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Abstract

An improvement in active safety control systems has become necessary to assist drivers in
unfavorable driving conditions. In these conditions, the dynamic of the vehicle shows rather
different respond to driver command. Since available sensor technologies and estimation
methods are insufficient, uncertain nonlinear tire characteristics and road condition may
not be correctly figured out. Thus, the controller cannot provide the appropriate feedback
input to vehicle, which may result in deterioration of controller performance and even in
loss of vehicle control. These problems have led many researchers to new active vehicle
stability controllers which make vehicle robust against critical driving conditions like harsh
maneuvers in which tires show uncertain nonlinear behaviour and/or the tire-road friction
coefficient is uncertain and low.

In this research, the studied vehicle has active front steering system for driver steer
correction and in-wheel electric motors in all wheels to generate torque vector at vehi-
cle center of gravity. To address robustness against uncertain nonlinear characteristics
of tire and road condition, new blending based multiple-model adaptive schemes utilizing
gradient and recursive least squares (RLS) methods are proposed for a faster system iden-
tification. To this end, the uncertain nonlinear dynamics of vehicle motion is addressed as
a multiple-input multiple-output (MIMO) linear system with polytopic parameter uncer-
tainties. These polytopic uncertainties denote uncertain variation in tire longitudinal and
lateral force capacity due to nonlinear tire characteristics and road condition. In the pro-
posed multiple-model approach, a set of fixed linear parametric identification models are
designed in advance, based on the known bounds of polytopic parameter set. The proposed
adaptive schemes continuously generates a weighting vector for blending the identification
model to achieve the true model (operation condition) of the vehicle. Furthermore, the
proposed adaptive schemes are generalized for MIMO systems with polytopic parameter
uncertainties. The asymptotic stability of the proposed adaptive identification schemes for
linear MIMO systems is studied in detail.

Later, the proposed blending based adaptive identification schemes are used to develop
Linear Quadratic (LQ) based multiple-model adaptive control (MMAC) scheme for MIMO
systems with polytopic parameter uncertainties. To this end, for each identification model,
an optimal LQ controller is computed off-line for the corresponding model in advance,
which saves computation power during operation. The generated control inputs from the
set of LQ controllers is being blended on-line using weighting vector continuously updated
by the proposed adaptive identification schemes. The stability analysis of the proposed
LQ based optimal MMAC scheme is provided. The developed LQ based optimal MMAC
scheme has been applied to motion control of the vehicle. The simulation application
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to uncertain lateral single-track vehicle dynamics is presented in Simulink environment.
The performances of the proposed LQ based MMAC utilizing RLS and gradient based
methods have been compared to each other and an LQ controller which is designed using
the same performance matrices and fixed nominal values of the uncertain parameters. The
results validated the stability and effectiveness of the proposed LQ based MMAC algorithm
and demonstrate that the proposed adaptive LQ control schemes outperform over the LQ
control scheme for tracking tasks.

In the next step, we addressed the constraints on actuation systems for a model predic-
tive control (MPC) based MMAC design. To determine the constraints on torque vectoring
at vehicle center of gravity (CG), we have used the min/max values of torque and torque
rate at each corner, and the vehicle kinematic structure information. The MPC prob-
lem has been redefined as a constrained quadratic programming (QP) problem which is
solved in real-time via interior-point algorithm by an embedded QP solver using MATLAB
each time step. The solution of the designed MPC based MMAC provides total steer-
ing angle and desired torque vector at vehicle CG which is optimally distributed to each
corner based on holistic corner control (HCC) principle. For validation of the designed
MPC based MMAC scheme, several critical driving scenarios has been simulated using
a high-fidelity vehicle simulation environment CarSim/Simulink. The performance of the
proposed MPC based MMAC has been compared to an MPC controller which is designed
for a wet road condition using the same tuning parameters in objective function design.
The results validated the stability and effectiveness of the proposed MPC based MMAC
algorithm and demonstrate that the proposed adaptive control scheme outperform over an
MPC controller with fixed parameter values for tracking tasks.
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Chapter 1

Introduction

1.1 Motivation and Objective

Traffic accidents are one of the main cause of many deaths and unrecoverable injuries.
These accidents generally take place in critical driving conditions such as high speed, low
surface friction, sudden changes in road surface and vehicle conditions. Under these crit-
ical conditions, the response of a vehicle to the driver command is resulting in potential
instability of the vehicle or large deviations from the trajectory that the driver requests.
Since vehicles move by means of contact forces between tire-road surface, uncertain road
condition and nonlinear tire characteristics have significant effects on tire force capac-
ity in longitudinal/lateral direction, and thus considerably affect stability and tracking
performance of the motion controller. These uncertainties are also affected by changes
in tire-road friction coefficient and tire longitudinal/lateral force capacities in front/rear
axles due to combined slip effect during vehicle manoeuvre. Therefore a vehicle motion
controller should guarantee to generate forces such that the vehicle track the requested
trajectory while maintaining the vehicle stability considering uncertain road condition and
nonlinear tire characteristics. In this regard, extensive number of studies have been con-
ducted for robust control of vehicle stability in recent years. However, robustness to fast
and wide range of changes in road conditions and tire longitudinal/lateral force capacities
in normal and critical driving conditions are still open problems for design of a robust
motion controller.

The main problem in robustness of a vehicle to the road surface and nonlinear tire
characteristics is that current controllers are highly dependent on estimators. Present
estimation algorithms are not capable of detecting the road conditions and changing tire

1



longitudinal/lateral force capacity accurately and fast enough during manoeuvre. In this
case, driver’s misinterpretation of these uncertainties could be finalized with the loss of
vehicle control or stability. In such a critical situation, the controller requires to avoid
any large deviation from trajectory requested by driver and instability issue by taking an
appropriate action.

Based on the above discussion, a system identifier must exist to detect any sudden
changes in vehicle dynamic using all measured data efficiently. This data is generally used
to identify the parameters of a system by a single model, but this process requires more time
than the designer wish to use on-line for control purposes. Instead of this slow process,
the identification can be accelerated using multiple models. To this end, the identifier
should know all possible cases(i.e, models) in advance. After identification of the vehicle
dynamics, the control needs to compute the optimal control input and implement it to
the vehicle system. The required computation power of the optimum control input can be
saved if all possible models are already known and controller gain for each known possible
model can be computed off-line in advance. Thus, the control system would be ready to
directly implement the proper and optimum input based on the changing situation in the
dynamic.

This thesis aimed at an improvement in the vehicle handling performance by making
the vehicle dynamic robust to uncertain non-linear tire characteristic and wide range of
changes in road condition without any estimation and additional sensor usage. The studied
vehicle was equipped with active front steering system and direct yaw control system that
uses independent in-wheel motor at corners to generate torque at vehicle center of gravity
(CG).

This thesis focused on multiple-model based adaptive optimal control schemes. The
idea of multiple-model in control systems has been put forward to achieve more compre-
hensive description and control of time-varying and/or uncertain systems. The intuitive
idea is the utilisation of different models to identify the system for various operational con-
ditions instead of a single model with a wide range of uncertainty in its dynamic equation.
Thus, the conservativeness of a single model with large uncertainties is decreased and more
realistic approach for the real systems is obtained.

In literature, there are two main approaches for multiple-model based system identifica-
tion, including switching and blending based approaches. The switching based approaches
have two major challenges. First, since at least one of the fixed models is required to be
sufficiently close to the original plant in the system parameter space at any time instant,
the corresponding number of fixed models may be large and grows exponentially with the
dimension of the unknown parameter vector [64]. Second, the models other than best
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matching one do not contribute to the estimation of the unknown parameters. Particu-
larly, the performance indices of the fixed models or any other data from all models are
not used efficiently to achieve a closer model. Thus, our objective was to utilize blending
based multiple-model system identification scheme for uncertain lateral vehicle dynamics.

For adaptive optimal control of the lateral vehicle motion, this thesis focused on two
different types of control scheme, including linear quadratic (LQ) and model predictive
control (MPC) based schemes. For the former, we could compute an LQ controller gain
off-line for each corresponding identification model in multiple-model system identifier
before operation, which saves computation power to generate control law in real-time
implementation. The control law could be adapted to the operation condition of the vehicle
based on the blending based multiple-model system identifier. For the latter, constraints
on the actuation systems of the vehicle could be addressed to guarantee that the requested
control input by the controller is feasible.

1.2 Contributions

Contributions of this thesis are outlined as follows.

• New blending multiple-model parameter identification schemes, utilizing gradient
and RLS methods, have been proposed for uncertain lateral dynamics of ground vehi-
cles equipped with active front steering system and in-wheel electric motor at each corner
which can generate torque vector at vehicle CG. The proposed multiple-model identifica-
tion schemes have been generalized for multiple-input multiple-output (MIMO) systems
with polytopic parameter uncertainties. In the proposed identification schemes, the un-
certain system is expressed in terms of polytopic linear differential inclusions (PLDIs).
For each vertex of such a polytopic inclusion, a fixed model is selected. Based on the
inputs and outputs of the system and designed models, the weights are generated by the
developed multiple-model adaptive laws utilizing convexity property of PLDIs. The de-
veloped identification schemes have been proven to be asymptotically stable for uncertain
linear time-invariant MIMO systems, and is shown to provide fast adaptation for even
uncertain linear time-varying (LTV) systems. The stability of the proposed scheme has
been studied and its effectiveness has been validated via simulations. Furthermore, the
proposed identification scheme is able to combined any model based control scheme. The
proposed identification schemes require much less number of models than other multiple-
model parameter identification approaches in literature to cover all uncertain parameter
space.
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• The proposed multiple-model parameter identification schemes have been utilized to
develop LQ based multiple-model adaptive control (MMAC) scheme for MIMO systems
with polytopic parameter uncertainties. In this scheme, for each identification model, there
is an optimal LQ controller gain which is computed off-line before the operation, which
saves the computation power in real-time. The generated control inputs from the designed
LQ controllers are blended on-line to adapt the control input to operation condition of the
system using proposed adaptive scheme. The stability analysis of the proposed optimal
MMAC scheme is provided. Furthermore, the developed LQ based MMAC scheme has been
implemented to vehicle motion control and tested via simulations. The results verified the
stability and demonstrated better tracking performance of the developed control scheme
compared to a non-adaptive LQ based optimal control scheme.

• The constraints on actuation systems of the vehicle are addressed to design an MPC
based MMAC. To determine the constraint of torque vectoring at vehicle CG, we utilized
the maximum and minimum torque and torque rate for each corner in addition to vehicle
kinematic structure. To have system matrices which is used for the prediction model of
MPC scheme, we provide a method to directly estimate uncertain system matrices on-line
via the proposed gradient based multiple-model parameter identification scheme. The de-
veloped MPC based MMAC scheme has been simulated using a high-fidelity vehicle model
in CarSim/Simulink environment. The results verified the stability and demonstrated su-
perior tracking performance of the developed control scheme over a non-adaptive MPC
scheme. Furthermore the developed MPC based MMAC scheme could be applied to any
MIMO system with polytopic parameter uncertainties.

1.3 Organization

Chapter 2 is dedicated to background and the literature review of lateral vehicle motion
dynamics and control. In this regard, the importance of the vehicle handling enhancement
and stability control in critical operation conditions is discussed. The literature review
focused on available control vehicle control systems and optimal vehicle motion control
schemes, especially MPC schemes, and MMAC approaches. For background information,
MPC theory and formulation, holistic corner control strategy, and MMAC approaches are
given.

In Chapter 3, the proposed blending based multiple-model on-line parameter identi-
fication schemes for MIMO systems with polytopic uncertain parameters are presented.
Stability of the proposed schemes are studied in detail. Parameter projection are applied
to the proposed adaptive identification schemes to guarantee that the convexity condition
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is satisfied during adaptation especially for fast transients in system parameters. Lastly,
the proposed adaptive schemes are used to design an LQ based optimal MMAC scheme for
polytopic uncertain linear systems. The stability analysis of the proposed optimal MMAC
scheme is studied.

In Chapter 4, the proposed LQ based optimal MMAC scheme in Chapter 3 is applied
to vehicle motion control. The objective is to improve vehicle handling performance and
to maintain stability during cornering manoeuvres. The studied vehicle is equipped with
active front steering system and direct yaw control system that uses independent in-wheel
motor at corners to generate torque at vehicle CG. The simulation application to uncer-
tain lateral vehicle dynamics of the proposed adaptive control scheme using the propose
RLS and gradient based identification methods, is presented in Simulink environments
comparing with nonadaptive optimal LQ controller for the system states with/without
measurement noise.

Chapter 5 addressed the constraints on actuation systems, including active front steer-
ing system and torque vectoring, for an MPC based MMAC design. The proposed control
scheme has been combined with a low level controller HCC to optimally distribute the
required CG torque to the corners. In order to validate our control algorithm, several crit-
ical driving scenarios were simulated using a high-fidelity vehicle simulation environment
CarSim/Simulink. Performance comparison of the proposed adaptive MPC controller with
nonadaptive MPC control scheme has been provided.

Finally, the conclusions of this thesis and a few future works to carry on this research
were presented in Chapter 6.
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Chapter 2

Background and Literature Review

This chapter presents a review on the literature of the lateral vehicle motion stability anal-
ysis and of various motion control approaches at first. The main focus of control scheme
is on multiple-model adaptive control approaches. Subsequent to literature review, the re-
quired background information on multiple-model adaptive control schemes is investigated
to be referred in the following chapters.

2.1 Lateral Vehicle Motion Dynamics and Stability

Stability analysis is mainly performed to find the conditions for stability of a vehicle and
stability margin. Many research have been conducted for stability analysis of vehicles.
A precise stability of vehicle dynamics was analysed in [33]. This study proposed phase
plane analysis for a 2-Degree of Freedom (DOF) bicycle model with Pacejka tire model
considering sideslip angle β and its rate β̇ as the state variables since the saddle and
equilibrium points move along a horizontal axis, β̇ vanishes. These phase plots provide
very comprehensive information for system dynamic response and stability analysis. The
authors concluded from the phase portraits that as the vehicle is steered in one direction,
the stability margin reduces in the steered direction and increases in the opposite direction.

The phase plane β− β̇ cannot be directly obtained in practice since commercial vehicles
have no hardware to measure both states. Thus, many researchers have considered vehicle
yaw rate instead of vehicle side slip angle rate in phase plane stability analysis since yaw
rate should be measured via stock sensors available in today’s vehicles. Furthermore, yaw
rate can be directly affected by current actuation systems.
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[30] considered a 2-DOF bicycle model for the stability analysis of directional behaviour
according to different steering angles and forward velocities. They used phase portrait of
yaw rate r - lateral velocity vy to observe the vehicle response. Tire lateral forces were
estimated by Pacejka tire model. The study concluded that as vehicle forward velocity
increases, the stability margin shrinks. Moreover, if the steering angel is applied, the
equilibrium point moves along the yaw rate axis till the equilibrium point disappears, which
implies that when the steering angle crossed a certain limit, the vehicle system becomes
unstable. A similar study [68] used a 2-DOF bicycle model using the phase plane portrait
β-r analysis. The authors observed that an increase in the front wheel steering angle
reduces the stability margin since the equilibrium point moves in the steered direction.

[74] introduced a nonlinear analysis of the steady-state vehicle dynamics called β-
method. The method produces the stabilizing yaw moment and lateral force for differ-
ent vehicle speeds, side-slip angles and front wheel steering angles. It is observed that
the front wheel steering angle has little effect on the yaw moment (reduced steerability)
at high slip angles. The study mainly focused on analysis of the effect of acceleration
and deceleration during steady-state cornering and development of a simple Direct Yaw
Control (DYC) scheme to attenuate the adverse effect of vehicle acceleration. The re-
sults showed that torque vectoring based control algorithm could improve the limits of the
vehicle manoeuvrability.

[71, 39, 73] performed similar stability analysis using a nonlinear tire model. They
simulated the open loop behavior of vehicle at different forward speeds and front/rear
steering angles. For these operation conditions, they defined stable and unstable regions.
These definitions are widely used in controller design for vehicle stability.

