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Abstract. We look at low density parity check codes over a finite field K
associated with finite geometries T ∗

2 (K), where K is any subset of PG(2, q), with

q = ph, p 6= charK. This includes the geometry LU(3, q)D, the generalized

quadrangle T ∗
2 (K) with K a hyperoval, the affine space AG(3, q) and several

partial and semi-partial geometries. In some cases the dimension and/or the

code words of minimum weight are known. We prove an expression for the

dimension and the minimum weight of the code. We classify the code words of
minimum weight. We show that the code is generated completely by its words

of minimum weight. We end with some practical considerations on the choice
of K.

1. Introduction. Originally introduced by Gallager [5], low density parity check
(LDPC) codes are used frequently today due to their excellent empirical perfor-
mance under belief-propagation/sum-product decoding [19]. In some cases, their
performance is even near to the Shannon limit [19]. In general, a binary LDPC
code C is a linear block code defined by a sparse parity check matrix H, this is a
matrix that contains a lot more 0s than 1s.

To exploit structural properties, one usually wants an explicit construction rather
than just random matrices. Lately there have been many different constructions:
based on permutation matrices [4],[31], Ramanujan graphs [20],[24], expander graphs
[28], q-regular bipartite graphs [14] or other incidence structures in discrete mathe-
matics. In particular, one can take the incidence matrix of a finite geometry as the
parity check matrix of a code.

Examples of such codes can be found in [9, 10, 11, 12], [18], [34]. Later, simula-
tion results of Liu and Pados [16] showed that several generalized polygon LDPC
codes have powerful bit-error-rate performance when decoding is carried out via
low-complexity variants of belief propagation. It would be interesting to perform
the same simulations for the incidence geometries studied in this article, since all
handled structures have a girth of at least 6 in their associated Tanner graph. If K
is an arc, then the Tanner graph even has girth at least 8.

One class of geometries studied for this purpose are linear representations of
geometries. One case that received a lot of attention lately is T ∗2 (K), with K a
hyperoval [23, 33]. Here the minimum weight is known, the dimension is known
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when the characteristic of the code field charK 6= 2 and then we also know that
the code is generated by its code words of minimum weight. Other structures
studied in less detail in [23] include T ∗2 (B) with B a Baer subplane, T ∗2 (U) with
U a unital, and T ∗2 (L) with L the pointwise union of two intersecting lines. One
linear representation that has received a lot of attention is LU(3, q)D (and its dual
LU(3, q), which is not a linear representation) [13],[14],[27],[33]. In [14], the authors
conjecture the binary dimension of the associated code to be

q3 − 2q2 + 3q − 2

2

if q is odd. Here q = ph with p prime denotes the order of the finite field of the
geometry. This conjecture was proven in [27]. Over all code fields with charK 6= p,
this was proven in [33]. In this paper we present a uniform approach, having both
of these as an immediate corollary.

In this article we study the general problem of codes associated with linear rep-
resentations of geometries when charK 6= p. We generalize several of the above
results, including the main theorems in [27] and [33]. When charK 6= p, we com-
pute the minimum weight, the rank and the code rate of the code, we classify
the code words of minimum weight and we prove that every code word is a linear
combination of the code words of minimum weight. We end with some practical
considerations on the choice of K.

2. Preliminaries. Let us begin by introducing some basic notations and defini-
tions.

Notation 2.1. A finite field Fq of order q has q = ph elements, where p is a prime
number and h is a positive integer. The characteristic of that field is p. We denote
by charF the characteristic of the field F .

Notation 2.2. A linear [n, k, d]-code C over the field Fq can be defined by a parity
check matrix H, this is an (n − k) × n matrix with the property that a word

c = (c1, . . . , cn) is a code word of C if and only if HcT = ~0 over Fq, i.e. if and only
if HcT ≡ 0 (mod p), where q = ph with p prime and h a positive integer. In this
paper we let H be the incidence matrix of a geometrical structure, hence its entries
are only the elements 0 and 1 of the field Fq.

