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1. Introduction

Perfect nonlinear (PN) and almost perfect nonlinear (APN) functions and in general 
functions with low differential uniformity over finite fields have been widely investigated 
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due to their applications in cryptography. Indeed, differential cryptanalysis [5,6] is an 
important cryptanalytic approach targeting symmetric-key primitives. In order to be 
resistant against such types of attacks, cryptographic functions used in the substitution 
box (S-box) in the cipher are required to have a differential uniformity as low as possible 
(see [10] for a survey on differential uniformity of vectorial Boolean functions). In [7], the 
authors introduce a different type of differential, useful for ciphers that utilize modular 
multiplication as a primitive operation. Consequently, a new concept called multiplicative 
differential (and the corresponding c-differential uniformity) has been introduced [20].

Definition 1.1. [20, Definition 1] Given a p-ary (n, m)-function f : Fpn → Fpm , and 
c ∈ Fpm , the (multiplicative) c-derivative of f with respect to a ∈ Fpn is the function

cDaf(x) = f(x + a) − cf(x), ∀x ∈ Fpn .

For an (n, n)-function f , and a, b ∈ Fpn , let

cΔf (a, b) := |{x ∈ Fpn : f(x + a) − cf(x) = b}|,

and

cΔf := max{cΔf (a, b) : a, b ∈ Fpn , (a, c) �= (0, 1)},

where |S| is the cardinality of the set S. The quantity cΔf is called c-differential unifor-
mity of f . Note that for c = 1, the above definitions coincide with the usual derivative 
of f and its differential uniformity.

If cΔf ≤ δ ∈ N, we say that f is differentially (c, δ)-uniform. In the special cases δ = 1
and δ = 2, such functions are also called PcN and APcN functions. It is worth noting 
that PcN functions (namely β-planar functions) have been investigated and partially 
classified in [4].

Clearly, the case c = 1 (APN and PN functions) has been widely investigated in the 
literature; see [8,9,16–18,23,28,29,37] and [11,14,15,19,26,27,31,44] for known APN and 
PN functions. PN functions are also called planar. APN and PN functions are of central 
interest in design theory, coding theory, and cryptography.

Very recently, power functions with low c-differential uniformity, and the c-differential 
uniformity of some known APN functions in odd characteristic have been studied in 
[34]. Also in [25], the authors focus on monomial functions and study their c-differential 
uniformity for c = −1.

In this paper, we further investigate the construction and existence of some APcN and 
PcN functions. First, in Section 2, we collect some preliminary results and definitions that 
we will use in the rest of the paper. In Section 3, we first give a characterization of APcN 
and PcN quadratic functions, which, in particular, gives us a correspondence between 
planar DO polynomials and APcN maps. Then, we show that, using the AGW criterion 
[1] and its generalization [33], it is possible to construct several classes of APcN and PcN 
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functions. In the last section, we give some nonexistence results for some exceptional 
monomial APcN and PcN functions using connections with algebraic curves and Galois 
theory tools.

2. Preliminaries

Let q = pn be a fixed prime power. We denote by Fq and Fq the field with q elements 
and its algebraic closure. The multiplicative group of Fq will be denoted by F∗

q = Fq\{0}. 
In the following we will focus on functions defined from Fq to itself, i.e. p-ary (n, n)-
functions. Any function f : Fq → Fq can be represented uniquely by an element of the 
polynomial ring Fq[x] of degree less than q.

For f ∈ Fq[x]:

• f is linear if F (x) =
∑

i aix
pi (also known as linearized polynomials).

• f is affine if it differs from a linear polynomial by a constant.
• f is a Dembowski-Ostrom (DO) polynomial if F (x) = 2 

∑
0≤i≤j<n aijx

pi+pj , with 
i < j if p = 2.

• f is quadratic if it differs from a DO polynomial by an affine polynomial.

The trace function from Fqn to Fq is given by the linear polynomial

Trq
n

q (x) =
n−1∑
i=0

xqi .

