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A Generalization of APN Functions for
Odd Characteristic

Masamichi Kuroda, Shuhei Tsujie

Almost perfect nonlinear (APN) functions on finite fields of characteristic
two have been studied by many researchers. Such functions have useful
properties and applications in cryptography, finite geometries and so on.
However, APN functions on finite fields of odd characteristic do not satisfy
desired properties. In this paper, we modify the definition of APN function
in the case of odd characteristic, and study its properties.
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1 Introduction

Let F = Fpn be a finite field of characteristic p. A function f : F → F is called almost
perfect nonlinear (APN) if the equation

Daf(x) := f(x+ a)− f(x) = b

has at most two solutions x in F for all a ∈ F× and b ∈ F . APN functions on a
finite field of characteristic 2 were introduced by Nyberg [10] and have been studied by
many researchers. There are a lot of applications in cryptography and finite geometry.
APN functions for odd characteristic have been investigated by [6, 8] but their algebraic
properties are quite different from the case of characteristic 2. In this paper, we give an
algebraic generalization of APN functions as follows:

Definition 1.1. A function f : F → F is a generalized almost perfect nonlinear
(GAPN) function if the equation

D̃af(x) :=
∑
i∈Fp

f(x+ ia) = b

has at most p solutions x in F for all a ∈ F× and b ∈ F .
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Note that when p = 2 GAPN functions coincide with APN functions. For every
a, b ∈ F , let

Ñf (a, b) := #
{
x ∈ F

∣∣∣ D̃af(x) = b
}
.

If the equation D̃af(x) = b has a solution x0 ∈ F , then it has at least p solutions
contained in x0 + Fpa. Hence Ñf (a, b) is divisible by p, that is,

Ñf (a, b) ∈ { 0, p, 2p, . . . , (pn − 1)p, pn } .

In particular, we have that f is a GAPN function if and only if

Ñf (a, b) ∈ { 0, p } for any a ∈ F× and b ∈ F .

The value Ñf (a, b) measures the linearity of f in the following sense. Let x0 ∈ F be a
solution of the equation D̃af(x) = b. Suppose that there exists y0 ∈ F \ Fpa such that
f(y0) + f(x0 + ia) = f(y0 + x0 + ia) for every i ∈ Fp. Then we have∑

i∈Fp

f(y0 + x0 + ia) =
∑
i∈Fp

f(x0 + ia) = b,

that is, every element in y0+x0+Fpa is a solution of D̃af(x) = b. Hence Ñf (a, b) ≥ 2p.
If we assume, as an extreme case, that f is linear, then for any a ∈ F we have D̃af(x) =∑

i∈Fp
if(a), and hence

Ñf (a, b) =

p
n if b =

∑
i∈Fp

if(a),

0 otherwise.

Therefore we may say that GAPN functions are the farthest from linear functions in
view of this parameter Ñf (a, b).
Our main results are the following two theorems (see Section 3 and Section 4 for

details). Firstly, we construct a generalization of the Gold functions, which are the most
typical APN functions [7, 10]:

Theorem 1.2. A monomial function f : F → F defined by

f(x) = xp
i+p−1 (i > 0 and gcd(i, n) = 1).

is a GAPN function of algebraic degree p.

Secondly, when p = 3, we obtain a partial generalization of a relation between APN
functions and AB functions introduced in [5]:

Theorem 1.3. Suppose that p = 3. Let f be a function of algebraic degree at most 3
with the condition f(−x) = −f(x) for any x ∈ F3n. If f is a generalized almost bent
function, then f is a GAPN function. Here generalized almost bent functions are defined
in Section 4.
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This paper is organized as follows. In Section 2, we give several characterizations
for GAPN functions, which are generalizations of classical results for APN functions
on F2n . In Section 3, we raise two examples of GAPN functions. One is the inverse
permutation and the other is a generalization of the Gold functions. In Section 4, we
define a generalization of almost bent functions and prove Theorem 1.3. In Section 5,
we introduce dual arcs and derive them from GAPN functions of algebraic degree p.

2 Characterizations of GAPN functions

2.1 The property of stability of GAPN functions

Two functions f and g are called extended affine equivalent (EA-equivalent) if g =
A1 ◦ f ◦A2 +A0, where A1 and A2 are affine permutations and A0 is an affine function.
In [4], Carlet, Charpin and Zinoviev showed that EA-equivalence is a particular case
of CCZ-equivalence. Here CCZ-equivalence corresponds to the affine equivalence of the
graphs of functions, that is, functions f and g are CCZ-equivalent if and only if, for
some affine permutation, the image of the graph of f is the graph of g.
Let

Nf :=
{
Ñf (a, b)

∣∣∣ a ∈ F×, b ∈ F
}
.

When p = 2, Nyberg proved that EA-equivalence preserves the set Nf (see [10, Proposi-
tion 1]), and more generally, Budaghyan, Carlet and Pott proved that CCZ-equivalence
also preserves the set Nf (see [3, Proposition 2]). The following proposition is a gener-
alization of [10, Proposition 1].

Proposition 2.1. Let f , g : F → F be EA-equivalent functions. Then Nf = Ng. In
particular, f is a GAPN function if and only if g is a GAPN function.

Proof. By definition, we have g = A1 ◦ f ◦A2 +A0 for some affine permutations A1, A2

and affine function A0. For each i ∈ { 0, 1, 2 }, we may put Ai = αi + ci, where αi is a
linear function on F and ci ∈ F . Then α1 and α2 are bijective. We have∑

i∈Fp

A0(x+ ia) =
∑
i∈Fp

(α0(x+ ia) + c0) = α0(a)
∑
i∈Fp

i = α0(a)r

for any a ∈ F×, where r denotes
∑

i∈Fp
i. Then we obtain

D̃ag(x) =
∑
i∈Fp

(A1 ◦ f ◦ A2 + A0) (x+ ia) =
∑
i∈Fp

(α1 (f(α2(x+ ia) + c2)) + c1) + α0(a)r

= α1

∑
i∈Fp

f (A2(x) + iα2(a))

+ α0(a)r = α1

(
D̃α2(a)f(A2(x))

)
+ α0(a)r.