Notation 2.3. We denote by PG(n, q) the n-dimensional projective space over
the finite field Fq. For n = 2, we call this a projective plane and write PG(2, q).
We denote by AG(n, q) the n-dimensional affine space over the finite field Fq. A
hyperoval is a set of q+2 points in PG(2, q) such that no three of them are collinear.
Hyperovals exist if and only if q is even. More background on (substructures of)
projective and affine spaces can be found in [7].

Definition 2.4. Let PG(3, q) be the 3-dimensional projective space over the field
Fq. Let Π0 := PG(2, q) be a (hyper)plane in it and let K be an arbitrary subset of
the points of that hyperplane. We define the geometry T ∗2 (K) as follows:

• the points of T ∗2 (K) are the affine points, being the points of PG(3, q)\PG(2, q),
• the lines are the affine lines of PG(3, q) which go through a point of K,
• the incidence relation is inherited from PG(3, q).

Remark 2.5. Note that through every (affine) point we have |K| lines, one through
each point of K, while every line contains q points. In total there are q3 points and
|K|q2 lines: q2 through each point of K.
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Remark 2.6. Let N = |K| and let H be the q3 ×Nq2 incidence matrix of T ∗2 (K),
where points correspond to rows of H and lines correspond to columns of H and to
the positions in the code. Let C be the linear code with H as its parity check matrix,
over an arbitrary finite field K. One can associate a coefficient to each line in a code
word w, being its value at the corresponding position. A word c = (c1, . . . , cNq2) ∈
KNq2 is in C if and only if w ·HT = ~0, hence (since Hji = 1⇔ `i 3 pj) if and only
if ∑

`i

ciHji =
∑
`i3pj

ci = 0

as an element of K for every point pj . Alternatively formulated: a word is a code
word of C if and only if the sum of the coefficients of the lines through every point
equals 0 over K.

Definition 2.7. Let ri, rj ∈ K with i < j and let π be a projective two-dimensional
plane through ri, rj different from Π0. The plane word through ri and rj in π is the
code word with

• +1 in the positions corresponding to the lines of π through ri,
• −1 in the positions corresponding to the lines of π through rj ,
• 0 in the positions corresponding to all other lines.

Notation 2.8. We denote by C ′ the code generated by all plane words. Given a
plane word w through pi and pj , define T (w) to be the plane π in Definition 2.7
and L(w) to be the line pipj in Definition 2.7.

Definition 2.9. Let L be a line in Π0 containing at least two points of K. Let
π be a projective (two-dimensional) plane through L different from Π0, and let
p0, . . . , pk−1 be the points of L ∩ K. We define a generalized plane word in π to be
a code word with

• a0 in the positions corresponding to the lines of π through p0,
• a1 in the positions corresponding to the lines of π through p1,
• . . .
• ak−2 in the positions corresponding to the lines of π through pk−2,
• −a0− a1− . . .− ak−2 in the positions corresponding to the lines of π through
pk−1,
• 0 in the positions corresponding to all other lines,

for some scalars a0, a1, a2, . . . , ak−2 ∈ K.

Remark 2.10. Note that if a line would contain two points of K, then it is not a
line of T ∗2 (K), because is contained in the plane at infinty and hence not an affine
line.

Remark 2.11. Note that a sum of plane words in a fixed plane π is a generalized
plane word in π, and a sum of generalized plane words in π is still a generalized plane
word in π. Moreover, if π ∩ K = {p0, . . . , pk−1}, then the set of generalized plane
words in π is spanned by the plane words through (p0, p1), (p0, p2), . . . , (p0, pk−1).
Hence, C ′ is also the code spanned by all generalized plane words and we need at
most one generalized plane word per plane to obtain any word of C ′.

Remark 2.12. It is known that T ∗2 (K) is a partial geometry if and only if K is a
(maximal) {qn− q + n;n}-arc for some n ≥ 1 (see [32]) and T ∗2 (K) is a semipartial
geometry if and only if K is a Baer subplane or a unital (see [3]). A good general
reference on T ∗2 (K) is [2].
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3. Dimension of C ′.