A polynomial f is a permutation polynomial (PP) over Fq, if x �→ f(x) is a bijection 
from Fq to itself, and it is a complete permutation polynomial (CPP) over Fq, if both 
f(x) and f(x) + x are PPs.

The AGW criterion, introduced in [1], is a useful method in the construction of PPs 
and CPPs; see for instance [32,41–43]. The AGW criterion, in the additive case, is given 
by the following proposition.

Proposition 2.1 (Proposition 5.4 [1]). Let p be a prime and q = pm for some integer 
m > 0. Let φ(x) and ψ(x) be two Fq-linear polynomials over Fq seen as endomorphisms 
of Fqn , and let g ∈ Fqn [x] and h ∈ Fqn [x] such that h(ψ(Fqn)) ⊆ F∗

q . Then

f(x) = h ◦ ψ(x)φ(x) + g ◦ ψ(x)

is a permutation polynomial of Fqn if and only if the following two conditions hold:

(i) ker(φ) ∩ ker(ψ) = {0};
(ii) h(x)φ(x) + ψ(g(x)) permutes ψ(Fqn).
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As immediate consequence, in Theorem 5.10 in [1] the authors provided the following 
general framework of PPs.

Theorem 2.2 ([1]). Let p be a prime and q = pm for some integer m > 0. Let φ(x) be 
an Fq-linear polynomial over Fq seen as endomorphism of Fqn , and let g ∈ Fqn [x] and 
h ∈ Fqn [x] such that h(xq − x) ⊆ F∗

q . Then

f1(x) = h(xq − x)φ(x) + Trq
n

q (g(xq − x))

and

f2(x) = h(xq − x)φ(x) + g(xq − x)(q
n−1)/(q−1)

are permutation polynomials of Fqn if and only if ker(φ) ∩ Fq = {0} and h(x)φ(x) per-
mutes J = {xq − x : x ∈ Fqn}.

In [33], Mesnager and Qu extended the AGW criterion for constructing 2-to-1 map. 
If q is even, a 2-to-1 map over Fq is a function such that any b ∈ Fq has either 2 or 0 
preimages. If q is odd, for all but one b ∈ Fq, it has either 2 or 0 preimages, and the 
exception element has exactly one preimage.

For q = 2m, using φ a 2-to-1 map over Fq and that permutes J = {xq + x : x ∈ Fqn}
it is possible to construct 2-to-1 maps of same type as in Theorem 2.2. More specifically, 
we have the following result.

Theorem 2.3 (Theorem 15 [33]). Let q = 2m, φ(x) be an Fq-linear polynomial seen as 
an endomorphism of Fqn . Let g, h ∈ Fqn [x] be such that h(xq + x) ∈ F∗

q for any x ∈ Fqn . 
Assume

f1(x) = h(xq + x)φ(x) + Trq
n

q (g(xq + x))

and

f2(x) = h(xq + x)φ(x) + g(xq + x)(q
n−1)/(q−1).

If φ is 2-to-1 over Fq and h(x)φ(x) permutes J = {xq + x : x ∈ Fqn}, then both f1 and 
f2 are 2-to-1 over Fqn .

In the second part of this work, Section 4, we deal with exceptional power APcN and 
PcN maps.

Definition 2.4. Let c ∈ Fq be fixed. Let f(x) ∈ Fq[x] be a APcN (PcN) function over Fqr

for infinitely many r. Then, f is said exceptional APcN (PcN).
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Results on exceptional APN and PN functions can be found in [2,13] and the references 
therein.

We use Galois theory tools to provide non-existence results for APcN and PcN mono-
mials. We recall here the Galois theoretical part of our approach which deals with totally 
split places. This method was successfully used also in [3,21,35,36].

We will make use of the following results.

Theorem 2.5. [40, Theorem 3.9] Let r be a prime and G be a primitive group of degree 
n = s + k with k ≥ 3. If G contains an element of degree and order s (i.e. an s-cycle), 
then G is either alternating or symmetric.

