
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's 
Reports - Open 

Dissertations, Master's Theses and Master's 
Reports 

2014 

MAXIMAL ARCS, ABOVE AND BEYOND MAXIMAL ARCS, ABOVE AND BEYOND 

Diego Domenzain-Gonzale 
Michigan Technological University 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Mathematics Commons 

Copyright 2014 Diego Domenzain-Gonzale 

Recommended Citation Recommended Citation 
Domenzain-Gonzale, Diego, "MAXIMAL ARCS, ABOVE AND BEYOND", Master's report, Michigan 
Technological University, 2014. 
https://digitalcommons.mtu.edu/etds/802 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Mathematics Commons 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Michigan Technological University

https://core.ac.uk/display/151508151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F802&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.mtu.edu%2Fetds%2F802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F802&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.mtu.edu%2Fetds%2F802&utm_medium=PDF&utm_campaign=PDFCoverPages


MAXIMAL ARCS, ABOVE AND BEYOND

By
Diego Domenzain

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Mathematical Sciences

MICHIGAN TECHNOLOGICAL UNIVERSITY
2014

©2014 Diego Domenzain





This report has been approved in partial fulfillment of the requirements for
the Degree of MASTER OF SCIENCE in Mathematical Sciences.

Department of Mathematical Sciences

Report Advisor: Dr. Stefaan De Winter

Committee Member: Dr. Melissa Keranen

Committee Member: Dr. Laura Brown

Department Chair: Dr. Mark Gockenbach





Dedication

To all the trees in the Keweenaw, who have seen me go through many changes.





Contents

Dedication v

Contents vii

List of Figures 1

Abstract 3

1 Introduction 5
1.1 Projective Geometries . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Vector Spaces and an Incidence Relation . . . . . . . . . . 7
1.1.3 Blowing up . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.4 Polarities . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Maximal Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 Two weight sets . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Two weight codes . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Strongly regular graphs . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Partial geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 LDPC codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6.1 The incidence matrix of a partial geometry as an LDPC code 22
1.6.2 Minimum distance of the code C . . . . . . . . . . . . . . . 23
1.6.3 Rank of the code C . . . . . . . . . . . . . . . . . . . . . . 26
1.6.4 6 cycles on L(C) . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Maximal arcs and above objects 27
2.1 Maximal Arcs give rise to partial geometries . . . . . . . . . . . . 27

2.1.1 Method 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.2 Method 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Summary of constructions . . . . . . . . . . . . . . . . . . . . . . 29

vii



2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Example of Method 1 . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Example of Method 2 . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 A desirable example . . . . . . . . . . . . . . . . . . . . . 35

2.4 Notes on the constructions of LDPC codes . . . . . . . . . . . . . 37

3 Existence of Maximal Arcs in PG(2, q) 39
3.1 When q is odd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 When q is even . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Denniston construction . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Mathon construction . . . . . . . . . . . . . . . . . . . . . 46

4 Beyond maximal arcs 51
4.1 A generalisation of maximal arcs to higher dimensions . . . . . . . 51

4.1.1 Perp-systems give rise to two weight codes . . . . . . . . . 53
4.2 Partial geometries from perp-systems . . . . . . . . . . . . . . . . 55
4.3 21 lines in PG(5, 3) . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Conclusions 63
5.1 Maximal arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Above maximal arcs . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Beyond maximal arcs . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Future work 67
6.1 Combinatorics and non-existance of maximal arcs . . . . . . . . . 67
6.2 Building impossible maximal arcs . . . . . . . . . . . . . . . . . . 68

6.2.1 Analysis of the 21 lines . . . . . . . . . . . . . . . . . . . . 68
6.2.2 Recipe for what would be an impossible maximal arcs . . . 69

Bibliography 71

viii



List of Figures

1.1 PG(2, 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 PG(2, 2) and the image of a polarity ρ. . . . . . . . . . . . . . . . 12
1.3 A maximal non trivial arc satisfies 1 < d < q and d|q. . . . . . . . 13

1.4 A srg(v, k, λ, μ) has v = 1 + k + k(k−λ−1)
μ

points. . . . . . . . . . . 16

1.5 A pg(s, t, λ) has v = (s+1)st
α

+ s+ 1 points. . . . . . . . . . . . . . 19
1.6 pg(2, 2, 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 First part of PG(2, 4) . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Second part of PG(2, 4) . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Third part of PG(2, 4) . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 pg(2, 2, 1) embedded in PG(2, 4). . . . . . . . . . . . . . . . . . . . 34
2.5 pg(2, 2, 1) embedded in PG(3, 2). . . . . . . . . . . . . . . . . . . . 35
2.6 srg(15, 6, 1, 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 Incidence matrix N of the partial geometry pg(2, 2, 1) and parity

check matrix for the code CLDPC. . . . . . . . . . . . . . . . . . . . 36
2.8 Generator matrix N⊥ for the code CLDPC. . . . . . . . . . . . . . . 37

3.1 Direction of a line containing points A,B and C in Fq2 . . . . . . . 40
3.2 The case x−1

0 ∈ Fq2\B[−1]. . . . . . . . . . . . . . . . . . . . . . . 41
3.3 The case x0 ∈ B[−1]. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 All the lines passing through F0. . . . . . . . . . . . . . . . . . . . 48
3.5 Lines joining the points [1, 0, 0] and [0, 1, b] with b ∈ F2h , b �= 0. . . 48
3.6 Lines joining the points [a, 1, 0] and [b, 0, 1] with a, b ∈ F2h , b �= 0.

There are q choices for a, q − 1 choices for b and so q(q − 1) lines
in this class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Diagram explaining the derivation of weight h1. . . . . . . . . . . 54
4.2 Diagram explaining the derivation of weight h2. . . . . . . . . . . 54

1



2



Abstract

This report explores combinatorial structures in Finite Geometries by giving
known constructions of maximal arcs; using maximal arcs to construct two-weight
codes, partial geometries, strongly regular graphs and LDPC codes; a review on
how to generalize maximal arcs to higher dimensions through Perp-Systems; and
an effort in finding constructions of new Perp-Systems.
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Chapter 1

Introduction

The structure of this report is as follows:

• Chapter 1 introduces projective geometries, maximal arcs, two weight sets,
linear codes, partial geometries, strongly regular graphs and Low Density
Parity Check Codes (LDPC codes); as well as some relationships among
them.

• Chapter 2 explains how from a given maximal arc, other combinatorial struc-
tures arise. Two examples are given, and a third desirable example is out-
lined.

• Chapter 3 gives known constructions of maximal arcs, and outlines the
known proof on why maximal arcs cannot exist in projective planes PG(2, q)
with q odd.

• Chapter 4 introduces Perp-Systems as a generalization of maximal arcs in
higher dimensions and explains how to build partial geometries from them.

A solution to the desirable example of Chapter 2 is given, and the moti-
vation for the last part of Chapter 6 is thus given.

• Chapter 5 summarises all given constructions.

• Chapter 6 gathers possible projects naturally arising from the previous chap-
ters.

The final part of this Chapter addresses a possible construction of perp-
systems inspired in Mathon’s construction of maximal arcs given in Chap-
ter 3, attempting to generalize the desirable example of Chapter 2.
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1.1 Projective Geometries

To build maximal arcs, we will first need to build Projective Geometries. To build
Projective Geometries, we will first need to build a finite vector space. To build a
finite vector space, we will first need to build a finite field. The next subsections
will explain these constructions.

1.1.1 Finite fields

A field is a non-empty set F with two operations, addition and multiplication in
which addition forms a group in F with an identity element 0F , while multiplica-
tion forms a group in F\{0F} with identity 1F .

If a field F is finite, then it has size q = ph where p is a prime. Moreover,
all fields with q elements are isomorphic, and we denote this “unique” field by Fq.
See [37].

We build Fp by taking the integers {0, 1, ..., p − 1} and defining addition and
multiplication modulo p. To build a field with q = ph elements, we take an irre-
ducible polynomial f over Fp of degree h where f(α) = 0, and we consider the
following quotient:

Fp[X]/ < f > ∼= {ah−1α
h−1 + · · ·+ a1α + a0 : ai ∈ Fp}

∼= {[ah−1, ..., a1, a0] : ai ∈ Fp}
∼= Fph .

This quotient is a field because f is irreducible.

In general, for q a power of a prime we can build Fqh by taking an irreducible
polynomial f of degree h and considering its quotient over Fq[X]:

Fq[X]/ < f > ∼= Fqh . (1.1)

A subfield of a field F is a proper subset of F that is itself a field under the same
operations as F . From the the isomorphisim 1.1 we see that the only subfields of
Fqh are Fqj whenever j divides h.

The non-zero elements of the field Fqh form a cyclic multiplicative group of order
qh − 1. We denote this group by F

∗
qh

and we call a generator of F∗
qh

a primitive
element of the field.
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An l-root of unity is an element a ∈ Fqh such that al − 1 = 0. Let g be a
primitive element of Fqh so gm = a, then we have al = 1 if and only if gml = 1 and
so qh − 1 must divide ml. Let d = x(qh − 1) + yl be the greatest common divisor
of qh − 1 and l, then

adm = (ax(q
h−1)+yl)m = (1x1y)m = 1 = aq

h−1

and so qh−1 divides dm, which gives that qh−1
d

divides m, and so a can be written

as g
qh−1

d
m′
. Conversely, any element in the group generated by g

qh−1
d is an l-root

of unity. Hence, the number of l-roots of unity is d.

Having a way to know when a quadratic polynomial is irreducible in F2h will be
important in the next chapters and we now collect some results. The absolute trace
of an element x in F2h is given by

Tr(x) = x+ x2 + · · ·+ x2h−1

.

We have Tr(x) ∈ F2, Tr(x + y) = Tr(x) + Tr(y) and Tr(x2) = Tr(x). The
polynomial f(X) = aX2+ bX+ c in F2h [X] with b �= 0 is irreducible if and only if

Tr
(ac
b2

)
= 1.