Hence for any a ∈ F× and b ∈ F , D̃ag(x) = b if and only if D̃α2(a)f(A2(x)) = α−1
1 (b −

α0(a)r). Since A2 is a permutation, we obtain Ñg(a, b) = Ñf (α2(a), α
−1
1 (b−α0(a)r)) for

any a ∈ F× and b ∈ F . Thus Nf = Ng.
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Remark 2.2. Proposition 2.1 is not correct for CCZ-equivalence. Every permutation
is CCZ-equivalent to its inverse (see [4]), and hence when p = 2, the inverse of APN
permutation is also an APN permutation. This property is not, however, extended for
GAPN functions. For example, the function f : F35 → F35 defined by f(x) = x57, which
is the composition of f1(x) = x19 and the Frobenius mapping Fb(x) = x3, is a GAPN
function, since Fb is linear and f1 is a GAPN function by Lemma 3.3. However, we can
check easily that the inverse function f−1(x) = x17 is not a GAPN function (see Remark
4.4 (1) for details).

2.2 GAPN functions of algebraic degree p

For a positive integer r, let Map(F r, F ) denote the set of functions from F r to F .
This set equipped with pointwise operations becomes an F -algebra. It is well known
that the evaluation map from the polynomial ring F [t1, . . . , tr] to Map(F r, F ) induces
the isomorphism F [t1, . . . , tr]/(t

pn

1 − t1, . . . , t
pn

r − tr) ≃ Map(F r, F ). Hence the set of
monomial functions

{
xd11 · · · xdrr

∣∣ 0 ≤ di ≤ pn − 1, 1 ≤ i ≤ r
}
is a basis for Map(F r, F )

over F . In particular, every function f : F → F can be represented uniquely as a
polynomial function f(x) =

∑pn−1
d=0 cdx

d. Then every exponent d has the p-adic expansion
d =

∑n−1
s=0 dsp

s, where 0 ≤ ds < p. Let wp(d) denote the sum of the coefficients
∑n−1

s=0 ds,
and we call it the p-weight of d.

Definition 2.3. Let f =
∑pn−1

d=0 cdxd be a non-zero function on F . The non-negative
integer max { wp(d) | 0 ≤ d ≤ pn − 1, cd ̸= 0 } is called the algebraic degree of f , de-
noted by d◦(f). A function of algebraic degree 2 is called quadratic.

We characterize the algebraic degree as follows (see Proposition 2.5). The symmetric
group Sr of degree r acts on Map(F r, F ) by fσ(x1, . . . , xr) := f(xσ(1), . . . , xσ(r)), where
σ ∈ Sr. Let Map(F r, F )Sr denote the set of invariant functions, which forms an F -
subalgebra of Map(F r, F ). For a non-increasing sequence λ = (λ1, . . . , λr) of non-
negative integers, we define the monomial symmetric polynomial mλ(x1, . . . , xr) ∈
Map(F r, F )Sr by

mλ(x1, . . . , xr) :=
∑
α

xα1
1 · · · xαr

r ,

where α = (α1, . . . , αr) runs over the distinct rearrangements of λ. It is easy to show
that the set{

mλ(x1, . . . , xr)

∣∣∣∣ λ = (λ1, . . . , λr) is a non-increasing sequence
of integers with 0 ≤ λi ≤ pn − 1 for 1 ≤ i ≤ r

}
(1)

is a basis for Map(F r, F )Sr over F .
For a function f : F → F , we define a function [f ]r ∈ Map(F r, F )Sr by

[f ]r(x1, . . . , xr) :=
∑
I⊂[r]

(−1)r−|I|f

(∑
i∈I

xi

)
,
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where [r] denotes the set {1, . . . , r}. We also define [f ]0 := f(0). For example

[f ]1(x) = f(x)− f(0), [f ]2(x, y) = f(x+ y)− f(x)− f(y) + f(0),

[f ]3(x, y, z) = f(x+ y + z)− f(x+ y)− f(x+ z)− f(y + z)

+f(x) + f(y) + f(z)− f(0).

Proposition 2.4. Let d be a positive integer with the p-adic expansion d =
∑n−1

s=0 dsp
s.

Then, for any integer r ≥ wp(d), we have

[
xd
]r

=

{
0 if r > wp(d),

γ(d)mλ(d)(x1, . . . , xr) if r = wp(d),

where γ(d) :=
n−1∏
s=0

ds! and λ(d) := (pn−1, . . . , pn−1︸ ︷︷ ︸
dn−1

, pn−2, . . . , pn−2︸ ︷︷ ︸
dn−2

, . . . , 1, . . . , 1︸ ︷︷ ︸
d0

).

Moreover,
[
xd
]wp(d) ̸= 0.

Proof. Put w := wp(d) and write d = ps1 + · · · + psw , where λ(d) = (ps1 , . . . , psw). For
any subset I ⊂ [m], we have(∑

i∈I

xi

)d

=

(∑
i∈I

xi

)ps1+···+psw

=
w∏

j=1

(∑
i∈I

xp
sj

i

)
=

∑
i1,...,iw∈I

xp
s1

i1
· · · xp

sw

iw
.

Hence we obtain

[
xd
]r

=
∑
I⊂[r]

(−1)r−|I|

(∑
i∈I

xi

)d

=
∑
I⊂[r]

(−1)r−|I|

( ∑
i1,...,iw∈I

xp
s1

i1
· · · xp

sw

iw

)

=
∑

i1,...,iw∈[r]

 ∑
{i1,...,iw}⊂I⊂[r]

(−1)r−|I|

 xp
s1

i1
· · · xp

sw

iw
.