The proof of the following result can be found in [24].

Lemma 2.6. Let L : K be a finite separable extension of function fields, let M be its 
Galois closure and G := Gal(M : K) be its Galois group. Let P be a place of K and Q
be the set of places of L lying above P . Let R be a place of M lying above P . Then we 
have the following:

1. There is a natural bijection between Q and the set of orbits of H := HomK(L, M)
under the action of the decomposition group D(R|P ) = {g ∈ G | g(R) = R}.

2. Let Q ∈ Q and let HQ be the orbit of D(R|P ) corresponding to Q. Then |HQ| =
e(Q|P )f(Q|P ) where e(Q|P ) and f(Q|P ) are ramification index and relative degree, 
respectively.

3. The orbit HQ partitions further under the action of the inertia group I(R|P ) into 
f(Q|P ) orbits of size e(Q|P ).

The following can also be deduced by [30]; its proof can be found in [3].

Theorem 2.7. Let p be a prime number, m a positive integer, and q = pm. Let L : F be a 
separable extension of global function fields over Fq of degree n, M be the Galois closure 
of L : F , and suppose that the field of constants of M is Fq. There exists an explicit 
constant C ∈ R+ depending only on the genus of M and the degree of L : F such that if 
q > C then L : F has a totally split place.

3. A characterization of APcN and PcN functions

It is well-known that a DO polynomial is planar if and only if it is 2-to-1 (see [12, 
Theorem 3]). The following result gives a characterization of APcN and PcN quadratic 
polynomials for c ∈ Fp \ {1}.

Let f : Fq → Fq. We say that f is at most a 2-to-1 function if for any b ∈ Fq we have 
|f−1(b)| ≤ 2.



6 D. Bartoli, M. Calderini / Finite Fields and Their Applications 72 (2021) 101835
Theorem 3.1. Let p be a prime. Let f be a quadratic polynomial over Fpm for some integer 
m. Then, for any c ∈ Fp \ {1} we have the following.

(i) f is at most 2-to-1 if and only if f is APcN. Moreover, if f is a DO polynomial, 
then f is APcN if and only if f is planar.

(ii) f is a PP if and only if f is PcN.

Proof. (i) Let f be a quadratic polynomial, that is f(x) =
∑

i,j ai,jx
pi+pj +

∑
i bix

pi . 
We can note that for any γ we have

f(x + γ) = f(x) + f(γ) +
∑
i,j

ai,j(xpi

γpj

+ xpj

γpi

).

Let c ∈ Fp \ {1}. Then

f(x + γ) − cf(x) =(1 − c)

⎛⎝f(x) +
∑
i,j

ai,j

[
xpi

(
γ

1 − c

)pj

+ xpj

(
γ

1 − c

)pi]

+f

(
γ

1 − c

)
− f

(
γ

1 − c

))
+ f(γ)

=(1 − c)f
(
x + γ

1 − c

)
+ f(γ) − (1 − c)f

(
γ

1 − c

)
.

(1)

Thus, since f is at most 2-to-1 so is f(x +γ) − cf(x), which implies that f is APcN, and 
vice versa.

If f is a DO polynomial we have f(x) = f(−x). Therefore, the fact that f is at most 
2-to-1 implies that f is 2-to-1, and so it is a planar function.

(ii) This follows directly from (1). �
Corollary 3.2. Let p be a prime, and f be a DO polynomial over Fpm , with m a positive 
integer. Then, f is exceptional planar if and only if f is exceptional APcN for any 
c ∈ Fp \ {1}.

Remark 3.3. Let q = ph. If the quadratic function f is of type

f(x) =
∑
i,j

ai,jx
qi+qj +

∑
i

bix
pi

,

then the results above can be extended to any c ∈ Fq \ {1}.