The interested reader can refer to [31] for details.

1.1.2 Vector Spaces and an Incidence Relation

Once we have a finite field Fq we can build a vector space Fn
q by taking the direct

product of n copies of Fq

Fq × · · · × Fq︸ ︷︷ ︸
n

= F
n
q .

We denote the vector space F
n
q by V(n, q).

To build our projective geometry we now consider the vector space V(n, q) and
define the points of this geometry as the one-dimensional subspaces of V(n, q),
the lines as the two-dimensional subspaces, and in general a (k − 1)-dimensional
subspace of our projective geometry as a k-dimensional subspace of V(n, q).

The resulting projective geometry is denoted by PG(n− 1, q). Note that this
construction also tells us that each (k − 1)-dimensional subspace of PG(n− 1, q)
is itself a PG(k− 1, q). Moreover we have that in PG(n− 1, q), each hyperplane

7



PG(n− 2, q) meets in exactly one PG(n− 3, q) with another hyperplane.

For any two subspaces

PG(k1, q),PG(k2, q) ⊂ PG(n− 1, q)

we say that PG(k1, q) is incident to PG(k2, q) if

PG(ki, q) ⊆ PG(kj, q).

We can count how many points there are in PG(n− 1, q) by counting how many
vector lines there are in V(n, q).

To count vector lines in V(n, q), we first count how many vectors different from 0̄
there are in V(n, q), and then we reason that each vector line is counted as many
times as there can be scalar multiples of a given vector, therefore there are

[n]q :=
qn − 1

q − 1

vector lines in V(n, q), and so [n]q many points in PG(n− 1, q).

In general we can count how many k-dimensional subspaces there are in V(n, q),
which is the same as counting (k − 1)-subspaces in PG(n− 1, q), by[

n
k

]
q

:=
[n]q!

[k]q![n− k]q!
.

Given a subspace U ⊂ V(n, q) with dimension k, we can count how many subspaces
of V(n, q) with dimension k + c contain U, by counting how many ways there are
of choosing c different linearly independent vector lines in V(n, q)\U. Let I(k, c)
be the number of different subspaces with dimension k + c containing a subspace
of dimension k, we have

I(k, c) =

[
n− k
c

]
q

. (1.2)

Note that this also gives us a way to count the number of projective geometries
of dimension k + c− 1 incident to those of dimension k − 1 in PG(n− 1, q).

As an example Figure 1.1 shows PG(2, 3). Since points in PG(2, 3) come from
1-dimensional subspaces in V(3, 3), each point could be labeled with q − 1 = 2
different vectors, corresponding to the different scalar multiples a given vector
in V(3, 3). Out of the q − 1 choices for labelling a given point in our projective
geometry, we choose the vector in V(3, 3) whose first non-zero entry is 1.

8
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Figure 1.1: PG(2, 3)

1.1.3 Blowing up

We next describe how to “blow up” the vector space V(n, qh). In light of rela-
tion (1.1) we have that

Fq[X]/ < f > ∼= {ah−1α
h−1 + · · ·+ a1α + a0 : ai ∈ Fq}

∼= {[ah−1, ..., a1, a0] : ai ∈ Fq}
∼= Fqh

and so we can think of Fqh as the h-dimensional vector space F
h
q .

This gives us that for any v ∈ V(n, qh) we can think of each entry vi of v as
a vector v ∈ F

h
q .

By replacing each entry vi with its expression as v, we get the vector space
V(h · n, q). We call this construction a blow up of V(n, qh). We summarise:

V(n, qh)
blow up−→ V(h · n, q) (1.3)

9



Since each projective geometry was built by taking an incidence relation on a
vector space, the blow up over V(n, qh) also gives us a blow up for PG(n− 1, qh):

PG(n− 1, qh)
blow up−→ PG(h · n− 1, q) (1.4)

Note that the blow up (1.3) is a one to one onto assignment, while the blow
up (1.4) is one to qh − 1.

Specifically, a point p ∈ PG(n− 1, qh) coming from the one dimensional subspace
p ⊂ V(n, qh), gets assigned to qh − 1 points in PG(h · n− 1, q), which correspond
to the image of p\{0} ⊂ V(n, qh) under the blow up (1.3).

Let’s look at an example. Let F3 = {−1, 0, 1} and f ∈ F3[X] with f(x) =
x2 + 1 = 0. We have

F3[X]/ < f > ∼= {a1x+ a0 : ai ∈ F3}
∼= {0, 1,−1, x+ 1,−x, 1− x,−x− 1, x, x− 1}
∼= {[a1, a0] : ai ∈ F3}
∼= F32 .

We will build the blow up

V(3, 32) = V(3, 9)
blow up−→ V(6, 3) = V(2 · 3, 3)

by the following assignment

[v1, v2, v3] → [a11, a10, a21, a20, a31, a30]

where
vi = [ai1, ai0] ∈ F32 , aij ∈ F3

This induces the blow up

PG(2, 9)
blow up−→ PG(5, 3)

where, for example the point [0, 0, 1] ∈ PG(2, 9) gets assigned to the 32 − 1 points

[0, 0, 0, 0, a1, a0], [a1, a0] �= [0, 0]

10



1.1.4 Polarities

A duality [5, 6] on a projective space PG(n, q) is a map from PG(n, q) to itself
such that it reverses inclusion and preserves incidence, where points are mapped
to hyperplanes, lines are mapped to subspaces of one dimension less than a hy-
perplane, and so on. A polarity ρ is a duality such that ρ2 is the identity [5, 6].

Let π be a subspace of PG(n, q) of dimension r. We call πρ the image of π under
ρ. Note that since ρ is a duality, the dimension of πρ is n− r − 1.

Figure 1.2 gives an example of a polarity ρ on PG(2, 2). The image Lρ of a line L
is denoted by a pair of points that determine L, and the image pρ of a point p is
denoted by p written closely to the line pρ.

1.2 Maximal Arcs

We next describe an important structure within the projective plane PG(2, q),
and leave the constructions of such objects for Section 3. Maximal arcs were first
introduced in [2].

A maximal arc is a non-empty proper subset K of points in PG(2, q), such that
every line of PG(2, q) meets K in 0 or d points.

We can count the size k of K by fixing a point p ∈ K. Since p is already in
K, every line containing p must meet K in d−1 more points. Since there are q+1
lines through p we have

k = |K| = (d− 1)(q + 1) + 1

= qd− q + d.

What conditions must d satisfy in terms of q?

First observe that if d = q + 1 then k = q2 + q + 1 and so K consists of all the
points in PG(2, q).

If d ≤ q then there is at least one point p ∈ PG(2, q) that is not in K. If p
were to have all the q + 1 lines incident to it meeting K, then each line would
contain d points of K and we would have

k ≥ d(q + 1) = qd+ d

11
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Figure 1.2: PG(2, 2) and the image of a polarity ρ.

which is a contradiction. So there is at least one line L ⊂ PG(2, q) that doesn’t
contain any point of K.

For a given point p ∈ L there are another q lines incident to it. Let this set
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of q lines be
{L1, ..., Lq}.

We have that K is contained in this set, and each Li contains exactly 0 or d points
of K. Let m be the the number of Li’s that contain d points of K, then we have

dm = qd− q + d

⇒ m = q − q

d
+ 1

and so d must divide q. Note that if d = q then k = q2 and K is the set of all
points in PG(2, q)\L. We say that K is non trivial if 1 < d < q, and we will only
consider these arcs. Figure 1.3 summarises this count.

p

• • ••••

d points

q lines

m lines

Figure 1.3: A maximal non trivial arc satisfies 1 < d < q and d|q.

1.2.1 Two weight sets

We can generalize the definition of maximal arcs in PG(2, q) to that of a two weight
set in PG(k− 1, q). Some authors [9] use the term projective set instead of two
weight set.

A two weight set is a non-empty proper subset O of n points in PG(k− 1, q),
such that any hyperplane PG(k− 2, q) ⊂ PG(k− 1, q) contains either h1 or h2

points of O.
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1.3 Codes

A linear code is a k-dimensional subspace of V(n, q) [38]. We denote it by C.
Vectors in C are called codewords. Codes are used for aiding transmition of in-
formation over a noisy channel, enabling the use of an “alphabet” made of just
codewords to send messages. In order to have many words in the alphabet, the
dimension k (also refered to as rank of the code) should be large with respect to n.

Since C is a k-dimensional subspace embedded in V(n, q), we can think of a k× n
matrix G that “encodes” the vector v ∈ V(k, q) by left multiplication. We call G
a generator matrix of C and n its length.

Let yi ∈ V(k, q) be the columns of G for 1 ≤ i ≤ n, then for every v ∈ V(k, q), a
codeword c ∈ C is of the form

c = v ·G = (v · y1, ..., v · yn).
Given a way to encode a vector v ∈ V(k, q), we now give a way to check if a vector
y ∈ V(n, q) is an encoded vector or not. Let G⊥ be a matrix such that

G⊥ ·Gt = 0

that is, the row space of G⊥ is orthogonal to the row space of G. We then have
that G⊥ · y = 0 if and only if y is a codeword. Such a matrix G⊥ is called the
parity check matrix of C.

Let d be such that any d− 1 columns of G⊥ are linearly independent and some d
columns are linearly dependent, then d is called the minimum distance of C. The
minimum distance determines how different a transmitted message can be with
respect to a codeword in order to correct it.

For now, we will only consider codes for which the vectors {yi}n1 are linearly
independent, and thus we can think of the code C as being determined by a set of
points {ŷi}n1 in PG(k− 1, q), where ŷi is the 1-dimensional subspace spanned by
yi.

1.3.1 Two weight codes

The weight of a vector c ∈ C is the number of non-zero entries of c [38][9]. We
have that the minimum weight of C is the minimum distance of the code. We
say that a code C is a two weight code if all its codewords have either one of two
weights.

14



Two weight codes are two weight sets

Given a two weight code we can build a two weight set, and given a two weight
set we can build a two weight code [9]. We describe these constructions.

