + + + + + - 
+ + 	+ 	+ + + + + + + + + •-• + 
+ + + + + + - + 	+ + + 	+ - 
+ + + + + + + - + + + 	+ 
+ + + + + + + + + + + - + 	+ 
+ + + + + + + + + + + 	+ + 

The listed sequences together with those associated with 
them can be reversed to produce a total of 64 sequences. 
If then these sequences are multiplied by -1, the 128 
possible binary self-orthogonal sequences of length 20 
are obtained. 
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1.5 

Given the CHF F(u) corresponding to the PDF f(x), it 

is possible to calculate the exceedence probability function (EPF) 

Q
f
(x) =,f f(y)dy 

without first calculating f(x). For reasons explained in Ref. 

D-81, the best way is to take an appropriate reference CHF 

G(u), whose EPF Q (x) is known, and to calculate 

s(x) = f Ef(y) 	g(y):1 dy = Qf(x) 	Qg(x) 

instead of Qf(x). It is easy to show that 

jux  dx 

Now let s1  (x) be either sal(x) or sbl  (x) and F1(u) be 

either Fal(u) or Fbl(u) see Equations (96) and (97)]. On 

defining 

S(u) = f s(x) E 
F(u) A  G(111 

ju 

and that, for real F(u) and G(u), S(0) = 0. A computer program 

has been written to find s(x) by applying the Fast Fourier 

Transform algorithm to the samples of S(u). A symmetrical 

Laplace PDF was taken as g(x). 

and 

(-2 

Di(U) = j Fr 
 rl 

1 
N+L-1 

si(x+ i))dx 

F11,(u.exp {v1 

it can be shown that 

Di (0-1] 

lim F (u) = 
1, 	F (u). ---->oo IL 

If instead of using FiL(u), for which FiL(0.-n) = expE-Vi(2L+N)]=hL, 

one uses the CHF 
FiL(u) 

RL(u) - 1 hi. 
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for which R
L 	

= 0, the accuracy of the numerical results is 

improved. Defining 
QrL(x) 

 as the EPF of RL(u), then the EPF of 

F1(u), for x>0, is given by 

Qf (x) = lim 
	

hL)41rL(x). 
1 

Under the assumed conditions the numerical results were found 

sufficiently accurate for L = 2. 

If the elementary pulse y(x) is time-limited to T 

sec then 
, 1 ua.y

1 
 (x) 	a.0 r 2  D.(u) = j Fr ( 	)dx = H(-1-), 	(A.9) 

	

i 	....1, 	1 V77
1 	V7 2  

and thus Equations (101), (102) and (103) follow. The non-zero 

semi-invariants corresponding to Equations (101) and (102) are 

respectively E4-10] 

A2k X2k 
2k a. 

and B2k X2k b
2k 
' 

1. 
where the X

2k 
are semi-invariants of the CHF 01(u): 

\) 1  
2k - 	r" 2k  y(x)dx, 

(V
1
N)
k 2k j 	1 

the 1-(2k  being the even-order moments of pri(x). It can be shown 

that A2k and B2k, 
k>l, attain their minimum value under the 

conditions(24)whena.=b.= 1, i = 1, 2, 	N, which means 

that the noise PDF is closest to the Gaussian PDF when uniform 

sequences are used. As the error probability computations have 

shown, the fact that the noise tends to become Gaussian is 

beneficial when the SNR exceeds a certain threshold and thus it 

appears that uniform or nearly uniform sequences should yield 

the minimum error probability for SNR's above this threshold. 

Moreover, it can be shown that the fraction of errors due to a 

single noise impulse is minimized if uniform sequences are used 
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and the SNR is sufficiently high. In fact, if one and only 

one noise pulse is observed, the noise CHF is given by
. 
 [see 

Equation (A.9)] 

1=1 
and the corresponding PDF and EPF are respectively 

h (x) = —
1 	1 h(  x1 )  

1   ai 	ai  
i=1 

Q1(x)   Q(2La )  
i=1 

where h(x) and Q(x) are the PDF and EPF of H(u). It can be 

shown that if 

cfly  [y3h(y)J <0 for y_-> A 

then Q1(B) is minimum if ai  = 1, i = 1, 2, 	N, and BSA/ 161. 

It may seem advisable to minimize the error probability, 

as a function of the parameters a., by using some numerical 

optimization technique. Yet, the enormous computation time it 

would take renders this method impractical. 

Up to now the noise pulses were assumed to occur in a 

purely random way. To conclude this appendix a case of non-

Poisson noise, where the minimization of the error probability 

may lead to strongly non-uniform transmitted sequences A = tail 

and B = fb. ,is considered. It is assumed that the impulse 

response of the receiving filter in Fig. 4.2(b) is time-limited 

to [-T/2, T/2]. Thus, each noise pulse affects only one signal 

sample. Moreover, the following time structure is assumed for 

the noise: 

(a) 	The noise pulses occur in bursts in such a way that 

each burst affects L consecutive signal samples. 

This CHF corresponds to a noise obtained by normalizing 
to unit variance the noise observed at the point a in 
Fig. 4.2(b) under the assumed conditions. 

a.0 
H
1
(u) = 	

H(%TN- 
) 
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(b) 
	

Each noise-free interval contains at least N-1 signal 

samples. 

Therefore, each N-long received sequence is either noise-free or 

affected by one and only one noise burst. 

The noise samples at the input of the delay lines in 

Fig. 402(b) are assumed to obey a Gaussian distribution with 

variance 5z. Since each noise burst can have M = N-FL-1 different 

positions with respect to the referred delay lines, the noise 

samples obtained at the point a in Fig. 4.2(b) can have any of 

the variances 02  i = 1, 2, oee, M given by 
2 N 
az  2 (5 	a. r? O 
	 1j j 
j=1 

whereEt.isaMxNmatrix of zeros and ones. Therefore, 

the average error probability is given by 

A 
 P eL 2M 	
s 

j7 0. 

On making 
i=1 

and 

. x . 
13 J (A.10) 

it follows that 

• P 

	

	erfc(-1 ). 
eL 2M 

1=1 	
V7 S

i 
The problem is thus to minimize PeL assuming that the variables 

x. are constrained by Equation (74), that is 
N 

(A.11) 
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It is thus possible to write, according to the method of the 

Lagrange multipliers, 

= P
eL " 2MN 

ax µ[ax. 2MN 

 

x. a, - ij 	0 	(A.12) 

  

1=1 

Os
2
X 	P. 	1  11  ce  

ax. 
ox 	- 	2 	aS

1  
. S.