Up to now, all known planar functions are DO polynomials, but the case of x 3k+1
2

defined over F3n with k odd and gcd(k, n) = 1. From Theorem 3.1, we have that these 
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known planar functions are also APcN. Moreover, in [34] it has been proved that the 

planar function x
3k+1

2 is APcN for c = −1.
The result (i) of Theorem 3.1 cannot be extended to a general planar quadratic 

function. Indeed, the planarity of a function f is invariant by adding a linear (affine) 
polynomial to f , while the c-differential uniformity is not. So, if we consider a planar 
DO polynomial, adding a linear function we could obtain a function which is no more 
2-to-1 and thus which is no APcN.

Example 3.4. The function x2 + x3 is planar over F32 but it is not APcN for any c �= 1.

Remark 3.5. In [39], the authors introduced and studied c-differential bent functions. In 
their work, they also relaxed the definition of perfect c-nonlinearity excluding the case of 
the derivative in the zero direction. In particular, they defined PcN function any f such 
that f(x + γ) − cf(x) is a permutation for any γ ∈ F∗

q , and strictly PcN if in addition f
is a permutation.

For p = 2, even if we exclude the derivative in the zero direction, a PcN function has 
to be a PP. Indeed, let f be PcN and suppose that there exist x1 and x2 = x1 + γ such 
that f(x1) = f(x1 + γ). Since f is PcN,

f(x + γ) + cf(x) = (c + 1)f(x) + f(x + γ) + f(x)

is a PP. But

f(x1 + γ) + cf(x1) = (c + 1)f(x1) = (c + 1)f(x2) = f(x2 + γ) + cf(x2),

which is a contradiction.
It would be interesting to understand if this is the case also for p > 2.

3.1. Some PcN and APcN polynomials from the AGW criterion

In the following we will show that from the AGW criterion and its generalization [33]
(for the case p = 2) we can obtain PcN and APcN functions.

Theorem 2.2 gives us the possibility of constructing PPs of the form

f1(x) = h(xq − x)φ(x) + Trq
n

q (g(xq − x))

and

f2(x) = h(xq − x)φ(x) + g(xq − x)(q
n−1)/(q−1),

where g can be any polynomial over Fqn . This is implied by the fact that xq−x annihilates 
both Trq

n

q (g(x)) and g(x)(qn−1)/(q−1) for any x. We can immediately construct some PcN 
polynomials.
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Theorem 3.6. Let f1 and f2 be PPs as in Theorem 2.2 with h ≡ b ∈ F∗
q . Then f1 and f2

are PcN for any c ∈ Fq \ {1}.

Proof. Let c ∈ Fq \ {0, 1}. Consider for instance the permutation f1. Then, f1 is PcN if 
and only if

f1(x+ γ)− cf1(x) = b(1− c)φ(x) +Trq
n

q (g(xq − x+ γq − γ))− cTrq
n

q (g(xq − x)) + bφ(γ)

is a PP for any γ. Denoting by ψ(x) = xq − x, and by g′(x) = g(x + γq − γ), from the 
AGW criterion (Proposition 2.1) we have that this is a PP if and only if

b(1 − c)φ(x) + ψ(Trq
n

q (g′(x)) − cTrq
n

q (g(x)))

permutes J = {xq − x : x ∈ Fqn}. Now, ψ(Trqnq (g(x)) − cTrq
n

q (g(x))) = 0 and thus 
b(1 − c)φ(x) permutes J since f1 is a PP. The same holds for f2. �

Another type of PPs, which are also PcN, can be constructed in the following way.

Theorem 3.7. Let p be a prime and q = pm for some integer m > 0. Let g(x) ∈ Fq2 [x]
be any polynomial such that g(J) ⊆ J where J = {xq − x : x ∈ Fq2} and φ(x) be an 
Fq-linear polynomial over Fq. Let s > 0 be an even integer. Then, for any b ∈ F∗

q

f(x) = bφ(x) + (g(xq − x))s

is a PP if and only if φ(x) induces a permutation over J .