Let ℓ := # {i1, . . . , iw}. For any j ∈ {0, . . . , r − ℓ}, we have

# { I ⊂ [r] | {i1, . . . , iw} ⊂ I and |I| = ℓ+ j } =

(
r − ℓ

j

)
,

where
(
r−ℓ
j

)
denotes the binomial coefficients. Thus we obtain

∑
{i1,...,iw}⊂I⊂[r]

(−1)r−|I| =
r−ℓ∑
j=0

(−1)(r−ℓ)−j

(
r − ℓ

j

)
=

{
0 (ℓ < r),

1 (ℓ = r).

Therefore [
xd
]r

=
∑

i1,...,iw∈[r]
#{i1,...,iw}=r

xp
s1

i1
· · · xp

sw

iw
.
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Hence we have that
[
xd
]r

= 0 if r > w. When r = w,[
xd
]r

=
∑
β

xβ1

1 · · · xβr
r ,

where β = (β1, . . . , βr) runs over the rearrangements of λ(d) = (ps1 , . . . , psr). For a fixed
rearrangement α of λ(d), the number of rearrangements of λ(d) which equal α coincides
with γ(d). Therefore

[
xd
]r

is equal to γ(d)mλ(d)(x1, . . . , xr). Since 0 ≤ di ≤ p − 1 for

each i, we have γ(d) ̸= 0, and hence
[
xd
]w

=
[
xd
]r ̸= 0.

Proposition 2.5. Let f : F → F be a non-zero function. The maximum integer r0 such
that [f ]r0 ̸= 0 coincides with the algebraic degree d◦(f).

Proof. From Proposition 2.4, if r > d◦(f), then [f ]r = 0. Hence we have r0 ≤ d◦(f). We
prove the converse inequality. We can write f(x) =

∑pn−1
d=0 cdx

d. By Proposition 2.4,

[f ]d
◦(f) =

∑
wp(d)=d◦(f)

cd ̸=0

cdγ(d)mλ(d).

If d ̸= d′ then λ(d) ̸= λ(d′), and hence mλ(d) ̸= mλ(d′). Since cdγ(d) ̸= 0 for each d, and
the basis (1) is linearly independent over F , we obtain [f ]d

◦(f) ̸= 0, and hence d◦(f) ≤ r0.
Therefore we have r0 = d◦(f).

One can easily verify the following recurrence formula:

Proposition 2.6. Let r be a positive integer. Then

[f ]r+1(x, y, z1, . . . , zr−1)

= [f ]r(x+ y, z1, . . . , zr−1)− [f ]r(x, z1, . . . , zr−1)− [f ]r(y, z1, . . . , zr−1)

for any x, y, z1, . . . , zr−1 ∈ F .

Proposition 2.7. Let f : F → F be a non-zero function and let r be a positive integer.

(1) d◦(f) = 0 if and only if f is a non-zero constant function.

(2) d◦(f) = r if and only if [f ]r is a non-zero Fp-multilinear form. In particular,
d◦(f) ≤ r if and only if [f ]r is an Fp-multilinear form.

Proof. Clear from Proposition 2.5 and Proposition 2.6.

EA-equivalence preserves algebraic degrees of functions, that is, we have the following
proposition.

Proposition 2.8. Let f , g : F → F be EA-equivalent functions, and let d◦(f) ≥ 2.
Then d◦(g) = d◦(f).
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Proof. By definition, we have g = A1 ◦ f ◦A2 +A0 for some affine functions A0, A1 and
A2, where A1 and A2 are permutations. For each i ∈ { 0, 1, 2 }, we may put Ai = αi+ ci,
where αi is a linear function on F and ci ∈ F . Then α1 and α2 are bijective. For any
integer r ≥ 2, we have

[A0]
r(x1, . . . , xr) = α0

∑
I⊂[r]

(−1)r−|I|
∑
i∈I

xi

+ c0
∑
I⊂[r]

(−1)r−|I| = 0.

Hence we obtain

[g]r(x1, . . . , xr) = [A1 ◦ f ◦ A2 + A0]
r(x1, . . . , xr) = [A1 ◦ f ◦ A2]

r(x1, . . . , xr)

= α1([f ]
r+1(α2(x1), . . . , α2(xr), c2) + [f ]r(α2(x1), . . . , α2(xr))).

By Proposition 2.6, if [f ]r = 0 then [f ]r+1 = 0, and hence [g]r = 0, since α1 is linear.
Therefore by Proposition 2.5, d◦(g) = max { r | [g]r ̸= 0 } ≤ max { r | [f ]r ̸= 0 } = d◦(f).
The converse inequality is given by similar arguments.

For a function f : F → F we define B̃f (x, y) := [f ]p(x, y, . . . , y). Note that if d◦(f) ≤ p
then B̃f (x, y) is linear in x by Proposition 2.7 and when p = 2 a function f is quadratic
if and only if B̃f (x, y) = f(x+ y) + f(x) + f(y) + f(0) is a non-zero bilinear form.

Proposition 2.9. B̃f (x, a) = D̃af(x)− D̃af(0) for any x, a ∈ F (see Definition 1.1).

Proof. Let (x1, . . . , xp) = (x, a, . . . , a). Since for each I ⊂ [p],

∑
i∈I

xi =

{
x+ (|I| − 1) a (1 ∈ I),

|I|a (1 ̸∈ I),

we have that

B̃f (x, a) = [f ]p(x, a, . . . , a) =
∑
I⊂[p]

(−1)p−|I|f

(∑
i∈I

xi

)
=

∑
I=J∪{1}
J⊂{2,...,p}

(−1)p−|I|f (x+ (|I| − 1) a) +
∑

J⊂{2,...,p}

(−1)p−|J |f (|J |a) .

Then 0 ≤ |J | ≤ p− 1 and we have

# {J ⊂ {2, . . . , p} | |J | = j} =

(
p− 1

j

)
≡ (−1)j (mod p).