2.2 Vehicle Dynamic Model

For vehicle lateral stability and handling control, the vehicle sideslip angle β and the
yaw rate r are critical as stated in Section 2.1. In this section the lateral dynamics of a
ground vehicles with the capability of generating differential torque as shown in Fig. 2.1
is presented

Consider the dynamics of vehicle with in-wheel electric motors in Fig. 2.1,
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Figure 2.1: Vehicle model with one electric motor on each axle.

v̇y =− vxr +
1

m
[(Fyfl + Fyfr) cos δ + Fyrl + Fyrr

+ (Fxfl + Fxflr) sin δ]

ṙ =
1

Iz
[lf (Fyfl + Fyfr) cos δ − lr(Fyrl + Fyrr)

+ lf (Fxfl + Fxfr) sin δ],

+
ls

2Iz
[(Fxfl cos δ + Fxrl)− (Fxfr cos δ + Fxrr)]

− ls
2Iz

(Fyfl − Fyfr) sin δ,

(2.1)

where m, Iz, vy, vx, r are the vehicle mass, the vehicle moment of inertia about yaw
axis, lateral velocity, longitudinal velocity, yaw rate, respectively; δ, and the lengths lf ,
lr, ls refer to the steering angle of the front wheels, the distance from front axle to CG,
the distance from rear axle to CG, and the lateral distance between the left and right
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wheels, respectively; Fxi and Fyi(αi, Fzi, Cαi , ξi, µi) for (i = fl, fr, rl, rr) are longitudinal
and nonlinear lateral forces generated at each corner, respectively. Fyi is calculated for
each corner by using fiala tire model

Fyi =

−Cαiz +
C2
αi

3ξiµiFzi
|zi|zi −

C3
αi

27ξ2i µ
2
iF

2
zi

z3
i |αi| < αsli ,

−µiFzisgnαi |αi| ≥ αsli ,

zi = tanαi,

αsli = arctan
3ξiµiFzi
Cαi

,

(2.2)

where Cαi is the tire cornering stiffness; Fzi is the normal load on the tire; αi is slip angle
and calculated for the front and rear tires as follows

αf = arctan

(
β +

lfr

vx

)
− δ,

αr = arctan

(
β − lrr

vx

)
,

(2.3)

respectively; αsli is the saturation limit of slip angle. ξi is a derating factor representing
the reduced lateral force capacity due to the applied longitudinal force at the tire based
on “friction circle”, which is called combined-slip effect:

ξi =

√
(µiFzi)

2 − F 2
xi

µiFzi
, (2.4)

The rotational dynamics of each wheel can be used to achieve the longitudinal tire force
at each tire

Fxi =
Qi − Iwω̇i
Reff

, (2.5)

where Iw is the wheel moment of inertia, Reff is the tire rolling radius, and Qi is the
applied torques on tires.
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2.3 Lateral Vehicle Motion Control

This section is dedicated to the literature of lateral vehicle motion control. First, the lateral
vehicle motion control problem and the control systems are introduced. Then, the optimum
control strategies used in vehicle motion control are reviewed. Lastly, the conventional
multiple-model adaptive control methods are reviewed, and two of these strategies are
examined in detail as a background.

2.3.1 Lateral Vehicle Motion Control Problem and Systems

In the lateral vehicle motion control, the controller continuously has command on the
response of the vehicle to follow the desired vehicle states which are generally defined in
terms of the desired yaw rate and/or desired sideslip angle.

An important review in the lateral vehicle stability control can be found in [51]. The
main focus of this review was to improve desired yaw rate trajectory tracking in non-critical
driving conditions. The control goal was classified into three categories: yaw rate control,
sideslip angle control and yaw rate-sideslip angle control. The controllers utilize different
actuator systems, including differential braking [84, 23], active steering [16, 23], and active
torque distribution systems [38, 1]. The functionality of these control systems can be cat-
egorized as:

• Differential Braking Systems: Using the Anti-Lock Braking System (ABS) on the
vehicle to apply differential braking between the right and left wheels.

• Active Steering Systems: Providing additional steering angle to the driver’s wheel
steering angle to improve handling performance.

• Active Torque Distribution Systems: Generating required torque at each wheel
through torque distributor devices.

Stability Control by Differential Braking System

In differential braking systems, ABS technology on the vehicle is utilized to apply dif-
ferential torque between the right and left wheels in order to generate the required yaw
moment at vehicle CG for its stability. Differential torque at CG is generated by applying
more brake pressure at one side than the other side, generally using hydraulic modulators.
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Differential braking system in current commercial cars mostly utilizes four-wheel speeds,
yaw rate, steering angle, accelerometer, and brake pressure sensors. Researchers and au-
tomotive industry has interested in differential braking for vehicle stability control in last
decade. Due to simplicity, some research studies have focused on only the control of one
wheel to generate desired yaw moment torque at vehicle CG. On the other hand, there
are many works in literature which utilized multiple wheels control for differential braking
considering it as an optimization problem.

[17] designed a Linear Parametric Varying (LPV) robust yaw control algorithm using
a rear active differential braking system. The study proposed a cost-effective approach for
an active control of lateral dynamics of a four-wheel vehicle during braking considering the
effect of load changes. The proposed model and approach has been validated by experiment.

[85] developed a fuzzy logic-based yaw control algorithm using a brake-by-wire differ-
ential braking system. This study presented a nonlinear vehicle model in which wheel
dynamics has been considered for lateral vehicle dynamics. The results of this approach
showed that yaw rate is within reasonable range of tire capacity when the driver is assumed
to have enough quick response to the yaw rate disturbances to avoid instability.

[7] designed an ABS control scheme to maintain the tire slip ratios within the desired
range using an on/off control strategy for integrated vehicle stability control. The proposed
reconfigurable model for the vehicle and the braking system with variable parameters
provided a prototype and design platform.

[3] developed a Generalized Predictive Control (GPC) to predict the future yaw rate
and use control actions to minimize the yaw rate error utilizing a brake-by-wire system.
The dynamic model employed a simple linear tire model without tire saturation. The
effectiveness of the proposed control algorithm and actuation system is experimentally
tested for over-/under-steer conditions in mild maneuvers on packed snow.

Stability Control by Active Steering System

Active steering system assists to generate required lateral forces at front tires for vehicle
stability and desired yaw-rate. In this system, an electric motor in the joint adjusts the
front wheel’s angle for different driving conditions.

Some of the studies listed below use active steering systems in their works to obtain
desired values. [77] designed a Lyapunov based control allocation scheme for vehicle stabi-
lization using active steering and adaptive braking systems. The control structure included
three levels, high, intermediate, and low. The high-level module is used to generate desired
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yaw rate based on driver commands. The intermediate-level generates the desired longitu-
dinal tire slips and adjusts steering angle commanded by driver to achieve the desired yaw
rate. The low-level module control the longitudinal slip and estimate maximal tire-road
friction such that tire forces are distributed in a desirable way while satisfying actuator
constraints.

[69] developed an LMI based LPV controller utilizing active steering and braking sys-
tems. The control scheme used mainly differential braking, and if the braking system
exceeded its limits, the active steering helped to generate additional torque at vehicle
CG required for stability and tracking. Competency and robustness of the controller are
validated by with a high fidelity full vehicle simulation model.

[10] designed an integrated vehicle stability control with a state feedback linearization
technique using active steering and braking systems. The control scheme mainly corrects
steering, and if necessary, it applies differential braking. Experiment results shows that a
globally smooth and stable vehicle response was achieved.

Stability Control by Active Torque Distribution System

Even though differential braking and steering systems improve vehicle safety and perfor-
mance, they a couple of drawbacks. Introduction of braking during maneuver to regain
the vehicle stability cause a significant decrease in vehicle speed and thus loss of energy.
Furthermore, the decrease in speed might conflict with driver intention which could be an
acceleration scenario for emergency.

On the other hand, active steering system could not generate additional lateral tire
forces in the case of tire saturation and not respond to driver command given in [40]. Thus,
active torque distribution is an efficient and reliable solution for tracking and stability
problems. Active torque distribution systems used to distribute the required torque at
vehicle CG to vehicle corners. The system utilizes electric motors in Electric Vehicles
(EVs) and active differentials in conventional vehicles for torque distribution.

[21] developed a generalized mathematical model of an active differential dynamics
using a bond graph modeling technique. The paper considered different levels of model
complexity for an auto Limited Slip Differentials (LSD) with single clutch mechanisms.
The main superiority of LSD over conventional open differentials is the restriction of the
independency between the wheels on an axle. In the open differentials, the engine torque is
transmitted to a planetary gear set via drive shaft, and it is distributed between the right
and left wheels. However, in limited slip differentials, the engine power follows the path
of the least resistance. The independency design between the axle wheels can be achieved
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with a number of mechanical, electrical, and hydraulic systems given by [22]. In addition,
some patents and technical reports can be found in [72, 57] that were oriented to achieving
outstanding differential design features for active torque distribution.

Another actuation configuration for torque vectoring is to have independently actuated
electric in-wheel motor at the vehicle corners. For this system, the lateral stability control
system is usually consisting of two layers, including higher-level controller that computes
the required torque vector at vehicle CG to track desired states while maintaining lateral
stability, and lower-level controller that allocates the required torque vector at vehicle CG
to vehicle corners considering physical constraints [78].

Unlike other control approaches, optimization based control schemes have the advantage
of considering specific constraints on the dynamical system and on the control actions.
Model Predictive Control (MPC) and Holistic Corner Control (HCC) are discussed in the
following sections.

2.3.2 Model Predictive Control

This control approach is also known as Receding Horizon Control (RHC) and one of the
most popular optimal control strategies used in vehicle stability control. The method
utilizes a mathematical description (dynamic model) of a vehicle to predict the behavior
of the vehicle over a finite/infinite horizon of time [9]. MPC algorithm provides solution
for the optimal tracking control such that tracking error, discrepancies between predicted
and reference signals, can be minimized over a future horizon possibly imposing some
constraints [13].

MPC also considers the physical constraints while searching the optimal solution, which
has drawn the attention of many researchers not just in vehicle stability control but also
in vehicle cruise control to improve comfort and safety of a drive, fuel efficiency and path
following performance [46, 49, 20, 37]. Furthermore, the ability of making prediction of
MPC makes the controller robust against delays due to measurement and action process
[18, 45, 44, 50].

The prediction model used in MPC needs to be accurate enough to represent the sig-
nificant dynamics of the vehicle and simple enough for real-time implementation. Thus,
linear prediction models have been more preferable than complicated nonlinear models for
the industrial applications due to the limitation of computational hardware resources.
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Linear Model Predictive Control

The stability control of a vehicle dynamics is often required in the nonlinear range. How-
ever, nonlinear models hugely increases the computational cost, which has led many re-
searchers to use a successive linearization of a nonlinear model, and thus searches a sub-
optimal control solution with less computational effort.

[24] designed a sub-optimal linear MPC controller for autonomous path tracking prob-
lem through successive linearization around the current operating point of the nonlinear
vehicle dynamics. By the active steering system, the controller applied front steering an-
gles to track the desired trajectory on slippery roads. The effectiveness of designed control
scheme was demonstrated via simulation and experiments for up to 21 m/s on icy roads.
For the same control problem, [25] proposed a Linear Time Varying (LTV) MPC controller
for an active steering system of an autonomous vehicle. The paper provided a sufficient
stability condition for the closed loop system. The stability condition was derived for non-
linear discrete time systems and is added as an additional convex constraint to LTV MPC
design. The stability was examined for double lane change maneuvers at high longitudinal
speeds.

To avoid computational complexities of a nonlinear MPC, [13] proposed another lin-
earization method based on Set Membership. The performance of this approximation based
controller was investigated with software-in-the-loop simulations and compared with the
original nonlinear model. Although the controller performance results for the both models
are very similar, the approximated linear model MPC is more feasible than nonlinear one
for real-time implementation.

Robust Model Predictive Control

Robustness of MPC controllers against model uncertainties and noise is a crucial issue
to be solved. MPC performance may be adversely affected by unmodelled dynamics or
parameter uncertainties of prediction model. Therefore, [53, 82, 67, 19, 86, 41] presented
various approaches to guarantee the stability of controlled system in presence of model
uncertainties. These methods requires an appropriate description of the uncertainties in
model. A review study [6] was performed on robust MPC techniques in the literature,
and the conclusion was drawn that there were two different approaches for robust MPC
stability, indirect vs. direct.

In indirect method the performance objective and uncertainty description are specified.
Direct method introduces a kind of robust contraction constraint to guarantee shrinking
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of the state for all plants in an uncertainty set. However, the study also emphasized that
due to extensive computational effort the both techniques were unsuitable for real-time
implementation except for a few cases. Thus, only a few applications have been reported
in vehicle stability [13], although robust MPC has been studied excessively in the theory.

Several studies have been done recently that improved the robust MPC algorithms.
[8] proposed an explicit robust MPC for LPV systems and guarantee the stability and
optimality by a suitable selection of the terminal state constraint and terminal cost. The
optimal control problem was solved backward by Dynamic Programming. [80] proposed
a parameter dependent control law and solved a convex optimization problem using LMI
technique. The same problem has been solved for asymmetric constraints in [81].

Model Predictive Control Theory and Formulation

An observer estimates the system state vector x̂p utilizing the plant input vector u and
measurement vector yp and feed the estimated state vector to optimizer. The optimizer
generates the optimal control input signal u such that the error between the estimated
state signal x̂p and reference signal r are minimized over a future horizon. For prediction
of future behavior of the system over a finite prediction time horizon Np, its dynamic model
and the manipulated inputs changing over a finite control time horizon Nc are utilized.

A prediction model for a system, assuming all system states are measurable, is expressed
in the following standard continuous state space model

ẋp(t) = Ap(t)xp(t) +Bp(t)u(t) +Dp(t), (2.6)

where Ap(t) ∈ Rn×n, Bp(t) ∈ Rn×r are system matrices, and D is known disturbance
matrices at time t; xp(t) ∈ Rn and u(t) ∈ Rr are the (measurable) system state, and the
system input, respectively.

The prediction model (2.6) can be discretized at time t by Euler approximation with
sample time Ts in the following form

xp[t+ 1] = Ad[t]xp[t] +Bd[t]u[t] +Dd[t], (2.7)

where

Ad = I + ApTs,

Bd = BpTs,

Dd = DTs.

(2.8)

15



The discrete system model (2.7) can be used for prediction over a finite time horizon
Np ∈ Z+.

The optimization problem is set to find a control input series u over a control horizon
Nc ∈ Z+ to minimize the error between the actual system state vector xp and the desired
state vector xdes subject to some state and input constraints. To this end, the optimization
problem is addressed as follows:

JMPC = argmin
u

Np∑
k=1

(xp[t+ k|t]− xdes[t+ k|t])T Q (xp[t+ k|t]− xdes[t+ k|t])

+
Nc−1∑
k=0

u[t+ k|t]T R u[t+ k|t]

(2.9)

subject to

xp[t+ k + 1|t] = Ad[t+ k|t]xp[t+ k|t] +Bd[t+ k|t]u[t+ k|t] +Dd[t+ k|t],
xp[t+ k|t] ∈ X , k = 1, · · · , Np,

u[t+ k|t] ∈ U , k = 1, · · · , Nc,

(2.10)

where Np is the number of steps in the prediction horizon. In the right-hand side of (2.9),
the first term is related to the tracking error; the second term is to adjust the control input
for minimization of the control effort. The weighting matrices Q, R, are design matrices
to tune the controller, where Q is positive semi-definite, R is positive definite. The state
and control input constraints are defined with X and U symbols, respectively.

x[t + k|t] denotes the predicted state trajectory at time step t + k (k = 1, · · · , Np) for
given current state x[t] utilizing the prediction model (2.7); u[t+k|t] denotes the prospective
input trajectory at time step t + k for k = 1, · · · , Nc, and solution to minimize the cost
function JMPC in (2.9). Based on the MPC theory, at each time step, the first sample of
the control input sequence is applied to the system and the rest are discarded.

The prediction model presented (2.7) is utilized to form (2.9) in terms of the current
state and prospective control actions. Assume that the control and prediction horizons
have the same length (i.e. Nc = Np). By the batch approach, the future system states are

X = Sxx0 + SuU + SD, x0 = x[0], (2.11)
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where X =
[
xT [1] xT [2] · · · xT [Np]

]T
, U =

[
uT [0] uT [1] · · · uT [Np − 1]

]T
, and

Sx =


Ad
A2
d

...

A
Np
d

 , Su =


Bd 0 · · · 0
AdBd Bd · · · 0

...
. . . . . .

...

A
Np−1
d Bd · · · · · · Bd

 , SD =


Dd 0 · · · 0
AdDd Dd · · · 0

...
. . . . . .

...

A
Np−1
d Dd · · · · · · Dd

 .

The desired states over the prediction horizon isXdes =
[
xTdes[1] xTdes[2] · · · xTdes[Np]

]T
.

Thus, (2.9) can be written in the following compact form,

JMPC = argmin
U

(X −Xdes)
T Q (X −Xdes) + UT R U, (2.12)

where Q = blockdiag{Q,Q, · · · , Q} and R = blockdiag{R,R, · · · , R}. Substituting (2.11)
into (2.12), the original optimization problem (2.9),(2.10) are converted into the following
constrained quadratic programming problem

JMPC = argmin
U

1

2
UTHU + F TU + Υ, (2.13)

subject to

xp[t+ k|t] ∈ X , k = 0, · · · , Np,

u[t+ k|t] ∈ U , k = 0, · · · , Np − 1,
(2.14)

where

H =STu QSu + R,

F =2
(
xT0 S

T
x QSu + STDQSu −XT

desQSu
)
,

Υ =xT0 S
T
x QSxx0 + 2xT0 S

T
x QSD + STDQSD

− 2XT
desQSD − 2XT

desQSxx0 +XT
desQXdes,

After solving the problem (2.13), (2.14), the first input vector of the series of optimal
control inputs U is applied to the system (2.6).
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Considering Input Rate in MPC Design

U = S∆u∆U + U−1, (2.15)

where ∆U =
[
∆uT [0] ∆uT [1] · · · ∆uT [Np − 1]

]T
in which ∆uT [k] = u[k] − u[k − 1],

U−1 =
[
uT [−1] uT [−1] · · · uT [−1]

]T
in which u[−1] denotes the input applied in pre-

vious time step, and

S∆u =


I 0 · · · 0
I I · · · 0
...

