15 research outputs found

    A Note on Cyclic Codes from APN Functions

    Full text link
    Cyclic codes, as linear block error-correcting codes in coding theory, play a vital role and have wide applications. Ding in \cite{D} constructed a number of classes of cyclic codes from almost perfect nonlinear (APN) functions and planar functions over finite fields and presented ten open problems on cyclic codes from highly nonlinear functions. In this paper, we consider two open problems involving the inverse APN functions f(x)=xqmβˆ’2f(x)=x^{q^m-2} and the Dobbertin APN function f(x)=x24i+23i+22i+2iβˆ’1f(x)=x^{2^{4i}+2^{3i}+2^{2i}+2^{i}-1}. From the calculation of linear spans and the minimal polynomials of two sequences generated by these two classes of APN functions, the dimensions of the corresponding cyclic codes are determined and lower bounds on the minimum weight of these cyclic codes are presented. Actually, we present a framework for the minimal polynomial and linear span of the sequence s∞s^{\infty} defined by st=Tr((1+Ξ±t)e)s_t=Tr((1+\alpha^t)^e), where Ξ±\alpha is a primitive element in GF(q)GF(q). These techniques can also be applied into other open problems in \cite{D}

    A Generalization of APN Functions for Odd Characteristic

    Get PDF
    Almost perfect nonlinear (APN) functions on finite fields of characteristic two have been studied by many researchers. Such functions have useful properties and applications in cryptography, finite geometries and so on. However APN functions on finite fields of odd characteristic do not satisfy desired properties. In this paper, we modify the definition of APN function in the case of odd characteristic, and study its properties

    On the weight distributions of several classes of cyclic codes from APN monomials

    Get PDF
    Let mβ‰₯3m\geq 3 be an odd integer and pp be an odd prime. % with pβˆ’1=2rhp-1=2^rh, where hh is an odd integer. In this paper, many classes of three-weight cyclic codes over Fp\mathbb{F}_{p} are presented via an examination of the condition for the cyclic codes C(1,d)\mathcal{C}_{(1,d)} and C(1,e)\mathcal{C}_{(1,e)}, which have parity-check polynomials m1(x)md(x)m_1(x)m_d(x) and m1(x)me(x)m_1(x)m_e(x) respectively, to have the same weight distribution, where mi(x)m_i(x) is the minimal polynomial of Ο€βˆ’i\pi^{-i} over Fp\mathbb{F}_{p} for a primitive element Ο€\pi of Fpm\mathbb{F}_{p^m}. %For p=3p=3, the duals of five classes of the proposed cyclic codes are optimal in the sense that they meet certain bounds on linear codes. Furthermore, for p≑3(mod4)p\equiv 3 \pmod{4} and positive integers ee such that there exist integers kk with gcd⁑(m,k)=1\gcd(m,k)=1 and Ο„βˆˆ{0,1,⋯ ,mβˆ’1}\tau\in\{0,1,\cdots, m-1\} satisfying (pk+1)β‹…e≑2pΟ„(modpmβˆ’1)(p^k+1)\cdot e\equiv 2 p^{\tau}\pmod{p^m-1}, the value distributions of the two exponential sums T(a,b)=\sum\limits_{x\in \mathbb{F}_{p^m}}\omega^{\Tr(ax+bx^e)} and S(a,b,c)=\sum\limits_{x\in \mathbb{F}_{p^m}}\omega^{\Tr(ax+bx^e+cx^s)}, where s=(pmβˆ’1)/2s=(p^m-1)/2, are settled. As an application, the value distribution of S(a,b,c)S(a,b,c) is utilized to investigate the weight distribution of the cyclic codes C(1,e,s)\mathcal{C}_{(1,e,s)} with parity-check polynomial m1(x)me(x)ms(x)m_1(x)m_e(x)m_s(x). In the case of p=3p=3 and even ee satisfying the above condition, the duals of the cyclic codes C(1,e,s)\mathcal{C}_{(1,e,s)} have the optimal minimum distance

    On construction and (non)existence of c-(almost) perfect nonlinear functions

    Get PDF
    Functions with low differential uniformity have relevant applications in cryptography. Recently, functions with low c-differential uniformity attracted lots of attention. In particular, so-called APcN and PcN functions (generalization of APN and PN functions) have been investigated. Here, we provide a characterization of such functions via quadratic polynomials as well as non-existence results.publishedVersio

    On construction and (non)existence of cc-(almost) perfect nonlinear functions

    Full text link
    Functions with low differential uniformity have relevant applications in cryptography. Recently, functions with low cc-differential uniformity attracted lots of attention. In particular, so-called APcN and PcN functions (generalization of APN and PN functions) have been investigated. Here, we provide a characterization of such functions via quadratic polynomials as well as non-existence results

    Investigations on c-(almost) perfect nonlinear functions

    Get PDF
    In a prior paper [14], along with P. Ellingsen, P. Felke and A. Tkachenko, we defined a new (output) multiplicative differential, and the corresponding c-differential uniformity, which has the potential of extending differential cryptanalysis. Here, we continue the work, by looking at some APN functions through the mentioned concept and show that their c-differential uniformity increases significantly, in some cases.Comment: arXiv admin note: text overlap with arXiv:1909.0362
    corecore