Therefore we obtain

B̃f (x, a) =

p−1∑
j=0

(−1)p−1−j

(
p− 1

j

)
(f(x+ ja)− f(ja)) = D̃af(x)− D̃af(0).
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Proposition 2.10. Suppose that d◦(f) ≤ p. Then

D̃af(x± y) = D̃af(x)± D̃af(y)∓ D̃af(0).

In particular, if D̃af(0) = 0, then the mapping D̃af is linear over Fp.

Proof. By Proposition 2.7 (2), B̃f (x, a) = [f ]p(x, a, . . . , a) is linear in x, since d◦(f) ≤ p.
Therefore by Proposition 2.9, we have

D̃af(x± y) = B̃f (x± y, a) + D̃af(0) = B̃f (x, a)± B̃f (y, a) + D̃af(0)

=
(
D̃af(x)− D̃af(0)

)
±
(
D̃af(y)− D̃af(0)

)
+ D̃af(0)

= D̃af(x)± D̃af(y)∓ D̃af(0).

We have two characterizations as follows for GAPN functions of algebraic degree at
most p. These are generalizations of classical results for quadratic APN functions.

Proposition 2.11. Suppose that d◦(f) ≤ p. Then Ñf (a, b) equals zero or Ñf (a, D̃af(0))
for any a ∈ F× and b ∈ F . In particular, f is a GAPN function if and only if
Ñf (a, D̃af(0)) ≤ p for any a ∈ F×.

Proof. If D̃af(x) = b has no solutions in F , then Ñf (a, b) = 0. Assume that x0 ∈ F is a
solution of D̃af(x) = b. By Proposition 2.10

D̃af(x)− b = D̃af(x)− D̃af(x0) = D̃af(x− x0)− D̃af(0).

Hence D̃af(x) = b if and only if D̃af(x − x0) = D̃af(0), and hence we have that
Ñf (a, b) = Ñf (a, D̃a(0)).

Proposition 2.12. (1) Suppose that d◦(f) ≤ p. Then f is a GAPN function if and

only if
{
x ∈ F

∣∣∣ B̃f (x, a) = 0
}
= Fpa for any a ∈ F×.

(2) If f is a GAPN function with d◦(f) ≤ p, then d◦(f) = p. In particular, GAPN
functions are algebraic degree at least p.

Proof. We first prove (1). By Proposition 2.11, f is a GAPN function if and only if
Ñf (a, D̃af(0)) ≤ p for any a ∈ F×. By Proposition 2.9, we have

Ñf (a, D̃af(0)) = #
{
x ∈ F

∣∣∣ D̃af(x) = D̃af(0)
}
= #

{
x ∈ F

∣∣∣ B̃f (x, a) = 0
}
.

In addition, 0 = B̃f (x, a) = [f ]p(x, a, . . . , a) has trivial solutions x ∈ Fpa. Therefore

Ñf (a, D̃af(0)) ≤ p if and only if
{
x ∈ F

∣∣∣ B̃f (x, a) = 0
}
= Fpa. Hence we obtain (1).

Next we prove (2). Let f be a GAPN function with d◦(f) ≤ p. Suppose that d◦(f) < p.
Then by Proposition 2.5, [f ]p = 0, and hence B̃f (x, a) = [f ]p(x, a, . . . , a) = 0 for any x
and a ∈ F . By the assertion (1), this contradicts to that f is a GAPN function. Hence
we obtain d◦(f) = p.
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2.3 Fourier-Walsh transform

For a function f : F → F and an element b ∈ F , we define

fb : F −→ Fp, x 7−→ Tr(bf(x)),

where Tr denotes the absolute trace on F . The functions fb are called the components
of f . For any function g : F → Fp, let F(g) denote the following value related to the
Fourier-Walsh transform of g:

F(g) :=
∑
x∈F

ζg(x)p ,

where ζp is the primitive p-th root of unity. Note that F(fb) (b ∈ F ) is the special case

f̂(0, b) of the Fourier transform of f (see [9] for more details):

f̂ (a, b) :=
∑
x∈F

ζTr(bf(x)−ax)
p (a, b ∈ F ).

We have the following characterization for GAPN functions, which is a generalization of
the characterization for APN functions introduced in [11].

Proposition 2.13. Let f : F → F be a function. Then∑
a∈F,b∈F×

|F(D̃afb)|2 ≥ p2n+1(pn − 1)

with equality if and only if f is a GAPN function.

Proof. We define pn×pn matrices X,T,N which are indexed by elements in F ×F . The
(a, b)-components of these matrices are as follows:

Xab := ζTr(ab)p , Tab := F(D̃afb), Nab := Ñf (a, b).

Then we have T = NX since

Tab =
∑
x∈F

ζTr(bD̃af(x))
p =

∑
y∈F

Ñf (a, y)ζ
Tr(yb)
p =

∑
y∈F

NayXyb.

Moreover, we have XX∗ = pnI, where X∗ denotes the adjoint matrix of X and I the
identity matrix, since∑

c∈F

XacXcb =
∑
c∈F

ζTr((a−b)c)
p =

{
pn (a = b),
0 (a ̸= b).

Therefore we have∑
a,b∈F

|Tab|2 = Tr (TT ∗) = Tr (NXX∗N∗) = pn Tr (NN∗) = pn
∑
a,b∈F

Ñf (a, b)
2.
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On the other hand, we have Ñf (0, b)
2 =

{
p2n (b = 0),
0 (b ̸= 0),

and if a ̸= 0, then we have

Ñf (a, b)
2 ≥ pÑf (a, b). Hence we obtain

∑
a,b∈F

|Tab|2 = pn

∑
b∈F

Ñf (0, b)
2 +

∑
a∈F×,b∈F

Ñf (a, b)
2


= p3n + pn

∑
a∈F×,b∈F

Ñf (a, b)
2 ≥ p3n + pn+1

∑
a∈F×,b∈F

Ñf (a, b).

