11 research outputs found

    Improving Transient Performance of Adaptive Control Architectures using Frequency-Limited System Error Dynamics

    Full text link
    We develop an adaptive control architecture to achieve stabilization and command following of uncertain dynamical systems with improved transient performance. Our framework consists of a new reference system and an adaptive controller. The proposed reference system captures a desired closed-loop dynamical system behavior modified by a mismatch term representing the high-frequency content between the uncertain dynamical system and this reference system, i.e., the system error. In particular, this mismatch term allows to limit the frequency content of the system error dynamics, which is used to drive the adaptive controller. It is shown that this key feature of our framework yields fast adaptation with- out incurring high-frequency oscillations in the transient performance. We further show the effects of design parameters on the system performance, analyze closeness of the uncertain dynamical system to the unmodified (ideal) reference system, discuss robustness of the proposed approach with respect to time-varying uncertainties and disturbances, and make connections to gradient minimization and classical control theory.Comment: 27 pages, 7 figure

    Identification and Optimal Control of Large-Scale Systems Using Selective Decentralization

    Get PDF
    In this paper, we explore the capability of selective decentralization in improving the control performance for unknown large-scale systems using model-based approaches. In selective decentralization, we explore all of the possible communication policies among subsystems and show that with the appropriate switching among the resulting multiple identification models (with corresponding communication policies), such selective decentralization significantly outperforms a centralized identification model when the system is weakly interconnected, and performs at least equivalent to the centralized model when the system is strongly interconnected. To derive the sub-optimal control, our control design include two phases. First, we apply system identification to train the approximation model for the unknown system. Second, we find the suboptimal solution of the Halminton-Jacobi-Bellman (HJB) equation to derive the suboptimal control. In linear systems, the HJB equation transforms to the well-solved Riccati equation with closed-form solution. In nonlinear systems, we discretize the approximation model in order to acquire the control unit by using dynamic programming methods for the resulting Markov Decision Process (MDP). We compare the performance among the selective decentralization, the complete decentralization and the centralization in our two-phase control design. Our results show that selective decentralization outperforms the complete decentralization and the centralization approaches when the systems are completely decoupled or strongly interconnected

    Selectively decentralized reinforcement learning

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The main contributions in this thesis include the selectively decentralized method in solving multi-agent reinforcement learning problems and the discretized Markov-decision-process (MDP) algorithm to compute the sub-optimal learning policy in completely unknown learning and control problems. These contributions tackle several challenges in multi-agent reinforcement learning: the unknown and dynamic nature of the learning environment, the difficulty in computing the closed-form solution of the learning problem, the slow learning performance in large-scale systems, and the questions of how/when/to whom the learning agents should communicate among themselves. Through this thesis, the selectively decentralized method, which evaluates all of the possible communicative strategies, not only increases the learning speed, achieves better learning goals but also could learn the communicative policy for each learning agent. Compared to the other state-of-the-art approaches, this thesis’s contributions offer two advantages. First, the selectively decentralized method could incorporate a wide range of well-known algorithms, including the discretized MDP, in single-agent reinforcement learning; meanwhile, the state-of-the-art approaches usually could be applied for one class of algorithms. Second, the discretized MDP algorithm could compute the sub-optimal learning policy when the environment is described in general nonlinear format; meanwhile, the other state-of-the-art approaches often assume that the environment is in limited format, particularly in feedback-linearization form. This thesis also discusses several alternative approaches for multi-agent learning, including Multidisciplinary Optimization. In addition, this thesis shows how the selectively decentralized method could successfully solve several real-worlds problems, particularly in mechanical and biological systems

    Adaptive control of plants with input saturation: an approach for performance improvement

    Get PDF
    In this work, a new method for adaptive control of plants with input saturation is presented. The new anti-windup scheme can be shown to result in bounded closed-loop states under certain conditions on the plant and the initial closed-loop states. As an improvement in comparison to existing methods in adaptive control, a new degree of freedom is introduced in the control scheme. It allows to improve the closed-loop response when actually encountering input saturation without changing the closed-loop performance for unconstrained inputs.Diese Arbeit präsentiert eine neue Methode für die adaptive Regelung von Strecken mit Stellgrößenbegrenzung. Für das neue anti-windup Verfahren wird gezeigt, dass die Zustände des Regelkreises begrenzt bleiben, wenn dessen initiale Werte und die Regelstrecke bestimmte Bedingungen erfüllen. Eine Verbesserung im Vergleich zu existierenden Methoden wird durch die Einführung eines zusätzlichen Freiheitsgrades erzielt. Dieser erlaubt die Verbesserung der Regelgüte des geschlossenen Regelkreises, wenn das Eingangssignal sich in der Limitierung befindet, ohne diese sonst zu verändern

