177 research outputs found

    New Classes of Partial Geometries and Their Associated LDPC Codes

    Full text link
    The use of partial geometries to construct parity-check matrices for LDPC codes has resulted in the design of successful codes with a probability of error close to the Shannon capacity at bit error rates down to 10−1510^{-15}. Such considerations have motivated this further investigation. A new and simple construction of a type of partial geometries with quasi-cyclic structure is given and their properties are investigated. The trapping sets of the partial geometry codes were considered previously using the geometric aspects of the underlying structure to derive information on the size of allowable trapping sets. This topic is further considered here. Finally, there is a natural relationship between partial geometries and strongly regular graphs. The eigenvalues of the adjacency matrices of such graphs are well known and it is of interest to determine if any of the Tanner graphs derived from the partial geometries are good expanders for certain parameter sets, since it can be argued that codes with good geometric and expansion properties might perform well under message-passing decoding.Comment: 34 pages with single column, 6 figure

    Low-Density Parity-Check Codes From Transversal Designs With Improved Stopping Set Distributions

    Full text link
    This paper examines the construction of low-density parity-check (LDPC) codes from transversal designs based on sets of mutually orthogonal Latin squares (MOLS). By transferring the concept of configurations in combinatorial designs to the level of Latin squares, we thoroughly investigate the occurrence and avoidance of stopping sets for the arising codes. Stopping sets are known to determine the decoding performance over the binary erasure channel and should be avoided for small sizes. Based on large sets of simple-structured MOLS, we derive powerful constraints for the choice of suitable subsets, leading to improved stopping set distributions for the corresponding codes. We focus on LDPC codes with column weight 4, but the results are also applicable for the construction of codes with higher column weights. Finally, we show that a subclass of the presented codes has quasi-cyclic structure which allows low-complexity encoding.Comment: 11 pages; to appear in "IEEE Transactions on Communications

    LDPC codes associated with linear representations of geometries

    Get PDF
    We look at low density parity check codes over a finite field K associated with finite geometries T*(2) (K), where K is any subset of PG(2, q), with q = p(h), p not equal char K. This includes the geometry LU(3, q)(D), the generalized quadrangle T*(2)(K) with K a hyperoval, the affine space AG(3, q) and several partial and semi-partial geometries. In some cases the dimension and/or the code words of minimum weight are known. We prove an expression for the dimension and the minimum weight of the code. We classify the code words of minimum weight. We show that the code is generated completely by its words of minimum weight. We end with some practical considerations on the choice of K

    Absorbing Set Analysis and Design of LDPC Codes from Transversal Designs over the AWGN Channel

    Full text link
    In this paper we construct low-density parity-check (LDPC) codes from transversal designs with low error-floors over the additive white Gaussian noise (AWGN) channel. The constructed codes are based on transversal designs that arise from sets of mutually orthogonal Latin squares (MOLS) with cyclic structure. For lowering the error-floors, our approach is twofold: First, we give an exhaustive classification of so-called absorbing sets that may occur in the factor graphs of the given codes. These purely combinatorial substructures are known to be the main cause of decoding errors in the error-floor region over the AWGN channel by decoding with the standard sum-product algorithm (SPA). Second, based on this classification, we exploit the specific structure of the presented codes to eliminate the most harmful absorbing sets and derive powerful constraints for the proper choice of code parameters in order to obtain codes with an optimized error-floor performance.Comment: 15 pages. arXiv admin note: text overlap with arXiv:1306.511

    Entanglement-assisted quantum low-density parity-check codes

    Get PDF
    This paper develops a general method for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes (EAQECCs) with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error correction performance, high rates, and low decoding complexity. The proposed method produces infinitely many new codes with a wide variety of parameters and entanglement requirements. Our framework encompasses various codes including the previously known entanglement-assisted quantum LDPC codes having the best error correction performance and many new codes with better block error rates in simulations over the depolarizing channel. We also determine important parameters of several well-known classes of quantum and classical LDPC codes for previously unsettled cases.Comment: 20 pages, 5 figures. Final version appearing in Physical Review

    New Combinatorial Construction Techniques for Low-Density Parity-Check Codes and Systematic Repeat-Accumulate Codes

    Full text link
    This paper presents several new construction techniques for low-density parity-check (LDPC) and systematic repeat-accumulate (RA) codes. Based on specific classes of combinatorial designs, the improved code design focuses on high-rate structured codes with constant column weights 3 and higher. The proposed codes are efficiently encodable and exhibit good structural properties. Experimental results on decoding performance with the sum-product algorithm show that the novel codes offer substantial practical application potential, for instance, in high-speed applications in magnetic recording and optical communications channels.Comment: 10 pages; to appear in "IEEE Transactions on Communications

    MAXIMAL ARCS, ABOVE AND BEYOND

    Get PDF
    This report explores combinatorial structures in Finite Geometries by giving known constructions of maximal arcs; using maximal arcs to construct two-weight codes, partial geometries, strongly regular graphs and LDPC codes; a review on how to generalize maximal arcs to higher dimensions through Perp-Systems; and an effort in finding constructions of new Perp-Systems
    • …
    corecore