Moreover, we have
∑
b∈F

Ñf (a, b) =
∑
b∈F

#
(
(D̃af)

−1(b)
)

= pn, and hence we obtain

∑
a∈F×,b∈F

Ñf (a, b) = (pn − 1)pn. We have
∑
a∈Fpn

T 2
a0 =

∑
a∈Fpn

∑
x∈Fpn

ζTr(0·Daf(x))
p

2

= p3n

clearly. Thus we have∑
a∈F,b∈F×

|F(D̃afb)|2 =
∑

a∈F,b∈F×

|Tab|2 ≥ p2n+1(pn − 1)

with equality if and only if Ñf (a, b) equals 0 or p for all a ∈ F× and b ∈ F , that is, f is
a GAPN function.

3 Examples of GAPN functions

3.1 Inverse permutations

The inverse permutation f on F is defined by

f(x) := xp
n−2 =

{
x−1 (x ̸= 0),

0 (x = 0).

The following is well known:

Proposition 3.1 (Beth-Ding [2], Nyberg [10]). Let f be the inverse permutation on F2n.
Then f is APN if and only if n is odd.

This proposition is generalized as follows:

Proposition 3.2. Let p be an odd prime. Then the inverse permutation on F is a
GAPN function.

Proof. For convenience let 0−1 := 0. We consider an equation∑
i∈Fp

(x+ ia)−1 = b,
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where a ∈ F× and b ∈ F . First suppose that there exists a solution x ̸∈ Fpa. Multiplying
the equation by

∏
i∈Fp

(x+ ia) we have

b
∏
i∈Fp

(x+ ia) + g(x) = 0,

where g(x) is a polynomial in x with degree at most p − 1, and its constant term is
−(p− 1)! ap−1 ̸= 0. Since every element in x+ Fpa is a solution, we have b ̸= 0 and the
number of solutions outside Fpa is exactly p.
Next we suppose that x ∈ Fpa is a solution. Then we have

b =
∑
i∈Fp

(x+ ia)−1 =
∑
i∈Fp

(ia)−1 = a−1

p−1∑
i=1

i−1 = a−1

p−1∑
i=1

i = 0.

Hence it is impossible that the equation has a solution in Fpa and a solution outside
Fpa simultaneously. Therefore Ñf (a, b) ≤ p for any a ∈ F× and b ∈ F , and hence the
inverse permutation f is a GAPN function.

3.2 Generalized Gold functions

When p = 2 the most typical quadratic APN functions are the Gold functions [7, 10],
which are defined by

f(x) = x2
i+1 with gcd(n, i) = 1.

In this subsection, we construct a generalization of the Gold functions.

Lemma 3.3. Let f be a monomial function defined by

f(x) = x1+pi2+···+pip (i2, . . . , ip ≥ 0, (i2, . . . , ip) ̸= (0, · · · , 0)).

Then

(i) d◦(f) = p.

(ii) B̃f (x, a) = (p − 1)
(
ad−1x+ ad−pi2xp

i2 + · · ·+ ad−pipxp
ip
)
for any a ∈ F×, where

d = 1 + pi2 + · · ·+ pip.

(iii) Assume that
{
x ∈ F

∣∣∣ x+ xp
i2 + · · ·+ xp

ip
= 0

}
= Fp. Then f is a GAPN func-

tion of algebraic degree p.

Proof. By the definition of the algebraic degree, we have that d◦(f) = wp(d) = p, and
hence we obtain the statement (i). We prove the statement (ii). When p = 2, we have

B̃f (x, a) = f(x+ a) + f(x) + f(a) + f(0) = (x+ a)(x2
i2 + a2

i2 ) + x1+2i2 + a1+2i2

= ax2
i2 + a2

i2x.

11



When p ≥ 3, let i1 = 0. Then we have

D̃af(0) =

∑
j∈Fp

jp
i1+···+pip

 ap
i1+···+pip =

∑
j∈Fp

j

 ap
i1+···+pip = 0.

Hence we obtain

B̃f (x, a) = D̃af(x)− D̃af(0) = D̃af(x) =
∑
j∈Fp

(
p∏

ℓ=1

(
xp

iℓ + (ja)p
iℓ

))

=
∑
j∈Fp

(
p∏

ℓ=1

(
xp

iℓ + jap
iℓ

))
=
∑
j∈Fp

∑
K⊂[p]

j|K|a
∑

k∈K pikx
∑

k∈[p]\K pik


=
∑
K⊂[p]

∑
j∈Fp

j|K|

 a
∑

k∈K pikx
∑

k∈[p]\K pik .

Since we have
∑
j∈Fp

j|K| =

{
0 (|K| ̸= p− 1),

p− 1 (|K| = p− 1),
we obtain the desired equation.

We prove the statement (iii). Since a ̸= 0, by the assumption and (ii), we have{
x ∈ F

∣∣∣ B̃f (x, a) = 0
}
=
{
ay
∣∣∣ y + yp

i2 + · · ·+ yp
ip
= 0

}
= Fpa.

Hence f is a GAPN function with d◦(f) = p by Proposition 2.12.

By Lemma 3.3, we obtain a generalization of the Gold functions:

Theorem 3.4. Let f : F → F be a monomial function defined by

f(x) = xp
i+p−1 (i > 0 and gcd(i, n) = 1).

Then f is a GAPN function of algebraic degree p. We call them the generalized Gold
functions.