Let C be a code of dimension k over V(n, q) with generator matrix G,

G = [y1| · · · |yn].

For a given (k−1)-dimensional subspace U ⊂ V(k, q), we can take a vector u⊥ ∈ V(k, q)
such that for every u ∈ U we have

u⊥ · u = 0.

If C is a two weight code, then the weight of the codeword u⊥ · G is either w1 or
w2, so

|U ∩ {yi}n1| =
{
w1

w2

This gives that in PG(k− 1, q) the hyperplane Û coming from U has either n−w1

or n− w2 points from the set {ŷi}n1 , so {ŷi}n1 is a two weight set in PG(k− 1, q).

If {ŷi}n1 is a two weight set, then reasoning in reverse gives that C is a two weight
code.

1.4 Strongly regular graphs

A graph is an ordered set (V,E) of vertices (V ) and two-element subsets of V
called edges (E), in which two distinct vertices are said to be adjacent to each
other if they lie on the same edge, and where two distinct vertices define at most
one edge. Vertices that are adjacent to each other are also referred to as neigh-
bours.

We call the degree of a vertex the number of vertices adjacent to it. We say
that a graph is k-regular if all vertices have the same degree k.

A strongly regular graph is a k-regular graph in which

• any two adjacent vertices have exactly λ common neighbours;

• any two non-adjacent vertices have exactly μ common neighbours.
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A strongly regular graph on v vertices is denoted srg(v, k, λ, μ).

We can count how many vertices it has in terms of the parameters k, λ and μ
by setting three levels on our graph.

The first level consists of just one vertex a. The second level has all the k neigh-
bours of a. The third level has all the remaining vertices of our graph. A vertex b
in the second level shares λ neighbours with a, and so it has k− λ− 1 neighbours
in the third level. Each of these neighbours in the third level has μ neighbours
with a, so in total the third level has

k(k − λ− 1)

μ

vertices, and so

v = 1 + k +
k(k − λ− 1)

μ
.

Figure 1.4 summarises this count.

•• •• •• •• •

• • •

• • •

• • •

→ k

→ k(k−λ−1)
μ

→ 1

λ

k − λ− 1

μ

Figure 1.4: A srg(v, k, λ, μ) has v = 1 + k + k(k−λ−1)
μ

points.

Given a strongly regular graph we define its adjacency matrix A, where rows
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and columns are indexed by its vertices:

Aij =

{
1 if vertices i and j are adjacent

0 if vertices i and j are not adjacent

We can calculate one eigenvalue of A by noting that because each vertex is adja-
cent to k other vertices, the all one vector 1̂ is an eigenvector with eigenvalue k
and multiplicity 1.

To calculate the remaining v− 1 eigenvalues we first observe that A is symmetric
and thus all other eigenvectors are orthogonal to 1̂. The second step is to use A2.
The matrix A2 has the following entries

A2
ij =

⎧⎪⎨
⎪⎩
k if vertices i and j are equal

λ if vertices i and j are adjacent

μ if vertices i and j are not adjacent

and so we can write A2 as

A2 = kI + λA+ μ(J − I − A).

This tells us that an eigenvector orthogonal to 1̂ has an eigenvalue that is a solution
of

x2 = k + λx+ μ(−1− x).

Let f and g be the two remaining eigenvalues with multiplicities fm and gm
respectively. Using the fact that the sum of the diagonal entries of A is zero and
it is also the sum of its eigenvalues, we get

1 + fm + gm = v

k + f · fm + g · gm = 0

By solving for f, g, fm, gm explicitly we have

f, g =
1

2

[
(λ− μ)±

√
(λ− μ)2 + 4(k − μ)

]
(1.5)

fm, gm =
1

2

[
(v − 1)∓ 2k + (v − 1)(λ− μ)√

(λ− μ)2 + 4(k − μ)

]
. (1.6)
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1.5 Partial geometries

A partial geometry with parameters s, t and α is an incidence structure on a finite
set P of points and a finite set L of lines in which the following properties hold

• two points are incident with at most one line;

• there are s+ 1 points on a line;

• there are t+ 1 lines incident to one point;

• a point not on a given line is collinear to α points on that line.

We denote this incidence structure by pg(s, t, α).

We can count the number of points of a pg(s, t, α) just in terms of its param-
eters. To do this, we fix a line L and count all the points not on that line. Each
point on L has t more lines incident to it, and each of these lines has s more
points, so for each point on L we have st points not on L. For each point p not on
L, there are α points on L that are incident to p, so counting all the points not
on L we get

(s+ 1)st

α

points, and so adding the points on L we get

v =
(s+ 1)st

α
+ s+ 1.

Figure 1.5 summarises this count.

Note that there is an implicit duality in the definition of partial geometry, so
counting the number l of lines we have

l =
(t+ 1)st

α
+ t+ 1.

We give an example of a partial geometry with parameters pg(2, 2, 2) in Fig-
ure [1.6]. According to their parameters, partial geometries are broken down into
four non-disjoint classes [10]:

• The partial geometries with α = 1. These partial geometries are called
generalised quadrangles.

• The partial geometries with a α = s+ 1; dually α = t+ 1.
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•
• •

•
• •

• ••

•
•
•

α

t

s

←s+ 1

Figure 1.5: A pg(s, t, λ) has v = (s+1)st
α

+ s+ 1 points.

Figure 1.6: pg(2, 2, 2)

• The partial geometries with α = t; dually with α = s.

• The partial geometries with 1 < α < min{s, t}. These partial geometries
are called proper.

The point graph of a partial geometry is the graph whose vertices are the set of
points of our partial geometry, and two vertices are adjacent if and only if they
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are different and lie on the same line [25].

The incidence matrix N of a partial geometry pg(s, t, α) is a v × l matrix where
rows are indexed by its points, and columns are indexed by its lines:

Nij =

{
1 if the point i is incident to the line j

0 if the point i is not incident to the line j

The rows have a constant sum of t + 1 and the columns have a constant sum of
s+ 1.

Partial geometries as strongly regular graphs

The point graph of a given partial geometry pg(s, t, α) has the following properties.

• The number of vertices in the point graph is determined by the number of
points on pg(s, t, α)

v =
(s+ 1)st

α
+ s+ 1.

• Every point u in our partial geometry has t + 1 lines incident to it and
each line has s points different from u, so in the point graph the vertex
corresponding to the point u must have

k = s(t+ 1)

neighbours.

• For any two points u,w on a line L in our partial geometry there are s − 1
more points on that line. Moreover, u has t lines different from L incident
to it. Each of these t lines is not incident to w, so w is incident with α − 1
points different from u on each of the t lines.

These arguments show that in the point graph of our partial geometry any
two neighbouring vertices (corresponding to any two points on a given line)
have

λ = s− 1 + t(α− 1)

common neighbours.

• Any point u in our partial geometry has t+ 1 lines incident to it, and every
point v not on any of those t + 1 lines is incident to α points on each line.
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So in the point graph of our partial geometry any two non-adjacent vertices
(corresponding to any two points not on a line) have

μ = α(t+ 1)

common neighbours.

These properties show that the point graph of a partial geometry pg(s, t, α) is a
strongly regular graph with the following parameters

srg
((s+ 1)st

α
+ s+ 1, s(t+ 1), s− 1 + t(α− 1), α(t+ 1)

)
. (1.7)

It is important to note that although the point graph of a partial geometry gives
a way to build a strongly regular graph from a given partial geometry, the in-
verse process is not always true. That is, there are strongly regular graphs which
satisfy the properties on s, t and α as in [1.7] that cannot arise from a partial
geometry [25]. The next section will provide an example of this.

1.6 LDPC codes

Let C be a linear code whose parity check matrix G⊥ has “much” more zero than
nonzero entries, we then say that C is an LDPC code [28]. The author of this
report is aware of the vagueness in “much” more zeros in this definition, nev-
ertheless, as we will see later on the motivation of using LDPC codes is their
iterative decoding process rather than the sparsity of their parity check matrix,
even though these two concepts are tightly related.

Let L(C) be the graph whose vertices are indexed by rows (parity nodes) and
columns (bit nodes) of G⊥, and where the vertex corresponding to row i is adja-
cent to a vertex corresponding to a column j whenever the entry ij has a nonzero
entry. Such a graph is called the Tanner graph of C. Since neither parity nodes
nor bit nodes are adjacent to each other, L(C) is a bipartite graph.

Note that for a partial geometry, the Tanner Graph of its incidence matrix has
girth at least 6 since any two points can only be in one line, and so the smallest
polygon to be made in a partial geometry is a triangle, which in the Tanner graph
corresponds to a cycle of length 6. The Tanner graph of the incidence matrix of
a partial geometry is also referred to as its Levi graph or Line graph.

The motivation for building LDPC codes is the iterative procedure used to decode
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them which acts as a Belief Propagation algorithm on L(C), and has shown to per-
form very close to the Shannon limit. LDPC codes are used in multimedia mobile
broadcasting, digital video broadcasting, ethernet and wifi communications.

We now briefly explain how iterative decoding works [16]. Given a recieved mes-
sage m, we will check wether m is a codeword or not. The entries of m are assigned
to the corresponding bit nodes in the tanner graph in a way that the ith vertex
has the ith coordinate of m. Each bit node b then sends a message bm to their
adjacent parity nodes regarding which value they belive is correct (correct in the
sense of the value bm being a coordinate of a codeword). Each parity node p then
sends a message back to their adjacent bit nodes regarding which value p believes
to be correct for each adjacent bit node. This message passing between bit nodes
and parity nodes loops until a codeword is encountered or a threshold number
of iterations is carried over. The messages sent are usually polynomials with as
many variables as adjacent edges.

Given the nature of the decoding process, mainly the complexity in the mes-
sage polynomials, it is desirable to use linear codes whose Tanner graph has long
girth and as few edges as possible. These two objectives indicate that using the
incidence matrix N of a partial geometry as the parity check matrix of the code,
is a good idea since the incidence matrix is sparse, and the Tanner Graph has
girth at least 6.