1 
 ik j K 4MN  

i=1 
2 

where 	Xi  = 13 'I  ex-( 112) 
V7E S. 	2S. 

1 

and (A.13) 

OX. X. 2 
1 	1(P- 

OS. = S. 2 - 3)* 
1 	S. 

1 
In matrix notation Equation (A.12) takes on the following form: 

[K1] i j = KEvi] 
	

(A.14) 

where 	V. = 1, j = 1, 2, ..., N. 

If L = 1 then El..] is the N x N identity matrix and 
13 

thus 

X. = X, 	i 

Therefore the variablesSi  have the same value which, according 

to Equations (A.10) and (A.11), is given by 

S2 = a = 
N°  

It can finally be concluded from Equation (A.13) that, if L = 1 

and p. >VS/D, the uniform self-orthogonal sequences minimize the 
error probability Pei,* 

Now consider the following particular case: 

N= 4, L= 2 	M= 5. 

The matrix ra..] is in this case - 

and 
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1 0 0 0 

1 1 0 0 

o 1 1 0 

o o 1 1 

0 0 0 1._ 

and the system (A.14) can be written as follows: 

f

Xi  + X2  =X 

X
2 
+ X

3 = X 

X
3 
+ X

4 
= X 

\ 
X
4 
 + X

5  = X 

Therefore: 

Xi  = X3  = X5  

. . 	X = X4  
4 

+ X2  =X . 

2 

	

Si 
2 	

s3  xi  = x2  + x3  

	

S2 	s2 

	

3 	5 	• • 	x2 	x3 = x4 
2 

S2 = S
2
4  xi  + x2  = x3  + x4. 

On taking into account Equation (A.11) it finally follows that
*  

xi  = x4  = 4/3 

2 X2  = x3  = --:-.3  

	

2 	2 	2 S
1 
= S

3 
= S

5 

	

2 	2 
S = S = % 

	

4 	2°  

In view of Equation (A.13), the previous values correspond to a 

minimum of P
eL provided that '11 >1/3/2 = 1.225. According to 

Equations (77), a pair of optimum associated self-orthogonal 

sequences that can be transmitted is thus 

A = .. --?-, 3 	3 ' 	' ff. - I-2-- 2  4 	j-5 ) 

B 2 	w  2 
i 3 

	

V3 	r3  

The above method can be used for other values of L and N. The 

Note that the values x. correspond to sequences with 
symmetrical envelopes. 
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optimum envelope Uri)/ obtained will always be symmetrical but 

in some cases no self-orthogonal sequence exists with this 

envelope. This means that in general the constraints of self-

orthogonality must be included in the formulation of the 

optimization problem. 
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In this appendix, the references to the main text pertain 
to Chapter V, unless otherwise stated. 
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2.1 

In order to calculate the probabilities Peu and Px by 
means of Equations (68) and (69) in the main text, a method is 

needed for calculating the coefficients in the expansion of 

(a + b + c)M. In order to find this method it is first noted that 

‘2 (a+b+c) = (a+b+c)(a+b+c) = a.a + a.b + a.c + b.a 
+ bo b + b.c + c.a + cob + c.c. 

For M = 3, the above expression is simply multiplied by (a+b+c), 

and so on. If every time combining factors or terms are avoided 

then a sum of 3M  terms, which are all the possible permutations 

of the elements a, b and c in M positions, is obtained. In order 

to obtain these 3M  permutations, the simplest way is to generate, 

one after the other, the integers from zero to 3M-1, written in 

n thus be interpreted 

as the number of 0's, l's and 2's, respectively, in the M-digit 

integer under consideration; the coefficient Ni  is the total 

number of integers corresponding to the same set (Z., m1, n.). 

The relation (70) can be justified as follows. If 

a«1 	and 	pi3 <<q 	 (A.1) 

then, according to Egli  Lions (64) to (66), 

q, P_ = p3_ and Po  = p(1 - 13). 	(A.2) 

Assuming that 0. = +1, in the case of an outcome of probability 
e. f. 1 1 1 

G. P 	P 	P 	d. 	f.1, 1 - 	0 	+ ' 	1  

the following samples are obtained at the sampler output in 

Fig. 5.4 : d. samples of values -A + a., f. samples of values 
A + k and e. samples of values A + n' 

where -E <01(,<ZE 2 j 
E
l
‹: pk E

2 
and A + E2< A+Y < A- E

l ° 
In view of relations (A.2) 

it may be concluded that the f. samples A+ft are most likely 

affected by Gaussian noise alone, and that all the other samples 
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are most likely affected by impulsive noise. Because spcm >12 dB,  

most of the errors occur when impulsive noise is present and thus 

thef.misesamplesktraybeneglected..Thee.noise samplesy
n  

will be replaced by ei  independent random variables with PDF 

pz(x).Therandomvariablesa.can either be neglected or 

replacedbyd.independent random variables with PDF p(x). In 1 	 z  
the first case the relation (70) is obtained. In the second case 

the contribution from the Ot. is overestimated and the following  

d.e. f. 
P
x
P
ex 	

G. P-1 	 (eA) 
1 -1 

P  o1  P  +1  Ek . . 
1 1 	(A.3) 

1=1 

where k1  . 	d.+e.. In the numerical examples discussed in 
1 1 

Section 5.3, the values given by relations (70) and (A.3) were 

found to be nearly equal. This is due to the fact that in these 

examplesP‹<Pandthusthecasesinwhichd1
.>0 have a much 

0  
lower probability than those in which di  = fi  = 0. This is in 

agreement with the comments made about the relation (58) in the 

main text. 

It is important to note that the conditions (A.1) are, 

from a practical viewpoint, equivalent to the conditions (83) and 

(84) since usually q  = 1. 