Proof. In Lemma 3.3, let (i2, i3, . . . , ip) = (i, 0, · · · , 0) with i > 0. Then by (iii) in

Lemma 3.3, the monomial function f(x) = xp
i+p−1 is a GAPN function of algebraic

degree p, if we have{
x ∈ F

∣∣∣ xpi = x
}
= Fp, that is,

{
x ∈ F

∣∣∣ xpi−1 = 1
}
= F×

p . (2)

Since gcd(i, n) = 1, it can be verified that gcd (pi − 1, pn − 1) = p−1. Therefore we have

#
{
x ∈ F

∣∣∣ xpi−1 = 1
}
= gcd (pi − 1, pn − 1) = p− 1, and hence, we obtain (2).
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When p = 2, there are no quadratic APN functions on F2n of the form

f(x) =
n−1∑
i=1

cix
2i+1, ci ∈ F2n

except the Gold functions [1]. Unfortunately, this property is not generalized for GAPN
functions. In fact, we have

Proposition 3.5. Assume that p is an odd prime and n is odd. Then the function
f : F → F defined by

f(x) = xp
i+p−1 − xp

n−i+p−1 (i > 0 and gcd(i, n) = 1)

is a GAPN function of algebraic degree p.

Proof. Clearly, d◦(f) = p, and D̃af(0) = 0 for any a ∈ F×. Thus by Proposition
2.11, all we have to do is to show that Ñf (a, 0) ≤ p for any a ∈ F×. Let gi be the

generalized Gold function gi(x) = xp
i+p−1. Since D̃af(0) = 0, by Proposition 2.9, we

have D̃af(x) = B̃f (x, a) = B̃gi(x, a)− B̃gn−i
(x, a). Hence, by Lemma 3.3 (ii), we have

D̃af(x) = B̃gi(x, a)− B̃gn−i
(x, a) =

(
ap

i+p−2x− ap−1xp
i
)
−
(
ap

n−i+p−2x− ap−1xp
n−i
)

= ap−1x
(
−xpi−1 + xp

n−i−1 + ap
i−1 − ap

n−i−1
)
.

Thus it is sufficient to show that the equation −xpi−1+xp
n−i−1+ap

i−1−ap
n−i−1 = 0 has

only trivial p − 1 solutions a, 2a, . . . , (p − 1)a for any a ∈ F×. It follows immediately
from Lemma 3.6.

Lemma 3.6. The mapping φ : F× → F defined by φ(a) = ap
i−1−apn−i−1 is (p−1)-to-1.

Proof. We consider the composition of φ and the Frobenius automorphism Fb(x) = xp
i
.

Then we have

Fb ◦ φ(a) =
(
ap

i−1 − ap
n−i−1

)pi
=
(
ap

i−1
)pi

− 1

api−1
= ψ2 ◦ ψ1(a),

where ψ1 and ψ2 are defined by

ψ1 : F
× −→ F×, a 7−→ ap

i−1, and ψ2 : F
× −→ F, α 7−→ αpi − 1

α
.

Since Fb is a bijection, it is sufficient to show the following two properties:

• ψ1 : F
× → F× is a (p− 1)-to-1 mapping.

• ψ2 is injective on Im(ψ1).
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We show the first property. For any two elements a and b ∈ F× such that ap
i−1 = bp

i−1,

we have (a/b)p
i−1 = 1. Since gcd(i, n) = 1, we obtain that a/b is contained in F×

p . Hence
ψ1 is a (p − 1)-to-1 mapping. Next we show the second property. Since Im(ψ1) is the
subgroup of F× whose cardinality equals pn−1

p−1
, we obtain Im(ψ1) = ⟨γp−1⟩, where γ is a

generator of F×. Let γ(p−1)m1 and γ(p−1)m2 be two elements in Im(ψ1) such that(
γ(p−1)m1

)pi − 1

γ(p−1)m1
=
(
γ(p−1)m2

)pi − 1

γ(p−1)m2
,

that is, γ(p−1)(m1+m2)
(
γ(p−1)m1 − γ(p−1)m2

)pi
= −

(
γ(p−1)m1 − γ(p−1)m2

)
.

Assume that γ(p−1)m1 ̸= γ(p−1)m2 . Then pn−1
p−1

= 1+ p+ · · ·+ pn−1 is odd, since n is odd.
Hence we have((

γ(p−1)m1 − γ(p−1)m2
) pn−1

p−1

)pi−1

=
(
γ(p−1)(m1+m2)

(
γ(p−1)m1 − γ(p−1)m2

)pi−1
) pn−1

p−1

= (−1)
pn−1
p−1 = −1.

Since
(
γ(p−1)m1 − γ(p−1)m2

) pn−1
p−1 is a (p − 1)-th root of unity and pi − 1 is divisible by

p− 1, we obtain 1 = −1, which is absurd when p is an odd prime.

4 Relation to generalized almost bent functions

For a function f : F → F , we define the pn-Walsh coefficients of f as follows:

Wf (a, b) := F(φa + fb) (a ∈ F, b ∈ F×),

where φa is the components of the identity mapping on F . Similarly to the case that
p = 2, we define generalized almost bent functions.

Definition 4.1. f : F → F is a generalized almost bent (GAB) function if

Wf (a, b) ∈
{
0, ±p

n+1
2

}
for all a ∈ F and b ∈ F×.

Note that when p = 2, GAB functions coincide with AB functions. We have the
following characterization of GAB functions. It is a generalization of the characterization
of AB functions introduced in [12].

Proposition 4.2. Let S
(m)
a,b be the number of solutions of the system of equations{

x1 + x2 + · · ·+ xm = a,
f(x1) + f(x2) + · · ·+ f(xm) = b.

Then f is a GAB function if and only if

S
(3)
a,b =

{
pn − p (f(a) ̸= b),

(p+ 1)pn − p (f(a) = b)
for any a, b ∈ F .
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Proof. We first define pn × pn matrices W (m), S(m), E and J which are indexed by
elements in F × F . The (a, b)-components of these matrices are as follows:

W
(m)
a,b := Wf (a, b)

m, S
(m)
ab := S

(m)
a,b , Eab :=

{
1 (a, b) = (0, 0),
0 otherwise.

, Jab := 1.