. . . . . .
...

I · · · · · · I

 .
Substituting (2.15) into (2.11), the following dynamic system is obtained

X = Sxx[0] + SuS∆u∆U + SuU−1 + SD. (2.16)

To consider the input rate, the cost function (2.12) is adjusted as follow

JAMPC
= argmin

∆U
(X −Xdes)

T Q (X −Xdes) + UT R U + ∆UT R2 ∆U, (2.17)

where R2 = blockdiag{R2, R2, · · · , R2}. Substituting (2.16) into (2.17), the following
constrained quadratic programming problem is obtained

JAMPC
= argmin

∆U

1

2
∆UTHA∆U + F T

A∆U + ΥA, (2.18)

subject to

xp[t+ k|t] ∈ X , k = 0, · · · , Np,

u[t+ k|t] ∈ U , k = 0, · · · , Np − 1,

u[t+ k|t]− u[t+ k − 1|t] ∈ ∆U , k = 0, · · · , Np − 1,

(2.19)

where
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HA =STu S
T
∆uQS∆uSu + ST∆uRS∆u + R2,

FA =2(SuU−1 + Sxx0 + SD)TQSuS∆u − 2XT
desQSuS∆u + 2UT

−1RS∆u,

ΥA =(SuU−1 + Sxx0 + SD)TQ(SuU−1 + Sxx0 + SD) + UT
−1RU−1

− 2
(
XT
desQ(SuU−1 + Sxx0 + SD)

)
.

The solution of the QP problem in (2.18) with the constraints in (2.19) provides the
series of optimal control input increments ∆U . The first input vector of ∆U is added to
the control input applied in previous time step u[−1]. The resultant total control input is
applied to system (2.6).

2.3.3 Holistic Corner Control Strategy

This approach was proposed to optimally distribute torque to each wheel (corner) to con-
trol the vehicle stability [15, 70]. The control aim is to adjust the necessary tire forces
to achieve minimum path error and thus to improve the comfort of drive on various road
conditions. The control algorithm is applied in real-time through explicit analytical op-
timum solution. The cost function structure was adopted from [28]. This novel strategy
avoids a complex real-time implementation of a combined-slip tire model and results in a
much more efficient computation. The controller is designed as two-layer. In first layer,
the difference between the required forces and/or moments for the vehicle stabilization
and actual ones are determined. Then, the longitudinal and lateral force command are
generated for each wheel in the second layer. The tire ellipse constraint was imposed to
the optimization problem. Since HCC scheme does not use a model in the optimal force
distribution layer, it is inherently robust to model uncertainties.

HCC Formulation

The desired CG forces are determined from driver’s inputs, including steering wheel angle
and driving/braking torque values. These desired CG forces are denoted by

Fdes =
[
Fxdes Fydes Mzdes

]T
, (2.20)

where Fxdes , Fydes , and Mzdes are the desired CG longitudinal force, lateral force, and yaw
moment, respectively. The actual forces on CG are denoted by
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F =
[
Fx Fy Mz

]T
, (2.21)

where Fx, Fy, and Mz are the actual CG longitudinal force, lateral force, and yaw moment
acting on the vehicle CG, respectively. The total tire force vector is defined as

f =
[
Fxfl Fyfl · · ·Fxrr Fyrr

]T
, (2.22)

where Fxi, Fyi are the longitudinal and lateral tire forces for i = fl, fr, rl, rr representing
the corresponding corner of the vehicle. In this case, actual CG force F can be expressed as
a function of all tire forces, i.e., F (f). The corresponding adjusted CG forces that reduces
the error between the desired Fdes and the actual F is given as follows:

F (f + ∆f) u F (f) + Af∆f. (2.23)

Af is a Jacobian matrix that relates the tire-level forces to actual forces at the CG. Each
entry of (2.22) can be derived using vehicle motion equations that links the relationship
between tire forces and CG.

The vector of control actions required to reduce the error between (2.21) and (2.20) is
defined as follows:

∆f =
[
∆Fxfl ∆Fyfl · · ·∆Fxrr ∆Fyrr

]T
, (2.24)

Since it is assumed that tire lateral forces directly is not adjusted, the following relation
is obtained:

∆Fyi = 0, i = fl, fr, rl, rr. (2.25)

The CG force error vector ECG is defined as the difference between actual CG forces
and the desired CG forces given by

ECG =

 Fxdes − Fx(F + ∆f)
Fydes − Fy(F + ∆f)
Mzdes −Mz(F + ∆f)

 . (2.26)

Thus, the HCC optimization is designed to minimize the following cost function over
∆f :

20



JHCC(∆f) =
1

2
(ECG − Af∆f)T WE (ECG − Af∆f) +

1

2
∆fTW∆f∆f, (2.27)

where WE,W∆f are diagonal weight matrices for CG force error and control effort, re-
spectively, and selected such that the objective function in (2.27) maintains its positive
definiteness:

WE =

WFx 0 0
0 WFy 0
0 0 WMz

 , (2.28)

W∆f = diag [Wxfl,Wxfr,Wxrl,Wxrr] , (2.29)

where the individual components correspond to weights on traction motor effort for indi-
vidual wheels.

Assuming that the tire forces are inside the friction circle. The solution for the mini-
mization problem is derived as follows:

∆f =
[
W∆f +

(
ATfWE

)
Af
]−1 [

ATf (WEECG)
]T
, (2.30)

unless the following condition is satisfied

det
[
W∆f +

(
ATfWE

)
Af
]
6= 0. (2.31)

This solution is most commonly referred to as a closed-form solution. After calculating
the unknown tire force control vector ∆f , differential torque ∆Q that corresponds to this
tire force control vector is calculated using the following:

∆Qi = Reff∆fi, i = fl, fr, rl, rr. (2.32)

2.4 Multiple-Model Adaptive Control

Classical adaptive control and linear robust control methodologies can generally guarantee
stability and robustness for small parametric or non-parametric uncertainties (within a
certain limited range) in system modeling. However, parametric uncertainties can become
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large in practice because of changes in operating conditions, component aging or failure,
or variations in plant dynamics due to an external influence. Such large parametric un-
certainties may cause poor transient response or instability. Furthermore, in conventional
adaptive control requires persistently exited input to guarantee for the identification of
true values of unknown parameters, which is very restrictive in critical condition in which
safety is crucial. MMAC strategies have been developed to address such issues for larger
ranges of system variations and uncertainties.

The idea of using multiple models in control design provides more comperehensive de-
scription and better control performance of uncertain time-varying systems. The intuitive
idea is to use a set of models to represent the system behaviour for various operational
conditions instead of a single model with a wide range of uncertainty in its dynamic equa-
tion. This approach allows a significantly less conservative setting for design of a set of
controllers, one for each system model in the aforementioned system model set, to form a
supervised switched or blending control structure. As an early example of multiple model
control systems, multiple-model Kalman filters were introduced in the 1970s, aiming to
improve the accuracy of state estimation [4, 43].

[52] utilized switching in the framework of adaptive control. Direct switching and indi-
rect switching were proposed as two new techniques. In direct switching [27, 55], the output
of the system defines the time of the switching to the next controller in a pre-determined
sequence. On the other hand, indirect switching [54] determines both when and to which
controller to switch. [58, 59, 60] considered set-point regulation for uncertain linear SISO
systems and proposed a high-level controller called a supervisor to orchestrate the switch-
ing of a sequence candidate set-point controllers such that the system output tracked a
costant reference input. These paper assumed that the uncertain system belonged to a
combination of a sub-families of systems and each sub-family had a linear controller to
achieve set-point regulation. In these papers, output-squared estimation errors used for
comparison and a candidate controller with the smallest performance index was selected
to generate control input. [31] considered a continuous-time linear SISO system with large
modelling errors. The paper employed a family of linear candidate controllers supervised
by a high-level switching logic. This paper mainly focused on the switching logics in the
literature. The paper also emphasized the modularity in switching based multiple-model
adaptive control, i.e., the switching logic, the multiple-model system identifier and the
candidate controllers can be independently designed, which provides grater flexibility in
applications. [32] compared switching based multiple-model adaptive control with con-
ventional adaptive control techniques and emphasized the advantages of switching based
control schemes, such as the simplicity of parameterization, computational cost, capable
of handling non-convex or discrete parameter sets, and modularity. The paper also di-
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vided the switching logic into two categories: those based on process estimation (using
either certainty equivalence or model validation) and those based on direct performance of
candidate controllers. However, the paper mostly focused on estimator-based supervisory
control based on certainty equivalence. The Chapter 6 of [48] was dedicated to control of
systems with large modelling uncertainty, and it presented switching control algorithms
for some specific problems such as stabilization of nonholonomic systems, and switching
adaptive control of uncertain systems.

The certainty equivalance based multiple-model system identification has also attracted
attention for estimation of unkonwn vehicle dynamics since it requires less sensor data
and does not require persistent excitated input for identification. [76] utilized switching
based multiple-model system identifier for the real time estimation of unknown constant
parameters of vehicle dynamics. The paper used 2-DOF linear lateral vehicle dynamics,
sideslip angle and yaw-rate, for the identification of front and rear tire cornering stiffnesses,
and longitudinal position of vehicle CG. These unknown parameters were assumed to
lie in a certain continuous parameter space, and the paper considered 140 identification
models to cover the parameter space. The proposed multiple-model estimation method was
simulated and it was observed that all of three constant parameters were exactly estimated.
The same paper used 1-DOF linear roll vehicle dynamic for the identification of uncertain
spring stiffness, damping coefficient, and the vertical position of vehicle CG. Similarly, the
closed parameter space of these uncertain parameters was known and the paper designed
240 models for the identification. In simulation results, precise estimations were achieved
for the spring stiffness and the vertical CG position, while the damping coefficient was
estimated with 20% parametric error. The paper also presented a comparison of multiple-
model approach with recursive linear least-square method for the online identification of
the vertical CG position. The multiple-model approach achieved faster and more accurate
convergence.

To avoid unsatisfactory response due to switching between fixed controllers, the switch-
ing and tuning idea in multiple-model adaptive control was proposed and improved in
[62, 63]. The main idea was to use switching logic for fast adaptation, and then tuning (us-
ing adaptive law) the controller gain to improve performance. Furthermore, the switching
based multiple-model adaptive control strategies were for uncertain LTI systems, whereas
switching and tuning can be implemented to uncertain LTV systems. The authors of the
paper [76] utilized the switching and tuning idea in [75] for identification of the same un-
known constant parameters with the same number of identification models. However, there
was no comparison with these two different approach.

In [36, 26], parameter switching based performance improvement was applied for back-
stepping and sliding mode type controllers, respectively. Transient performance improve-
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ment for a class of systems along with a quantitative evaluation was investigated in [14].
[79] used only adaptive identification models in order to control nonlinear systems in
parametric-strict-feedback form and provided a model convergence proof. Recently in
[42, 5] the authors proposed the adaptive mixing control method that makes available the
use of the full suite of powerful design tools from LTI theory and also they combined the
controller mixing strategy with a multiple parameter estimation architecture plus a hys-
teresis switching logic in order to eliminate the dependence on the initial conditions of the
parameter estimator. [12] studied the stability of mixing based multiple LQ controllers for
LTV decoupled MIMO systems.

In the field of conventional multiple-model adaptive control, there have been some
signifant works [29, 65] which focused on the number of adaptive and fixed estimation
models, and the source of information for every model. These papers proposed to blend
the predefined controller gains based on the identification errors from all model. This
approah has led to a faster convergence and to better performance than other previous
multiple-model based techniques [61]. The stabiliy analysis of these new works have been
focused in [66]. However, the control scheme has been developed for LTI and LTV SISO
systems.

In Fig. 2.2, the general architecture of a conventional multiple-model adaptive control
scheme in the scope of this chapter is given. There is an unknown time-varying/invariant
plant whose input u and output yp, a multiple-model system identifier consisting of N iden-
tification models, and a set of controllers corresponding to designed identification models.
Identification of the unknown plant is performed based on either comparison or weight-
ing of identification errors. These approaches also determine the control input applied to
the system by either switching to the corresponding controller or blending all predefined
controller gains. In the following, the conventional multiple-model system identifier is pre-
sented at first. Then, the switching based control and adaptive law based control schemes
are examined in detail.

2.4.1 Conventional Multiple-Model System Identifier

In this section, the conventional multiple-model system identifier in Fig.2.2 is presented.
These models could be either fixed or adaptive. If each designed models consists of fixed
parameters (called fixed models), these models may relate to different conditions where the
plant operates. Since each model gives different output for the same input, these outputs
can be considered as the response of the plant with different parameters.

In adaptive models, the parameters of the identification models are online updated.
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These adaptive models are used to start adaptive laws with different initial parameter
estimates. If one of the models is closer than others in initial parameter estimates to the
original plants, this identification model may achieve faster convergence speed. As shown
in Fig.2.2, the same input simultaneously applied to N multiple stable identification models
and original plant. The output of corresponding identification model is yi(t). Thus, the
identification error is defined as

ei(t) = yi(t)− yp(t), (2.33)

and the tracking control error is

ec(t) = yp(t)− yd(t). (2.34)

In this study, it assumed that the states of the unknown plant in Fig.2.2 are fully
accessible. Thus, the system output can be view as yp(t) = xp(t).

Various multiple-model control approaches have been proposed as an alternative to
conventional adaptive control in the literature. Two different approaches are presented
here due to relation with the multiple-model system identifier and adaptive control schemes
proposed in this study.

2.4.2 Switching Based Control

The effectiveness of the switching based control strategies in the literature has been verified
for the identification and control of uncertain LTI systems. Thus, this section considers an
uncertain LTI MIMO system in the form

ẋp(t) = Apxp(t) +Bpu(t), (2.35)

where Ap ∈ Rn×n, Bp ∈ Rn×r are unknown constant system matrices; xp(t) ∈ Rn and
u(t) ∈ Rr are the (measurable) system state, and the system input, respectively.

The N fixed models in Fig. 2.2 are distributed to cover the region of uncertainty in
parameter space of Ap and Bp. Each model i, for i = 1, · · · , N , is formulated in the form

ẋi(t) = Aixi(t) +Biu(t), xp(t0) = xi(t0) ∈ Rn, (2.36)
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Figure 2.2: Conventional multiple-model adaptive control approaches.

having the same input as the unknown plant (2.35), where Ai ∈ Rn×n, Bi ∈ Rn×r are known
constant parameter matrices. The number N of fixed models to be used can be determined
based on many factors influencing the uncertainties in the plant system in (2.35). Note that
all designed identification models in (2.36) are assumed to be stable. The identification
output error (or state error in our case) for each designed model is defined as

ei(t) = xp(t)− xi(t). (2.37)

The identification errors in (2.37) are used in cost functions (performance indices) to
compare model matching at any time instant t. The cost function Ji(t) is typically defined
in one of the forms
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Ji(t) = ||ei(t)||2, (2.38a)

Ji(t) =
∫ t

0
||ei(τ)||2dτ, (2.38b)

Ji(t) = α||ei(t)||2 + β
∫ t

0
||ei(τ)||2dτ, β, α > 0 (2.38c)

Ji(t) = α||ei(t)||2 + β
∫ t

0
e(−λ(t−τ))||ei(τ)||2dτ, λ > 0, (2.38d)

to define, respectively, the instantaneous, the integral (or least squares), a weighted
instantaneous + integral, an weighted instantaneous + integral with forgetting factor λ. A
high level decision maker called the supervisor evaluates and compares the cost functions
Ji(t) to identify the best matching model as the one having the minimum Ji(t) at time
instant t. The supervisor’s output is denoted by the index signal σi(t) ∈ {1, . . . , N},
defined by

σi(t) = arg min
i∈{1,··· ,N}

Ji(t).

For each Model i, there is a fixed robust Controller i for meeting the tracking or
regulation task. Utilizing the best matching model index σi(t) generated by the supervisor,
at each time t, the fixed Controller σi(t) is enabled. If Model σi(t) is sufficiently close to
or perfectly matches with the plant, then Controller σi(t) stabilizes the plant.

Selection and distribution of the N plant models in parameter space is essential in
guaranteeing existence of a set of N robust controllers to meet the control requirements
for the system parameter range of interest. If the selected models are not close enough to
each other in parameter space, the overall system in Fig. 2.2 can be subject to instability
in switching transitions.

The main idea in the switching based control schemes with fixed models is that there
should be a fixed controller for each possible value of an uncertain system parameter. This
fixed controllers should have enough robustness to stabilize the nearby plants when the
perfect match between the plant and one of the models happen.