1.6.1 The incidence matrix of a partial geometry as an
LDPC code

Let N be the incidence matrix of a partial geometry pg(s, t, α) of size v× l where

v =
(s+ 1)st

α
+ s+ 1 l =

(t+ 1)st

α
+ t+ 1.

Define a linear code C over the field F2 whose parity check matrix is N , and
generator matrix is N⊥ such that

N · (N⊥)t = 0.

The code C has length l. We will now give bounds on the minimum distance, rank
of the code C and the girth of L(C) as given in [18]. We need some preliminary
results first.

The point graph of this partial geometry is a strongly regular graph with pa-
rameters as in (1.7). The adjacency matrix A of this strongly regular graph and
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the incidence matrix N are related by

A = NN t − (t+ 1)I.

This can be seen by considering two rows vi, vj of N , where their dot product
gives the number of lines where the vertices i and j are both collinear to.

This last equation tells us that if h is an eigenvalue of A with multiplicity hm,
then h+ (t+ 1) is an eigenvalue of NN t with multiplicity hm.

The eigenvalues of A given in (1.5), can be written in terms of the partial ge-
ometry by

s(t+ 1), s− α, −(t+ 1)

with respective multiplicities

1,
st(s+ 1)(t+ 1)

α(s+ t+ 1− α)
,

s(s+ 1− α)(st+ α)

α(s+ t+ 1− α)

and so the eigenvalues of NN t are

(s+ 1)(t+ 1), s+ t+ 1− α, 0

with the same multiplicities as those of A.

Moreover, a non-zero eigenvalue e of an eigenvector e of N tN , is also an eigenvalue
for a non-zero eigenvector of NN t:

N tNe = ee ⇒ NN t ·Ne = eNe.

We will be refering to the eigenvalues of NN t and N tN interchangeably.

1.6.2 Minimum distance of the code C

We proceed as in [18, 17]. Let c be a codeword of minimum weight d, that is it
has d entries with the value 1 and the remaining entries with the value 0. Since
N is the parity check matrix of C, the vector Nc = x is the zero vector over the
field F2 and thus the number of entries it has in the real numbers is either 0 or
an even number. Recall that N has constant row sum t+ 1 and constant column
sum s+ 1. We have

||Nc||2 =
t+1∑
i=1

x2i ≥ 2
t+1∑
i=1

xi = 2d(s+ 1).
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Let cpi be the projection of c onto the ith eigenspace ofN tN , and let the eigenspaces
be indexed in ascending order with respect to its eigenvalues’ absolute value in
the real numbers.

The eigenvalue (s + 1)(t + 1) of N tN corresponds to the eigenvector 1̂, and so
normalising the eigenspace we have

||cp1 ||2 = d2/l

||c||2 = d.

Writing Nc as a linear combination of the eigenspaces of N tN and noting that
since N tN is symmetric its eigenvectors are orthogonal to each other we have

||Nc||2 = (s+ 1)(t+ 1)||cp1 ||2 + (s+ t+ 1− α)||cp2 ||2
= (s+ 1)(t+ 1) · d2/l + (s+ t+ 1− α)||cp2 ||2
= (s+ 1)(t+ 1) · d2/l + (s+ t+ 1− α)(||c||2 − ||cp1 ||2)

hence we have

2d(s+ 1) ≤ (s+ 1)(t+ 1) · d2/l + (s+ t+ 1− α)(d− d2/l)

and so

d ≥ (t+ 1)(s+ 1− t+ α)

α
. (1.8)

This bound (1.8) for d can also be thought of as being deduced by considering
how a minimum weight codeword acts on the bit nodes of L(C). We can come up
with another bound for d by considering how a minimum weight codeword acts
on the parity nodes of L(C).

We say that a bit node of L(C) is active if its associated value of a minimum
weight codeword is non-zero. The edges incident on active bit nodes will be called
active edges and the parity nodes incident with at least one active edge will be
called active parity nodes.

Let p be a vector of length r with a one in each active parity node, and a zero
otherwise. Let ω be the number of ones in p. We have that the ith entry of the
vector N tp = y satisfies:

yi =

{
s+ 1 if i is an active parity bit

# of adjacent active parity nodes otherwise
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We want a way to bound ||y||2. For the active ith parity node from p, let ui(j)
be the number of adjacent bit nodes whose weight is j in y, 1 ≤ j ≤ s + 1. Since
there is an even number of active bits, we have

s+1∑
j

(1/j)ui(j)j
2 ≥ 2(s+ 1) + (t+ 1)− 2.

Since there are ω active parity nodes we have

||y||2 =
l∑
i

y2i ≥ ω · (2(s+ 1) + (t+ 1)− 2).

Similarly as for the previous (1.8) bound for d, we have that the eigenvalue (s +
1)(t+ 1) of NN t has as eigenvector (1, ..., 1)/

√
v, and so

||pp1 ||2 = ω2/v

||p||2 = ω.

Converting to eigenspace representation

||N tp||2 = (s+ 1)(t+ 1)||pp1 ||2 + (s+ t+ 1− α)||pp2 ||2
= (s+ 1)(t+ 1) · ω2/v + (s+ t+ 1− α)||pp2 ||2
= (s+ 1)(t+ 1) · ω2/v + (s+ t+ 1− α)(||p||2 − ||pp1 ||2)

hence we have

(s+ 1)(t+ 1) · ω2/v + (s+ t+ 1− α)(ω − ω2/v) ≥ ω(2(s+ 1) + (t+ 1)− 2)

⇒ ω ≥ v(2(s+ 1) + (t+ 1)− 2− (s+ t+ 1− α))

(s+ 1)(t+ 1)− (s+ t+ 1− α)
.

Now we note that d(s+ 1) ≥ 2ω and v(t+ 1) = l(s+ 1) to get

d ≥ 2(s+ α)

α
. (1.9)

Taking inequalities (1.8,1.9) we have

d ≥ max

{
(t+ 1)(s+ 1− t+ α)

α
,
2(s+ α)

α

}
. (1.10)
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1.6.3 Rank of the code C

Since the code C was defined by giving a v × l parity check matrix N , we have
that the rank r of the code is

r = l − rank2(N)

where rank2 is the rank over F2.

We can give an upper bound for rank2(N) by giving an upper bound for rank(N)

rank2(N) ≤ rank(N) ≤ rank(NN t).

Considering the multiplicity of the non-zero eigenvectors of NN t, we have

r ≥ l −
(
1 +

st(s+ 1)(t+ 1)

α(s+ t+ 1− α)

)
. (1.11)

1.6.4 6 cycles on L(C)

We can count the number of six cycles in L(C) by counting the number of triangles
in the partial geometry [18]. On a given line L we have s+ 1 points, and so

(
s+1
2

)
different pairings of points. Take two points p, q on L. There are t lines different
from L incident to p, and on each line there are α− 1 points collinear to q. Hence
there are

t(α− 1)

(
s+ 1

2

)
triangles containing two points of L. Since there are l lines in total and each
triangle has three sides, we have

N6 =
lt(α− 1)

3

(
s+ 1

2

)
. (1.12)
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Chapter 2

Maximal arcs and above objects

As we have seen in the introductory chapter, a given partial geometry gives rise
to a strongly regular graph. In this chapter we will build partial geometries from
a given maximal arc.

For a given maximal arc we will describe two methods for building a partial
geometry following [13, 22, 28], and in the end of the chapter we will give an
example of these constructions.

2.1 Maximal Arcs give rise to partial geometries

Let K be a maximal arc in PG(2, q) in which each line of PG(2, q) meets K in 0
or d points, and so |K| = qd− q + d.

2.1.1 Method 1

We define a geometry G with point set the points in PG(2, q)\K. We let the lines
of G be the lines of PG(2, q) that meet K in d points. We let the incidence be the
one of PG(2, q).

Our geometry G has the following properties.

• Each line in G has q − d+ 1 points.

• Recall figure 1.3 in which for a given point in PG(2, q) we get m lines of
PG(2, q) that meet K. This tells us that in G every point is incident to

m = q − q

d
+ 1

lines.
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• Let p ∈ PG(2, q)\K be a point, and L ⊂ PG(2, q) a line meeting K but not
containing p.

We have that there are d lines incident to p meeting L in the d points
where L meets K. We also have that there can only be m lines incident to
p meeting K.

This tells us that for any point p and line L in G such that p �∈ L, there
are

m− d = q − q

d
+ 1− d

lines incident to p and meeting L.

These three properties give that G is a partial geometry with parameters

pg(q − d, q − q

d
, q − q

d
+ 1− d).

2.1.2 Method 2

Let our projective plane PG(2, q) in which K is contained be called π. Consider
π to be embedded in PG(3, q) and define G to be the geometry whose points are
the points of PG(3, q)\π. Define the lines of G to be the lines of PG(3, q)\π that
meet K in a unique point. We let the incidence be the one of PG(3, q).

Our geometry G has the following properties.

• A line L of PG(3, q)\π that meets π, meets π in just one point. In particular,
if L meets K in a unique point it also meets π in just one point. We have
that in G every line has q points.

• A point p ∈ PG(3, q)\π is joined to all points in K, so every point in G is
incident to |K| = qd− q + d lines.

• For a point p and a line L in PG(3, q)\π such that p �∈ L and L ∩ K �= ∅,
there is a plane πp,L

∼= PG(2, q) contained in PG(3, q) such that p and L are
contained in πp,L.

The plane πp,L meets π in exactly one line. This line has a common point
with K, the point meeting L, and hence has d common points with K.

We also have that in πp,L any two points are joined by exactly one line,
and any two lines intersect in exactly one point. In particular p meets the d
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points of K in πp,L in d distinct lines. These d distinct lines through p meet
L in d distinct points. Out of these d distinct points in L, only one of them
is in K ⊂ π, namely L ∩ K.

We have that p is collinear with L on d− 1 points not in π.

These properties tell us that G is a partial geometry with parameters

pg(q − 1, qd− q + d− 1, d− 1).