Notation 3.1. Denote by L the set of projective lines at infinity that contain at
least one point of K. Denote by LN the size of L, i.e.

L = {`1, `2, . . . , `LN
}

and by LS the summed size of L, i.e.

LS =
∑
`∈L

|` ∩ K|.

Let K be an arbitrary field with charK 6= p.

Lemma 3.2. Let ` ∈ L be a line in the plane at infinity, containing exactly k points
of K. Then there are exactly q(k − 1) linearly independent plane words among all
plane words w with L(w) = `.

Proof. Number the k points p0, p1, . . . , pk−1, then the pairs

(p0, p1), (p0, p2), . . . , (p0, pk−1)

each yield q different plane words, and these are linearly independent. Now for all
other pairs, the plane words through (pi, pj), with i < j, can be written as the
difference of the corresponding plane words through (p0, pi) and (p0, pj). Hence the
result follows.

Lemma 3.3. Fix an arbitrary point p0 ∈ K. Let1
∑n

i=1 λivi = ~0 be a linear com-
bination of generalized plane words yielding the zero word, at most one generalized
plane word per plane. If L(vi) = L(vj) and this line contains p0, then λi = λj.

Proof. The q affine lines through p0 in T (vi) each get a contribution of λi from vi.
The q affine lines through p0 in T (vj) each get a contribution of λj from vj . All
other generalized plane words vm contribute equally much to the sum of both sets
of q lines (namely λm if T (vm) contains p0 and 0 otherwise). Denote by R the total
summed contribution to both sets of q lines.

Since the total sum of all contributions is 0 for every line (since we assumed that
this linear combination yields the zero word) we have qλi +R = 0 = qλj +R, hence
qλi = −R = qλj . Since q 6= 0 as an element of K, it follows that λi = λj .

Corollary 3.4. We did not assume λi 6= 0, hence if one of the generalized plane
words vi appears in the linear combination with a nonzero λi, then all generalized
plane words vj through the same line at infinity should appear with λj = λi. Hence
if we start from an empty code (considered as vector space), and we consider one by
one all lines ` at infinity and we add the q generalized plane words through ` to this
vector space, then each line increases the dimension with at least (|`∩K|−1)(q−1),
since the codimension can be at most |` ∩ K| − 1.

Theorem 3.5. The dimension of C ′ is (N − 1) + (q − 1)(LS − LN ).

Proof. Take any point p0 and look at the lines L0, . . . , Lq through p0 in the plane
at infinity. The plane words through (p0, p), for p ∈ K \ {p0}, form a basis for the
linear combinations of plane words on the lines L0, . . . , Lq. Starting from an empty
vector space V as described in Corollary 3.4, these plane words contribute (N −1)q

1By convention, we choose all generalized plane words containing lines through p0 in their
support, to have coefficient +1 on the lines through p0 (this can always be accomplished by

scaling the λi).
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to the dimension, because of Lemma 3.2. Now adding every other line L ∈ L at
infinity, not through p0, contributes

• at least (|L ∩ K| − 1)(q − 1) to dimV , since Lemma 3.3 states that in any
linear combination of generalized plane words yielding the zero word, all planes
through L appear with the same coefficient, hence we miss at most |L∩K|−1
degrees of freedom,

• and at most (|L ∩ K| − 1)(q − 1) to dimV , since one can write the zero word
as a linear combination of plane words through (p0, p), (p0, p

′), (p, p′) for any
two points p, p′ ∈ L ∩ K (note that all plane words through lines through p0

are already in the code at this point).

Therefore, the dimension is exactly

(N − 1)q +
∑

p0 6∈L∈L

(|L ∩ K| − 1)(q − 1).