2.4.3 Adaptive Law Based Control

In practice, the conventional switching based approaches have two major challenges. First,
since at least one of the fixed models is required to be sufficiently close to the original
plant in the system parameter space at any time instant t, the corresponding number N
of fixed models may be large and grows exponentially with the dimension of the unknown
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parameter vector [64]. Second, the models other than best matching one do not contribute
to the estimation of the unknown parameters. Particularly, the performance indices of
the fixed models or any other data from all models are not used efficiently to achieve a
closer model. To use such data, [29] has proposed a method called second level adaptation
for plant identification using a set of fixed identification models, for each of which there
is a fixed controller gain. The resultant control gain is obtained by blending these fixed
control gains based on the identification errors. Thus, the method combines information
from all fixed models for the plant parameter estimation by using very few models (n+ 1
as compared to cn, where n is the dimension of unknown parameter vector) for uncertain
LTI/LTV SISO systems.

[29] has developed the second level adaptation method for uncertain LTI SISO systems
in companion form using a set of adaptive identification models at first. This method is
developed using the indirect model reference adaptive control scheme. The result from the
method with multiple adaptive identification models formed the theoretical background of
the second level adaptation with fixed identification models. Then, the paper extended
the method to the control of uncertain LTV SISO systems in companion form using fixed
identification models.

Adaptive Identification Models for Uncertain LTI SISO Systems

An uncertain LTI SISO plant, whose all state variables are accessible, is described by

ẋp = Apxp(t) + bu(t), (2.39)

where xp(t) ∈ Rn, u(t) ∈ R. Ap and b are in the following companion form

Ap =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
a1 a2 a3 · · · an

 , b =


0
0
0
...
1

,


where the parameters ai are unknown. The unknown plant parameter vector is defined as

θTp = [a1, a2, · · · , an]. (2.40)
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To design a direct model reference adaptive control, the reference model is described
as follow:

ẋd = Amxd(t) + br(t), (2.41)

where xd(t) ∈ Rn, r(t) ∈ R are the desired state trajectory, and uniformly bounded refer-
ence input, respectively. Am is the reference model dynamics and in companion form. The
last row of Am, defined as θTm, is designed to make Am stable.

N adaptive identification models are simultaneously used to estimate the unknown plant
parameter vector θp or (Ap). Each identification Model i (i = 1, · · · , N) is considered to
have the form

ẋi(t) = Amxi(t) + [Ai(t)− Am]xp(t) + bu, xi(t0) = xp(t0), (2.42)

θ̇i(t) = −eTi (t)Pbxp(t), θi(t0) = θi0, (2.43)

where Ai(t) is constrained to be in companion form with the last row equal to estimate
θTi (t) of the unknown plant parameter vector θTp , generated by the adaptive law (2.43). P
is positive definite and solution of the following Lyapunov equation

ATmP + PAm = −I. (2.44)

It is assumed that that θp is in the convex hull of the vectors θi (or equivalently Ap)
lies in the convex hull of the matrices Ai, that is Ap ∈ Co{A1, A2, · · · , AN}, where Co{·}
stands for convex set. Thus, the theorem 2.1 in [29] is used

Theorem 2.1. If N adaptive identification models described in (2.42) with initial con-
ditions xi(t0) = xp(t0) are adjusted using adaptive laws (2.43) with initial conditions
θi(t0) and xi(t0) = xp(t0), and if the plant parameter vector θp lies in the convex hull
of θi(t0)(i ∈ Ω), then θp lies in the convex hull of θi(t)(i ∈ Ω) for all t ≥ t0.

This theorem follows that if

θp(t0) =
N∑
i=1

αiθi(t0), (2.45)
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N∑
i=1

αiei(t0) = 0, (2.46)

where αi > 0 and
N∑
i=1

αi = 1, then it also satisfies the equation

θp =
N∑
i=1

αiθi(t), (2.47)

N∑
i=1

αiei(t) = 0. (2.48)

Therefore, αi is considered as an alternative parametric model of the unknown LTI
plant in (2.39), and the identification the system is performed by estimating the constant

vector α =
[
α1 α2 · · · αN

]T
, where (2.48) is utilized.

If the unknown parameter vector θp is in Rn, then at least n+ 1 models are required to
cover this uncertain parameter set by a convex hull in practice. For the case N = n + 1,
the relation (2.48) becomes

n+1∑
i=1

αiei(t) = 0, (2.49)

where ei(t) are identification errors, which are continuously monitored. (2.49) is expressed
in matrix form

E(t)α = 0, E(t) =
[
e1(t) e2(t) · · · en+1(t)

]
∈ Rn×n+1. (2.50)

By subtracting en+1 from both sides of (2.50), the following property is obtained

ER(t)αR = −en+1(t),

ER(t) =
[
e1(t)− en+1(t) e2(t)− en+1(t) · · · , en(t)− en+1(t)

]
,

αR =
[
α1 α2 · · ·αn

]
,

(2.51)
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The αR can be computed using the inversion of matrix ER(t) and αn+1 = 1−
∑n

i=1 αi
by convexity property for any time instant. For robustness, the estimate α̂R(t) of αR can
also be determined by the following differential equation;

˙̂αR(t) = −ET
R(t)ER(t)α̂R(t)− ET

R(t)en+1(t) (2.52)

with α̂n+1(t) = 1 −
∑n

i=1 α̂i(t). Since the constant vector αR satisfies the algebraic
equation

ET
R(t)ER(t)αR + ET

R(t)en+1(t) = 0, (2.53)

the estimate error α̃R(t) = α̂R(t)− αR satisfies the differential equation

˙̃αR(t) = −ET
R(t)ER(t)α̃R(t). (2.54)

By the Lyapunov equation V (α̃TR(t)α̃R(t)), the condition

dV (α̃R(t))

dt
= −‖ER(t)α̃R(t)‖2 < 0 (2.55)

is followed, which guarantees the asymptotic stability of (2.54) (i.e., α̃R asymptotically
converges to zero). The convergence rate depends only on the positive definite matrix
ET
R(t)ER(t) and thus on the location of the n models represented by θ1, θ2, · · · , θn.

After computing (or estimating) the vector α (or α̂), the control input applied to the
actual plant and identification models is adjusted with respect to weights of the models as
shown in Fig. 2.2.

Fixed Identification Models for Uncertain LTI/LTV SISO systems

Second level adaptation with multiple adaptive models provides fast convergence for un-
certain LTI SISO systems. However, it cannot be extended for uncertain LTV systems
without reinitialization periodically. Thus, [65] proposed to use multiple fixed models for
the identification of uncertain LTI and LTV SISO systems. With a few changes, the result
in the preceding procedure can still be used. To this end, adaptive models in the previous
analysis replaces with fixed models, and hence θi(t) (or Ai(t)) becomes constant θi (or Ai)
for any time instant. To obtain the estimate α̂R, the same equations (2.51, 2.52) could be
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used for LTI SISO systems. To extend this approach for LTV SISO systems, α becomes
time-varying parameter α(t) representing the time-variation in the parameter vector θp(t)
(or Ap(t)). Then, (2.51) is converted into

ER(t)αR(t) = −en+1(t). (2.56)

For the dynamic estimation, the equation (2.52) is still valid and α̂n+1(t) = 1 −∑n
i=1 α̂i(t) by convexity property for any time instant. The applied control input is con-

tinuously tuned based on the estimate α̂(t) or computed α(t).
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Chapter 3

Blending based Multiple-Model
Adaptive Control for Linear Systems
with Polytopic Uncertainities

In this chapter, we develop multiple fixed model blending based adaptive parameter identi-
fication schemes for linear systems with polytopic parameter uncertainty utilizing gradient
and RLS based methods. The developed adaptive schemes are further combined with a
bank of predefined multiple LQ based optimal controllers to design an optimal MMAC
scheme. In the proposed blending based MMAC design, the uncertain system is expressed
in terms of PLDIs. For each vertex of such a polytopic inclusion, a fixed model is se-
lected and a corresponding LQ controller is designed. Based on the input and output of
the system, the controller gains of models are blended using the weights generated by the
developed multiple-model adaptive law. The asymptotic stability of the proposed adaptive
identification and the developed LQ based optimal MMAC schemes are proved for LTI
MIMO systems with polytopic parameter uncertainties.

3.1 Preliminaries

The purpose of this section is to give certain definitions and properties of the norms and
functions used throughout this thesis. We will use the following corollary of Barbalat’s
Lemma and definition for the stability analysis of the proposed adaptive identification and
control schemes.
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Lemma 3.1. [34, 35] if f ,ḟ ∈ L∞ and f ∈ Lp for some p ∈ [1,∞), then f(t) → 0 as
t→∞.

Definition 3.1. [35] The exponentially weighted L2 norm of a function x of time t, for a
given constant δ ≥ 0, is defined as

‖xt‖2δ ,

(∫ t

0

e−δ(t−τ)xT (τ)x(τ)dτ

)0.5

.

Further, x ∈ L2δ denotes that ‖xt‖2δ exists. For finite time t, the L2δ norm satisfies the
following properties:

(i) ‖xt‖2δ ≥ 0

(ii) ‖αxt‖2δ = |α|‖xt‖2δ for any scalar α

(iii) ‖(x+ y)t‖xt‖2δ ≤ ‖xt‖2δ + ‖yt‖2δ

(iv) ‖αxt‖2δ ≤ ‖xt‖2δ supt |α(t)| for any α ∈ L∞.

3.2 Problem Statement

Consider a linear polytopic uncertain MIMO system in the form

ẋp(t) = Ap(η)xp(t) +Bp(η)u(t), (3.1)

where Ap(η) ∈ Rn×n and Bp(η) ∈ Rn×r are plant matrices dependent on the uncertain
system parameter vector η ∈ Rq ; xp(t) ∈ Rn and u(t) ∈ Rr are the (measurable) system
state, and the system input, respectively. The control objective is to design control signal
u(t) such that xp(t) converges to zero, under the following PLDI assumption:

Assumption 3.1. There exist N known system matrix pairs Ai ∈ Rn×n, Bi ∈ Rn×r,
i = 1, · · · , N , for some known integer N > 0, such that, for any possible η, we have

[Ap(η) Bp(η)] ∈ Co{[Ai Bi] : i = 1, · · · , N}, (3.2)

where Co{·} denotes the convex hull of a set of matrices.
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3.3 Blending Based Multiple-Model Identification

To address the control problem stated in section 3.2, we propose a new blending based
multiple-model adaptive parameter identification scheme, as depicted in Fig.3.1. In this
scheme, the uncertain linear system (3.1) is considered as a PLDI whose vertices are known
per Assumption 1. For each vertex i ∈ {1, · · · , N}, one fixed model is considered in the
form

ẋi(t) = Aixi(t) +Biu(t). (3.3)

Then, using the convexity property of PLDI, a blending based adaptive law is developed.
The convexity property (3.2) can be reexpressed as

Ap(η)xp(t) +Bp(η)u(t) =
N∑
i=1

wi(t) [Aixp(t) +Biu(t)] , (3.4)

where wi(t) refer to the weights of the corresponding models at time instant t, satisfying

N∑
i=1

wi(t) = 1 and wi(t) ≥ 0. (3.5)

wi are constant for uncertain LTI plants, i.e., if η is constant.

Noting that the fixed parameter matrices Ai, Bi are already known, estimation of the
unknown weights wi is equivalent to identification of the unknown matrices Ap(η) and
Bp(η).

3.3.1 Selection of Linear Parametric Models

The linear parametric models required for online identification of the system (3.1) with
polytopic uncertainty are selected, considering (3.1) in the form of linear parametric model
([34]):

z(t) = Θp(η)Φ(t), (3.6)

where
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Θp(η) =
[
Ap(η) Bp(η)

]
,

Φ =
1

s+ λ

[
xp
u

]
,

z =
s

s+ λ
xp, λ > 0,

(3.7)

where s denotes the differentiation operator and λ is a constant design parameter. The N
fixed models in (3.3) are parameterized similarly, as follows:

zi(t) = ΘiΦ(t), Θi =
[
Ai Bi

]
for i = 1, · · · , N, (3.8)

where zi = s
s+λ

xi. The (output) estimation errors for the N fixed models are defined as

εi(t) = z(t)−ΘiΦ(t), i = 1, · · · , N. (3.9)

Using convexity property (3.4), the following relations are obtained:

Θp(t) =
N∑
i=1

wi(t)Θi,
N∑
i=1

wi(t)εi(t) = 0, (3.10)

which can be reexpressed in matrix form as

E(t)W (t) = 0, E(t) =
[
ε1(t) ε2(t) · · · εN(t)

]
∈ Rn×N ,

W (t) =
[
w1(t) w2(t) · · · wN(t)

]T ∈ RN .
(3.11)

By (3.5) and (3.11), the weight of the last model, Model N can be computed as wN =
1−
∑N−1

i=1 wi. Thus, we obtain the following equation by subtracting εN(t) from both sides
of (3.11):

ER(t)WR(t) = −εN(t),

ER(t) = [ε1(t)− εN(t) · · · εN−1(t)− εN(t)] ∈ Rn×(N−1),

WR(t) =
[
w1(t) w2(t) · · · wN−1(t)

]T ∈ RN−1.

(3.12)

By (3.12), the estimate ŵi(t) of wi(t) can be obtained either batch linear algebraic
calculation or using differential equation.
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3.3.2 Estimation of the Weighting Vector

The matrix ER(t) in (3.12) is only dependent on the output of designed models since its
all columns are of the form εi(t) − εN(t). If the matrix ER(t) in (3.12) is full-rank, then
WR(t) can be algebraically estimated as

WR(t) = −(ET
R(t)ER(t))−1ET

R(t)εN(t) for n ≥ N − 1,

WR(t) = −ET
R(t)(ER(t)ET

R(t))−1εN(t) for n < N − 1,
(3.13)

which also satisfies

ET
R(t)ER(t)WR(t) + ET

R(t)εN(t) = 0. (3.14)

Since differential equations are more robust to rank deficiency and measurement noise
effects than algebraic methods, they are more preferable in practice. Utilizing (3.13), the
estimate ŴR(t) of WR is generated applying the following recursive adaptive law:

˙̂
WR(t) = −ΓET

R(t)ER(t)ŴR(t)− ΓET
R(t)εN(t), (3.15a)

ŵN(t) = 1−
N−1∑
i=1

ŵi(t), (3.15b)

where Γ ∈ R(N−1)×(N−1) is a diagonal matrix with positive constant entries, to tune the
convergence speed, where (3.15b) is based on (3.5).

Remark 3.1. The adaptive law (3.15a) is a gradient algorithm minimizing the cost (Lya-
punov) function

V (W̃R(t)) =
1

2
W̃ T
R (t)Γ−1W̃R(t).

For the cases where any noise or inaccuracies exist in the measured data, least-squares
based identification schemes are expected to provide better performance than gradient
based schemes.
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3.3.3 Recursive Least-Squares Based Adaptation

A recursive least-squares based alternative to the gradient adaptive law (3.15) can be
designed, aiming to minimize the following integral cost function:

J(ŴR) =
1

2

∫ t

0

e−β(t−τ)W̃ T
R (τ)ET (τ)E(τ)W̃R(τ)dτ

+
1

2
e−βt(ŴR − ŴR0)TQ0(ŴR − ŴR0),

(3.16)

where ŴR0 = ŴR(0) is the initial estimate; β ≥ 0 is a design parameter acting as a
forgetting factor; Q0 = QT

0 ∈ R(N−1)×(N−1) penalizes the initial parameter estimation
error. The corresponding recursive least-squares based adaptive algorithm is obtained,
similarly to the procedure in [34], as

˙̂
WR = −P (ET

RεN + ET
RERŴR), (3.17a)

Ṗ = βP − PET
RERP, P (0) = P0 = Q−1

0 , (3.17b)

ŵN(t) = 1−
N−1∑
i=1

ŵi(t) (3.17c)

where P0 ∈ R(N−1)×(N−1) is a diagonal positive definite matrix. The LS based on-line
update of the adaptive gain matrix P leads to significant improvement in the convergence
speed and robustness to measurement noise, as will be observed in Section 4.4 through
simulations. However, when β > 0, P (t) may grow without bound since Ṗ satisfy Ṗ > 0
because βP > 0 and the fact that PET

RERP is only positive definite. To avoid this issue,
we modify the least-squares algorithm (3.17) as follows:

˙̂
WR = −P (ET

RεN + ET
RERŴR), (3.18a)

Ṗ =

{
βP − PET

RERP if ||P (t)|| ≤ R0,

0 otherwise
(3.18b)

ŵN(t) = 1−
N−1∑
i=1

ŵi(t) (3.18c)

where ||P || ≤ R0 and R0 is a constant upper bound for ||P ||, which guarantees P ∈ L∞.
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3.3.4 Stability and Convergence

The adaptive laws (3.15) and (3.18) can be used for both LTI and LTV systems. In the
following theorems, Theorem 3.2 and Theorem 3.3, we establish the stability of (3.15) and
(3.18), respectively, for uncertain LTI systems, for which WR is constant.

Theorem 3.2. Consider the MIMO system (3.1). Assume that Θp(η) = [Ap(η) Bp(η)]
is constant. If Θp ∈ Co{Θi : i = 1, · · · , N} and Φ, Φ̇ ∈ L∞, the adaptive law (3.15a)
guarantees that

(i) εi, ε̇i (i = 1, · · · , N),
˙̂
WR, ŴR, ERW̃R ∈ L∞

(ii) ERW̃R ∈ L2

(iii) ER(t)ŴR(t) + εN(t) asymptotically converges to 0.