Proof. From the AGW criterion (Proposition 2.1) we have that f is a PP if and only if

(g(x))qs − (g(x))s + bφ(x)

permutes J .
Note that for any y ∈ J we have Trq

2

q (y) = 0 and thus yq = −y. Since s is even, for 
any y ∈ J we have ys ∈ Fq. Indeed,

ysq = (−y)s = ys.

Then, since g(J) ⊆ J we have that

(g(x))qs − (g(x))s = 0,

for any x ∈ J . Thus, f is a PP if and only if φ(x) permutes J . �
Example 3.8. An easy example of function g such that g(J) ⊆ J is given by g(x) = x + δ

with δ ∈ J .
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Theorem 3.7 can be generalized (with a similar proof) to functions f of type

f(x) = bφ(x) +
∑
i

(gi(xq − x))si ,

where si’s are even, and gi’s are such that gi(J) ⊆ J .

Corollary 3.9. Let p be a prime and q = pm for some integer m > 0. Let t be a positive 
integer. Let g1, ..., gt ∈ Fq2 [x] be such that gi(J) ⊆ J for all 1 ≤ i ≤ t, where J = {xq−x :
x ∈ Fq2}, and φ(x) an Fq-linear polynomial over Fq. Let s1, ..., st be even integers. Then, 
for any b ∈ F∗

q

f(x) = bφ(x) +
∑
i

(gi(xq − x))si ,

is a PP if and only if φ(x) induces a permutation over J .

Remark 3.10. Note that the polynomials in Theorem 2.2 and 3.7, considering φ(x) = x, 
are also CPPs when b �= 0, −1.

As for the case of the functions f1 and f2 of Theorem 2.2, also the functions satisfying 
Theorem 3.7 are PcN when c ∈ Fq \ {1}.

Theorem 3.11. Let p be a prime and q = pm for some integer m > 0. Let f(x) be a PP 
as in Theorem 3.7. Then f(x) is PcN for any c ∈ Fq \ {1}.

Proof. We have that

f(x + γ) − cf(x) = b(1 − c)φ(x) + (g′(xq − x))s − c(g(xq − x))s + bφ(γ),

where g′(x) = g(x + γq − γ). Note that since J is an Fq-vector space, g′(J) ⊆ J . Now as 
in Theorem 3.7, this is a permutation if and only if φ(x) permutes J . This condition is 
satisfied since f is a PP. �
Remark 3.12. In even characteristic, PN functions (i.e. PcN function with c = 1) do not 
exist. As pointed out in [20], PcN functions, for c �= 1, exist also for the case p = 2. 
Indeed, trivially, any PP is PcN for c = 0 and any linear permutation is PcN for any 
c �= 1. Theorems 3.6 and 3.11 provide non-trivial PcN functions for p = 2.

A similar argument can be done for the case of APcN maps using the results of [33]. 
As for the PcN case we can obtain APcN maps for any c ∈ Fq \ {1} using functions as 
in Theorem 2.3. In particular, for n odd, we can obtain the following APcN maps.
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Theorem 3.13. Let n and m be two positive integers with n odd. Let q = 2m and φ(x) be an 
Fq-linear polynomial which is 2-to-1 over Fq and that permutes J = {xq + x : x ∈ Fqn}. 
Let g ∈ Fqn [x] and b ∈ F∗

q . Then,

f1(x) = bφ(x) + Trq
n

q (g(xq + x)) and f2(x) = bφ(x) + g(xq + x)(q
n−1)/(q−1)

are APcN functions for any c ∈ Fq \ {1}.

Proof. Let us consider f1(x). For any γ we have

f1(x + γ) + cf1(x) =bφ(x) + bφ(γ) + Trq
n

q (g(xq + x + γq + γ))

+ cbφ(x) + Trq
n

q (cg(xq + x))

=b(c + 1)φ(x) + Trq
n

q (g′(xq + x)) + bφ(γ),

where g′(x) = g(x +γq +γ) +cg(x). Then, f1(x +γ) +cf1(x) is 2-to-1 from Theorem 2.3.
For f2 the claim follows in a similar way. �

Example 3.14. For constructing APcN functions as in Theorem 3.13, we can consider, 
for example, the 2-to-1 function φ over Fq defined by φ(x) = x2i + x with gcd(i, m) = 1.