Note that
∑

p0∈L∈L(|L∩K|−1) = N −1 since both represent all points of K except
for p0. Hence

dim(C ′) = (N − 1)q +
∑

p0 6∈L∈L(|L ∩ K| − 1)(q − 1)

= (N − 1) + (q − 1)
∑

L∈L(|L ∩ K| − 1)
= (N − 1) + (q − 1)

((∑
L∈L |L ∩ K|

)
− |L|

)
= (N − 1) + (q − 1)(LS − LN ).

Remark 3.6. We now know that C ′ is a linear [Nq2, N−1+(q−1)(LS−LN )]-code.
There is no general expression for LS −LN in terms of q and N . However, there is
an easy algorithm to compute LS − LN for an arbitrary set K:

Let K be an arbitrary subset of PG(2, q). Fix any point p0 (inside K or outside
K). Call a line through p0

• a secant if it contains two or more points of K \ {p0},
• a tangent if it contains exactly one point of K \ {p0}, and
• a passant if it contains no points of K \ {p0}.
When adding/removing a point p0,

• LS increases/decreases by q + 1, while
• LN increases/decreases by the number of passants through p0.

Hence, LS − LN increases/decreases by the number of non-passant lines through
p0.

Some examples:

• If K is a k-arc, then adding the ith point increases LS − LN by i− 1. Hence,

LS − LN =

k∑
i=1

(i− 1) =
k(k − 1)

2
.

• If K is the pointwise union of two intersecting lines, then adding the points
on the first line increases LS −LN by 1 each time (except for the first point),
while adding the other q points increases it by q+ 1 each time. Hence, in this
case

LS − LN = q + q(q + 1) = q2 + 2q.
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Remark 3.7. Since one has in general that LS = N(q+ 1), the dimension formula
can be rewritten as q2N−q3 +(q−1)(q2 +q+1−LN ). Since the parity check matrix
is a q3× q2N matrix, this means that the rank deficiency of the parity check matrix
is q − 1 times the number of lines at infinity, skew to K. It may be interesting to
find out if there exists a more direct way to obtain this formula.

4. Dimension of C. We will compute the dimension of T ∗2 (K) as follows. First
we will compute dimC in the case K = PG(2, q), and find that it equals dimC ′ in
that case, hence C = C ′. Then we will present a technique to keep this property
valid while removing arbitrary points from K. Every subset K of PG(2, q) can be
obtained by removing a finite number of points from PG(2, q), so the conclusion
will follow. As in the previous section, we will always assume that q 6= 0 over K,
i.e. charK 6= p.

4.1. The case K = PG(2, q). In this case, we simply have T ∗2 (K) = AG(3, q).
Remark that AG(3, q) is a 2-(q3, q, 1) block design, using lines as blocks. Denote by
An the incidence matrix of AG(n, q), with n ≥ 2, where points correspond to rows
and lines correspond to columns.

It is a classical result in design theory (see [1] for a proof and more general
background on designs) that AnA

T
n = (qn−1 + qn−2 + . . . + q2 + q)I + J , where J

denotes the qn × qn matrix with all entries equal to 1. This has determinant

(qn + qn−1 + . . .+ q2 + q)(qn−1 + qn−2 + . . .+ q2 + q)q
n−1.

In fact, AnA
T
n has qn − 1 eigenvalues equal to qn−1 + qn−2 + . . . + q2 + q and one

eigenvalue equal to qn + qn−1 + . . . + q2 + q. The determinant is non-zero when
qn−1 + qn−2 + . . .+ q2 + q 6= 0 and qn + qn−1 + . . .+ q2 + q 6= 0. For most choices of
the characteristic, this already shows that An has full rank, however in some cases
further study is required:

• The case q = 0 has been excluded by our assumptions. In fact, An does not
have full rank in this case. We will further assume q 6= 0.
• The case qn−1 + qn−2 + . . .+ q+ 1 = 0 is easily solved. Note that this implies
q 6= 0 and qn−2 + qn−3 + . . . + q + 1 6= 0, hence in this case only one of
the eigenvalues of AnA