Proof. Consider a constant WR that satisfies (3.12), whose existence is guaranteed by
Assumption 3.1. For such WR, (3.12) can be rewritten as ERŴR + εN − ERW̃R = 0, for
the estimation error W̃R = ŴR −WR. Hence, ERW̃R = ERŴR + εN . Multiplying both
sides of (3.14) with Γ, we obtain

ΓET
R(t)ER(t)WR + ΓET

R(t)εN(t) = 0. (3.19)

Adding (3.19) to both sides of (3.15a), the following dynamic equation is obtained:

˙̃WR(t) =
˙̂
WR(t) = −ΓET

R(t)ER(t)W̃R(t). (3.20)

Hence, the Lyapunov function

V (W̃R(t)) =
1

2
W̃ T
R (t)Γ−1W̃R(t), (3.21)

satisfies

dV (W̃R(t))

dt
= −‖ER(t)W̃R(t)‖2 ≤ 0, (3.22)

which implies V ≥ 0 is a non-increasing function of time, the limt→∞ V (W̃R) = V∞ exists.
This further implies that W̃R ∈ L∞ and hence ŴR ∈ L∞. Further, since Φ̇ ∈ L∞ implies
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z ∈ L∞ by definition and Φ ∈ L∞, by definition we have εi, ε̇i ∈ L∞ for all i ∈ {1, . . . , N}.
Hence, ER(t) is bounded and (3.20) implies that

˙̂
WR, ERW̃R ∈ L∞, completing proof of

(i). To prove (ii), observe that ERW̃R ∈ L2 since, by (3.22), we have∫ ∞
0

‖ER(t)W̃R(τ)‖2dτ = −
∫ ∞

0

V̇ (τ)dτ = V0 − V∞, (3.23)

where V0 = V (W̃R(0)).

Thus, the proofs of (i) and (ii) are completed. (iii) follows by applying Lemma 2.1
with f(t) = ER(t)W̃R(t).

Theorem 3.3. Consider the MIMO system (3.1). Assume that Θp(η) = [Ap(η) Bp(η)] is
constant. If Θp ∈ Co{Θi : i = 1, · · · , N} and Φ, Φ̇ ∈ L∞, the adaptive law (3.18a,3.18b)
guarantees that

(i) εi, ε̇i (i = 1, · · · , N),
˙̂
WR, ŴR, ERW̃R, P ∈ L∞

(ii) ERW̃R ∈ L2

(iii) ER(t)ŴR(t) + εN(t) asymptotically converges to 0.

Proof. As in the case of Theorem 3.2, (3.12) can be rewritten as ERW̃R = ERŴR + εN ,
and hence, similar to (3.20), we have

˙̃WR(t) =
˙̂
WR(t) = −P (t)ET

R(t)ER(t)W̃R(t). (3.24)

Using the identity d
dt
P−1 = −P−1ṖP−1, (3.18b) can be rewritten as

Ṗ =

{
βP − PET

RERP if ||P (t)|| ≤ R0,

0 otherwise.
(3.25)

Defining the Lyapunov-like function

V (t) =
1

2
W̃ T
R (t)P−1(t)W̃ T

R (t), (3.26)

(3.18a), (3.24), and (3.25) lead to

V̇ (t) =

{
−1

2
W̃ T
RE

T
RERW̃R − 1

2
βW̃ T

RP
−1W̃R if ||P || ≤ R0

−W̃ T
RE

T
RERW̃R otherwise

(3.27)
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The assumption Φ, Φ̇ ∈ L∞ implies that ER, E
T
RER ∈ L∞ as well. Therefore, (3.25) implies

that ||P || is both upper and lower bounded and P (t) is always positive definite. Hence,
since V̇ ≤ −1

2
‖ER(t)W̃R(t)‖2 ≤ 0, ∀t ≥ 0, by (3.27), we have V , W̃R, ŴR, and ERW̃R

bounded, and ERW̃R ∈ L2, which completes proof of (i) and (ii). (iii) follows by applying
Lemma 3.1 with f(t) = ER(t)W̃R(t).

Remark 3.2. The convergence rate is dependent on the positive constant parameters of
Γ and the definiteness of ET

R(t)ER(t), which depends on the location of N vertex models
defining the convex parameter set.

Remark 3.3. Although the adaptive laws (3.15) and (3.18) guarantee
∑N

i=1 ŵi(t) = 1, they
do not guarantee that wi(t) ≥ 0, i = 1, 2, · · · , N .

To guarantee both of the conditions in (3.5) simultaneously, we apply parameter pro-
jection on (3.15a) and (3.18a) in the following section.

3.3.5 Parameter Projection

The constraints in (3.5) are formulated in a compact form by the compact set

S =
{
ŴR ∈ RN−1 | g(ŴR) ≤ 0

}
(3.28)

where g : RN−1 → R is the function defined as follows to capture the constraints in (3.5):

g(χ) = −min

{
χ1, · · · , χN−1, 1−

N−1∑
1

χi

}
, (3.29)

where χ =
[
χ1, · · · , χN−1

]
.

We denote S0, ∂S as the interior and the boundary of S, respectively. ŴR(0) is chosen
to be in S. Applying the gradient projection method, the adaptive law obtained as follow:

˙̂
WR = Pr(−Γ (ET

RεN + ET
RERŴR)), (3.30)

where the Pr(·) operator imposes Algorithm 1.
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Algorithm 1 Gradient Algorithm with Projection

if (ŴR ∈ S0) or (ŴR ∈ ∂S and
˙̂
W T
R∇g ≤ 0) then

˙̂
WR = −Γ (ET

RεN + ET
RERŴR)

else
˙̂
WR =− Γ (ET

RεN + ET
RERŴR)

+Γ∇g
(
∇gTΓ∇g

)−1∇gT Γ (ET
RεN + ET

RERŴR)
end if

The gradient projection method is also adopted in the case of the least-squares as follows:

˙̂
WR = Pr(−P (ET

RεN + ET
RERŴR)), (3.31a)

Ṗ =

{
βP − PET

RERP if ||P (t)|| ≤ R0,

0 otherwise
(3.31b)

where the Pr(·) operator imposes Algorithm 2.

Algorithm 2 Recursive Least Squares with Projection

if (ŴR ∈ S0) or (ŴR ∈ ∂S and − (P ∇J)T∇g ≤ 0) then
˙̂
WR = −P (ET

RεN + ET
RERŴR)

else
˙̂
WR =− P (ET

RεN + ET
RERŴR)

+P∇gT
(
∇gP∇gT

)−1∇g P (ET
RεN + ET

RERŴR)
end if

Theorem 3.4. Theorem 3.2 and Theorem 3.3 still hold if the adaptive laws (3.15a) and
(3.18a) are replaced with (3.30) and (3.34a), respectively.

Proof. The proof follows the same rationale and steps as in the proof of Theorem 3.10.1
of [34]
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3.3.6 Discretization of Continuous-Time Adaptive Law

The implementation of an online identifier or controller to physical systems requires a
discrete-time design due to digital computers. The design of the discrete-time online iden-
tifier can be done using a discrete-time approximation of the proposed continuous-time
adaptive laws (3.15) and (3.18) based on state parametric model (3.7) and assume that
zi(t), Φ(t) are measured at times t = kT , where k = 0, 1, 2, ... and T is the sampling
period, i.e.,

zi[k] = ΘiΦ[k], (3.32)

where zi[k] , zi[kT ], Φ[k] = Φ[kT ]. Let discretize
˙̂
WR(t) in the continuous adaptive law

(3.15) using the Euler backward approximation method, i.e.,

˙̂
WR(t) ∼=

ŴR[k]− ŴR[k − 1]

T
.

Then, the discrete form of the gradient adaptive law (3.15) is obtained as

ŴR[k] = −Γ1

(
ET
R[k]ER[k] ŴR[k − 1]− ET

R[k]εN [k]
)

+ ŴR[k − 1], (3.33a)

ŵN [k] = 1−
N−1∑
i=1

ŵi[k], (3.33b)

where Γ1 = ΓT . The discrete form of the modified RLS adaptive law (3.18) is obtained by
following the design procedure [34] as

ŴR[k] = −P [k]
(
ET
R[k]εN [k] + ET

R[k]ER[k]ŴR[k − 1]
)

+ ŴR[k − 1], (3.34a)

P [k] =

{
1
β1

(
P [k − 1]− P [k−1]ETR [k]ER[k]P [k−1]

β1+ER[k]P [k−1]ETR [k]

)
if ||P [k]|| ≤ R0,

0 otherwise
(3.34b)

where 0 < β1 < 1 is the forgetting factor.
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3.4 Proposed Multiple-Model Adaptive Control

We utilize the adaptive scheme developed in Section 3.3 to design an optimal MMAC
scheme for polytopic uncertain linear systems. An LQ optimal controller is designed for
each identification model in (3.8), which enables the optimal fixed control gains to be off-
line computed for all identification models (i.e., all operation conditions) in advance. Then,
the adaptive control law is generated by using the proposed blending based multiple-model
adaptive scheme in Section 3.3.

Since all designed (Ai, Bi) in (3.8) are fixed and known, an LQ controller gain for each
fixed model, Ki, can be computed offline for i = 1, · · · , N . This eliminates the computa-
tional expense of online optimal control gain calculation. Assuming that all designed fixed
models in (3.8) are controllable or stabilizable, an LQ controller gain, Ki is designed for
each model such that xp(t) goes zero as time t goes infinity. The cost functions are defined
as

Ji(ui) =
1

2

∫ ∞
0

xTp (t)Qxp(t) + uTi (t)Rui(t)dt, i = 1, · · · , N ; (3.35)

where Q is constant symmetric positive semi definite matrix; R is constant symmetric
positive definite matrix. The optimal input, ui(t), is computed as

ui(t) = −R−1BT
i Pixp(t) = −Kixp(t) (3.36)

where Pi is the positive definite and the solution of the following Algebraic Riccati equation

ATi Pi + PiAi − PiBiR
−1BT

i Pi +Q = 0. (3.37)

Since the original system (3.1) is an uncertain linear MIMO system and its parameter
may not exactly be the same with one of the designed fixed models in (3.8), we propose to
blend the control inputs in (3.36) using the estimated weighting parameters ŵi generated by
the adaptive law (3.15a). Then, the proposed adaptive LQ control input for the polytopic
uncertain system (3.1) is designed as follow:

u(t) = −
N∑
i

ŵi(t)Kixp(t). (3.38)

Hence, by (3.5) the following closed-loop system is obtained
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ẋp(t) =

(
Ap(η)−Bp(η)

N∑
i

ŵi(t)Ki

)
xp(t),

=

(
Ap(η)−

N∑
i

wi(t)Bi

N∑
i

ŵi(t)R
−1BT

i Pi

)
xp(t),

(3.39)

Assumption 3.2. Â− B̂K̂ is Hurwitz for any time instant.

45



The proposed optimal MMAC scheme is shown in Fig.3.1.

Figure 3.1: Blending based optimal MMAC scheme.
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3.4.1 Stability Analysis

The stability of the closed-loop plant (3.39) is guaranteed by the following theorem under
Assumption 3.2.

Theorem 3.5. The adaptive control scheme (3.9) ,(3.12), (3.15), (3.38) guarantees that
all signals in the closed-loop plant (3.39) are bounded and the state xp converges to zero
asymptotically with time under Assumption 3.2.

Proof. To establish the stability of the closed-loop system (3.39), we rewrite (3.1) by adding
and subtracting Âxp(t) + B̂u(t) as

ẋp(t) = Âxp(t) + B̂u(t) + Ãxp(t) + B̃u(t), (3.40)

where

Â =
N∑
i

ŵi(t)Ai, B̂ =
N∑
i

ŵi(t)Bi,

Ã =Â− Ap(η) =
N∑
i

w̃i(t)Ai,

B̃ =B̂ −Bp(η) =
N∑
i

w̃i(t)Bi.

The closed-loop system (3.39) can be re-expressed using (3.38) and (3.40) by

ẋp(t) = (Â− B̂K̂)xp(t) + Ãxp(t) + B̃u(t), (3.41)

where K̂ =
∑N

i ŵi(t)Ki. In this case, the exponential stability of the nominal part ((3.41)

with Ã ≈ 0 and B̃ ≈ 0) is established since (Â− B̂K̂) is Hurwitz.

In the next step, the boundedness of the inputs due to the parameter estimation in (3.41)
is established. The estimation error equation is

ξ(t) =z(t)−
N∑
i

ŵi(t)Θiφ(t) =
N∑
i

w̃i(t)Θiφ(t)

=
1

s+ λ
(Ãxp(t) + B̃u(t)).

(3.42)
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Operating both sides of (3.42) with s + λ and using the property of differentiation, i.e.,
s(xy) = ẋy + xẏ where s is the differential operator, the following is obtained:

(s+ λ)ξ(t) = (Ãxp(t) + B̃u(t)) +
1

s+ λ
( ˙̃Axp(t) + ˙̃Bu(t)). (3.43)

Therefore,

(Ãxp(t) + B̃u(t)) = (s+ λ)ξ − 1

s+ λ
( ˙̃Axp(t) + ˙̃Bu(t)), (3.44)

which is substituted in (3.41) to obtain

ẋp(t) = (Â− B̂K̂)xp(t) + (s+ λ)ξ(t)− 1

s+ λ
( ˙̃Axp(t) + ˙̃Bu(t)). (3.45)

If we define ξ̄(t) = xp(t)− ξ(t), (3.45) becomes

˙̄ξ(t) =(Â− B̂K̂)ξ̄(t) + (λI + Â− B̂K̂)ξ(t)

− 1

s+ λ
( ˙̃Axp(t) + ˙̃Bu(t)),

xp(t) =ξ̄ + ξ.

(3.46)

Equation (3.46) has a homogeneous part that is exponentially stable and an input that

is small in the sense of ξ, ˙̃A, ˙̃B ∈ L2, where the boundedness of ˙̃A, ˙̃B follows from the

boundedness of ˙̃W , guaranteed by the adaptive law (3.15a).

To analyse (3.46), the properties of the L2δ norm, denoted by ‖ · ‖2δ, is used [35].

The fictitious normalizing signal mf satisfies

m2
f (t) = 1 + ‖xp(t)‖2

2δ + ‖u(t)‖2
2δ ≤ 1 + c1‖xp(t)‖2

2δ, (3.47)

for some c1, δ > 0 because of the control law (3.38) and the fact that B̂, P̂ ∈ L∞, where

P̂ =
N∑
i

ŵiPi.

Because xp(t) = ξ̄(t) + ξ(t), we have ‖xp(t)‖2δ ≤ ‖ξ̄(t)‖2δ +‖ξ(t)‖2δ, which is used in (3.47)
to obtain
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m2
f (t) ≤ 1 + c2‖ξ̄(t)‖2

2δ + c2‖ξ(t)‖2
2δ (3.48)

for some c2 > 0. From (3.46), for c3 > 0 we have

‖ξ̄(t)‖2
2δ ≤ c3‖ξ(t)‖2

2δ + c3‖ ˙̃Ax̄p(t)‖2
2δ + c3‖ ˙̃Bū(t)‖2

2δ, (3.49)

where

x̄p(t) =
1

s+ λ
xp(t), ū(t) =

1

s+ λ
u(t).

By the properties of the L2δ norm, it can be shown that mf bounds from above x̄p(t), ū
and therefore it follows from (3.48) and (3.49) that

m2
f (t) ≤ 1 + c3‖ξ(t)mf (t)‖2

2δ + c3‖ ˙̃Amf (t)‖2
2δ + c3‖ ˙̃Bmf (t)‖2

2δ, (3.50)

which implies that

m2
f (t) ≤ 1 + c3

∫ t

0

e−δ(t−τ)gT (τ)g(τ) m2
f (τ)dτ, (3.51)

where

gTg = ξT ξ + ‖ ˙̃A‖2
2δ + ‖ ˙̃B‖2

2δ.

Since ξ, ˙̃A, ˙̃B ∈ L2 implies that g ∈ L2, the boundedness of mf follows by applying the
Bellman-Gronwall Lemma.

Now, mf ∈ L∞ implies that x̄p, ū and thus, φ ∈ L∞. By the fact that ξ, ˙̃A, ˙̃B, x̄p, ū ∈ L∞,
we establish that ξ̄ ∈ L∞ from (3.46), which implies that xp ∈ L∞, and therefore, all
signals in closed-loop system (3.41).

We proceed to establish xp → 0 as t → ∞. Using (3.46), it is established that ξ̄ ∈ L2

which together with ξ ∈ L2 imply that xp = ξ̄ + ξ ∈ L2. As (3.45) implies that ẋp ∈ L∞,
it follows from Lemma 3.1 that xp(t)→ 0 as t→∞.
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3.5 Summary and Remarks

In this chapter, two blending based multiple-model online parameter identification schemes
for MIMO systems with polytopic uncertain parameters have been developed including
gradient and RLS based identification schemes. The proposed schemes use multiple linear
parametric fixed models in the system identifier design. Each model represents different
extreme operation condition by using different system parameters. In other words, each
model is an extreme point (a vertex) of a convex polytope which is a compact convex set
with a finite number of extreme points. Thus, the designed multiple fixed models guarantee
that the uncertain system lies in the convex hull of the design multiple fixed model.

