21 research outputs found

    An energy-aware distributed algorithm for virtual backbone in wireless sensor network with different transmission range

    Get PDF
    Since there is no fixed infrastructure or centralized management in Wireless Sensor Networks (WSNs), a Connected Dominating Set(CDS) has been proposed as a virtual backbone is efficient. A virtual backbone plays a major role in routing, broadcasting, coverage andactivity scheduling. Wireless sensor networks to form a CDS usually by UDG (Unit Disk Graph) models that are used in this model, allnodes have the same message, but this article UDG model instead of a version that is closer to reality called DGB (Disk Graph withBidirectional links) is used in which nodes can adopt different transmission intervals. In many applications, to reduce overhead, increasenetwork lifetime, and so on, to find the MCDS (minimum connected dominating set) is desirable, but the point is that MCDS UDG modelsand DGB, the problem is NP-hard. In addition to the analysis of algorithms, the new algorithm will provide and the efficiency of thealgorithm, especially in terms of energy consumption, through theoretical analysis and simulation algorithms are available to be checked out

    Approximation Algorithmic Performance for CEDS in Wireless Network

    Get PDF
    A well-organized design of routing protocols in wireless networks, the connected dominating set (CDS) is widely used as a virtual backbone. To construct the CDS with its size as minimum, many heuristic, meta-heuristic, greedy, approximation and distributed algorithmic approaches have been anticipated. These approaches are concentrated on deriving independent set and then constructing the CDS using UDG, Steiner tree and these algorithms perform well only for the graphs having smaller number of nodes. For the networks that are generated in a fixed simulation area. This paper provides a novel approach for constructing the CDS, based on the concept of total edge dominating set. Since the total dominating set is the best lower bound for the CDS, the proposed approach reduces the computational complexity to construct the CDS through the number of iterations. The conducted simulation reveals that the proposed approach finds better solution than the recently developed approaches when important factors of network such as transmission radio range and area of network density varies

    Reducing the Number of Forward Nodes from 1-Hop Nodes to Cover 2-Hop Nodes with Network Coding

    Get PDF
    All neighbors of a node can receive a data packet conveyed by a broadcasting node in an ad-hoc wireless network. In this way, the no. of forwarding nodes is utilized as the cost criterion for propagation. Among different estimation approaches, the researcher uses 1-Hop nodes to cover entire 2- Hop nodes utilizing 2-hop region information to decrease repetitive communicates. We dissect a few deficiencies of this approach and propose an improved algorithm along with the network coding concepts in this paper. Our algorithm utilizes 2-hop neighborhood more successfully to lessen excess communicates. The Simulation results of applying this algorithm demonstrate performance improvements. Nowadays the scientists are acquainting the idea of Network coding to neighbour topology aware protocols that beats the excess number of broadcast by victimization the using XOR of data packets. We have made an endeavor to seek out the network coding gain. We’ve shown simulation, implementation and breakdown of result in various circumstances

    Near-Optimal Distributed Approximation of Minimum-Weight Connected Dominating Set

    Full text link
    This paper presents a near-optimal distributed approximation algorithm for the minimum-weight connected dominating set (MCDS) problem. The presented algorithm finds an O(logn)O(\log n) approximation in O~(D+n)\tilde{O}(D+\sqrt{n}) rounds, where DD is the network diameter and nn is the number of nodes. MCDS is a classical NP-hard problem and the achieved approximation factor O(logn)O(\log n) is known to be optimal up to a constant factor, unless P=NP. Furthermore, the O~(D+n)\tilde{O}(D+\sqrt{n}) round complexity is known to be optimal modulo logarithmic factors (for any approximation), following [Das Sarma et al.---STOC'11].Comment: An extended abstract version of this result appears in the proceedings of 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014

    ON PERFORMANCE ANALYSIS OF AMBR PROTOCOL IN MOBILE AD HOC NETWORKS

    Get PDF
    Due to mobility of nodes in ad hoc networks, the most challenging issue is to design and to make sound analysis of a routing protocol that determines its robustness to deliver packets in low routing packet overhead. In this paper, we thoroughly analyzed the Adaptive Monitor Based Routing (AMBR) protocol by varying different parameters that affect a routing protocol to measure its performance. Analysis shows that it requires less routing control overhead comparing with other prevalent routing protocols. An improved analytical model is also presented in this paper. All these analyses firmly prove that AMBR is a sound and robust protocol in terms of flooding, routing overhead and hence, enhances reliabilit

    A novel approach to modeling and flooding in ad-hoc wireless networks

    Get PDF
    This study proposes a new modeling approach for wireless ad-hoc networks. The new approach is based on the construction of fuzzy neighborhoods and essentially consists of assigning a membership or importance degree to each network radio link which reflects the relative quality of this link. This approach is first used to model the flooding problem and then an algorithm is proposed to solve this problem which is of a great importance in ad-hoc wireless networks intrinsically subject to a certain level of node mobility. Simulations carried out in a dynamic environment show promising results and stability compared to the enhanced dominant pruning algorithm. Such an approach is suitable to take into account the volatile aspect of radio links and the physical layer uncertainty when modeling these networks, particularly when the physical layer offers no or insufficient guaranties to high-level protocols as for the flooding

    An Enhanced Algorithm to Find Dominating Set Nodes in Ad Hoc Wireless Networks

    Get PDF
    A wireless ad hoc network is a collection of wireless mobile nodes forming a temporary network without the aid of any established infrastructure or centralized administration. A connection is achieved between two nodes through a single hop transmission if they are directly connected or multi-hop transmission if they are not. The wireless networks face challenges to form an optimal routing protocol. Some approaches are based on a dominating set, which has all the nodes either in the set or within its neighborhood. The proposed algorithm is an enhancement of the distributed algorithm proposed by Wu and Li. The simulation results from the new algorithm are compared to results from Wu and Li’s algorithm. The simulation results show that the average dominating set of nodes decreased considerable after applying the new algorithm. The decrease in number of dominate set nodes is not very much noticeable in low density space
    corecore