    Multiple-Model Robust Adaptive Vehicle Motion Control

    Get PDF
    An improvement in active safety control systems has become necessary to assist drivers in unfavorable driving conditions. In these conditions, the dynamic of the vehicle shows rather different respond to driver command. Since available sensor technologies and estimation methods are insufficient, uncertain nonlinear tire characteristics and road condition may not be correctly figured out. Thus, the controller cannot provide the appropriate feedback input to vehicle, which may result in deterioration of controller performance and even in loss of vehicle control. These problems have led many researchers to new active vehicle stability controllers which make vehicle robust against critical driving conditions like harsh maneuvers in which tires show uncertain nonlinear behaviour and/or the tire-road friction coefficient is uncertain and low. In this research, the studied vehicle has active front steering system for driver steer correction and in-wheel electric motors in all wheels to generate torque vector at vehicle center of gravity. To address robustness against uncertain nonlinear characteristics of tire and road condition, new blending based multiple-model adaptive schemes utilizing gradient and recursive least squares (RLS) methods are proposed for a faster system identification. To this end, the uncertain nonlinear dynamics of vehicle motion is addressed as a multiple-input multiple-output (MIMO) linear system with polytopic parameter uncertainties. These polytopic uncertainties denote uncertain variation in tire longitudinal and lateral force capacity due to nonlinear tire characteristics and road condition. In the proposed multiple-model approach, a set of fixed linear parametric identifi cation models are designed in advance, based on the known bounds of polytopic parameter set. The proposed adaptive schemes continuously generates a weighting vector for blending the identifi cation model to achieve the true model (operation condition) of the vehicle. Furthermore, the proposed adaptive schemes are generalized for MIMO systems with polytopic parameter uncertainties. The asymptotic stability of the proposed adaptive identifi cation schemes for linear MIMO systems is studied in detail. Later, the proposed blending based adaptive identi fication schemes are used to develop Linear Quadratic (LQ) based multiple-model adaptive control (MMAC) scheme for MIMO systems with polytopic parameter uncertainties. To this end, for each identi fication model, an optimal LQ controller is computed on-line for the corresponding model in advance, which saves computation power during operation. The generated control inputs from the set of LQ controllers is being blended on-line using weighting vector continuously updated by the proposed adaptive identifi cation schemes. The stability analysis of the proposed LQ based optimal MMAC scheme is provided. The developed LQ based optimal MMAC scheme has been applied to motion control of the vehicle. The simulation application to uncertain lateral single-track vehicle dynamics is presented in Simulink environment. The performances of the proposed LQ based MMAC utilizing RLS and gradient based methods have been compared to each other and an LQ controller which is designed using the same performance matrices and fixed nominal values of the uncertain parameters. The results validated the stability and effectiveness of the proposed LQ based MMAC algorithm and demonstrate that the proposed adaptive LQ control schemes outperform over the LQ control scheme for tracking tasks. In the next step, we addressed the constraints on actuation systems for a model predictive control (MPC) based MMAC design. To determine the constraints on torque vectoring at vehicle center of gravity (CG), we have used the min/max values of torque and torque rate at each corner, and the vehicle kinematic structure information. The MPC problem has been redefi ned as a constrained quadratic programming (QP) problem which is solved in real-time via interior-point algorithm by an embedded QP solver using MATLAB each time step. The solution of the designed MPC based MMAC provides total steering angle and desired torque vector at vehicle CG which is optimally distributed to each corner based on holistic corner control (HCC) principle. For validation of the designed MPC based MMAC scheme, several critical driving scenarios has been simulated using a high- fidelity vehicle simulation environment CarSim/Simulink. The performance of the proposed MPC based MMAC has been compared to an MPC controller which is designed for a wet road condition using the same tuning parameters in objective function design. The results validated the stability and effectiveness of the proposed MPC based MMAC algorithm and demonstrate that the proposed adaptive control scheme outperform over an MPC controller with fixed parameter values for tracking tasks

    Du pilotage d'une famille de drones Ă  celui d'un drone hybride via la commande adaptative

    Get PDF
    Les micro-drones sont des aéronefs sans pilotes de dimensions inférieures à un mètre et de poids inférieur à deux kilogrammes. Ils se distinguent des aéronefs classiques pour plusieurs raisons : un cycle de développement plus court, un coût plus faible, leur facilité d'opération et des configurations de véhicules spécifiques. L'ensemble de ces points attendent une réponse spécifique dans le développement des lois de commandes. Cette thèse s'y intéresse à travers deux problématiques : la commande d'une famille de drones quadrirotors et celle d'un drone hybride. Une famille de drones représente un même concept de véhicule décliné en plusieurs tailles dont on peut faire varier la charge utile ou son emplacement. Les lois de commandes doivent assurer un même niveau de performances malgré ses modifications. Un drone hybride se caractérise par sa capacité à réaliser du vol stationnaire et du vol d'avancement. Ces deux modes de vol ont chacun une dynamique de vol spécifique à laquelle les lois de commandes doivent s'adapter. Cette thèse présente la modélisation de quadrirotors et d'un drone hybride puis détaille une approche de commande adaptative indirecte qui répond aux problèmes introduits. La commande adaptative permet de garantir à l'aide d'un correcteur unique les performances de commande pour de multiples systèmes. Les méthodes d'estimation de paramètres et de synthèse linéaire à paramètres variants du schéma de commande sont décrites, puis, finalement, des résultats d'essais en vol montrent l'apport et les limites de cette approche.Micro Air Vehicle are pilotless aircrafts with dimensions not exceeding one meter and a maximum weight of two kilograms. They are different from classical aircrafts for multiple reasons: a shorter development cycle, a cheaper development, their ease of operation and specific vehicle configurations. All these points expect a specific answer in the development of the control laws of the vehicles. This thesis considers this topic through two particular issues: the control of a family of quadrotors and the control of hybrid micro air vehicle. A family of quadrotor represents a single concept of vehicle but with various sizes, payloads and payload configurations. Control laws must guarantee the same level of performance despite all these modifications. A hybrid micro air vehicle is able to both hover like a helicopter and fly forward like a plane. These two flight modes have specific flight dynamics that the control laws must adapt to. This thesis first presents a model of quadrotors and hybrid micro air vehicle and then details an indirect adaptive control method to tackle both issues. Adaptive control should guarantee performance of multiple controlled systems with a single controller. The parameter estimation and linear parameter varying synthesis method of the adaptive control scheme are described and finally flight test results show the contributions and limits of the approach.TOULOUSE-ISAE (315552318) / SudocSudocFranceF
    corecore