2.2 Summary of constructions

We now give a brief summary of the constructions given so far.

• A two weight code can be built by taking the points of a maximal arc as the
column vectors of a generator matrix for the code. Conversely, two weight
sets can be built by taking the column vectors of a generator matrix of a
two weight code as points in a projective plane.

• Maximal arcs give rise to partial geometries via Method 1 (2.1.1) and
Method 2 (2.1.2).

Let K be a maximal arc in PG(2, q) in which each line of PG(2, q) meets
K in 0 or d points.

� Method 1 (2.1.1) gives a partial geometry with parameters:

pg(q − d, q − q

d
, q − q

d
+ 1− d).

� Method 2 (2.1.2) gives a partial geometry with parameters:

pg(q − 1, qd− q + d− 1, d− 1).

• The point graph of a partial geometry pg(s, t, α) is a strongly regular graph
with parameters:

srg
((s+ 1)st

α
+ s+ 1, s(t+ 1), s− 1 + t(α− 1), α(t+ 1)

)
.

• The incidence matrix N of a partial geometry seen as a parity check matrix
gives an LDPC code CLDPC over F2 with the following length n, minimum
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distance d, rank r and number of minimum length cycles N6 in its tanner
graph:

n = l =
(t+ 1)st

α
+ t+ 1

d ≥ max

{
(t+ 1)(s+ 1− t+ α)

α
,
2(s+ α)

α

}

r ≥ l −
(
1 +

st(s+ 1)(t+ 1)

α(s+ t+ 1− α)

)

N6 =
lt(α− 1)

3

(
s+ 1

2

)
.

Its generator matrix is N⊥ such that N · (N⊥)t = 0, and has only r rows
different from the all zero vector.

• Given a projective geometry of dimension n− 1 over a finite field of order
qh, we can blow it up into a projective geometry of dimension h · n− 1 over
a finite field of order q.

2.3 Examples

We will now build an example of a two weight code, a partial geometry and the
arising strongly regular graph by both Method 1 and Method 2 using a maxi-
mal arc K ⊂ PG(2, 4).

We first build PG(2, 4). To build F4 we take the irreducible polynomial f =
X2 +X + 1 over F2 and consider

F4
∼= F2[X]/ < f > .

Let α ∈ F4 be such that f(α) = 0, we have that

F4 = {0, 1, α, α + 1} = {0, 1, α, α2}
We can visualize PG(2, 4) by Figures 2.1,2.2,2.3. The coloured points in these
figures give a maximal arc K with |K| = 6.

Given K, we can now build the generator matrix G of a two weight code C by
taking as columns the points of K

G =

⎛
⎝0 0 1 1 1 1
0 1 0 α 1 α2

1 1 1 1 α2 α2

⎞
⎠ .
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Figure 2.1: First part of PG(2, 4)

2.3.1 Example of Method 1

We now build the partial geometry as explained by Method 1. We have that
this partial geometry has parameters

pg(2, 2, 1)

and is represented in Figure 2.4. Note that we can also embed this partial geom-
etry in PG(3, 2) as shown in Figure 2.5. This partial geometry is also referred to
in the literature as a “(2,2)-generalised quadrangle”, and is unique up to isomor-
phisim [3, 14].
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Figure 2.2: Second part of PG(2, 4)

The point graph of pg(2, 2, 1) is a strongly regular graph with parameters

srg(15, 6, 1, 3)

and is shown in Figure 2.6.

The LDPC code CLDPC whose parity check matrix is the incidence matrix N of
the partial geometry (Figure 2.7) has a generator matrix N⊥ as in figure 2.8.

This code has length n = 15, minimum distance d = 6, rank r = 5 and N6 = 0
since the smallest polygon appearing in the partial geometry is a quadrangle.
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Figure 2.3: Third part of PG(2, 4)

2.3.2 Example of Method 2

We now build the partial geometry as explained by Method 2. We have that
this partial geometry has parameters

pg(3, 5, 1).

This partial geometry has 64 points and 96 lines. It is also referred to in the lit-
erature as a “(3,5)-generalised quadrangle”, and up to isomorphism there is only
one [3].
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Figure 2.4: pg(2, 2, 1) embedded in PG(2, 4).

The point graph of pg(3, 5, 1) is a strongly regular graph with parameters

srg(64, 18, 2, 6).

Haemers and Spence [15] gave 167 non-isomorphic strongly regular graphs that
satisfy the previous parameters, out of which only one of them corresponds to the
given pg(3, 5, 1). This provides an example of what was mentioned in Chapter 1
about strongly regular graphs and partial geometries, that is, not all strongly reg-
ular graphs satisfying the parameters of a partial geometry give rise to a partial
geometry.

The LDPC code, whose parity check matrix is the incidence matrix N of size
64× 96, has as length n = 96, minimum distance d = 8, rank r = 50 and N6 = 0
since the smallest polygon appearing in the partial geometry is a quadrangle.

34



1000
1001

0001

1100

1111

0011

0100
0110

0010

1010

0101

1101

1110
0111

1011

Figure 2.5: pg(2, 2, 1) embedded in PG(3, 2).

2.3.3 A desirable example

Now that we have considered the case of a maximal arc in PG(2, 4), we consider
what would result for the case of a maximal arc in PG(2, 9). As we will see in
Chapter 3, such a maximal cannot exist. Nevertheless, this case is interesting
because the hypothetical partial geometry arising from such a maximal arc can
be constructed using the methods of Chapter 4.

A hypothetical maximal arc K in PG(2, 9) should meet each line in 0 or 3 points,
hence

|K| = 21

This maximal arc would give a partial geometry via Method 2 with parameters

pg(8, 20, 2),
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Figure 2.6: srg(15, 6, 1, 3)

1 . . . 1 . 1 . . . . . . . .

. 1 . 1 . . . . 1 . . . . . .

. 1 . . 1 . . . . . 1 . . . .

. . . . . 1 . . . 1 . 1 . . .

. . . 1 . 1 1 . . . . . . . .

1 . . . . . . . 1 . . . 1 . .

1 . . . . . . . . 1 . . . 1 .

. . . . . . . 1 1 . . 1 . . .

. . 1 . 1 . . . . . . 1 . . .

. 1 . . . . . . . 1 . . . . 1

. . 1 . . . . . . . . . 1 . 1

. . . . . . . 1 . . 1 . . 1 .

. . . . . . 1 1 . . . . . . 1

. . . . . 1 . . . . 1 . 1 . .

. . 1 1 . . . . . . . . . 1 .

Figure 2.7: Incidence matrix N of the partial geometry pg(2, 2, 1) and parity check
matrix for the code CLDPC.

which gives a strongly regular graph with parameters

srg(729, 168, 141, 42).

The associated LDPC code would have length n = 1701, d ≥ 10, r ≥ 1140 and
T6 = 408240.

36



1 . . . . 1 1 . . 1 . . 1 . 1

. 1 . . . . . 1 1 . 1 . 1 . 1

. . 1 . . . . 1 . 1 . 1 . 1 1

. . . 1 . 1 . 1 1 1 . . 1 1 1

. . . . 1 1 1 1 . . 1 1 . . .

Figure 2.8: Generator matrix N⊥ for the code CLDPC.

The method used to build a partial geometry pg(8, 20, 2) developed in Chap-
ter 4 is a generalisation of Method 2 into higher dimensions, namely, instead of
considering a set of points K ⊂ PG(2, 32), a set of lines L ⊂ PG(5, 3) is considered.

The geometries PG(5, 3) and PG(2, 32) are related via the blow up construction,
in which points of PG(2, 32) correspond to lines of PG(5, 3). This raises the ques-
tion as to what happens in PG(5, 3) allowing L to exist that does not happen in
PG(2, 32) allowing K to exist, and is the central question driving this report.

2.4 Notes on the constructions of LDPC codes

How were the LDPC codes constructed? First I went into the open source web
repository http://www.maths.gla.ac.uk/~es/srgraphs.php where I found the
adjacency matrices A for the strongly regular graphs

srg(15, 6, 1, 3) and srg(64, 18, 2, 6).

I then used the software Mathematica [32] and ran the command

G = AdjacencyGraph[A]

clique_list = FindClique[G, Infinity, All]

to find all the cliques for each graph. Each clique had as many vertices as points
on a line of the associated partial geometry (pg(2, 2, 1) and pg(3, 5, 1) respec-
tively). Since the associated partial geometries are unique, it was shown that
these strongly regular graphs were indeed the associated graphs to the partial
geometries.

I then used Sage [33] to find the incidence matrix N for the partial geometries
using the cliques found above:

sage: from sage.combinat.designs.block_design import BlockDesign

sage: P = IncidenceStructure(range(v), <list of cliques>)

sage: N = P.incidence_matrix()

sage: print N.str()
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I then used Magma [34] and found out the code parameters using the incidence
matrices N :

K := FiniteField(2);

Cperp := LinearCode< K, l | N >;

Nperp := ParityCheckMatrix(Cperp);

C := LinearCode(Nperp);

C;

The output of Magma gives the code parameters.
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Chapter 3

Existence of Maximal Arcs in
PG(2, q)

We give two examples of constructions on how to build maximal arcs in projec-
tive planes PG(2, q) when q is even due to Denniston and Mathon [26, 27, 22, 13].
Next we give the first steps in constructing the known proof of why maximal arcs
cannot exist when q is odd [7].

There are two more known constructions of maximal arcs given by Thas [30,
29], which will be omitted in this report since in the case of a projective plane
PG(2, q) (see Chapter 6 for an axiomatic definition of a projective plane) they are
equivalent to those of Mathon. These constructions due to Thas can be found
in [30, 29, 13, 22].

Recall from Section 1 that a maximal arc K is a set of points in PG(2, q) where
any line meets K in d or 0 points. The size of K is qd− q + d.

3.1 When q is odd

We proceed as in [7]. Given a projective plane PG(2, q) and a line L in it, we
can consider the point set of PG(2, q)\L with the induced incidence relation from
PG(2, q). This new incidence structure has q2 points, q2 + q lines, and is called
the affine plane of order q denoted by AG(2, q).