T
n equals zero over K, and we see that (1, . . . , 1)T is

an eigenvalue corresponding to this eigenvector. Hence (1, . . . , 1)T is (up to
scalar multiples) the only eigenvector corresponding to this eigenvalue, but
one can verify that

(1, . . . , 1)AT
n = qn(1, . . . , 1) 6= ~0

since q 6= 0. Hence, this is not a code word, and hence there is no v 6= ~0 such
that Anv = ~0, i.e. An has full rank in this case.
• The case qn−2 + qn−3 + . . .+ q+ 1 = 0 is more difficult. Purely combinatorial

approaches seem to fail, but a geometric trick works. We will now develop this
technique to find the rank of An over K for the case qn−2+qn−3+. . .+q+1 = 0.

Lemma 4.1. Let k ≥ 2. If the incidence matrix of AG(k + 1, q) is rank deficient
over K, then the incidence matrix of AG(k, q) is also rank deficient over K.

Proof. Assume that the incidence matrix of AG(k + 1, q) is rank deficient. Since
k ≥ 2, there are more lines than points. Hence, rank deficiency means that there
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exists a linear combination of points whose corresponding line-incidence vectors
yield the zero vector (zero for each line):∑

pi∈AG(k+1,q)

cipi = ~0

with not all ci = 0 over K.
Now consider any hyperplane Π ∼= AG(k, q) in our AG(k + 1, q) which contains

at least one point with non-zero coefficient in the linear combination. For all lines
contained in Π, the linear combination of the point-line incidence vectors has to be
zero as well. I.e. in Π we also have

∑
pi∈Π cipi = ~0. Since Π contains at least one

point with non-zero coefficient in the linear combination, this linear combination is
nontrivial. Hence, the incidence matrix of AG(k, q) is rank deficient as well.

Theorem 4.2. The incidence matrix of AG(n, q) (with n ≥ 2), q = ph with p
prime, has full rank over all fields with charK 6= p.

Proof. We will prove this by induction on n. For n = 2 this is clear from the remarks
in the beginning of this section, since the problematic case above (qn−2+. . .+q+1 =
0) reduces to 1 = 0, hence can be excluded immediately. For each n ≥ 2 it follows
by contraposition of Lemma 4.1 that if the statement is true for n, then it is also
true for n+ 1. Hence, by induction, it is true for all n ≥ 2.

We have proven thatf An has full rank for all n ≥ 2 when charK 6= p. Explicitly,
for the general setting of T ∗n (K) with K = PG(n, q) (which yields exactly AG(n +
1, q)) the geometry has qn(qn + qn−1 + . . . + q + 1) lines and qn+1 points, hence
Theorem 4.2 yields

dimC = qn(qn + qn−1 + . . .+ q3 + q2 + 1).

Now compare this to the result of Section 3. In Section 3 we worked with n = 2,
hence N = q2 + q + 1 and T ∗2 (K) = AG(3, q). This gives us

dim(C ′) = (N − 1) + (q − 1)(LS − LN )
= q2 + q + (q − 1)((q2 + q + 1)(q + 1)− (q2 + q + 1))
= q2(q2 + 1)
= dimC.

and hence dimC = dimC ′. Hence, the code associated with AG(3, q) is spanned
completely by its plane words. However, for n > 3, Theorem 3.5 is no longer valid.
We finish with a conjecture for the higher dimensions:

Conjecture 4.3. If K = PG(n, q) with n > 2 and charK 6= p then the code
associated with T ∗n (K) = AG(n+ 1, q) over K also has dimC ′ = dimC.

4.2. The general case. The main idea here is the following: if we remove a point
from K, we claim that the property that the code is spanned by its plane words
remains valid. To distinguish between different point sets, we denote by CK, C

′
K

respectively the full code and the plane words code associated with T ∗n(K). Similarly,
we denote by LN,K, LS,K the respective values of LN and LS for the set K.