2.2 

In this Section, Equntion (77) in the main text is 

proven. .If El = E2 = E0  and aw = 0 then, according  to 

Equations (33), (34), (40) and (41), 

a = 1 	a = o 

1 - 2Qz(6-0/kd 

2A - E 	2A.HhE 

P- = 	0)  Q7(  k 	0) 
z 

approximation is obtained 
G 

and 
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Equations (75) and (76) then follow. Now note that 

lim 	0  
E 0-40' 

	

E 	0 0 
Therefore, if E

0  af 0 the upper branch of the receiver will only 

fail to reach a correct decision when all samples are affected 

by impulsive noise, that is, when 

lim P = 0 E -40 Cu 0 
and 

lim P = M 
P  E0-40 x 0 

In view of the above-mentioned Equations (75) and (76) it follows 

that, for Ow  = 0, 

P 

	

+I 	PE 	0 = q 	- 
I
E
o 	

= 0 
0-4  

P
O  I E0  -40 = p 

dP+  
dE
0 
 EO..."O ' 2P pz(0) 

dP 

0 
E 
0 

	2p pz(2A) 

dP 
0 

dE E 	-2p pz(0) - 2p pz(2A). 
0 0 

On using Equation (69) the result 

dP 	G 	d.-1 e, f, dP 

	

x 	1 	10 1  ID 	- .G. P dE 	- 	I.+ dE 

	

0  	0 i=1 

d. e.-1 f. dP 
e. G. P-

1  P
0
1  P+1 

dE0 
 --- + 1 1  0 

d. 	e. 	f. -1 dP 
f. G. P 	P 	P 
1 1 -

1 
01 +1 dEo° 

is obtained. On defining 

and thus 

PE Ai  = 1 I e. = 	-p 

G 

i=1 
G 

i=1 



dE
0  C 0 	Mr 2 M X00  p Lpz(0) + pz(2A)] 

= 2 X10 p
M-1 

 q pz(2A) 

it follows that 
dPx 
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if n = 0 
(n) = fl  

0 	if n 0, 

where 

XkO = 
(di-k)Gi, 	k = 0, 1. 

i=1 
Since 	

dPx 
dE 	= 0 	for 	[i0  
0 E 0 

it is easy to derive Equation (77) for j = O. The expressions 
resulting from the minimization of Pe  are labelled by j = 1 and 

are easily derived by noting that in Equation (68), a.> 1, 

which entails that 

0 le -0 
dE 
eu 	

= 2 	pz(2A) 

F 

dP 

where 	Y = 

i=1 

Due to the similarity between Equations (69) and (70) 

) dd 
E 
 ( 
`"
p 
 x "ex' E 0 	0 

canbefoundsimplybyreplacingG.by G.E (e.A 
1 	ei  1 

2.3 

In this section, the method of calculating the error 

probability Pa, defined by Equation (57), is explained. 

If in Fig. 5.4 the block T is assumed linear, the 

CHF Fn()) of the noise samples at the input of the threshold 

detector isl  according to Equation (7), given by 

Equation (77) will then follow. 

in dP /dE x 	0 E 0  -->0° 
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Fn(co) = (q Fw(co) + p Fz(0)))14  

Pm 	lw 
M-i (i) 	(w) F (w) 

1=0 

where pm(i) is given by Eq tion (8) and 

Kw((.4)) = exp(- (J2) 

In Case 1 

and thus 

where 

2 
Z 2 F(ca) = exp(- —2-- 	) 

202 

PM  (i) exp(- j--:27/1 c ) 
1=0 

Fn(c) = 

= M + i( 2 - 1), 

Therefore, in Case 1 

r az 6= T. 
w 

el = 2 	 pm(i) erfc(-1/1) 

i=o 
where p= A/5w. If p = 1, all the pm(i) are zero except for 

i = M and thus 

Pez = 2  erfc(2P) 2 ° 

In Case 2 

Fz(W) = exp(- 	) 

and thus in order to calculate Pee the method developed in 

Chapter IV can be used or those noise samples due to the Gaussian 

noise component alone can be neglected, provided that SidB  .> 12 dB 

and >-._•>1„ The latter method gives 

(6)) 

1=0 
M 

PM  (i) (i) Fi(0) 

Pm(i) exp(- (3 i 	) 
1=0 
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and thus 

pm(i) 	- tg-1  f)' 
1=1 

where fJ = A/R. If  clE, ;=20 dB and pcm  > 12 dB, the previous 

method of computing Pei  is accurate enough. If, however, 

,PdB <-=.12 dB, it is not possible to neglect the noise samples of 

variance 52 and Pe2., will have to be calculated directly from 

Fn(w), as explained in Chapter IV. It is easy to see that in 

Case 2 

1 	1 	-1 JP Pez 	2 = — - ft tg 

Finally, it is important to point out that, in both 

cases studied, if the noise samples of variance a2 are neglected, 
the expression obtained for Pe2, depends on ,p and 	only through 

the ratio N. = ,p/• 

Pe/ 
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In this appendix the references to the main text 
pertain to Chapter VI, unless otherwise stated. 
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3.1 

If h(t) is time-limited to the interval ET/2, T/2] then 

f
1(0 =VT h(tT) 

According to Theorem 4 in Chapter IV, h(t) will be a Nyquist 

pulse if and only if fi(t)-1 is an odd function with respect 

to the point t = 4 in the interval [0,1/21 From Equations (35), 
(36) and (40) it fo4ows that 

z2 	f
1
(t) 

v 

and 

t = r(BF) = s(v). 

Therefore, h(t) will be a Nyquist pulse if and only if s(v)-3/4 

is an odd function with respect to the point v = z in the 

interval EM]. From Equation (42) it follows that 

p(v) = - 2 ds 

and thus it can be concluded that h(t) is a Nyquist pulse if 

and only if p(v) is an even function with respect to v = 2 in 

the interval [0,11 

3.2 	COMPUTER PROGRAM FOR MONTE CARLO SIMULATION 

The computer program used to calculate the results 

of Section 6.3 will now be described. The program is based on 
the following assumptions: 

(i) The impulsive noise at the receiver input is modelled 

as a sequence of Dirac impulses with statistically independent 

intensities (see Section 2.3); 

(ii) The impulse response of the receiving filter is time-

limited to an interval of T seconds duration. 

Under these conditions the noise samples delivered to 

the decision device are statistically independent and can be 

generated within a reasonable time of computation. 
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The listing of the program is included at the end 

of this appendix. The program structure is as follows: 

(a) 	Main routine: PROGRAM MONTE 

Control parameters: ICASE, LCASE, MODE. 

ICASE controls the use of the subroutines RANGE and RANGE1 (see 

below) which generate the sequence of noise samples. If ICASE 

= 1 or 2 the samples of a Poisson impulse noise are generated. 