Indeed, since gcd(i, m) = 1 we have that ker(φ) = F2, implying that φ is 2-to-1 over 
Fq. Moreover φ permutes J . Suppose that there exist x1, x2 ∈ J such that φ(x1) = φ(x2)
then φ(x1 + x2) = 0. Since J is a vector subspace, we have x1 + x2 ∈ J ∩ ker(φ) = {0}, 
recall that n is odd and Trq

n

q (1) = 1.

Remark 3.15. Note that, when n is even, it is not possible to construct φ that is a 2-to-1 
map over Fq and permutes J since Fq ⊆ J . Indeed Fq2 is a subfield of Fqn and, denoting 
by ψ(x) = xq + x, we have ψ(Fq2) = Fq.

So, for n even, it is not possible to construct APcN functions as in Theorem 3.13.

4. Non-existence results for APcN and PcN monomials

In this section we provide non-existence results for exceptional APcN (and PcN) 
monomials. In what follows, we will consider exponents d such that p � d(d − 1), and 
we denote ph by q, for some integer h, and by s the smallest positive integer such that 
d − 1 | (ps − 1).

Let us consider f(x) = xd defined over Fq. The monomial f(x) is APcN, c �= 1, if and 
only if

∀a, b ∈ Fq =⇒ (x + a)d − cxd = b has at most two solutions. (2)

For a = 0, the condition above implies that xd is at most a 2-to-1 function. That is 
gcd(d, q − 1) ≤ 2.
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When a �= 0, Condition (2) can be simplified to

∀b ∈ Fq =⇒ (x + 1)d − cxd = b has at most two solutions. (3)

A standard tool, when dealing with APN or PN functions is to consider the curve Cf,c
of affine equation

Cf,c : (X + 1)d − (Y + 1)d − c(Xd − Y d)
X − Y

= 0. (4)

We refer to [4] for and the references therein for an introduction to basic concepts 
about curves over finite fields.

Note that Condition (3) implies the existence of at most q/2 values bi for which 
(x + 1)d − cxd = bi has two solutions. Therefore, there are at most q/2 pairs {xi, yi}, 
xi �= yi, xi, yi ∈ Fq, such that xi and yi satisfy (xi + 1)d − cxd

i = bi = (yi + 1)d − cydi . 
Thus, Cf,c possesses at most q Fq-rational points. If q is large enough with respect to 
d, the existence of more than one absolutely irreducible component of Cf,c defined over 
Fq would imply, by Hasse-Weil bound, the existence of roughly 2q Fq-rational points, a 
contradiction.

First, we will provide sufficient conditions on c and d for which Cf,c is absolutely 
irreducible. In particular, we provide upper bounds on the number of singular points of 
Cf,c. To this end we will consider, for simplicity, the curve Df,c : (X + 1)d − (Y + 1)d −
c(Xd − Y d) = 0. Singular points of Cf,c are a subset of the singular points of Df,c.

Theorem 4.1. Let ξ ∈ Fq be a primitive (d − 1)-root of unity. Suppose that

� i, j, k ∈ {0, . . . , d− 2}, i �= 0, such that d−1
√
c �= 1 − ξi

ξk − ξj
. (5)

Then, Df,c contains no singular points off X = Y . In particular, this is true if d−1
√
c /∈

Fps .