Theorem 4.4. Let K be a nonempty subset of PG(2, q) and let charK 6= p. We
have dimCK = dimC ′K (and hence CK = C ′K).
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Proof. According to Theorem 3.5, if T ⊆ PG(2, q), then removing a point p0 from
T decreases dimC ′ by

dimC ′T − dimC ′T\{p0} = 1 + (q − 1)((LS,T − LN,T )− (LS,T\{p0} − LN,T\{p0}))

and hence decreases dimC by at least this amount.
Fix one point p0 ∈ K. Now remove all other points of PG(2, q) one by one, first

the points outside K then the points inside K, except for p0. Denote by Ti the set
in the intermediary step with i points:

T|PG(2,q)| = PG(2, q), TN = K, T1 = {p0},

and define Q = |PG(2, q)| − 1. Here, |PG(2, q)| denotes the number of points in
PG(2, q), which is q2 + q + 1. Note that in any code word, every affine point lies

on either 0 or at least 2 lines of the support of that code word, hence C{p0} = {~0}.
Note that C{p0} is simply CK with K = {p0}. Hence, we have

dimCPG(2,q) = dimCPG(2,q) − dimC{p0}

=

Q∑
i=1

(
dimCTi+1

− dimCTi

)
≥ dimC ′T2

− dimC ′T1
+

Q∑
i=2

(
dimCTi+1 − dimCTi

)
≥ · · ·

≥
Q∑
i=1

(
dimC ′Ti+1

− dimC ′Ti

)
= dimC ′PG(2,q) − dimC ′{p0}
= dimC ′PG(2,q).

It was proven in the previous subsection that dimCPG(2,q) = dimC ′PG(2,q), hence

we must have equality in each inequality “≥”. This means that

dimCTi+1 − dimCTi = 1 + (q − 1)((LS,Ti+1 − LN,Ti+1)− (LS,Ti − LN,Ti))

for each i. A simple induction gives dimCTi = dimC ′Ti
for all i, in particular for

i = N we have dimCK = dimC ′K.

Hence for T ∗2 (K) in general it is now proven that dimC = dimC ′ and the code
C is generated completely by its plane words.

Remark 4.5. If Conjecture 4.3 is true, then Theorem 4.4 can be extended to
arbitrary subsets of PG(n, q): then we have dimC = dimC ′ for the code associated
with T ∗n(K) with arbitrary K ⊆ PG(n, q).

Remark 4.6. As an immediate consequence, we get that in the binary code asso-
ciated with T ∗2 (K) for q odd, all code words have even weight.

5. The minimum distance of C. Now that the dimension and structure of C
are known, we can attack another one of its key properties: the minimum distance.
In some sporadic cases the minimum distance is known [13, 23], however in most
cases one only has lower bounds from the tree bound [29], the bit-oriented bound
and the parity-oriented bound [30].
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Theorem 5.1. For any finite field K, all code words c with w(c) < 2q must be
contained in a single plane. If w(c) = 2q, then either c is a plane word, supp(c) is
the set of lines of a hyperbolic quadric with two intersecting lines contained in K,
or charK = p = 2.

Proof. This follows from [23], Proposition 4.

Now, we will use the structure of C to sharpen this result and classify the mini-
mum weight code words.

Theorem 5.2. If charK 6= p, there are no code words c ∈ C with w(c) < 2q. If
w(c) = 2q, then either c is a plane word or supp(c) is the set of lines of a hyperbolic
quadric with two intersecting lines contained in K.

Proof. The second part follows immediately from Theorem 5.1. For the first part,
assume that there exists a code word with w(c) < 2q and let U be its support.
By Theorem 5.1, the support of this code word is contained in a plane T . Define
m = |K ∩ T | and write K ∩ T = {p1, . . . , pm}. Since supp(c) ⊂ T , we have that c is
a generalized plane word in T . Hence, either each of the q lines through pi appear
in U , or none of them do. Since one needs either 0 or at least 2 lines through a
point, it follows that w(c) ≥ 2q, a contradiction.