In these cases the random variables uli  in Equation (55) are 

assumed to have unit variance, that is 

02u = V 02/p = 1 	.. 	= 4777/-  l 	1 	r 	1.  

When ICASE = 3 or 4 the random variables u
li 

are drawn directly 

from a prescribed distribution. For ICASE = 3 the time distrib-

ution defined by Equations (63) and (64) is used whereas for 

ICASE = 4 the time structure is given by Equations (69) and (70). 

If LCASE = 1 the background noise is assumed absent. 

If LCASE = 2 a background Gaussian noise is considered but its 

contribution to the noise samples that include impulsive noise 

is neglected. 

The parameter MODE controls the subroutines DCSN and. 

ZNL (see below). 

Other parameters: 

PU = p, 	QU = q. 

When ICASE < 4, p can take any value between 0 and 1. 

When ICASE = 4 an easy generation of the random integers k and 

n defined by Equations (69) and (70) imposes that p be given by 

the reciprocal of an integer denoted by LU in the program. 

The parameter r in Equation (70) is denoted by LR. 

RNU1 = V
1, 	

see Equation (27). 

SIGMA = 0r 
if ICASE = 1 or 2; 

= 1 if ICASE = 3 or 4. 
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When ICASE = 3 or 4 the parameter SIGMA denotes a 

dispersion parameter of the random variables uli' which is chosen 

as the parameter kz  in Chapter V (see footnote on page 115). 

A: magnitude of the signal samples. 

ADB expresses A in dB: 

ADB = 20 logioA. 

B = AA/T. 

BDB expresses B in dB and thus gives the ratio between 

the average signal power and the average impulsive noise power 

whenever the latter is finite. 

SIGMW = 0
w
, standard deviation of the background 

Gaussian noise. 

RAW = 1/G
w 
and thus gives the impulsive-to-Gaussian 

noise ratio as defined in Chapter V,. Equation (44). 

RAWDB expresses RAW in dB. 

EPSI is the receiver parameter E
0 
 (see experiments 

1 to 4). 

Z = E0  /0 • ZDB expresses Z in dB. '  

The subroutines RANGE and RANGE1 generate JK noise 

samples each time they are called. By calling them NTOTAL times, 

a total of NTOTAL*JK samples can be generated. 

When the system described in Chapter IV is being 

simulated the parameters Ml, M2 and N are given the following 

values: 

M1 = M2 = 1, 	N = 2
L-1 

The parameter N is the length of the self-orthogonal 

sequences. All the values of L from Ll to L2 are considered. 

When the system described in Chapter V is being studied the 

following values are used: 
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Ll = L2 = 1 	N = 1. 

The parameter M is the number of pulse repetitions. 

All the values of M from M1 to M2 are considered. 

(b) SUBROUTINE RANGE (KS, R, ICASE, LCASE, FFX). 

This subroutine generates KS noise samples which are 

stored in the array R. If ICASE = 1 or 2 the method described 

by Equations (51) and (53) is used to generate samples of Poisson 

impulse noise. If ICASE = 1, the subroutine RANDI (see below) 

generates values which are distributed according to psi(x). If 

ICASE = 2, RANDI generates values which obey the PDF pr(x). 

LCASE has the same meaning as above. 

The argument FFX represents the function 

FFX(U) = Ifi(U/2)1/B 

Dee Eqlation (49)J. In all the simulation experiments studied 

in Section 6.3 the following case was considered: 

FFX(U) = cos(TEU/2). 

This case corresponds to the pulse given by Equation (35), 

Section 4.2. FUNCTION FFX(X) is only used when ICASE = 2. 

RNU1, QU, SIGMA and SIGMW are input parameters to this 

subroutine through a COMMON statement. 

(c) SUBROUTINE RANGE1 (KS, LCASE, R) 

When ICASE = 4 this subroutine is called to generate 

KS noise samples which are stored in the array R. The burst 

and gap lengths are selected according to the probability 

distributions (69) and (70). It is assumed that the parameter r 

is an integer and that p is the reciprocal of some integer Q > 1. 

Therefore v = 1 4- (9,-1)(r-1) is an integer. Under these conditions 

both the gap and the burst lengths obey a Pascal distribution. 
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SIGMA, SIGMW, LR and LU are input parameters to 
this subroutine through a COMMON statement. 

(d) SUBROUTINE CARLO (NTYPE, MODE, N, M, SS, ADB, NT, 
R, JK, NX, NE) 

This subroutine is intended to add the noise to the 

signal, simulate the decision procedure and count the number of 

errors, NE, observed in NT data bits. The arguments MODE, N, M 
and ADB have the meaning explained in (a). The array R contains 

JK noise samples. When NI>1 the array SS contains a self-
orthogonal sequence of length N which represents the received 

signal samples associated with each one of the data bits,, This 

array SS is generated by subroutines SOFGEN and SIGNAL (see 
below). If NTYPE = 1 all the components of SS have the same 

absolute value. This value of NTYPE was assumed in experiment 

5 (see Subsection 6.3.5). 

When N = 1 also NX = 1. When N>1 the argument NX is 

the number of signalling intervals between two consecutive 

transmitted self-orthogonal sequences. In experiment 5 the 

value NX = 2 was taken. 

(e) SUBROUTINE SOFGEN (KM, NR, IND, N) 

This subroutine generates an integer array N containing 
a self-orthogonal sequence whose elements have unit absolute 

value. The method of generation is that used in Section 4.2.3 

to construct Table 4.1. The dimension of the array N must be a 
power of 2, the exponent of which is KM. If KM >2 the array IND 

(of dimension KM-2) must be given before calling this subroutine. 

In order to obtain the sequences of Table 4.1 all the components 

of IND must be set equal to unity. By choosing a different 
array, subjected to the conditions 

1 < IND(L) L+1 

(L = 1, 2, 	KM-2), the sequences of the other orthogonal 
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sets (see Appendix 1.3) can be generated, The integer NR is 

the order of the generated sequence N within the orthogonal set 

specified by the array IND. Before this subroutine is called, 

the input arguments KM, NR and IND must thus be specified. If 

sequences of length greater than 64 are required, the dimension 

of the array NB (see listing) must be increased. 

(f) SUBROUTINE SIGNAL (NTYPE, KM, IS, DIR, S) 

Before calling this subroutine the subroutine SOFGEN 

must be called to generate a self-orthogonal sequence IS. The 

argument KM has the same meaning as above. 