Proof. Since p � d, Df,c does not possess singular points at infinity. Note that there are 
no singular points lying on X = 0 or Y = 0. Affine singular points (x0, y0), x0 �= y0, 
satisfy ⎧⎪⎪⎪⎨⎪⎪⎪⎩

(x0+1
x0

)d−1 = c

(y0+1
y0

)d−1 = c

(x0
y0

)d−1 = 1

. (6)

Let ξ ∈ Fq be a primitive (d − 1)-root of unity and denote by c0 = d−1
√
c. Therefore, 

y0 = ξix0, y0 = 1/(c0ξj − 1), x0 = 1/(c0ξk − 1), for some i, j, k ∈ {0, . . . , d − 2} and 
i �= 0. Each triple (i, j, k) provides a pair (x0, y0) satisfying (6). Thus,
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c0ξ
k − 1 = ξi(c0ξj − 1). (7)

By our hypothesis ξ ∈ Fps . Equation (7) yields

c0(ξk − ξi+j) = 1 − ξi.

Since i �= 0, we have a contradiction. So, no pairs (x0, y0) satisfy (6) and there are no 
singular points. �

Note that, under the hypothesis of Theorem 4.1 the number of singular points of Cf,c
is at most d/2. A deeper analysis shows that

(X + 1 + a)d − (Y + 1 + a)d − c((X + a)d − (Y + a)d)

= d[(a + 1)d−1 − cad−1](X − Y ) +
(
d

2

)
[(a + 1)d−2 − cad−2](X2 − Y 2) + · · ·

and therefore points (a, a) are double points of Df,c and then simple points of Cf,c. So, 
Cf,c possesses no singular points and hence it is absolutely irreducible.

Theorem 4.2. Suppose that c satisfies Condition (5). Then, Cf,c is absolutely irreducible.

We want to prove that if q is large enough there exists t0 ∈ Fq such that the equation 
(x + 1)d − cxd = t0 has more than two solutions, i.e. xd is not exceptional PcN nor 
APcN. To this end we will investigate the geometric and the algebraic Galois groups of 
the polynomial Fc,d(t, x) = (x + 1)d − cxd − t.

More in details, consider Garith
c,d = Gal(Fc,d(t, x) : Fq(t)) and Ggeom

c,d = Gal(Fc,d(t, x) :
Fq(t)). They are both subgroups of Sd, the symmetric group over d elements. Our aim 
is to prove that Ggeom

c,d = Sd. This would force that Ggeom
c,d = Sd = Garith

c,d , since Ggeom
c,d ≤

Garith
c,d and therefore by Chebotarev density Theorem [30], one obtains the existence of 

a specialization t0 ∈ Fq for which Fc,d(t0, x) splits into d pairwise distinct linear factors 
(x − xi) defined over Fq and therefore (x + 1)d − cxd cannot be a permutation or 2-to-1 
and xd is not PcN nor APcN.

Lemma 4.3. Let c satisfy Condition (5). The geometric Galois group Ggeom
c,d coincides 

with Sd.

Proof. First we prove that the geometric Galois group of Fc,d(t, x) = (x +1)d−cxd− t ∈
Fq[x] is primitive (i.e. it does not act on a nontrivial partition of the underlying set). 
Let M be the splitting field of Fc,d(t, x) and G be the Galois group of Fc,d(t, x) over 
Fq(t). Let x be a root of Fc,d(t, x) and consider the extension Fq(x) : Fq(t). Clearly, 
t = (x + 1)d − cxd = fc,d(x) by definition. As a consequence of Lüroth’s Theorem, f is 
indecomposable (i.e. it cannot be written as a composition of two non-linear polynomials) 
if and only if G is a primitive group; see [22, Proposition 3.4].
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To this end, suppose that fc,d(x) = h1(h2(x)), for some h1(x), h2(x) ∈ Fq[x], with 
deg(h1(x)), deg(h2(x)) ∈ [2, . . . , d/2]. Then

(h2(X) − h2(Y )) | (fc,d(X) − fc,d(Y )) = (h1(h2(X)) − h1(h2(Y ))).

By Theorem 4.2, Cf,c is absolutely irreducible and then h2(X) − h2(Y ) = X − Y , which 
contradicts deg(h2(x)) > 1. Therefore Gal(Fc,d(t, x) : Fq(t)) is primitive.