Remark 5.3. Note that it may actually happen that there are minimum weight
code words other than plane words – Theorem 5.1 classfies them. However, it
follows from Theorem 4.4 that these other minimum weight code words are also a
linear combination of plane words. Hence, even in this case, the statements ‘C is
generated by its (generalized) plane words’ and ‘C is generated by its code words
of minimum weight’ are equivalent.

So far we have proven that C is a linear [Nq2, N −1 + (q−1)(LS−LN ), 2q]-code
and it is completely generated by its minimum weight code words.

Now, let us see what happens for T ∗n(K) with n > 2, assuming Conjecture 4.3 is
true.

Theorem 5.4. If Conjecture 4.3 is true, then d(C) = 2q is true for T ∗n(K) with
arbitrary n ≥ 2 and arbitrary K ⊆ PG(n, q) (still assuming charK 6= p).

Proof. Assume there exists a non-zero code word c with w(c) < 2q and let U be its
support. Let T be any plane and define t = |U∩T |. Since the sum of the coefficients
has to be 0 in each point, any point on a line of the support lies on at least one
other line of the support. Hence we have

t(q − t+ 1) < 2q − t,
meaning t > q or t < 2. Since t is an integer, this means t ≥ q + 1 or t ≤ 1.

Now, if there are at least two planes for which t ≥ q + 1, then w(c) ≥ 2q + 1,
contradiction. Hence there is at most one such plane and U is completely contained
in this plane. The rest of the proof can be copied from Theorem 5.2.

The following theorem summarizes the results obtained so far:

Theorem 5.5. The code associated with T ∗2 (K) over any field K, with charK 6= p,
is a linear [Nq2, N−1+(q−1)(LS−LN ), 2q]-code and it is completely generated by
its minimum weight code words. If Conjecture 4.3 is true, then for charK 6= p the
code associated with T ∗n(K) also has d(C) = 2q and it is also generated completely
by its minimum weight code words.



414 PETER VANDENDRIESSCHE

6. Some practical considerations and further work. A commonly used ap-
proach when constructing good LDPC codes is the maximization of the girth of its
Tanner graph [8],[20],[35]. It is known that high girth decreases the dependence
between passing messages in the belief-propagation sum-product algorithm. The
Tanner graph of T ∗2 (K) always has a girth of at least 6. If K is an arc, then the
girth is 8, as T ∗2 (K) contains no triangles.

Liu and Pados [16] mention an opposing objective: the minimization of the
diameter of the Tanner graph, which brings them to generalized polygons. If K is
not contained within a line, the diameter of T ∗2 (K) is at most 6. If K contains no
tangents at infinity, the diameter is as low as 4. Examples of such choices of K
include K a hyperoval and K a double blocking set.

There is a unique choice for K that combines both of the preceding objectives:
the case where K is a hyperoval, which only exists for q even. Then T ∗2 (K) is a
generalized quadrangle with girth 8 and diameter 4. From the above points of
view, this is probably the most appealing case, however, the restriction charK 6= p
excludes the most important field for practical applications: F2.

Hyperoval q = ph dimF2
C dimR C = dimR C

′ dimF2
C ′

Regular hyperoval q = 2 9 9 8
Regular hyperoval q = 4 50 50 37
Regular hyperoval q = 8 341 324 194
Regular hyperoval q = 16 2670 2312 1105

Lunelli-Sce hyperoval q = 16 2550 2312 1107
Regular hyperoval q = 32 22248 17424 6578

Translation hyperoval q = 32 21258 17424 6608
Cherowitzo hyperoval q = 32 20358 17424 6613

Payne hyperoval q = 32 20388 17424 6613
Segre hyperoval q = 32 20553 17424 6613

O’Keefe-Penttila hyperoval q = 32 20343 17424 6613
Regular hyperoval q = 64 188665 135200 39937

Adelaide hyperoval q = 64 169772 135200 40312
Subiaco I hyperoval q = 64 169254 135200 40312

Subiaco II hyperoval q = 64 169388 135200 40309
Table 1. Simulation results for the binary codes associated with
T ∗2 (K) where K is a hyperoval.