If NTYPE = 1 the output array S is simply set equal to 

IS. If NTYPE:›1 the array S also depends on the array DIR. In 

this case the array S is generated according to Equations (60) 

and (61) in Chapter IV and the array DIR is related to the 

parameters pl  (i = 1, 2, ..., KM) in these equations in the 

following way: 

ilk  = (1 DIR(k))Tc/4. 

The output vector S has a length equal to the number of its 

components. 

(g) FUNCTION FFX(X) 

See section (b) above. 

(h) 	SUBROUTINE DCSN (MODE, M, A, RX, IE) 

The input arguments MODE, M and A have already been 

defined in (a)0 The input array RX contains the M noise samples 

delivered to the decision device for a given data element. 

These noise samples are calculated by subroutine CARLO which 

calls DCSN to make the decision. The output argument IE is 

equal to unity when an error occurs and to zero otherwise. 
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If MODE = 1 a linear decision device is simulated, 

which is optimum against Gaussian noise. If MODE = 2 the 

receiver shown in Fig. 3.5 is simulated. If MODE = 3 the 

receiver shown in Fig. 5.4 is simulated. 

EPSI (see (a) for definition) is an input parameter 

to this subroutine through a COMMON statement. 

(i) 
	

FUNCTION ZNL (X, Y, MODE) 

This subroutine is called by DCSN to simulate the 

blocks ZNL and T shown in Figs. 3.5 and 5.4 respectively. The 

argument X represents the magnitude of the signal samples which 

was denoted by A above. The argument MODE has the same meaning 

as above. 

Random-number generators 

SUBROUTINE RANDI (NN, SIGMA, A, B) 

This subroutine generates NN (1 or 2) values of a 

random variable with dispersion parameter SIGMA, as explained in 

(a). If NN = 1, only A is generated and if NN = 2, both A and B 

are generated. This subroutine calls another random-number 

generator in accordance with the distribution required. 

FUNCTION RANF(X) and 

FUNCTION UNIF(X) 

The values given by these two functions are uniformly 

distributed in the interval (0,1). RANF is included in the 

system library of the computer CDC 6400 on which this program 

was run. The program was tested in situations for which an 

exact solution is known. It was found out that the agreement 

between the results of the simulation and the exact solution 

improved when RANF was replaced by UNIF in some program state-

ments. It is believed that this improvement stems from the more 

accurate behaviour of UNIF near the limits of the interval (0,1). 
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SUBROUTINE NORMAL (NN, SIGMA, A, B) 

This subroutine generates NN values of a Gaussian 

variate with zero mean and standard deviation SIGMA. If NN =1, 

only A is generated and if NN = 2, both A and B are generated. 

SUBROUTINE LAPLAC (X) 

In this case, the value X of a Laplace variate with 

zero mean and unit variance is generated. 

SUBROUTINE PASCAL (P, L, K) 

The integer K obeys a Pascal distribution, that is, 

Prob E] 	(-1 )(-P)
K
(1-P)L  

(K = 0, 1, 2, ...) . 

SUBROUTINE POISSN (P,K) 

The integer K obeys a Poisson distribution, that is, 

Prob 	= exp(-P)(PK/K!) 

(K = 0, 1, 2, ...). 

SUBROUTINE CAUCHY (X) 

The random number X obeys a symmetrical Cauchy PDF 

such that the absolute value of X has unit median. 

A detailed description of the simulation techniques 

underlying the previous five subroutines can be found in Refs. 

[6-314]. 



- 269 - 

PROGRAM  LISTING (FORTRAN IV) 

PROGRAM MONTE (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT) 
DIMENSION R(4000) 
DIMENSION IND(4),IR(64),DIR(6),SS(64),LE(40,6,6),KT(6,6) 
COMMON RNU1,QU,SIGMA,SIGNWI EPSI,LR,LU 
EXTERNAL FFX 
ICASE=3 
LCASE=2 
MODE=3 

C 	NOW SET VALUES OF PU, QU, RNU1 
IF(ICASE.EQ.4) GO TO 201 
RNU1=1.0/8.0 
QU=EXP(-RNU1) 
PU=1.0-QU 
GO TO 202 

201 CONTINUE 
LU=8 
PU=1.0/FLOAT(LU) 
QU=1.0-PU 
RNU1=-ALOG(QU) 

202 PUL=-10.*ALOG10(PU) 
WRITE(6,152) PU,PUL,QU,RNU1 

152 FORMAT (1X,8E15.5) 
JK=2000 
LR=4 
L1=1 
L2-1 
M1=1 
M2=3 
RAWDB=32.0 
ZDB=9.0 
IL=40 
MTOTAL=25 
NTYPE=1 
YK=112111716655168.0 

C 	K=2.0* 48 
XK=281474976710656.0 
NR=1 
IND(1)=IND(2)=IND(3)=1 
WRITE(6,420) 
WRITE(6,200) ICASE,LCASE,MODE 

200 FORMAT (1X,8115) 
WRITE (6,420) 
IF(ICASE.EQ.4) WRITE (6,200) LU,LR 
ADB1=12.0-RAWDB 
ADB2=26.0-PUL 
CF=0.115129254649702 
IF(LCASE.EQ.1) GO TO 510 
RAW=EXP(RAWDB*CF) 
SIGNW-1.0/RAW 
Z=EXP(ZDB*CF) 
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EPSI=Z*SIGMW 
WRITE(6,710) 
WRITE(6,152) RAW,EPSI 

510 DO 151 L=L1,L2 
DO 151 M=M1,M2 
DO 151 I=1,IL 

151 LE (I,M,L)=0 
ZK=RANF(YK) 
SIGMA=1.0 
IF(ICASE.LT.3) SIGMA=SQRT(PU/RNU1) 
DO 160 K=1,MTOTAL 
IF (ICASE.LT.4) CALL RANGE(JK,R,ICASE,LCASE,FFX) 
IF(ICASE.EQ.4) CALL RANGE1(JK,LCASE,R) 
DO 140 L=L11 L2 
KM=L-1 
N=2**KM 
CALL SOFGEN(KM,NR,IND,IR) 
CALL SIGNAL(NTYPE,KM,IR,DIR,SS) 
NX=1 
IF(N.GT.1) NX=2 
DO 161 M=M1 1 M2 
KT(M,L)=INT(FLOAT(JK+NX-N)/FLOAT(NX*M)) 
DO 162 I=1,IL 
ADB=ADB1+FLOAT(I+I-2) 
IF(ADB.GT.ADB2) GO TO 161 
CALL CARLO(NTYPE,MODE,N,M,SS,ADB,KT(M,L),R,JK,NX,NE) 