Now we prove that there exists t0 ∈ Fq such that (x +1)d− cxd = t0 has exactly d −1
roots in Fq. Elements t0 ∈ Fq for which (x + 1)d − cxd = t0 has a repeated root x0 are 
such that

(x0 + 1)d−1 − cxd−1
0 = 0, t0 = cxd−1

0 .

Suppose that there exists another repeated root y0 �= x0 of (x + 1)d − cxd = t0. Then⎧⎪⎨⎪⎩
(x0 + 1)d−1 − cxd−1

0 = 0
xd−1

0 = yd−1
0

(y0 + 1)d−1 − cyd−1
0 = 0,

which is equivalent to (6). So each t0 has at most one repeated root. Note that a repeated 
root x0 is at most a double root of (x +1)d−cxd = t0 since otherwise (x0+1)d−2 = cxd−2

0
and a contradiction easily arises from (x0 + 1)d−1 = cxd−1

0 . Therefore each root of 
(x + 1)d−1 − cxd−1 (they are pairwise distinct) provides a t0 = (x0 + 1)d − cxd

0 such that 
the equation (x + 1)d − cxd = t0 has exactly d − 1 roots in Fq.

Let r be such that the element t0 obtained above belongs to Fqr . This means that 
(x +1)d−cxd−t0 has exactly one factor of multiplicity 2 and all the others of multiplicity 
1. Let now M be the splitting field of Fc,d(t, x) over Fqr(t). Let R be a place of M lying 
above t0. Now, using Lemma 2.6 we obtain that the decomposition group D(R | t0) has a 
cycle of order exactly 2 and fixes all the other elements of H = HomFq(t)(Fq(x), M), where 
x is a root in Fq(t) of Fc,d(t, X) (H can be simply thought as the set of roots of Fc,d(t, X)
in Fq(t)). Now pick any element g ∈ D(R | t0) that acts non-trivially on H. This element 
has to be a transposition, which in turn forces Gal(Fc,d(t, x) : Fqru(t)) to contain a 
transposition for any u ∈ N and therefore in particular that Gal(Fc,d(t, x) : Fq(t))
contains a transposition.

We already know that Gal(Fc,d(t, x) : Fq(t)) is primitive. Now using Theorem 2.5 with 
s = 2 we conclude that both Sd = Gal(Fc,d(t, x) : Fq(t)) and Gal(Fc,d(t, x) : Fq(t)) =
Sd. �
Theorem 4.4. Let c satisfy Condition (5). Then xd is not exceptional PcN nor APcN.

Proof. Consider F = Fq(t) and L = F (z), where z is a root of Fc,d(t, x) | Fq(t). 
Lemma 4.3 tells us that the field of constants of the Galois closure of L : F is triv-
ial, as the geometric Galois group of Fc,d(t, x) is equal to the arithmetic one. Let C be 
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the constant in Theorem 2.7. Using now Theorem 2.7 we have that if q > C there exists 
a specialization t0 ∈ Fq such that Fc,d(t, x) is totally split and therefore fc,d(x) = t0 has 
d solutions in Fq. The claim follows. �

Finally, we list a couple of open problems.

Open Problem 4.5. Non-existence results for PN or APN functions have been obtained 
using a number of different methods. It would be interesting to check whether such 
methods apply also to PcN and APcN for c �= 1.

Open Problem 4.6. If p = 2, as already mentioned, no PN functions exist. A different 
definition of planar functions was given by Zhou [45]: a function f : Fq → Fq is pseudo-
planar if, for each nonzero ε ∈ Fq, the function

x �→ f̂ε(x) := f(x + ε) + f(x) + εx (8)

is a permutation of Fq. As shown by Zhou [45] and Schmidt and Zhou [38], pseudo-
planar functions have similar properties and applications as their counterparts in odd 
characteristic. It is natural to extend such a definition to different c. We call a function 
f(x) pseudo-PcN if for all c, ε ∈ Fq, ε �= 0,

f(x + ε) + cf(x) + εx

is a permutation of Fq. Can these functions have the same applications as “normal” PcN 
or APcN?
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