For the binary code associated with T ∗2 (K) when K is a hyperoval, the results in
this paper are no longer valid. Lemma 3.3 no longer guarantees the lower bound on
dimC ′ and since the 2-rank is at most the real rank, the dimension of C could be
larger than what we have derived in this paper. In Table 6, we have calculated the
dimension (and hence the code rate, which is dimension over length) of the F2-code
and R-codes associated with T ∗2 (K) withK a hyperoval, by computer simulations, for
multiple types of hyperovals in PG(2, 2h). For h ≤ 5, these are the only hyperovals
(for proofs of these facts, see [6, 21, 22, 26]). For h = 6, it is commomly believed
that these are the only hyperovals, but a proof has not been found yet. For h > 6, a
classification is not even conjectured and the computations also become unfeasible.

We see that the results indeed deviate from the numbers in Theorem 5.5. In
this case we get even better parameters: the dimension increases while no other
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visible parameters change. However, we lose the structural property that the code
is spanned by its code words of minimum weight. For other choices of K when q is
even, even the minimum distance may decrease. This has been investigated more
closely in [23]. In general, only a minimum weight of q + 1 can be guaranteed.

If one wants to maintain the structure property and still use a binary code, then
q must be odd. Some examples that are ‘near-optimal’ choices for K in these cases
include:

• K is a (q+ 1)-arc (and hence a conic by [25]). Compared to the case where K
is a hyperoval, the dimension and rate are slightly smaller, the code is a bit
shorter in length and the girth remains 8. The diameter is 6 now, but there
are only very few pairs of vertices where this distance is actually reached. It
would be interesting to perform practical simulations to find out if this case
still guarantees a fast average decoding speed.

• K has no tangents. For example, K is a dual double blocking set. Here the
Tanner graph of T ∗2 (K) has girth 6 and the diameter is still 4, but the length
of the code is necessarily longer compared to the case where K is a hyperoval,
without an increase in minimum distance.

To finish, we take a look ahead on possible further work on this subject. Each of
the following could be a significant contribution to the understanding of this class
of codes.

• For T ∗n(K), with n > 2, little is known. If Conjecture 4.3 is true, it could
be interesting to find a generalization of the formula in Theorem 3.5 and to
analyze its geometric interpretation. Regarding the optimal choice of K, there
is no n-dimensional equivalent of the hyperoval, so it would be interesting to
know which choices for K yield interesting geometries (if any).

• Practical simulations on encoding/decoding speed or other performance mea-
surements of T ∗2 (K) for some good choices for K would be very helpful. Espe-
cially the case K is a hyperoval, a conic or some of the examples studied in [23]
or in this article, would be interesting. It would also be interesting to know if
the case charK = p generally performs better or worse than charK 6= p.

• If charK = p, few results in this paper remain valid. The only trick that works
completely when charK = p is that if the incidence matrix of AG(n + 1, q)
is rank deficient, then the incidence matrix of AG(n, q) is rank deficient. A
suited structural property could potentially be preserved in a way similar to
Section 4.2. This suggests that it may be a good help to first find out the
structure of the base case AG(2, q), especially which code words remain valid
if we remove certain classes of parallel lines. Another indication that this may
be an interesting topic is the minimum distance. From Theorem 5.1, code
words c with w(c) < 2q are necessarily contained within a plane. If one knows
the structure of the LDPC code associated with AG(2, q), one is likely to find
a general result on the minimum weight. Until now, the only known lower
bounds are the bounds in [23].

• If charK = p, it would be useful to find a structure or dimension result even
just for special cases. Even for T ∗2 (K) with K a hyperoval this seems a lot
harder. From the simulation results in Table 6, one can see that the dimensions
are different between different types of hyperovals. This may be related to the
approach in [23]: dimC may depend on how many points of a conic are con-
tained in K, while the difference in dimC ′ between regular/translation/other
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hyperovals may be related to Remark 7 in [23], since other hyperovals are not
known to have such special points.
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