162 LE(I,M,L)=LE(I,M,L)+NE 
161 CONTINUE 
140 CONTINUE 
160 CONTINUE 

DO 141 L=L1,L2 
N=2**(L-1) 
DO 192 M=M1,M2 
WRITE(6,420) 

420 FORMAT(1X//////) 
WRITE(6,142) N,M 

142 FORMAT(12X,4H N=,I4,11X,4H M=,I4) 
WRITE (6,143) 

143 FORMAT(1X//) 
FAT=1.0/FLOAT(MTOTAL*KT(M,L)) 
DO 100 I=1,IL 
ADB=ADB1+FLOAT(I+I-2) 
IF(ADB.GT.ADB2) GO TO 192 
A=EXP(ADB*CF) 
BDB=ADB+PUL 
B=EXP(BDB*CF) 
PE=FAT*FLOAT(LE(I,M,L)) 
WRITE(6,190) A,ADB,B,BDBIFE 

190 FORMAT(1X,2(2E15.5,5X),E15.5) 
100 WRITE(6,710) 
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710 FORMAT(1X) 
192 CONTINUE 
141 CONTINUE 

WRITE(6,420) 
YK=AINT(RANF(-1.)*XK) 
WRITE(6,998)YK 

998 FORMAT(1X,F22.1) 
STOP 
END 

SUBROUTINE RANDI(NN,SIGMA,A,B) 
CALL CAUCHY(A) 
A=A*SIGMA 
IF(NN.EQ.1) RETURN 
CALL CAUCHY(B) 
B=B*SIGMA 
RETURN 
END 

FUNCTION FFX(X) 
FFX = COS(1.5707963267948966*X) 
RETURN 
END 

FUNCTION ZNL(X, Y,MODE) 
COMMON RNU1,QU, SIGMA,SIGMW,EPSI 
GO TO (100,100, 200),MODE 

100 CONTINUE 
ZNL=X 
RETURN 

200 CONTINUE 
ZNL=X 
RETURN 
END 

SUBROUTINE RANGE(KS,R,ICASE,LCASE,FFX) 
DIMENSION R(KS) 
COMMON RNU1,QU,SIGMA,SIGMW,EPSI 
IF(ICASE.EQ.2) SIGMA=SIGMA*1.414213562373095 
KR=KRX=O 
DO 800 L=19KS 
R(I)=0.0 
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IF(ICASE.EQ.3) GO TO 730 
CALL POISSN(RNU1,LX) 
IF(LX.EQ.0) GO TO 750 
IF(KR.EQ.0) GO TO 700 
R(I)=BB 
KR=O 
LX = LX- 1 
IF(LX.EQ.0) GO TO 800 

700 KR=MOD(LX,2) 
JL=(LX-KR)/2 
IF(JL.EQ.0) TO GO 600 
DO 500 J=1,JL 
CALL RANDI(2,SIGMA,AA,BB) 
IF(ICASE.EQ.1) GO TO 510 
AA=AA*FFX(RANF(0.0)) 
BB=BB*FFX(RANF(0.0)) 

510 R(I)=R(I)+AA+BB 
500 CONTINUE 

IF(KR.EQ.0) GO TO 800 
600 CALL RANDI(2,SIGMA,AA,BB) 

IF(ICASE.EQ.1) GO TO 520 
AA=AA*FFX(RANF(0.0)) 
BB=BB*FFX(RANF(0.0)) 

520 R(I)=R(I)+AA 
GO TO 800 

730 XX+UNIF(0.0) 
IF(XX.LT.QU) GO TO 750 
IF(KR.EQ.0) GO TO 740 
R(I)=BB 
KR=O 
GO TO 800 

740 CALL RANDI(2,SIGMA,AA,BB) 
R(I)=AA 
KR=1 
GO TO 800 

750 IF(LCASE.EQ.1) GO TO 800 
IF(KRX.EQ.0) GO TO 720 
R(I)=DD 
KRX=O 
GO TO 800 

720 CALL NORMAL(2,SIGMW,CC,DD) 
R(I)=CC 
KRX=1 

800 CONTINUE 
RETURN 
END 
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SUBROUTINE RANGE1(KS,LCASE,R) 
DIMENSION R(KS),KR(2),PX(2),LX(2),BB(2) 
COMMON RNU1, QU,SIGMA,SIGMW,EPSI,LR,LU 
NC=O 
Px(2)=1.0/FLOAT(LU) 
PX(1)=1.0-PX(2) 
KR(1)=KR(2)=0 
LX(1)=LR 
LX(2)=1+(LU-1)*(LR-1) 

100 CONTINUE 
DO 800 1=1,2 
CALL PASCAL(PX(I),LX(I),KK) 
KK=KK+1 
IF(I.EQ.1. AND.LCASE.EQ.1) GO TO 710 
IF(KR(I).EQ.0) GO TO 700 
NC=NC+1 
R(NC)=BB(I) 
IF(NC.EQ.KS) RETURN 
KR(I)=0 
KK=KK-1 
IF(KK.EQ.0) GO TO 800 

700 KR(I)=MOD(KK,2) 
JL=(KK-KR(I))/2 
IF(JL.EQ.0) GO TO 600 
DO 500 J=1,JL 
IF(I.EQ.1) CALL NORMAL(2,SIGMW,AA,BB(1)) 
IF(I.EQ.2) CALL RANDI(2,SIGMA,AA,BB(2)) 
NC=NC+1 
R(NC)=AA 
IF(NC.EQ.KS) RETURN 
NC=NC+1 
R(NC)=BB(I) 
IF(NC.EQ.KS) RETURN 

500 CONTINUE 
IF(KR(I).EQ.0) GO TO 800 

600 IF(I.EQ.1) CALL NORMAL(2,SIGMW,AA,BB(1)) 
IF(I.EQ.2) CALL RANDI(2,SIGMA,AA,BB(2)) 
NC=NC+1 
R(NC)=AA 
IF(NC.EQ.KS) RETURN 
GO TO 800 