Note that while in PG(2, q) any line meets every other line in exactly one point,
in AG(2, q) there are lines that do not meet in any point, such lines are called
parallel. Parallel lines correspond to lines that meet in a point p ∈ L ⊂ PG(2, q),
so there are q + 1 different parallel classes.
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(A− B)q−1 = (A− C)q−1

A

C

B

Figure 3.1: Direction of a line containing points A,B and C in Fq2

There is a natural isomorphism between AG(2, q) and V(2, q). In this setting,
each parallel class is determined by the “direction” of its lines. We can also assign
the points of V(2, q) with the elements of Fq2 by relation 1.1.

Given two points [a, b] and [c, d] in V(2, q), the direction of the line joining them
in Fq2 is given by (a− c)α + (b− d). Any other point [e, f] on the same line as
the points [a, b], [c, d] must satisfy

(a− c)α + (b− d) = β · ((a− e)α + (b− f))

with β ∈ Fq.

Since for any β ∈ Fq we have β
q−1 = 1, any three points [a, b], [c, d], [e, f] ∈ V(2, q)

on the same line corresponding to A,B,C ∈ Fq2 respectively, must satisfy

(A− B)q−1 = (A− C)q−1.

There are q2 − 1 possible non-zero differences A− B in Fq2 , and so

q2 − 1

q − 1
= q + 1

possible directions in Fq2 . Each direction (A− B)q−1 satisfies

((A− B)q−1)q+1 = (A− B)q
2−1 = 1
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•
or

• •

x−1
0 ∈ Fq2\B[−1]

0d

Figure 3.2: The case x−1
0 ∈ Fq2\B[−1].

and so each direction corresponds to a different (q + 1)-root of unity in Fq2 .

Given a maximal arc in PG(2, q), there is always a line whose points are not
in the maximal arc. Let B be a maximal arc of PG(2, q) seen as elements of Fq2 ,
and suppose that 0 �∈ B. Let B[−1] denote the set {b−1|b ∈ B} and define the
polynomials B,F as

B(x) =
∏
b∈B

(1− bx) F (t, x) =
∏
b∈B

(1− (1− bx)q−1t)

=
∏
b∈B

(1− (x−1 − b)q−1xq−1t).

Consider a non-zero element x0 in Fq2\B[−1]. The point x−1
0 is not in the arc, so

every line incident to it has either d or 0 elements of B. Thus, every direction
(x−1

0 − b)q−1 with b ∈ B occurs exactly d times each, so in F (t, x0) every factor
occurs d times and F (t, x0) is a dth-power. If x0 = 0 it is also a dth-power.

Consider now an element x0 in B[−1]. Since x−1
0 is in B, every line passing through

x−1
0 contains d − 1 elements of B. Since there are q + 1 lines through x−1

0 , the
directions (x−1

0 − b)q−1 with b ∈ B consist of every (q + 1)-root of unity, each
repeated d− 1 times together with 0. Call Di the direction corresponding to the
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•
• •

x−1
0 ∈ B[−1]

q + 1

d− 1d− 1

Figure 3.3: The case x0 ∈ B[−1].

ith line through x−1
0 , we have

F (t, x0) =
∏
b∈B

(1− (x−1
0 − b)q−1xq−1

0 t)

= (1− D1x
q−1
0 t)d−1 · · · (1− Dq+1x

q−1
0 t)d−1

=
(
(1− D1x

q−1
0 t) · · · (1− Dq+1x

q−1
0 t)
)d−1

= (1− xq2−1
0 tq+1)d−1

= (1− tq+1)d−1

We have that F (t, x0) is d− 1 power.

Summarising, we have that F (t, x0) is either a d or a d − 1 power. This conl-
cudes the first steps on the known proof of why maximal arcs cannot exist if q
is odd given in [7]. As seen in [7], with the use of algebraic techniques outside
the scope of this report, it is shown that in order for the polynomials F and B to
be well defined, q must be even and thus a power of 2. Setting the geometrical
properties of a maximal arc in PG(2, q) as algebraic polynomials over Fq2 this way
gives an interesting idea on how to approach the pointset of PG(2, q) that could
be used in future work.
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3.2 When q is even

Let our projective plane be PG(2, 2h), where a point has coordinates [x, y, z].

3.2.1 Denniston construction

We proceed as in [26]. Let f(ω) = ω2 + bω + 1 be an irreducible polynomial over
F2h . Let Fλ be a conic in our projective plane defined as

Fλ : x2 + bxy + y2 + λz2 = 0 λ ∈ F2h

We will construct a maximal arc K by taking the points of various conics Fλ where
λ will range in an additive subgroup of F2h .

For now, fix λ ∈ F
∗
2h

and suppose x = 1. We have that since f is irreducible,
Fλ has the form

1 + by + y2︸ ︷︷ ︸
never zero

+λz2 = 0

and so each y ∈ F2h determines a unique z. Thus Fλ has 2h points in PG(2, 2h)
with x = 1. If x = 0 then Fλ has the form

y2 + λz2 = 0

and so without loss of generality we can take y = 1 and thus z is uniquely deter-
mined by λ. We have that Fλ has one point in PG(2, 2h) with x = 0, and in total
Fλ has 2h + 1 points for a fixed value of λ ∈ F

∗
2h
.

If λ = 0 then Fλ has the form

x2 + bxy + y2 = 0.

If x or y are equal to 1, then f(y) = 0 or respectively f(x) = 0 which is a con-
tradiction with f being irreducible. We also have that x = 0 if and only if y = 0,
and so we have that F0 is only the point [0, 0, 1].

We define F∞ as the line whose points are of the form [1, y, 0] together with
[0, 1, 0], and so by taking all the conics Fλ with λ ∈ F2h ∪ {∞} we have∣∣∣⋃Fλ

∣∣∣ = 22h + 2h + 1

and so
⋃

Fλ is a partition of points in PG(2, 2h).
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The lines in PG(2, q) meet a given non-degenerate conic Fλ in 0, 1 or 2 points.
We say a line is tangent to a conic if it only meets the conic in one point.

The tangent lines to all the conics Fλ with λ ∈ F
∗
2h
∪{∞} have a unique common

point. Such a point is called the nucleus of the conics. We have

∂Fλ

∂x
= by

∂Fλ

∂y
= bx

∂Fλ

∂z
= 0.

Let [A,B,C] be a point of Fλ, we have that the tangent line through [A,B,C] is

(x− A) · bB + (y − B) · bA = 0.

The point [x, y, z] = [0, 0, 1] = F0 satisfies this condition for all λ ∈ F
∗
2h
∪{∞} and

is so the nucleus of such conics Fλ. Note that F0 is incident to q+1 tangent lines to
the conics Fλ, and so all the lines incident to F0 meet every conic in just one point.

We now give a description on how the conics Fλ intersect the lines of PG(2, 2h) by
considering lines passing and not passing through the nucleus.

If L is a line passing through the nucleus F0, then L can only have one point
from a given conic Fλ, but since there are 2h points left on L that are not the
nucleus, L must meet all conics Fλ with λ ∈ F2h ∪ {∞} in exactly one point.

To build K we will pick the point set of d conics Fλ with λ ∈ F2h , one of them
being F0. Hence, if L is a line passing through the nucleus we have |K ∩ L| = d.

If L is a line not passing through the nucleus, then L meets the conic F∞ in
one point, and either meets a conic Fλ in 2 or 0 points.

To pick the other d− 1 conics, we must answer how many conics intersect a given
line L not passing through the nucleus. Let L and Fλ be given by the equations

L : cx+ dy + z = 0 and Fλ : x2 + bxy + y2 + λz2 = 0.

Since a point [x, y, z] in PG(2, q) corresponds to a line in V(3, q), without loss of
generality we can make y = 1 and substitute z = cx + d from the equation for L
in the equation for Fλ to see that L ∩ Fλ = ∅ if and only if the equation

x2(1 + λc2) + bx+ (1 + λd2) = 0

has no solution in F2h . This quadratic equation in F2h has no solution if and only
if

Tr

(
(1 + λc2)(1 + λd2)

b2

)
= Tr

(
1 + λ(c2 + d2) + (λcd)2

b2

)
= 1
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where Tr denotes the absolute trace. Let λ1 and λ2 be such that L∩Fλi
= ∅, then

because Tr is additive and since f is irreducible Tr(1
b
) = 1, we have

Tr

(
1 + (λ1 + λ2)(c

2 + d2) + ((λ1 + λ2)cd)
2

b2

)
= Tr

(
1

b2

)
= Tr

(
1

b

)
= 1.

This means that the set GL = {λ ∈ F2h | Fλ ∩ L = ∅} is a group of index 2 in
(F2h ,+), and so we can partition F2h in GL and its coset G′

L:

λ ∈ GL ⇒ |Fλ ∩ L| = 0

λ ∈ G′
L ⇒ |Fλ ∩ L| = 2.

Hence, there are 2h−1 conics that meet L in 2 points, and 2h−1 conics that meet L
in 0 points with λ ∈ F2h .

To pick the remaining d − 1 conics Fλ that build K, we take a subgroup H ⊂
(F2h ,+) of order d and define K as the union of conics with λ ∈ H.

To verify that this set of conics forms a maximal arc, we must see that |L ∩ K| is
0 or d for a line not passing through the nucleus. We have two cases

H ⊆ GL or H �⊆ GL.

If H ⊆ GL, then H ∩ G′
L = ∅ and so |K ∩ L| = 0. If H �⊆ GL, then H ∩ G′

L �= ∅
and HG′

L = F2h , so

F2h/GL = HG′
L/GL

∼= H/(H ∩GL).

Because the index of GL in F2h is 2, the index of H ∩ GL in H is 2. Since each
conic meets a line in 2 points, we have

|H ∩GL| = |H|
2

⇒ |K ∩ L| = d.