Multiple linear fix models approach provides a more comprehensive description of Non-
linear and/or Time-varying linear systems. For the given same input and state vectors,
discrepancies between the responses of designed multiple models and the response of un-
certain system are continuously observed. These discrepancies indicate how each designed
model is close to actual model in terms of system parameters based on the Certainty
Equivalence principle. Thus, these discrepancies and the convexity property are used to
blend the designed models using a weighting vector for accurate estimation of the uncertain
system. Estimation of the weighting vectors can be achieved by gradient method.

The proposed adaptive schemes provide fast adaptation for even uncertain LTV systems
without reinitialisation. The proofs of asymptotic stability of the developed identification
schemes for linear time-invariant MIMO systems were presented. We apply parameter
projection on the proposed adaptive schemes to guarantee that the convexity condition
is satisfied during adaptation especially for fast transients in system parameters. We also
provide discrete version of the proposed adaptive schemes to be used in MPC control design
later. Lastly, we utilize the proposed adaptive schemes to design an optimal MMAC scheme
for linear systems with polytopic parameter uncertainties. An LQ optimal controller is
designed for each identification model, which enables the optimal fixed control gains to be
off-line computed for all identification models in advance. All LQ controllers utilize the
same design parameters Q, R. The adaptive control law is generated by using the proposed
blending based multiple-model adaptive scheme. Furthermore, the stability analysis of the
proposed optimal MMAC scheme is provided.
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Chapter 4

Multiple-Model Adaptive Vehicle
Motion Control

In this chapter, the proposed optimal MMAC algorithm is applied to motion control of an
uncertain lateral vehicle dynamics for validation.

4.1 Dynamic Model with Polytopic Parameter Uncer-

tainties

𝐹𝑦𝑟
𝐹𝑥𝑟

𝐹𝑦𝑓
𝐹𝑥𝑓

𝐶𝐺

𝛽
𝑀𝑧

𝑙𝑓𝑙𝑟

𝑉
𝛼𝑓 𝛿

𝛼𝑟

Figure 4.1: Bicycle model.

For vehicle lateral stability and handling control, the vehicle sideslip angle β and the yaw
rate r are critical as stated in Section 2.1. In this section the lateral dynamics of a ground
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vehicles with the capability of generating differential torque is presented for control and
simulation purpose.

The lateral dynamic equations of the 2-DOF bicycle model, lateral and yaw motion, in
Fig. 4.1 can be written as:

v̇y = −vxr +
1

m
[Fyf cos δ + Fyr + Fxf sin δ) , (4.1)

ṙ =
1

Iz
(lfFyf cos δ − lrFyr + lfFxf sin δ) + ηx

Mz

Iz
, (4.2)

where Mz, Fxf , Fyf , and Fyr are yaw moment about z-axis, front longitudinal, front lat-
eral and rear lateral tire forces. ηx parametrizes uncertain time-variation in longitudinal
tire force capacities, which has direct effect on the yaw moment Mz on vehicle CG. The
uncertain front lateral and rear lateral tire forces computed by

Fyf = ηfCfαf ,

Fyr = ηrCrαr,
(4.3)

where Cf , Cr are total nominal tire cornering stiffness coefficients for front and rear tires.
ηf , ηr parametrize the uncertain time-variation in cornering stiffness in front and rear tires,
respectively; αf , αr are the front and rear tire slip angles, respectively, and for small angles
computed as

αf =

[
δ −

(
vy + rlf
vx

)]
,

αr =

(
rlr − vy
vx

)
.

(4.4)

The sideslip angle is defined as the angle between the vehicle lateral velocity and the
longitudinal velocity

β =
vy
vx
. (4.5)

By rearranging and simplifying (4.1) -(4.5), the state-space model of the uncertain
lateral dynamics is expressed in the following state-space form:
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ẋp(t) =Ap(η)xp(t) +Bp(η)u(t),

Ap(η) =Ap1 + ηfAp2 + ηrAp3,

Bp(η) =ηfBp1 + ηxBp2,

(4.6)

where xp(t) = [β, r]T , u(t) = [δ,Mz]
T , η = [ηf , ηr, ηx]

T are the vehicle system state, input,
and uncertain parameter vectors, respectively; δ is the total steering angle of the front
wheels including driver command δd and corrective steering control input δc (i.e., δ =
δd + δc);

Ap1 =

[
0 −1
0 0

]
, Ap2 =

[ −Cf
mvx

lfCf
mv2x

−lfCf
Iz

−l2fCf
Izvx

]
,

Ap3 =

[
−Cr
mvx

lrCr
mv2x

lrCr
Iz

−l2rCr
Izvx

]
, Bp1 =

[
Cf
mvx

0
lfCf
Iz

0

]
,

Bp2 =

[
0 0
0 1

Iz

]
.

(4.7)

The uncertainty ranges of the parameters in η are assumed to be known as

η
f
< ηf < η̄f , η

r
< ηr < η̄r, η

x
< ηx < η̄x. (4.8)

Note that although the system in (4.6) is linear in the state variables, it is a nonlinear
system with respect to unknown parameter variations which are represented by η.

4.2 Multiple-Model Identifier Design

Since there are three uncertain parameters, we need 23 polytopes, i.e., 8 fixed models
(Ai, Bi) to be designed using the constant known bound values of uncertain parameters in
(4.8) such that

(Ap(η), Bp(η)) ∈ Co{(Ai, Bi) : i = 1, · · · , 8}. (4.9)

Assuming that the states, side-slip angle β(t) and yaw rate r(t), are perfectly measured
using or computed for any instant using the fusion of vehicle on-board sensors, includ-
ing inertia measurement unit (IMU), steering wheel angle, wheel speed sensors, Global
positioning system (GPS), etc., the identification error in (3.9) is defined as
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εi(t) = z(t)−ΘiΦ(t), i = 1, 2, · · · , 8, (4.10)

with

Θi =
[
Ai Bi

]
,

Φ(t) =
1

s+ λ

[
β r δ Mz

]T
,

z(t) =
s

s+ λ

[
β
r

]
.

Thus, we obtained the following equation

ER(t)WR(t) = −ε8(t),

ER(t) =
[
ε1(t)− ε8(t) · · · ε7(t)− ε8(t)

]
WR(t) =

[
w1(t) w2(t) · · · w7(t)

]T
,

(4.11)

where the estimate ŴR(t) of WR(t) is continuously generated by either gradient based
adaptive law (3.30) or RLS based adaptive law (3.34) and the weight of the last model,
Model 8, can be computed by ŵ8(t) = 1−

∑7
1 ŵi(t).

4.3 LQ Optimal Robust MMAC Design

Multiple model LQ controllers are designed for the tracking problem of a vehicle under
uncertain time-varying operation conditions. First, the desired response of a vehicle under
critical conditions are defined. By these defined state trajectories, the trajectory tracking
problem for the vehicle is converted into regulation problem. Then, for each designed
model (Ai, Bi) in (4.9) (i.e., each operation condition), an LQ controller is designed. The
control gains for LQ controllers of fixed models are calculated off-line in advance, which save
the time spent for the computation of optimum control input in corresponding operation
condition. The overall diagram of the proposed LQ based MMAC is shown in Fig. 4.2.
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Figure 4.2: Proposed overall LQ based MMAC diagram.

The objective of tracking control is to improve vehicle handling performance and main-
taining stability during cornering manoeuvres, i.e., the vehicle is expected to achieve the
desired yaw rate rd while maintaining the closeness of side-slip angle to zero, i.e., βd = 0.
The desired vehicle yaw rate is defined depending on the steering angle, vehicle velocity
and vehicle geometry [47] as follows:

rd =
vx

L+ kus v2
x

δd, (4.12)

where δd, L, g are the steering angle of the front wheels commanded by driver, the vehi-
cle wheel base, the gravitational constant, respectively, and kus is the desired understeer
gradient.

For fixed models (Ai, Bi) in (4.9), we design LQ controllers. To this end, the tracking
problem is converted into a regulation problem by defining the control error as

ec(t) = xd(t)− xp(t), xd(t) =
[
βd rd

]T
, (4.13)

where xd(t) is the desired state trajectory including desired yaw-rate rd and side-slip angle
βd. Now, we have the following general LQR problem for each designed Model i:
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ėc(t) = Aiec(t) +Biui(t), ec(t0) = 0, i = 1, · · · , 8. (4.14)

The optimum controller gain for each fixed model, Ki is computed offline based on the
bound values of the uncertain parameter vector η before the operation. For the LTI error
dynamics in (4.14), the cost functions are defined as

J(ec, ui) =
1

2

∫ ∞
0

eTc (t)Qec(t) + uTi (t)Rui(t)dt, i = 1, · · · , 8, (4.15)

where ec ∈ Rn, u ∈ Rr, are state and input vector; Q ∈ Rn×n is symmetric positive semi
definite matrix; R ∈ Rr×r is symmetric positive definite matrix. Then the optimal input
for each model, ui(t), is computed as

ui(t) = −R−1BT
i Pix(t) = −Kiec(t), (4.16)

where Pi is the positive definite and the solution of the following Riccati equation

ATi Pi + PiAi − PiBiR
−1Pi +Q = 0. (4.17)

For the discrete time case, the optimal input ui[k] is

ui[k] = −R−1BT
i Pi ec[k] = −Ki ec[k] (4.18)

where Pi is the solution of discrete time Riccati equation

ATi PiAi − ATi PiBi(B
T
i PiBi +R)−1BT

i PiAi +Q = Pi. (4.19)

Thus, the optimal input, ui[k], for each model is computed as

ui[k] = −R−1
i BT

i Pi ec[k] = −Ki ec[k], i = 1, · · · , 8. (4.20)

The control inputs (4.20) are blended to obtain the overall control input to be applied
to the lateral vehicle dynamics (4.6) as follow:

ui[k] = −
8∑
i=1

ŵi[k] Ki ec[k]. (4.21)
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4.4 Simulations

In this section, simulation tests are performed on the proposed multiple model approach
to identify the uncertain time-varying lateral vehicle dynamics in Simulink environment.
The parameters of vehicle used in the simulation are m = 1140 kg, Iz = 1020 kgm2,
Cf = 86849 N/rad, Cr = 90950 N/rad, lf = lr = 1.165 m.

For the simulations, it is assumed that η =
[
ηf ηr ηx

]T
are changing within certain

ranges as stated in (4.8) during operation. These lower and upper bounds are determined
as η

f
= η

r
= η

x
= 0.1, and η̄f = η̄r = η̄x = 1.3, respectively.

The design parameters of fixed LQ controllers are selected the same for all fixed models
(operation condition) as Q = diag([4, 104]), R = diag([104, 1]). The tuning parameters,
Γ in (3.15a), P0, R0, and β in (3.18b) are diag([1, 1, · · · , 1]), diag([2, 2, · · · , 2]), 0.01, and
0.96, respectively. The value of λ in (3.7) is 5. The operational vehicle speed is constant
at vx = 100 kph. Lastly, for performance comparison purpose, a single model based LQ
controller with the same design parameters (Q, R) is designed for the constant values
ηf = ηr = ηx = 1.

The simulations are performed under two cases including noise-free state measurement
and noisy state measurement. For the latter case, the white noises N (0, 10−3), N (0, 10−4)
with the sample time Ts = 0.001 are added to system states β, r, respectively. The driver
steering command δd and the drastic variation of uncertain parameters of the vector (η)
during maneuver are shown in Fig.4.3 for the both cases.

Even though, the uncertain parameters in Fig.4.3, and hence the plant parameters
drastically change during the harsh maneuver, the estimated values generated by the RLS
and gradient identification schemes achieve to converge to their true values within a short
time for noise-free state case and noisy state case as depicted in Figs. 4.6, 4.8, 4.12,
4.14. The estimated entries of the plant matrices in these Figures are computed using
the estimated weighting parameters, shown in Figs. 4.7, 4.9, 4.13, 4.15, respectively.
Furthermore, the developed MMAC scheme using the proposed gradient and RLS schemes
achieve better tracking performance compared to single-model based LQ controller as seen
in Figs. 4.4, 4.10.

Although the tracking performances of gradient and RLS based MMAC are similar for
both noise-free states and noisy states, RLS based parameter identification scheme demon-
strates faster and smoother convergence to true values of uncertain parameters during
transition (i.e., while the uncertain parameters are changing) as depicted in Figs 4.6, 4.8,
4.12, 4.14.
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Figure 4.3: Driver input and time-varying unknown parameters.
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4.4.1 Results for Noise-free System States

Figure 4.4: States
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Figure 4.5: Control inputs
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Figure 4.6: Estimated plant matrices
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Figure 4.7: Estimated weighted parameters
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Figure 4.8: Estimated plant matrices
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Figure 4.9: Estimated weighted parameters
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4.4.2 Results for Noisy System States

Figure 4.10: States
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Figure 4.11: Control inputs
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Figure 4.12: Estimated plant matrices

67



Figure 4.13: Estimated weighted parameters
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Figure 4.14: Estimated plant matrices
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Figure 4.15: Estimated weighted parameters

4.5 Summary and Remarks

In this chapter, the proposed LQ based optimal MMAC scheme in Chapter 3 has been
applied to vehicle motion control. The objective was to improve vehicle handling per-
formance and to maintain stability during cornering manoeuvres, i.e., the vehicle was
controlled to track the desired yaw rate while the side-slip angle is close to zero. First,
we considered nonlinear vehicle dynamics equipped with active front steering system and
direct yaw control system that uses independent in-wheel motor at corners to generate
torque at vehicle CG in Section 2.2. The nonlinear vehicle dynamic model includes un-
certain time-invariant/varying parameters due to uncertain tire characteristics, tire-road
friction coefficient, and combined-slip effect. We lumped all these system uncertainties
and readdressed them as the uncertain time varying longitudinal and lateral tire stiffness
with their known upper and lower bounds. Since it is assumed that the upper and lower
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bounds (extreme values) of these uncertain parameters are known, the uncertain nonlin-
ear vehicle dynamic model has been addressed as a linear MIMO system with polytopic
uncertain parameters. These bounds have been used to design the multiple fixed models
for the system identifier. For each fixed model (i.e., each operation condition) and given
performance matrices Q, R, an optimal LQ control gain is computed off-line for the cor-
responding model in advance. This saves time for the computation of optimum control
input in real-time implementation. The generated control inputs for all fixed models are
blended on-line using weighting vector. The weighting vector is continuously estimated by
the proposed either gradient or RLS based adaptive scheme.

The simulation application to uncertain lateral vehicle dynamics is presented 2-DOF
dynamic model in Simulink environment. The performances of proposed LQ based MMAC
utilizing the proposed gradient and RLS based schemes have been compared to each other
and an LQ controller which is designed using the same performance matrices Q, R and
fixed nominal values of the uncertain parameters. The results validated the stability and
effectiveness of the proposed LQ based MMAC algorithm and demonstrate that the pro-
posed adaptive LQ control schemes outperform over the LQ control scheme for tracking
tasks.
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Chapter 5

Multiple-Model Adaptive Predictive
Control for Vehicle Motion

In this chapter, the constraints on actuation systems, active front steering system and
torque vectoring, are considered to design an MPC based MMAC. First, maximum and
minimum limits are determined to generate steering angle and steering angle rate. Second,
the maximum and minimum torque and torque rate for each corner (each in-wheel electric
motor) are determined. These bound values and vehicle kinematic structure will be later
used to determine the constraints on torque vectoring at vehicle CG. Third, we present how
to estimate the prediction model for each time step using the proposed MMA scheme in
Chapter 3. For validation of effectiveness of the proposed control algorithm, several critical
driving scenarios are simulated using an high-fidelity model CarSim/Simulink environment.
The proposed MPC based MMAC is depicted in Fig. 5.1.
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Figure 5.1: Proposed Model Predictive Control based MMAC diagram.

5.1 Actuator Constraints

MPC based MMAC has to be designed in an optimal way such that it considers actuator
constraints and take measurements to correct these constraint violations for long range
predictive control horizon. In this study, two sets of constraints are considered for each
actuation systems including active steering system and torque vectoring.

5.1.1 Constraints for Active Steering System

Active steering system is one of the significant ways to control the vehicle lateral motion.
However, it has two constraints to be considered: maximum limit on the steering input δ
and angle rate ∆δ. These constraints are very effective to guarantee stable and smooth
vehicle motion, and thus comfortable and safe ride. If the maximum and minimum that
can be generated steering angles are denoted by δmax and δmin , the total applied steering
angle δ = δd + δc in (4.6) must satisfy the following constraints;
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δmin ≤ δ ≤ δmax. (5.1)

Denoting ∆δmax and ∆δmin to the maximum and minimum that can be generated
steering angle rates, the total applied steering angle rate ∆δ must satisfy the following
constraints;

∆δmin ≤ ∆δ ≤ ∆δmax. (5.2)

The maximum steering angle δmax and angle rate ∆δmax are chosen as 30 deg and
10 deg/s, respectively.