710 DO 720 J=1,KK 
NC=NC+1 
R(NC)=0.0 

720 IF(NC.EQ.KS) RETURN 
800 CONTINUE 

GO TO 100 
END 
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SUBROUTINE CARLO (NTYPE,MODE,NIMI SS I ADB,NT,R,JK,NX,NE) 
DIMENSION SS(N),R(JK) 

C 	DIMENSION RX(M) 
DIMENSION RX(20) 
M1=M*NX 
NE=ID=0 
CF=0.115129254649702 
B=EXP(ADB*CF)*SQRT(FLOAT(N)) 
DO 500 K=1,NT 
IP=ID 
DO 160 I=1,M 
SUM=O.O 
DO 190 J=1,N 
TERM=R (IP+J) 
IF (NTYPE.EQ.2) TERM=TERM*SS(J) 

190 SUM=SUM+TERM 
RX(I)=SUM 

160 IP=IP+NX 
CALL DCSN(MODE,M,B,RX,IE) 
NE=NE+IE 

500 ID=ID+141 
RETURN 
END 
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SUBROUTINE SOFGEN(KM,NR,IND,N) 
C 	IF(KM.LE.2) ARRAY IND IS NOT USED 
C 	DIMENSION IND(KM-2),N(ND),NB(ND) WHERE ND=2**KM 
C 	MAKE SURE THAT KM.GE.0 AND 1.LE.NR.LE.ND 
C 	1.LE.IND(L).LE.(L+1) 

DIMENSION IND(1),N(1) 
DIMENSION NB(64) 
IF(KM.GT.0) GO TO 600 
N(1)=1 
RETURN 

600 DO 100 J=1,KM 
100 NB(J)=-1 

DO 410 L=1,NR 
DO 200 J=1,KM 
NB(J)=-NB(J) 
IF (NB(J).EQ.1) GO TO 200 
GO TO 410 

200 CONTINUE 
410 CONTINUE 

N(1)=N2=1 
DO 420 I=1,KM 
N1=N2+N2+1 
DO 400 J=1,N2 
NX=N1-J 
N(NX)=N(J) 
IF(NB(I).EQ.-1) N(NX)=-N(NX) 

400 NB(I)=-NB(I) 
420 N2=N2+N2 

IF(KM.LT.3) RETURN 
ND=2**KM 
NL=KM-2 
KT=KM-1 
DO 530 L=1,NL 
NG=IND(L)-1 
IF(NG.EQ.0) GO TO 530 
NV=2**(KT-L) 
IL=2**(L-NG) 
KL=2**NG 
NX=KL*NV 
NY=NX+NX 
NS=0 
DO 560 L=1,IL 
N1=N2=NS 
DO 550 K=1,KL 
DO 520 J=1,NV 
NB(N1+J)=N(N2+J) 

520 NB(Nl+NX+J)=N(N2+NV+J) 
N1=Nl+NV 

550 N2=N1+NV 
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560 NS=NS+NY 
DO 540 J=1,ND 

540 N(J)=NB(J) 
530 CONTINUE 

RETURN 
END 

SUBROUTINE SIGNAL(NTYPE,KM,IS,DIR,S) 
C 	IF (NTYPE.EQ.1) S IS SET EQUAL TO IS 
C 	IF (NTYPE.GT.1) S DEPENDS ALSO ON DIR 
C 	DIMENSION IS(ND),DIR(KM),S(ND) 

DIMENSION IS(1),DIR(1),S(1) 
ND=2**KM 
IF (NTYPE.GT.1) GO TO 600 
DO 500 I=1,ND 

500 S(I)=FLOAT(IS(I)) 
RETURN 

600 SN=SQRT(FLOAT(ND)) 
C 	HI=PI/4.0 

HI=0.7853981633974483 
LJ=1 
S(1)=1.0 
DO 200 I=1,KM 
DIR(I)=1.0-DIR(I) 
KJ=LJ+LJ+1 
X=HI*AMOD(DIR(I),4.0) 
A=COS(X) 
B=SIN(X) 
DO 300 J=1,LJ 
S(KJ-J)=S(J)*B 

300 S(J)=S(J)*A 
200 LJ=LJ+LJ 

DO 400 L=1,ND 
400 S(I)=SIGN(S(I),FLOAT(IS(I)))*SN 

RETURN 
END' 

SUBROUTINE DCSN(MODE,M,A,RX,IE) 
DIMENSION RX(M) 
COMMON RNU1,QU,SIGMA,SIGMW,EPSI 
IE=0 
SUM=0.0 
GO TO (100,200,300),MODE 

100 TEST=-A*FLOAT(M) 
DO 400 L=1,14 
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400 SUM=SUM+RX(I) 
GO TO 600 

200 TEST=0.0 
DO 500 I=1,M 
XX=A+RX(I) 

500 SUM=SUM+ZNL(XX,AIMODE) 
GO TO 600 

300 TEST=0.0 
BB=A+A 
IT=0 
DO 700 I=1,M 
AA=RX(I)+BB 
IF(ABS(RX(I)).LT.EPSI) IT=IT+1 

700 IF(ABS(AA).LT.EPSI) IT=IT-1 
IF(IT.EQ.0) GO TO 810 
IF(IT.LT.0) IE=1 
RETURN 

810 DO 800 I=1,M 
XX=A+RX(I) 

800 SUM=SUM+ZNL(XXI A,MODE) 
600 IF(SUM.LT.TEST) IE=1 

RETURN 
END 

FUNCTION UNIF(X) 
UNIF=RANF(0.0) 
UNIF=UNIF+RANF(0.0) 
IF(UNIF.GT.1.0) UNIF=UNIF-1.0 
RETURN 
END 

SUBROUTINE NORMAL(NN,SIGMA,A,B) 
C 	DISTRIBUTION N(0,SIGMA**2) 
C 	IF(NN.EQ.1) ONLY A IS GENERATED 
C 	IF(NN.EQ.2) BOTH A AND B ARE GENERATED 
C 	A AND B ARE INDEPENDENT VARIATES 

Y=RANF(0.) 
Z=RANF(0.) 
X=6.28318530717958*Z 
AA=SQRT(-2.kALOG(Y)) 
AA=AA*SIGMA 
A=AA*COS(X) 
IF(NN.EQ.1) RETURN 
B=AA*SIN(X) 
RETURN 
END 
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SUBROUTINE LAPLAC(X) 
C 	LAPLACE DISTRIBUTION 
C 	UNIT VARIANCE 