We summarise the result. Given a projective plane PG(2, 2h), we build a maximal
arc K by taking the conics Fλ induced by an irreducible polynomial f , where λ
ranges over an additive subgroup H ⊂ (F2h ,+) of order d = 2m.

As an example, consider PG(2, 4) and the maximal arc K introduced in Chap-
ter 2 Figures [2.1,2.2,2.3], where the coloured points corresponding to K are the
conics

x2 + αxy + y2 + λz2 = 0, λ = 0, 1

where f is the irreducible polynomial

f(ω) = ω2 + αω + 1.
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3.2.2 Mathon construction

We proceed and explain the construction given by Mathon in [27]. A way to
interpret Denniston’s construction of a maximal arc is to define an operation ⊕
on the set of all conics Fλ with λ in F2h ,

Fλ ⊕ Fλ′ := Fλ+λ′

and then consider all values for λ in which the operation ⊕ gives a closed set C of
conics in the sense that if Fλ, Fλ′ are in C, then Fλ ⊕ Fλ′ is also in C.

In Denniston’s construction such a set C is characterised by taking all conics
Fλ with λ in an additive subgroup of F2h . In Mathon’s construction, the idea of
defining an operation ⊕ on a set of conics is further exploited.

Let f(ω) = ηω2 + ω + μ be an irreducible polynomial over F2h . Let Fη,μ,λ be
a conic in our projective plane PG(2, 2h) defined as

Fη,μ,λ : ηx2 + xy + μy2 + λz2 = 0 λ ∈ F2h

Let F be the set of all such non-degenerate conics and define the operation ⊕ in
F with λ �= λ′ as

Fη,μ,λ ⊕ Fη′,μ′,λ′ = Fη⊕η′,μ⊕μ′,λ⊕λ′

where

η ⊕ η′ =
ηλ+ η′λ′

λ+ λ′ , μ⊕ μ′ =
μλ+ μ′λ′

λ+ λ′ , λ⊕ λ′ = λ+ λ′.

Note that this operation is commutative, associative and (F ⊕ F ′)⊕ (G⊕ F ′) =
F ⊕G for different F, F ′, G.

When are any two conics Fη,μ,λ and Fη′,μ′,λ′ with λ �= λ′ and their composition
Fη,μ,λ ⊕ Fη′,μ′,λ′ mutually disjoint? Consider the collineation defined by

H =

⎛
⎝1/a 0 0

0 a 0
b c 1

⎞
⎠

where

a =
√
A, b =

√
η/A+ 1

λ
, c =

√
A(μ+B)

λ

and

A =
η′λ+ ηλ′

λ+ λ′ , B =
μ′λ+ μλ′

λ+ λ′ , C =
(ημ′ + μη′)λλ′ + (ημ+ η′μ′)λ2

λ2 + λ′2 .
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The collineation H maps Fη,μ,λ, Fη′,μ′,λ′ and Fη,μ,λ ⊕ Fη′,μ′,λ′ into F1,AB,λ, F1,AB,λ′

and F1,AB,λ+λ′ respectively. These conics are nondegenerate and mutually disjoint
if Tr(AB) = 1, which implies Tr((η ⊕ η′)(μ⊕ μ′)) = 1.

Let C be a closed subset of n elements of F in the sense that if F and G are in C,
then F ⊕G is in C. Suppose that F ′ = Fη′,μ′,λ′ ∈ F\C and Tr((η⊕η′)(μ⊕μ′)) = 1
for every Fη,μ,λ ∈ C, then since F ′ is disjoint to all conics in C, the set

< C ∪ {F ′} >= {F, F ′, F ⊕ F ′|F ∈ C}
is a closed subset of F and has 2n+ 1 elements.

Given a non-degenerate conic F we can proceed recursively d times adding dis-
joint conics, arriving to a closed subset C with 2(2d−1 − 1) + 1 = 2d − 1 elements.
Every conic in C shares the common nucleus F0 = [0, 0, 1].

To build a maximal arc K we will take the point set of a closed subset C with 2d−1
elements and their nucleus F0. We will see that C meets every line in 0 or 2d points.

Since the polynomial f is irreducible, F∞ (the line z = 0) does not share points
with any conic. We can see this by substituting z = 0 in Fη,μ,λ. We have

ηx2 + xy + μy2 = 0

if x = 1 ⇒ μy2 + y + η = 0

if y = 1 ⇒ ηx2 + x+ μ = 0.

The last two polynomials have a solution in y or x respectively only when Tr(μη) =
0, but since f is irreducible we have Tr(μη) = 1, and so F∞ is external to K.

We now divide in three disjoint classes all other lines:

• All the lines passing through F0, that is the lines defined by the points
[0, 0, 1] and [1, a, 0] with a ∈ F2h , and the line defined by the points [0, 0, 1]
and [0, 1, 0]. See Figure [3.4].

• The remaining lines passing through [1, 0, 0] that are not F∞ and don’t
meet F0, that is the lines defined by the points [1, 0, 0] and [0, 1, b] with
b ∈ F2h , b �= 0. See Figure [3.5]. A typical point incident to these lines has
the form [0, 1, b] + [x, 0, 0] = [x, 1, b] with x ∈ F2h .

• The lines defined by the points [a, 1, 0] and [b, 0, 1] with a, b ∈ F2h , b �=
0. See Figure [3.6]. A typical point incident to these lines has the form
[a, 1, 0] + [bx, 0, x] = [a+ bx, 1, x] with x ∈ F2h .
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[0,0,1]

[0, 1, 0] [1, 0, 0]

[1, 1, 0] [a, 1, 0]

q + 1 lines

[1, 0, 1][0, 1, 1]

Figure 3.4: All the lines passing through F0.

•
•

•

[0,0,1]

[0, 1, 0]

[0, 1, 1]

[1, 0, 0]

q − 1 lines

[1, 0, 1]

[0, 1, b]

Figure 3.5: Lines joining the points [1, 0, 0] and [0, 1, b] with b ∈ F2h , b �= 0.

In how many points does C meet these classes of lines? For the first class, the
nucleus F0 = [0, 0, 1] is in every line, so the first class of lines is tangent to every
conic and thus meets C in 2d points. The second and third class of lines do not
meet a conic Fη,μ,λ if and only if the equations

ηx2 + x+ μ+ λb2 = 0 η(a+ bx)2 + (a+ bx) + μ+ λx2 = 0
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•

[0,0,1]

[1, 0, 0]

[b, 0, 1]

[0, 1, 0] [a, 1, 0]

q − 1 lines

[0, 1, 1]

[1, 0, 1]

Figure 3.6: Lines joining the points [a, 1, 0] and [b, 0, 1] with a, b ∈ F2h , b �= 0.
There are q choices for a, q − 1 choices for b and so q(q − 1) lines in this class.

have no solution for x ∈ F2h respectively. In order for these equations to have no
solution we must have

Tr(η(μ+ λb2)) = Tr(ημ+ ηλb2)

= Tr(ημ) + Tr(ηλb2)

= 1 + Tr(ηλb2)

= 1

⇒ Tr(ηλb2) = 0

and

Tr
((ηb2 + λ)(ηa2 + a+ μ)

b2

)
= Tr(η2a2 + ηa+ ημ) + Tr

(ηa2 + a+ μ

b2
λ
)

= 2 · Tr(ηa) + Tr(ημ) + Tr
(ηa2 + a+ μ

b2
λ
)

= 1 + Tr
(ηa2 + a+ μ

b2
λ
)

= 1

⇒ Tr
(ηa2 + a+ μ

b2
λ
)
= 0

respectively. To simplify notation [27], we call both of these conditions Tr(η, μ, λ).
We have

Tr(η ⊕ η′, μ⊕ μ′, λ⊕ λ′) = Tr(η, μ, λ) + Tr(η′, μ′, λ′)
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and so if two conics F, F ′ ∈ C do not meet a given line, then F ⊕F ′ does not meet
the given line either. On the other hand, if a conic F ∈ C meets a given line (in
just two points), then proceeding recursively we see that there are 2d−1 disjoint
conics in C that meet the given line in just two points, hence the given line meets
K in 2 · 2d−1 = 2d points.

Summarising, we have that any line of PG(2, 2h) meets the point set K of a closed
set of conics C in 0 or 2d points, and so K is a maximal arc.

With respect to Denniston’s construction, note that if the polynomial f(ω) =
ω2 + bω + 1 over F2h is irreducible, then the polynomial f(ω) = ω2

b
+ ω + 1

b
is

also irreducible, and so Denniston’s construction reduces to Mathon’s construction
with μ = η = 1

b
.
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Chapter 4

Beyond maximal arcs

In this chapter, we will give a construction of a partial geometry with param-
eters pg(8, 20, 2). As mentioned in Chapter 2, this geometry is closely related
via Method 2 to what would be a maximal arc K of size 21 in PG(2, 9). From
Chapter 3 however, we know such an arc K ⊂ PG(2, 9) cannot exist.

It was also mentioned in Chapter 2, that PG(5, 3) is related to PG(2, 9) via a
blow up, and that a set of 21 lines L ⊂ PG(5, 3) would be considered to build a
partial geometry pg(8, 20, 2).

In order to introduce L some new concepts are to be introduced. We proceed
as in [10].

4.1 A generalisation of maximal arcs to higher

dimensions

Let ρ be a polarity of PG(n, q). Let R(r) be any set {π1, ..., πk} (k > 1) of mutual
disjoint r-dimensional subspaces of PG(n, q) such that no πρ

i meets an element of
R(r). If R(r) is of maximal size, we say R(r) is a perp-system.

Note that in order for the subspaces πi’s to be disjoint in PG(n, q), we must
have n ≥ 2r + 1.

How large can |R(r)| be?
We first count in two ways how many ordered pairs (pi, π

ρ) there are where pi is
a point contained in πρ. Since each πρ is disjoint with each π ∈ R(r), we must
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only consider points pi contained in PG(n, q)\R(r). Let P be the number of pi’s,
we have

P = [n+ 1]q − |R(r)| · [r + 1]q

=
qn+1 − 1

q − 1
− |R(r)| · q

r+1 − 1

q − 1
.