5.1.2 Constraints for Torque Vectoring

The vehicle, used for simulation, has independent electric motor at each corner, which
is capable of generating a torque vector at vehicle CG. However, electric motor has a
limited range of actuation and a limited slew rate. If the maximum and minimum torques
that can be generated are denoted by Qmax and Qmin , the applied torque (i.e., Qi for
i = fl, fr, rl, rr) on each corner should satisfy

Qmin ≤ Qi ≤ Qmax. (5.3)

Denoting ∆Qmax and ∆Qmin to the maximum and minimum that can be generated
torque rates, the total applied torque rate ∆Qi on each corner must satisfy the following
constraints;

∆Qmin ≤ ∆Qi ≤ ∆Qmax. (5.4)

The electric motor constraints (5.3), (5.4) at each corner can be mapped into generated
torque vectoring at vehicle CG. The generated torque Mz at CG is computed using vehicle
kinematic with front steering system and generated tire forces:

Mz =
[
−0.5ls cos δ + lf sin δ 0.5ls cos δ + lf sin δ −0.5ls 0.5ls

] 
Ffl
Ffr
Frl
Frr

 . (5.5)
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where longitudinal tire forces Fi relates to applied torques Qi as in (2.5). Assuming wheel
moment of inertia Iw and wheel rotational accelerations ẇi are enough small to ignore, Mz

can be reexpressed in terms of applied torques Qi as

Mz =
1

Reff

[
−0.5ls cos δ + lf sin δ 0.5ls cos δ + lf sin δ −0.5ls 0.5ls

] 
Qfl

Qfr

Qrl

Qrr

 (5.6)

If the maximum and minimum torque at vehicle CG that can be generated are denoted
by Mzmax and Mzmin , which can be computed by (5.3) and (5.6), the applied CG torque
Mz should be within the following range

Mzmin ≤Mz ≤Mzmax . (5.7)

Denoting ∆Mzmin and ∆Mzmax to the maximum and minimum that can be generated
CG torque rates, the total applied CG torque rate ∆Mz must satisfy the following con-
straints;

∆Mzmin ≤ ∆Mz ≤ ∆Mzmax , (5.8)

where ∆Mzmin and ∆Mzmax can be computed by (5.4) and (5.6).

5.2 Model Predictive Controller Design

In this section, we design an MPC based controller considering actuator constraints for the
same tracking problem in Section 4.3 on a slippery road condition (i.e., ηx = ηf = ηr = 0.4
in (4.6)). The objective of tracking control is to improve vehicle handling performance
while maintaining stability during cornering manoeuvres and considering the actuator con-
straints. In other words, the vehicle is expected to achieve the desired yaw rate rd defined
in (4.12) while maintaining the closeness of side-slip angle to zero, i.e., βd = 0 and satisfy-
ing the input range constraints (5.1, 5.7) and the input rate constraints (5.2, 5.8). To this
end the objective function is defined as
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JMPC = argmin
u

Np∑
k=1

(xp[t+ k|t]− xdes[t+ k|t])T Q (xp[t+ k|t]− xdes[t+ k|t])

+
Nc−1∑
k=0

u[t+ k|t]T R u[t+ k|t]

(5.9)

subject to

xp[t+ k + 1|t] = Apd[t+ k|t]xp[t+ k|t] +Bpd[t+ k|t]u[t+ k|t],
uLB ≤ u[t+ k|t] ≤ uUB, k = 1, · · · , Nc,

∆uLB ≤ u[t+ k|t]− u[t+ k − 1|t] ≤ ∆uUB, k = 1, · · · , Nc,

(5.10)

where uLB =
[
δmin Mzmin

]T
, uUB =

[
δmin Mzmin

]T
denote lower bound and upper bound,

respectively, on control input; ∆uLB =
[
∆δmin ∆Mzmin

]T
, ∆uUB =

[
∆δmin ∆Mzmin

]T
denote lower bound and upper bound, respectively, on control input rate; xdes =

[
βd rd

]T
is desired state and assumed to be constant over prediction horizon. The prediction model
in (5.10) can be expressed by the current state and prospective control inputs. Based on
the assumption that the control and prediction horizons have the same length, the future
system state

Xp = Sxxp0 + SuU, xp0 = xp[0], (5.11)

where Xp =
[
xTp [1] xTp [2] · · · xTp [Np]

]T
, U =

[
uT [0] uT [1] · · · uT [Np − 1]

]T
, and

Sx =


Apd
A2
pd
...

A
Np
pd

 , Su =


Bpd 0 · · · 0

ApdBpd Bpd · · · 0
...

. . . . . .
...

A
Np−1
pd Bpd · · · · · · Bpd

 ,
and the desired states over the prediction horizon isXdes =

[
xTdes[1] xTdes[2] · · · xTdes[Np]

]T
.

The input U is expressed as

U = S∆u∆U + U−1, (5.12)
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where ∆U =
[
∆uT [0] ∆uT [1] · · · ∆uT [Np − 1]

]T
in which ∆uT =

[
∆δ ∆Mz

]
, U−1 =[

uT [−1] uT [−1] · · · uT [−1]
]T

in which u[−1] denotes the input applied in previous time
step, and

S∆u =


I 0 · · · 0
I I · · · 0
...

. . . . . .
...

I · · · · · · I

 .
To consider the input rate, the cost function (5.9) is reexpressed as follow

JAMPC
= argmin

∆U
(X −Xdes)

T Q (X −Xdes) + UT R U + ∆UT R2 ∆U, (5.13)

where Q = blockdiag{Q,Q, · · · , Q}, R = blockdiag{R,R, · · · , R} and R2 = blockdiag{R2, R2, · · · , R2}.
Once similar steps are followed in Subsection 2.3.2, the optimization problem (5.13) can
be expressed as a constrained quadratic programming (QP) problem

JAMPC
= argmin

∆U

1

2
∆UTHA∆U + F T

A∆U + ΥA, (5.14)

subject to

u[t+ k|t] ∈ U , k = 0, · · · , Np − 1,

u[t+ k|t]− u[t+ k − 1|t] ∈ ∆U , k = 0, · · · , Np − 1,
(5.15)

where

HA =STu S
T
∆uQS∆uSu + ST∆uRS∆u + R2,

FA =2(SuU−1 + Sxx0 + SD)TQSuS∆u − 2XT
desQSuS∆u + 2UT

−1RS∆u,

ΥA =(SuU−1 + Sxx0 + SD)TQ(SuU−1 + Sxx0 + SD) + UT
−1RU−1

− 2
(
XT
desQ(SuU−1 + Sxx0 + SD)

)
.

In real-time, the QP problem (5.14) with the constraints (5.15) is solved using interior-
point algorithm in Optimization Toolbox/MATLAB each time step. The solution of the
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quadratic programming problem provides the series of MPC input increments ∆U , includ-
ing steering angle increments ∆δ and torque increments at vehicle CG ∆Mz. The first
input vector of ∆U is added to the control input applied in previous time step u[−1]. The
total control steering is applied to system (2.6) while the total control torque vector inputs
Mz is distributed to each corner based on HCC principles in (2.30) and (2.30).

5.3 Design of Multiple-Model Adaptive Predictive Con-

trol

In the previous section, an MPC controller was designed for a wet road condition, i.e.,
ηx = ηf = ηr = 0.4 which implies the system parameters Ap, Bp in prediction model are
fixed. In this section, MMAC is redesigned for the same tracking problem in previous
section considering MPC and actuator constraints. We consider the uncertain vehicle
dynamics (4.6) with its known input and input rate constraints (5.1), (5.7), and (5.8),
(5.2), respectively.

For multiple-model identifier, the same fixed models (Ai, Bi) in (4.9) for the known
range of the uncertainty in (4.8) are discritized by backward euler approach to (Adi, Bdi)
which are used in the discritized adaptive law (3.33a, 3.33b) to obtain weighting vector
Ŵ . After obtaining estimate weighting vector Ŵ , uncertain discritized parameter matrices
Âpd, B̂pd are estimated by

Âpd =
N∑
i=1

ŵiAdi,

B̂pd =
N∑
i=1

ŵiBdi.

(5.16)

The estimated parametric models Âpd, B̂pd are used as a prediction model in (5.10) for
MPC design and assummed to be constant during prediction horizon Np. The proposed
MPC based MMAC block diagram is given in Fig. 5.2. In order to validate our con-
trol algorithm, several critical driving scenarios has been simulated in CarSim/Simulink
environment in the next section.
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Figure 5.2: Proposed overall MPC based MMAC diagram.

5.4 Simulations

In this section, simulation tests are performed on the proposed MPC to identify the un-
certain time-varying lateral vehicle dynamics in Simulink and CarSim environment. The
vehicle used for simulation is D-Class sedan car, one of the pre-built models in CarSim
8.2.2, which can independently generate torque in each corner to provide torque vector-
ing moment at vehicle CG. The CarSim vehicle is a high-fidelity dynamic model unlike
the simulink model used in Chapter 3 which is 2-DOF model. Table 5.1 shows the main
properties of the simulated vehicle.
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Parameter Description Value Unit
m Vehicle mass 1530 kg
Iz Yaw moment of inertia 2315.3 kgm2

Iω Wheel moment of inertia 0.8 kgm2

L Wheel base 2.78 m
ls Track width 1.55 m
Reff Wheel effective radius 0.325 m
lf CG distance to Front axle 1.11 m
lr CG distance to Rear axle 1.67 m
Cf Nominal Front tire stiffness 80400 N/rad
Cr Nominal Rear tire stiffness 82700 N/rad

Table 5.1: Carsim vehicle parameters.

The parameters of the MPC are defined next. The sample time of the controller is set
equal to Ts = 5 ms. The size of the prediction horizon is set equal to Np = 6 and the
size of the control horizon is also Nc = 6. The size of the prediction horizon is selected
after several computations such that the online computation time is reduced to maintain
an acceptable closed-loop performance. The design parameters MPC scheme are selected
as Q = diag([3 · 104, 104]), R = diag([2 · 104, 10−5]), R2 = diag([2 · 104, 10−5]). The tuning
parameter of MMA scheme, Γ in (3.30) is diag([50, 50, · · · , 50]). The parameters of HCC
are selected as W∆f = diag([1, 1, 1, 1]) and WE = diag([1, 1, 10]).

5.4.1 Case 1: No Acceleration/Braking During Maneuver

Double lane change maneuver is performed to induce vehicle drift without applying accel-
eration or braking. This maneuver is performed with the given vehicle parameters in Table
5.1.

Two different road conditions are considered including a slippery road with the friction
coefficient of µ = 0.4 and a dry road with the friction coefficient of µ = 0.9 . We first run
the simulation for dry road. The driving scenario is given in the following way: the vehicle
is cruising at the constant initial speed of 80 kph on slippery road and 120 kph on the
dry road, and then double lane change steering input is applied by the driver. The driver
steering input is shown in Fig. 5.3.
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Figure 5.3: Driver steering input during maneuver.
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Figure 5.4: Tracking performance of designed controller on a slippery road.

81



0 5 10 15 20
-100

-50

0

50

100

0 5 10 15 20
-100

-50

0

50

100

MPC
MMA-MPC

0 5 10 15 20
-100

-50

0

50

100

0 5 10 15 20
-100

-50

0

50

100

Figure 5.5: Generated torques by designed controller on a slippery road.
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Figure 5.6: Corrected steering input by designed controller on a slippery road.

82



0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 5.7: Estimates of weighting parameters for a slippery road.

Fig. 5.4 shows the yaw rate and the sideslip angle tracking performance of the vehicle
without controller, with MPC controller, and with MMA-MPC controller. In the uncon-
trolled maneuver, the vehicle is unable to track the desired yaw rate and demonstrate
unstable motion. On the other hand, the MPC based controllers successfully maintain
the vehicle stability during manoeuvre. However, the proposed MMA-MPC controller
achieves better performance increasing yaw tracking performance by almost 100% while
keeping sideslip angle small.

Generated torque adjustments of the designed MPC and MMA-MPC controllers are
given in Fig. 5.5. As can be seen that the torque differentials required to maintain vehicle
stability are away from saturation, smooth and symmetric. Fig. 5.6 displays the corrected
steering input is almost same with the driver input in Fig. 5.3. This results indicate that
the designed controller does not involve in the driver steering input much and provides
confidence.
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In Fig. 5.7, the estimates of the weighting parameters are shown during maneuver.
As seen, the estimate parameters show small changes when the vehicle start double lane
change maneuver on a slippery road.

For the second scenario, the steering input in Fig. 5.3 is applied by driver while cruising
at 80 kph on a dry road.
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Figure 5.8: Tracking performance of designed controller on a dry road.
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Figure 5.9: Generated torques by designed controller on a dry road.
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Figure 5.10: Corrected steering input by designed controller on a dry road.
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Figure 5.11: Estimates of weighting parameters for a dry road.

Fig. 5.8 shows the yaw rate and the sideslip angle tracking performance of the vehicle
without controller, with MPC controller, and with MMA-MPC controller. In the uncon-
trolled maneuver, the vehicle is unable to track the desired yaw rate and demonstrate
unstable motion. On the other hand, the MPC based controllers successfully maintain
the vehicle stability during manoeuvre. However, the proposed MMA-MPC controller
achieves better performance increasing yaw tracking performance by around 30% while
keeping sideslip angle small.

The torque adjustments generated by the designed MPC and MMA-MPC controllers
are given in Fig. 5.5. As can be seen that the torque differentials required to maintain
vehicle stability are away from saturation, smooth and symmetric. Fig. 5.6 displays the
corrected steering input is almost same with the driver input in Fig. 5.3. This results
indicate that the designed controller does not involve in the driver steering input much
and provides confidence.

In Fig. 5.11, the estimates of the weights are shown during maneuver. As seen, the
estimate parameters show relatively smaller changes compared to ones for vehicle motion
on the slippery road.
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5.4.2 Case 2: Acceleration/Braking During Maneuver

Two different road conditions are considered including a slippery road with the friction
coefficient of µ = 0.4 and a dry road with the friction coefficient of µ = 0.9.

The driving scenario is defined as the vehicle is cruising at at the constant initial speed
of 80 kph on slippery road and 120 kph on the dry road, and then steering for double lane
change and applying first acceleration and then braking while maneuver. The steering and
the acceleration/braking commands by driver are shown in Figs. 5.12-5.13, respectively,
assuming the total torque for acceleration/braking are distribute equally to corners when
the vehicle is uncontrolled. We first run the simulation for a slippery road.
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Figure 5.12: Driver steering input during maneuver.
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Figure 5.13: Driver acceleration/braking input during maneuver.
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Figure 5.14: Tracking performance of designed controller on a slippery road.
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Figure 5.15: Generated torques by designed controller on a slippery road.
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Figure 5.16: Corrected steering input by designed controller on a slippery road.
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Figure 5.17: Estimates of weighting parameters for a slippery road.

Fig. 5.14 shows the yaw rate and the sideslip angle tracking performance of the vehicle
without controller, with MPC controller, and with MMA-MPC controller. In the uncon-
trolled case, the vehicle becomes unstable as soon as the driver applies acceleration and
steering. On the other hand, the MPC based controllers successfully maintain the vehicle
stability during manoeuvre. However, the proposed MMA-MPC controller achieves better
performance increasing yaw tracking performance by around 50% with a small overshoot
around t = 5 sec while keeping sideslip angle small.

The torque adjustments generated by the designed MPC and MMA-MPC controllers
are given in Fig. 5.15. As can be seen that the torque differentials required to maintain
vehicle stability are away from saturation, smooth and symmetric. Fig. 5.16 displays the
corrected steering input is almost same with the driver input in Fig. 5.12. This results
indicate that the designed controllers do not involve in the driver steering input much as
desired.
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In Fig. 5.17, the estimates of the weights are shown during maneuver. The estimate
parameters show relatively larger changes than the case without braking/acceleration.

For the second scenario, the driver inputs are the same in Figs. 5.12-5.13 and the
vehicle started cruising at 120 kph on dry road.
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Figure 5.18: Tracking performance of designed controller on a dry road.
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Figure 5.19: Generated torques by designed controller on a dry road.
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Figure 5.20: Corrected steering input by designed controller on a dry road.
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Figure 5.21: Estimates of weighting parameters for a dry road.

Fig. 5.18 shows the yaw rate and the sideslip angle tracking performance of the vehicle
without controller, with MPC controller, and with MMA-MPC controller. In the uncon-
trolled case, the vehicle becomes unstable as soon as the driver applies acceleration and
steering. On the other hand, the MPC based controllers successfully maintain the vehicle
stability during manoeuvre. However, the proposed MMA-MPC controller achieves better
performance increasing yaw tracking performance by around 25% while keeping sideslip
angle small.

The torque adjustments generated by the designed MPC and MMA-MPC controllers
are given in Fig. 5.19. As can be seen that the torque differentials required to maintain
vehicle stability are away from saturation, smooth and symmetric. Fig. 5.20 displays the
corrected steering input is almost same with the driver input in Fig. 5.12. This results
indicate that the designed controllers do not involve in the driver steering input much as
desired.