R=RANF(0.0) 
R=0.707106781186548*ALOG(R) 
X=RANF(0.0)-0.5 
X=SIGN(R,X) 
RETURN 
END 

SUBROUTINE PASCAL(P,L,K) 
PX=1.0/ALOG(P) 
K=0 
DO 100 I=1,L 
RX=ALOG(UNIF(0.0)) 

100 K=K+INT(RX*PX) 
RETURN 
END 

SUBROUTINE POISSN(P,K) 
K=0 
B=EXP(-P) 
TR=1.0 

300 TR=TR*UNIF(0.0) 
IF(TR-B) 100,200,200 

200 K=K+1 
GO TO 300 

100 RETURN 
END 

SUBROUTINE CAUCHY(X) 
C 	X 	CAUCHY VARIATE 
C 	ABS(X) HAS UNIT MEDIAN 

P1=3.141592653589793 
R=RANF(0.0)-0.5 
X=TAN(PI*R) 
RETURN 
END 
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N.B. 	The previous listing corresponds to the first run of 

Experiment 1 (see Subsection 6.3.1). In the second run the 

constant YK (see statement 34 of the main routine) should be 

given the value written out in the first run so as to ensure 

that the basic random-number generator RANF will start where it 

stopped in the first run, as stated in Section 6.3. 

For the other experiments the following modifications 

should be introduced and in some cases the basic parameters should 

be reset: 

Experiment 2:  

SUBROUTINE RANDI (NN,SIGMA,A,B) 
CALL NORMAL (NN,SIGMA,A,B) 
RETURN 
END 

Experiment  3: 

FUNCTION ZNL(X,Y,MODE) 
COMMON RNU1,QU,SIGMA,SIGMW,EPSI 
GO TO (100,100,200),MODE 

100 CONTINUE 
ZNL=X 
RETURN 

200 CONTINUE 
AA=1.0+(X+Y)**2 
BB=1.0+(X-Y)**2 
RETURN 
END 

Experiment 4:  

The same program structure as in Experiment 1. 

Experiment 5:  

SUBROUTINE RANDI (NN,SIGMA,A,B) 
CALL LAPLAC(A) 
A=A*SIGMA 
IF(NN.EQ.1) RETURN 
CALL LAPLAC(B) 
B=B*SICMA 
RETURN 
END 
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GLOSSARY OF SYMBOLS AND TERMS  

Ea.1] 	vector 

[a. 	matrix 
ij 

la.d 	determinant Iji 

5.. 	Kronecker delta (if i=j then 5..=1; if ij then 
13 

ij=0) 

8(t-to) 	Dirac delta function with spike at t=to  

erf 	error function [ See Ref ,  E2-3G3 , p, 3363 

erfc 	complementary error function 

Es 	
energy of the signal s(t) 

EEx] 	expected value of the random variable x 

EY=exp(y) 	exponential function where E is the natural base 
of logarithms 

f 	frequency 

gr(t) 
	

= Cg(t)jr  

g (t)- 	complex conjugate of g(t) 

Galt) 
	

rectangular pulse (=1 if Itl<0.5; =0 if Iti>0.5) 

'ma] 	imaginary part of the complex number z (if z=ad-jb 
then 	= b) 

j 	imaginary unit 

estimate of k. 1 

natural logarithm 

logb 	logarithm to the base b 

_A(x) 	likelihood ratio 

(7) 	number of combinations of i out of n 

n(t) 	sample waveform of a noise process 

(n,k,t) 	a linear code capable of correcting t random errors 
(n. = code length, k = number of information digits) 



01/.. E n 1" IC 	C
m 
 ] probability of the simultaneous occurrence 

of the events E1, 2  En  conditioned on the 
simultaneous occurrence of the events 
C 	' C . m 
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W = 2TCf 	angular frequency (radians per second) 

P
e 
	probability of error 

PN 
	peak transmitted power 

PS 	average transmitted power 

= ProbEE: probability of the event E 

PEE' CD 	probability of the event E conditioned on the 
occurrence of the event C 

Ro] 	real part of z 

S(f) 	Fourier transform of s(t) 

sinc x 

sgn x 	signum function (=1 if x>0; =0 if x<O) 

t 	continuous time 

t
n
=to-1-nT 	

discrete time (n=...,-2,-1,0,1,2,...) 

x=<x> 	mean value of the random variable x 

Izi 
	

modulus of the complex number z 

approximately equal 

greater than or approximately ecril 

less than or approximately equal 

much greater than 

CC 	much less than 

therefore 

0 (mod 2) 	modulo 2 addition 

(on line) 	convolution 

* (superscript)complex conjugate of a number (i.e. z*) 

sinTrx 
Tlx 
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A/D converter analog-to-digital converter 

CHF 	characteristic function 

EPF 	exceedence probability function [See page27, E9. (2)] 

FDM 	frequency-division multiplex 

HF 	high frequency 

IGNR 	impulsive-to-Gaussian-noise ratio 

OFC 	orthonormal function coding 

PDF 	probability density function 

PSC 	parallel-to-serial converter 

r.m.s value 	root-mean-square value 

SGNR 	signal-to-Gaussian-noise ratio 

SINR 	signal-to-impulsive-noise ratio 

SNR 	signal-to-noise ratio 

SPC 	serial-to-parallel converter 

VLF 	very low frequency 



- 283 - 

Baud - signalling rate of one pulse per second. 

Hertz (Hz) - frequency of one cycle per second. 

Analog signal - continuous-time waveform with continuous amplitude. 

Baseband waveform - analog waveform essentially frequency-limited 
to an interval (0,F) for a given F. 

Discrete-time signal - any signal that is defined only at the 
instants t

n
=t
o
+nT (n=1...,-2,-1,0,1,2,...) for some T. 

Non-continual noise - a noise defined in terms of a given time 
distribution and exhibiting different properties in 
adjacent intervals of time. 

Threshold detector - any device that makes a binary decision by 
comparing the input voltage with a threshold value. 

Null-zone detector - any device that only makes a binary decision 
when the input voltage is outside the interval defined 
by two threshold values. For an input voltage inside 
this interval (null-zone) no decision is made and an 
erasure (or null) symbol is produced. 

Decision device - that part of a receiver which decides on each 
transmitted symbol on the basis of a set of decision 
statistics obtained from the received signal. 
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