By definition, f is a GAB function if and only if

Wf (a, b)
3 − pn+1Wf (a, b) = 0 (a ∈ F, b ∈ F×). (3)

Since if b = 0, then Wf (a, 0) =
∑
x∈F

ζTr(ax)p =

{
pn (a = 0),
0 (a ̸= 0),

the equation (3) is equiva-

lent to

W (3) − pn+1W (1) =
(
p3n − p2n+1

)
E. (4)

For any m ∈ N, we have

Wf (a, b)
m =

(∑
x∈F

ζTr(ax)+Tr(bf(x))
p

)m

=
∑

x1,...,xm∈F

ζTr(a(x1+···+xm))
p ζTr(b(f(x1)+···+f(xm)))

p

=
∑
s,t∈F

S
(m)
s,t ζ

Tr(as)
p ζTr(bt)p =

∑
s,t∈F

XasS
(m)
st Xtb,

where X = [Xab] is defined in the proof of Proposition 2.13. Hence we obtain

W (m) = XS(m)X (m ∈ N).

On the other hand, we have XJX =

[∑
s,t∈F

XasJstXtb

]
and

∑
s,t∈F

XasJstXtb =
∑
s,t∈F

ζTr(as+bt)
p =

{
p2n ((a, b) = (0, 0)),
0 (otherwise).

Hence XJX = p2nE. Therefore we obtain

W (3) − pn+1W (1) − (p3n − p2n+1)E = X
(
S(3) − pn+1S(1) − (pn − p)J

)
X

Then X is regular, since XX∗ = pnI. Therefore the equation (4) is equivalent to

S(3) = pn+1S(1) + (pn − p)J,

that is, S
(3)
a,b =

{
pn − p (f(a) ̸= b),

(p+ 1)pn − p (f(a) = b)
for any a, b ∈ F since we have clearly

S
(1)
a,b =

{
0 (f(a) ̸= b),
1 (f(a) = b).
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4.1 The case that p = 3

In this subsection, we assume that p = 3 and

f(−x) = −f(x) for any x ∈ F = F3n . (5)

Then we have f(0) = 0 clearly. We have the following theorem which is a partial
generalization of a relation between APN functions and AB functions introduced in [5].

Theorem 4.3. Let f : F → F be a function with (5). Assume that d◦(f) ≤ 3. If f is a
GAB function, then f is a GAPN function of algebraic degree 3.

Proof. Let f be a GAB function. Since f(0) = 0, the system of equations{
x1 + x2 + x3 = 0,

f(x1) + f(x2) + f(x3) = 0
(6)

has (3 + 1)3n − 3 = 3(3n − 1) + 3n solutions by Proposition 4.2. Since for any b ∈ F ,

f(0) + f(b) + f(2b) = f(b) + f(−b) = f(b)− f(b) = 0,

the solutions of (6) are only trivial solutions, that is{
(0, b, 2b), (b, 2b, 0), (2b, 0, b)

∣∣ b ∈ F× } , { (x, x, x) | x ∈ F } . (7)

Assume that f is not a GAPN function. Then by Proposition 2.11, D̃af(x) = D̃af(0)
has a nontrivial solution x0 ∈ F \ { 0, a, 2a } for some a ∈ F×. On the other hand, by
(5), we have D̃af(0) = 0. Hence (x0, x0 + a, x0 + 2a) is a solution of the system (6), but
this solution is not contained in any set of (7), which is absurd. Therefore f is a GAPN
function, and we have d◦(f) = 3 by Proposition 2.12.

Remark 4.4. (1) When p = 2, any AB function is APN by [5]. However, the assump-
tion of Theorem 4.3 is necessary. In fact, there exists a function f on F3n such
that it is a GAB function but not a GAPN function when d◦(f) > 3. For example,
let n = 5 and F35 = F3(α) with α

5 + 2α+ 1 = 0. Then the function f : F35 → F35

defined by f(x) = x17 has algebraic degree 5, and it is a GAB function by a simple
computation. However, we have{

x ∈ F35
∣∣ D1f(x) = α3 + 2α2 + α + 1

}
=
{
2α + j, α4 + α3 + j

∣∣ j ∈ F3

}
,

and hence, Ñf (1, α
3 + 2α2 + α + 1) = 6. Thus f is not a GAPN function.

(2) When p = 2, any quadratic APN function on F2n is an AB function if n is odd
by [1]. Unfortunately, this property is not generalized in our case, that is, there
exists a function f on F3n such that f is a GAPN function of algebraic degree 3
but not a GAB function. In particular, the converse of Theorem 4.3 is not true.
For example, the function f : F35 → F35 defined by f(x) = x11 is a GAPN function
of algebraic degree 3 (see Theorem 3.4). However, by a simple computation, we
can see that the set of all Walsh coefficients of f is {0,−9, 18,±27,−36, 45,−54},
and hence f is not a GAB function.
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5 Construction of dual arcs

Let V be a vector space over a finite field Fq. A collection S of m-dimensional subspaces
of V is called an (m− 1)-dimensional dual arc over Fq if the following conditions are
satisfied:

(i) dim(X ∩ Y ) = 1 for any different X,Y ∈ S.

(ii) X ∩ Y ∩ Z = 0 for any three mutually different X,Y, Z ∈ S.

If |S| = (qm− q)/(q− 1)+1 then S is called an (m− 1)-dimensional dual hyperoval.
Let f be a quadratic function on F2n . We regard F2n as an n-dimensional vector space

over F2. For every a ∈ F2n we define a set Xf (a) ⊂ F2n ⊕ F2n by

Xf (a) := { (x,Bf (x, a)) | x ∈ F2n } ,

where Bf (x, a) = f(x + a) + f(x) + f(a) + f(0). Since f is quadratic, the form Bf

is bilinear and the map x 7→ (x,Bf (x, a)) is a injective linear map. Hence Xf (a) is
n-dimensional subspace in F2n ⊕ F2n for every a ∈ F2n . Let Sf denote the collection of
subspaces Xf (a). Yoshiara characterized quadratic APN functions on F2n as follows:

Theorem 5.1 (Yoshiara [13, Theorem 2.1]). Let f : F2n → F2n be a quadratic function.
Then f is APN if and only if Sf is an (n− 1)-dimensional dual hyperoval.