In Fig. 5.21, the estimates of the weights are shown during maneuver. The estimate
parameters show relatively smaller changes than the ones for slippery road.
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5.4.3 Case 3: No Acceleration/Braking During Maneuver on
Changing Road Condition

Two different road conditions are considered including a slippery road with the friction
coefficient of µ = 0.4 and a dry road with the friction coefficient of µ = 0.9.

The first driving scenario is defined as the vehicle is cruising at at the constant initial
speed of 80 kph on slippery road and then start steering for double lane change. The
steering command by driver are shown in Fig. 5.22. After vehicle starts the double lane
change maneuver, the vehicle pass the dry road with the friction coefficient of µ = 0.9.

The second driving scenario is defined as the vehicle is cruising at at the constant initial
speed of 120 kph on dry road and then start steering for double lane change. After vehicle
starts the double lane change maneuver, the vehicle pass the slippery road with the friction
coefficient of µ = 0.4.
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Figure 5.22: Driver steering input during maneuver.
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Figure 5.23: Tracking performance of designed controller on a slippery road.
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Figure 5.24: Generated torques by designed controller on a slippery road.
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Figure 5.25: Corrected steering input by designed controller on a slippery road.
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Figure 5.26: Estimates of weighting parameters for a slippery road.
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Fig. 5.23 shows the yaw rate and the sideslip angle tracking performance of the vehicle
without controller, with MPC controller, and with MMA-MPC controller. In the uncon-
trolled case, the vehicle becomes unstable as soon as the driver applies acceleration and
steering. On the other hand, the MPC based controllers successfully maintain the vehicle
stability during manoeuvre. However, the proposed MMA-MPC controller achieves better
performance increasing yaw tracking performance by around 50% with a small overshoot
around t = 5 sec while keeping sideslip angle small.

The torque adjustments generated by the designed MPC and MMA-MPC controllers
are given in Fig. 5.24. As can be seen that the torque differentials required to maintain
vehicle stability are away from saturation, smooth and symmetric. Fig. 5.25 displays the
corrected steering input is almost same with the driver input in Fig. 5.22. This results
indicate that the designed controllers do not involve in the driver steering input much as
desired.

In Fig. 5.26, the estimates of the weights are shown during maneuver. The estimate
parameters show relatively larger changes than the case without braking/acceleration.

For the second scenario, the driver input is the same in Fig. 5.22 and the vehicle started
cruising at 120 kph on dry road.
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Figure 5.27: Tracking performance of designed controller on a dry road.
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Figure 5.28: Generated torques by designed controller on a dry road.
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Figure 5.29: Corrected steering input by designed controller on a dry road.
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Figure 5.30: Estimates of weighting parameters for a dry road.

Fig. 5.27 shows the yaw rate and the sideslip angle tracking performance of the vehicle
without controller, with MPC controller, and with MMA-MPC controller. In the uncon-
trolled case, the vehicle becomes unstable as soon as the driver applies acceleration and
steering. On the other hand, the MPC based controllers successfully maintain the vehicle
stability during manoeuvre. However, the proposed MMA-MPC controller achieves better
performance increasing yaw tracking performance by around 25% while keeping sideslip
angle small.

The torque adjustments generated by the designed MPC and MMA-MPC controllers
are given in Fig. 5.28. As can be seen that the torque differentials required to maintain
vehicle stability are away from saturation, smooth and symmetric. Fig. 5.29 displays the
corrected steering input is almost same with the driver input in Fig. 5.22. This results
indicate that the designed controllers do not involve in the driver steering input much as
desired.

In Fig. 5.30, the estimates of the weights are shown during maneuver. The estimated
parameters show relatively smaller changes than the ones for slippery road.
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5.5 Summary and Remarks

This chapter has addressed the constraints on actuation systems, including active front
steering system and torque vectoring, for an MPC based MMAC design. First, the maxi-
mum and minimum that can be generated steering angle and steering angle rate have been
determined. Second, the maximum and minimum torque and torque rate for each cor-
ner (each in-wheel electric motor) have been determined. These bound values and vehicle
kinematic structure have been used to determine the constraints on torque vectoring at
vehicle CG. Third, we have presented how to estimate the prediction model for each time
step using the proposed MMA scheme in Chapter 3.

The prediction model and the input constraints have been used to define a constrained
optimization problem for MPC design. This optimization problem was redefined as a
constrained QP problem following the standard steps in Subsection 2.3.2. The QP problem
is solved via interior-point algorithm in Optimization Toolbox/MATLAB each time step.
The solution of the quadratic programming problem provides MPC inputs, including total
steering angle and torque at vehicle CG which is optimally distributed to each corned based
on HCC principles.

In order to validate our control algorithm, several critical driving scenarios were simu-
lated using a high-fidelity vehicle simulation environment CarSim/Simulink. Three diffiernt
cases were considered as follows: No acceleration/braking during maneuver, Accelera-
tion/braking during maneuver, No Acceleration/braking during maneuver on changing
road condition. The performance of the proposed MPC based MMAC was compared to
an MPC controller which was designed for a wet road condition using the same tuning pa-
rameters in objective function design. The results validated the stability and effectiveness
of the proposed MPC based MMAC algorithm and showed that the proposed adaptive
control scheme outperformed over a nonadaptive MPC controller for tracking tasks.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, a blending based multiple-model on-line identification scheme for MIMO sys-
tems with polytopic uncertain parameters has been developed. The proposed identification
scheme has been used to design optimal adaptive control schemes.

In Chapter 3, new blending based multiple-model on-line identification schemes for
MIMO systems with polytopic uncertain parameters is proposed utilizing gradient and RLS
based approaches. The proposed schemes used multiple linear parametric fixed models in
the system identifier design. Each model represented different extreme operation condition
(i.e., an extreme point of a convex polytope which was a compact convex set with a finite
number of extreme points) by using different system parameters. Thus, the designed
multiple fixed models guaranteed that the uncertain system lied in the convex hull of the
design multiple fixed model.

More comprehensive description of Nonlinear and/or Time-varying Linear systems were
provided using multiple linear fixed models approach. For the given input and state vectors,
discrepancies between the responses of designed multiple models and the response of un-
certain system were continuously observed. These discrepancies showed how each designed
model was close to actual model in terms of system parameters based on the Certainty
Equivalence principle. In this regard, the discrepancies and convexity property were used
by the proposed adaptive scheme for estimation of weighting vectors. Estimation of the
weighting vectors was achieved by either gradient or RLS method. The proposed adaptive
schemes provided fast adaptation for even uncertain LTV systems without reinitialisation
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and for system states with white noise. Parameter projection was applied to guarantee
that the convexity condition was satisfied during adaptation especially for fast transients
in system parameters.

Lastly, the proposed adaptive schemes were used to design an LQ based optimal MMAC
scheme for polytopic uncertain linear systems. An LQ optimal controller was designed for
each identification model to enable the optimal fixed control gains to be off-line computed
for all identification models in advance. All LQ controllers utilized the same design pa-
rameters Q, R. The adaptive control law was generated by using the proposed either the
proposed gradient or the proposed RLS based identification scheme. The stability analysis
of the proposed LQ based optimal MMAC has been provided.

In Chapter 4, the proposed LQ based optimal MMAC scheme in Chapter 3 was applied
to vehicle motion control. The objective was to improve vehicle handling performance
and to maintain stability during cornering manoeuvres, i.e., the vehicle was controlled to
track the desired yaw rate while the side-slip angle was close to zero. First, we considered
nonlinear vehicle dynamics in Section 2.2. The studied vehicle was equipped with active
front steering system and direct yaw control system that uses independent in-wheel motor
at corners to generate torque at vehicle CG.

The nonlinear vehicle dynamic model included uncertain time-invariant/varying param-
eters due to uncertain tire characteristics, tire-road friction coefficient, and combined-slip
effect. We lumped all these system uncertainties and readdressed them as the uncer-
tain time varying longitudinal and lateral tire stiffness with their known upper and lower
bounds. Since it was assumed that the upper and lower bounds (extreme values) of these
uncertain parameters were known, the uncertain nonlinear vehicle dynamic model would
have been addressed as a linear MIMO system with polytopic uncertain parameters. These
bounds were used to design the multiple fixed models for the system identifier. For each
fixed model and given performance matrices, an optimal LQ control gain was computed
off-line for the corresponding model in advance. This also saved time for the computation
of optimum control input in real-time implementation. The generated control inputs for
all fixed models were blended on-line using weighting vector. The weighting vector was
continuously estimated by the proposed adaptive schemes in Chapter 3.

The simulation application to uncertain lateral vehicle dynamics in Chapter 4 was pre-
sented in Simulink environments. The performances of the proposed LQ based MMAC
utilizing the proposed gradient and RLS based schemes have been compared to each other
and an LQ controller which was designed using the same performance matrices and fixed
nominal values of the uncertain parameters. The results validated the stability and effec-
tiveness of the proposed LQ based MMAC algorithm and demonstrated that the proposed
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adaptive LQ control schemes outperformed over an LQ control scheme with fixed param-
eter values for tracking tasks. Some parts of developed works in Chapter 3 and Chapter 4
have been presented as a conference paper in [83].

Chapter 5 addressed the constraints on actuation systems, including active front steer-
ing system and torque vectoring, for an MPC based MMAC design. First, the maximum
and minimum bounds were determined in order to generate steering angle and steering
angle rate. Second, the maximum and minimum torque and torque rate for each corner
(each in-wheel electric motor) were determined. These bound values and vehicle kinematic
structure were used to determine the constraints on torque vectoring at vehicle CG. Third,
we presented how to estimate the prediction model for each time step using the proposed
MMA scheme in Chapter 3. We used the discrete version of the proposed gradient based
adaptive scheme in 3. The prediction model and the input constraints were used to define
a constrained optimization problem for MPC design. This optimization problem was rede-
fined as a constrained QP problem following the standard steps in Subsection 2.3.2. The
QP problem was solved via interior-point algorithm in Optimization Toolbox/MATLAB
each time step. The solution of the quadratic programming problem provided MPC in-
puts, including total steering angle and torque at vehicle CG which was distributed to each
corned based on HCC principles.

In order to validate the proposed control scheme, several critical driving scenarios has
been simulated using a high-fidelity vehicle simulation environment CarSim/Simulink. The
performance of the proposed MPC based MMAC has been compared to an MPC controller
which is designed for a wet road condition using the same tuning parameters in objective
function design. The results validated the stability and effectiveness of the proposed MPC
based MMAC algorithm and demonstrate that the proposed adaptive control scheme out-
perform over a nonadaptive MPC controller for tracking tasks.
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6.2 Future Work

Some future works are made to continue the research that is conducted in this thesis to
further improve the performance of overall control structure.

i Longitudinal speed change during manoeuvre has been neglected in the proposed LQ
based MMAC scheme since the set of LQ controller gains are computed off-line in
advance. Addressing the vehicle’s longitudinal speed change in the control design
could be necessary for the manoeuvre at high speed for stability concern. At low
speed, consideration of the longitudinal speed could enables to take more precise
control action, and thus achieve better tracking performance. Thus, longitudinal
speed could be considered as a measurable uncertain parameter for LQ based MMAC
scheme. However, this approach could increase the number of fixed identification
models and LQ controller gains exponentially.

ii Yaw-rate and side-slip angle state were assumed to be either available and perfectly
accurate or available with a white noise. In practice, these states contains bias and
noise which could adversely affect the performance of the controller. To mitigate
bias and noise in these state measurement simultaneously, a state observer could be
designed to combine with the proposed blending based multiple-model parameter
identifier (i.e., adaptive state observer).
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Vehicle yaw control via coordinated use of steering/braking systems. IFAC Proceedings
Volumes, 44(1):644–649, 2011.

[24] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat. Predictive active steer-
ing control for autonomous vehicle systems. IEEE Transactions on Control Systems
Technology, 15(3):566–580, May 2007.

[25] P. Falcone, F. Borrelli, H. E. Tseng, J. Asgari, and D. Hrovat. Linear time-varying
model predictive control and its application to active steering systems: Stability anal-
ysis and experimental validation. International Journal of Robust and Nonlinear Con-
trol, 18(8):862–875, 2008.

[26] L. B. Freidovich and H. K. Khalil. Logic-based switching for robust control of
minimum-phase nonlinear systems. Systems & Control Letters, 54(8):713–727, Aug
2005.

[27] M. Fu and B. Barmish. Adaptive stabilization of linear systems via switching control.
IEEE Transactions on Automatic Control, 31(12):1097–1103, Dec 1986.

[28] C. Hamada, K. Fukatani, K. Yamaguchi, and T. Kato. Development of vehicle dy-
namics integrated management. Technical report, SAE Technical Paper, 2006.

[29] Z. Han and K. S. Narendra. New concepts in adaptive control using multiple models.
IEEE Transactions on Automatic Control, 57(1):78–89, Jan 2012.

[30] Z. Hao, L. Xian-sheng, S. Shu-ming, L. Hong-fei, G. Rachel, and L. Li. Phase plane
analysis for vehicle handling and stability. International Journal of Computational
Intelligence Systems, 4(6):1179–1186, Nov 2011.

[31] J. Hespanha, D. Liberzon, Stephen M. A., B. D. O. Anderson, T. S. Brinsmead, and
F. De Bruyne. Multiple model adaptive control. part 2: switching. International
journal of robust and nonlinear control, 11(5):479–496, April 2001.

107



[32] J. P. Hespanha, D. Liberzon, and A. S. Morse. Overcoming the limitations of adaptive
control by means of logic-based switching. Systems & control letters, 49(1):49–65, 2003.

[33] S. Inagaki, I. Kshiro, and M. Yamamoto. Analysis on vehicle stability in critical
cornering using phase-plane method. In Proceedings of the International Symposium
on Advanced Vehicle Control, 1994.

[34] P. Ioannou and B. Fidan. Adaptive control tutorial, volume 11. 2006.

[35] P. Ioannou and J. Sun. Robust Adaptive Control. Prentice Hall, Inc., 1996.

[36] J. Kalkkuhl, T. A. Johansen, and J. Ludemann. Improved transient performance of
nonlinear adaptive backstepping using estimator resetting based on multiple models.
IEEE Transactions on Automatic Control, 47(1):136–140, Jan 2002.

[37] T. Keviczky and G. J. Balas. Software-enabled receding horizon control for au-
tonomous unmanned aerial vehicle guidance. Journal of guidance, control, and dy-
namics, 29(3):680–694, 2006.

[38] M. Klomp. Longitudinal force distribution and road vehicle handling. PhD thesis,
Chalmers University of Technology, 2010.

[39] Y. E. Ko and J. M. Lee. Estimation of the stability region of a vehicle in plane motion
using a topological approach. International Journal of Vehicle Design, 30(3):181–192,
2002.

[40] P. Koehn and M. Eckrich. Active steering-the bmw approach towards modern steering
technology. Technical report, 2004.

[41] M. V. Kothare, V. Balakrishnan, and M. Morari. Robust constrained model predictive
control using linear matrix inequalities. Automatica, 32(10):1361–1379, Oct 1996.

[42] M. Kuipers and P. Ioannou. Multiple model adaptive control with mixing. IEEE
Transactions on Automatic Control, 55(8):1822–1836, Aug 2010.

[43] D. G. Lainiotis. Partitioning: A unifying framework for adaptive systems, i: Estima-
tion. Proceedings of the IEEE, 64(8):1126–1143, Aug 1976.

[44] R. Lenain, B. Thuilot, C. Cariou, and P. Martinet. Adaptive and predictive path
tracking control for off-road mobile robots. European Journal of Control, 13(4):419–
439, 2007.

108



[45] H. Li and Y. Shi. Distributed model predictive control of constrained nonlinear systems
with communication delays. Systems & Control Letters, 62(10):819–826, Oct 2013.

[46] S. Li, K. Li, R. Rajamani, and J. Wang. Model predictive multi-objective vehicular
adaptive cruise control. IEEE Transactions on Control Systems Technology, 19(3):
556–566, May 2011.

[47] W. Liang, H. Yu, R. McGee, M. Kuang, and J. Medanic. Vehicle pure yaw moment
control using differential tire slip. In American Control Conference, pages 3331–3336,
June 2009.

[48] Daniel Liberzon. Switching in systems and control, ser. systems & control: Founda-
tions & applications. Birkhauser, 2003.

[49] Li-hua Luo, Hong Liu, Ping Li, and Hui Wang. Model predictive control for adaptive
cruise control with multi-objectives: comfort, fuel-economy, safety and car-following.
Journal of Zhejiang University SCIENCE A, 11(3):191–201, 2010.

[50] Y. Luo, S. Serrani, A.and Yurkovich, D. B. Doman, and M. W. Oppenheimer. Model
predictive dynamic control allocation with actuator dynamics. In Proceedings of Amer-
ican Control Conference, volume 2, pages 1695–1700, 2004.

[51] W. J. Manning and D. A. Crolla. A review of yaw rate and sideslip controllers for
passenger vehicles. Transactions of the Institute of Measurement and Control, 29(2):
117–135, June 2007.
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