The bilinearity of Bf is very useful. However, our form B̃f is hardly bilinear for p ≥ 3.
We may resolve this problem with some modification. Let µ be a map from F× = F×

pn

to the set of Fp-linear automorphisms on F and let µa denote the image of a by µ. Let
ν be a permutation on F fixing 0.
For such maps µ, ν and a function f : F → F , we define

B̃f,µ,ν(x, a) :=

{
(µa ◦ B̃f )(x, ν(a)) (a ̸= 0),

0 (a = 0).

Note that for any a ∈ F× we have B̃f,µ,ν(x, a) = 0 if and only if B̃f (x, ν(a)) = 0. Hence
when d◦(f) ≤ p we have that f is a GAPN function if and only if{

x ∈ F
∣∣∣ B̃f,µ,ν(x, a) = 0

}
= Fpν(a) for any a ∈ F×

by Proposition 2.12.

Proposition 5.2. Let f(x) = xd be a monomial function with d◦(f) ≤ p. Define maps
µ, ν by µa(x) = adx and ν(a) = a−1. Then B̃f,µ,ν(x, a) is Fp-bilinear.

Proof. Since d◦(f) ≤ p the form [f ]p is Fp-multilinear by Proposition 2.7 (2). Hence
B̃f (x, a) is Fp-linear in x. Moreover B̃f (x, a) is homogeneous of degree d as a polynomial
in x and a. Therefore

B̃f (x, a) =
∑
i

cix
piad−pi
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for some ci ∈ Fp. Then

B̃f,µ,ν(x, a) = (µa ◦ B̃f )(x, ν(a)) = ad

(∑
i

cix
piap

i−d

)
=
∑
i

ci(xa)
pi ,

which is Fp-bilinear.

For the generalized Gold functions, we have another choice of maps µ, ν such that
B̃f,µ,ν is Fp-bilinear.

Proposition 5.3. Let f(x) = xp
i+p−1 be the generalized Gold function. Define maps

µ, ν by µa(x) = a2−px and ν(a) = a. Then B̃f,µ,ν(x, a) is Fp-bilinear.

Proof. By (ii) in Lemma 3.3, we have B̃f (x, a) = −ap−1xp
i
+ ap

i+p−2x. Hence we get

B̃f (x, a) = (µa ◦ B̃f )(x, ν(a)) = a2−p
(
−ap−1xp

i

+ ap
i+p−2x

)
= −axpi + ap

i

x,

which is Fp-bilinear.

Proposition 5.4. Let f be a GAPN function with d◦(f) = p and µ, ν as above. Suppose
that B̃f,µ,ν is Fp-bilinear. Then the following hold:

(1) Fpν(a) = Fpν(ia) for any a ∈ F and i ∈ F×
p .

(2) Three mutually different elements a, b, c ∈ F lie on the same line if and only if
ν(a− b) and ν(a− c) are linearly dependent.

Proof. (1) Since B̃f,µ,ν is Fp-bilinear, we have that B̃f,µ,ν(x, a) = 0 if and only if
B̃f,µ,ν(x, ia) for any a ∈ F and i ∈ F×

p . Hence

Fpν(a) =
{
x ∈ F

∣∣∣ B̃f,µ,ν(x, a) = 0
}
=
{
x ∈ F

∣∣∣ B̃f,µ,ν(x, ia) = 0
}
= Fpν(ia).

(2) Suppose that mutually different elements a, b, c ∈ F lie on the same line. Then
there exists i ∈ F×

p such that a− b = i(a− c). We have ν(a− b) = ν(i(a− c)). By (1),
there exists j ∈ F×

p such that ν(i(a−c)) = jν(a−c). Hence we have ν(a−b) = jν(a−c).
Thus ν(a− b) and ν(a− c) are linearly dependent. The converse is similar.

Let f be a GAPN function with d◦(f) = p and µ, ν as above. Suppose that B̃f,µ,ν is
Fp-bilinear. For any a ∈ F , we define

Xf,µ,ν(a) :=
{
(x, B̃f,µ,ν(x, a))

∣∣∣ x ∈ F
}
⊂ F ⊕ F.

The bilinearity of B̃f,µ,ν implies that Xf,µ,ν(a) is an n-dimensional subspace in F ⊕ F .
Let M ⊂ F be a set in which three mutually different elements do not lie on the same
line. Let Sf,µ,ν,M denote the collection of subspaces Xf,µ,ν(a), where a ∈M .
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Proposition 5.5. Suppose that n ≥ 2. Then the collection Sf,µ,ν,M is an (n − 1)-
dimensional dual arc.

Proof. Let a, b ∈ M be different elements. Suppose that (x, y) ∈ Xf,µ,ν(a) ∩ Xf,µ,ν(b).
Then we have y = B̃f,µ,ν(x, a) = B̃f,µ,ν(x, b). Hence B̃f,µ,ν(x, a − b) = 0. Therefore
x ∈ Fpν(a − b), and hence dim(Xf,µ,ν(a) ∩ Xf,µ,ν(b)) = 1. Since n ≥ 2, Xf,µ,ν(a) is
different from Xf,µ,ν(b).
Next we suppose that a, b, c are mutually different elements in M . Then by the above

argument, Xf,µ,ν(a), Xf,µ,ν(b), Xf,µ,ν(c) are mutually different subspaces. On the other
hand, since a, b, c do not lie on the same line, ν(a − b) and ν(a − c) are linearly
independent by Proposition 5.4. Therefore

Xf,µ,ν(a) ∩Xf,µ,ν(b) ∩Xf,µ,ν(c) ⊂ Fpν(a− b) ∩ Fpν(a− c) = 0.

Hence Sf,µ,ν,M is a dual arc.
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