Let ti be the number of πρ’s such that pi is contained in πρ. Now observe that
because π is of dimension r, then πρ is of dimension n − r − 1 and so there are
[n− r]q points contained in each πρ. These two arguments show that∑

i

ti = |R(r)| · [n− r]q

= |R(r)| · q
n−r − 1

q − 1
.

We now count how many triples (pi, π
ρ, π′ρ) there are with pi contained in πρ∩π′ρ

and π �= π′. Counting the number of points in πρ ∩ π′ρ corresponds to counting
the number of hyperplanes containing both π and π′. The minimal subspace
containing both π and π′ is of dimension 2r+1, and so using equation 1.2 we have
that there are

I(2r + 2, n− 2r − 2) = [n− 2r − 1]q

points in πρ ∩ π′ρ. Since there are |R(r)|(|R(r)| − 1) ways to choose πρ ∩ π′ρ with
π �= π′, we have∑

i

ti(ti − 1) = |R(r)|(|R(r)| − 1) · [n− 2r − 1]q

= |R(r)|(|R(r)| − 1) · q
n−2r−1 − 1

q − 1
.

We now apply Cauchy-Schwartz inequality to get

P
∑
i

t2i −
(∑

i

ti

)2
≥ 0.

After some calculations we arrive at

|R(r)| ≤ q(n−2r−1)/2(q(n+1)/2 + 1)

q(n−2r−1)/2 + 1
.

Hence R(r) is a perp-system if equality holds.
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4.1.1 Perp-systems give rise to two weight codes

Recall from Chapter 1 that two weight codes are two weight sets, so we must check
that any hyperplane of PG(n, q) has only two intersection sizes with the points of
R(r). There are two kinds of hyperplanes in PG(n, q), those that under ρ are the
image of a point in R(r), and those that are the image of a point in PG(n, q)\R(r).

Note that maximality of |R(r)| is obtained when all ti’s have the same value.
We can calculate it by

t̄ =

∑
i ti
P

= q(n−2r−1)/2

and thus every point pi not contained in R(r) is incident to t̄ subspaces πρ. This
means that the hyperplane pρi has t̄ subspaces π of R(r). The hyperplane pρi
intersects each of the remaining |R(r)| − t̄ subspaces π in

dim(pρi ∩ π) = dim(pρi ) + dim(π)− dim(pρi ∪ π).

Since π is not contained in pρi , their span has dimension n and so their intersection
has projective dimension r − 1. The hyperplane pρi thus meets R(r) in

h1 = [r + 1]q · t̄+ [r]q · (|R(r)| − t̄)

points of R(r).

Since for any π we have πρ ∩ R(r) �= ∅, we have that for a point a contained
in a given π, the hyperplane aρ does not contain any subspace π and so meets
R(r) only on the intersections aρ∩π. Similarly as above, we see that each of these
intersections have projective dimension r−1, and so the hyperplane aρ meets R(r)
in

h2 = [r]q · |R(r)|
points.

Figures 4.1 and 4.2 give a schematic diagram of the derivation for weights h1

and h2 respectively, where the subspaces π are represented by lines, hyperplanes
are represented by rectangles, and πρ’s are represented by ellipses.
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πi

•
•
•

•
•
•

πi

•
•
•

πj

p

πρ
1

πρ
t̄

t̄

pρ

t̄
ρ−→

•
•
•

πj

Figure 4.1: Diagram explaining the derivation of weight h1.

a
•
•
•

•
•
•

|R(r)|

aρ

|R(r)|ρ−→

Figure 4.2: Diagram explaining the derivation of weight h2.
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4.2 Partial geometries from perp-systems

To build a partial geometry from a given perp-system R(r) in PG(n, q) we embed
PG(n, q) in PG(n+ 1, q) and take as points the points of PG(n+ 1, q)\PG(n, q),
and as lines the (r + 1)-dimensional subspaces of PG(n+ 1, q) which contain an
element of R(r) but are not contained in PG(n, q).

• A subspace L with dimension r + 1 of PG(n+ 1, q)\PG(n, q) that meets
PG(n, q), meets PG(n, q) in only one subspace of dimension r. In particular,
if L contains an element π of R(r) it only contains π. We have that L has

[r + 1]q − [r]q =
qr+2 − 1

q − 1
− qr+1 − 1

q − 1
= qr+1

points in PG(n+ 1, q)\PG(n, q).
• A point p of PG(n+ 1, q)\PG(n, q) is incident to |R(r)| subspaces of dimen-
sion r + 1 containing an element of R(r).

• Let L be a subspace with dimension r+1 of PG(n+ 1, q) that meets PG(n, q)
exactly in an element π of R(r), and let p be a point not in L nor PG(n, q).

We will see that p is incident to a constant number α of subspaces with
dimension r+1 of PG(n+ 1, q) that meet L, and also meet PG(n, q) exactly
in one element of R(r).

As shown in [10] the path given by the authors to prove this, is to see that
since R(r) gives a two-weight code, this two weight code yields a strongly
regular graph [9], and that this graph gives a partial geometry [40]. In con-
trast to [10], the path taken in this report is a direct count to obtain α, and
is not published in any paper at the time of writing this report.

Let T be the subspace of dimension r+2 generated by the subspaces {L, p}.
We have

dim(PG(n, q) ∩ T) = dim(PG(n, q)) + dim(T)− dim(PG(n, q) ∪ T)

= n+ (r + 2)− (n+ 1)

= r + 1.

Let R be the (r+1)-dimensional subspace PG(n, q) ∩ T. How does R intersect
R(r)? Let π′ be an element of R(r) such that π′ �= π. We have

0 ≤ dim(R ∩ π′) = (r + 1) + r − dim(R ∪ π′)
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so dim(R ∪ π′) ≤ 2r + 1. If dim(R ∪ π′) ≤ 2r then since π ∩ π′ = ∅ we have

−1 = dim(π ∩ π′) = r + r − dim(π ∪ π′) ⇒ dim(π ∪ π′) = 2r + 1

but π ⊂ R ⊂ R ∪ π′ and so

2r + 1 = dim(π ∪ π′) ≤ dim(R ∪ π′) ≤ 2r

which is a contradiction. So dim(R ∪ π′) = 2r + 1 and dim(R ∩ π′) = 0, so
R meets R(r) only in points.

How many such points does R ∩ R(r) have? Recall that under ρ points
are mapped to hyperplanes, and that every hyperplane has one of two pos-
sible weights h1, h2 with respect to R(r). We want to count the number of
hyperplanes through Rρ that are the image of a point in R(r) under ρ, and
so must have weight h2.

In order to do this, we count pairs (a,H) where a is a point in H ∩ R(r),
and H is a hyperplane containing Rρ. Counting the a’s we have as many
points as there are in R(r) times all the hyperplanes through the subspace
generated by {Rρ, a}. Counting the H’s we have h2 times the hyperplanes
coming under ρ from the points of

R ∩R(r)

plus h1 times the number of hyperplanes coming from the remaining points
in R. Recalling that R contains only one subspace π we have:

|R(r)| · [r + 1]q · [r + 1]q =

= h2([r + 1]q + α) + h1([r + 2]q − ([r + 1]q + α))

and so

α =
qr+1 − 1

t̄+ 1
.

Since the choice of L and p was arbitrary, we conclude that α is indeed
constant.

Thus we have that our partial geometry has parameters

pg
(
qr+1 − 1, |R(r)| − 1, α

)
The partial geometry arrived through this method is referred to in the literature
as Γ∗(R(r)).
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4.3 21 lines in PG(5, 3)

We now have a way to construct a partial geometry with parameters pg(8, 20, 2)
arising from a perp-system L = R(1) consisting of 21 lines in PG(5, 3). How to
find such 21 lines is a difficult question. Mathon [10] found by computer search
these lines, and a geometric construction was proposed by [11].

The explicit lines of L (see [10]) represented by two points [...][...] in PG(5, 3)
are:

[010000][100000] [101000][010010] [201000][020010]
[100100][020001] [200100][010001] [111100][210021]
[121100][011021] [112100][011011] [122100][110011]
[210110][221001] [220110][121001] [101110][211101]
[221110][101201] [102110][111201] [212110][201101]
[210210][102201] [220210][202101] [101210][222201]
[111210][212001] [102210][122101] [122210][112001]

The set L has some interesting properties as noted by [10]. In particular, there are
seven solids (by solid we mean a projective space of dimension 3) each containing
three different lines from L. These solids represented by four points in PG(5, 3)
are:

[100000][010000][000100][000001] [100021][010010][001012][000102]
[100011][010020][001011][000102] [100020][010011][001000][000102]
[102001][011000][000102][000012] [101001][012000][000102][000010]
[100010][010021][001002][000102]

Moreover, these seven solids meet in exactly one line:

[110001][000102].

To obtain explicit representations of these seven solids and their common line, a
small script in GAP [35] and Fining [36] shown below was written.

LoadPackage("fining");

ps := ProjectiveSpace(5,3);

#

L1 := [[0,1,0,0,0,0],\

[1,0,0,0,0,0]]\

*Z(3)^0;

L2 := [[1,0,1,0,0,0],\

[0,1,0,0,1,0]]\

*Z(3)^0;

57



L3 := [[2,0,1,0,0,0],\

[0,2,0,0,1,0]]\

*Z(3)^0;

L4 := [[1,0,0,1,0,0],\

[0,2,0,0,0,1]]\

*Z(3)^0;

L5 := [[2,0,0,1,0,0],\

[0,1,0,0,0,1]]\

*Z(3)^0;

L6 := [[1,1,1,1,0,0],\

[2,1,0,0,2,1]]\

*Z(3)^0;

L7 := [[1,2,1,1,0,0],\

[0,1,1,0,2,1]]\

*Z(3)^0;

L8 := [[1,1,2,1,0,0],\

[0,1,1,0,1,1]]\

*Z(3)^0;

L9 := [[1,2,2,1,0,0],\

[1,1,0,0,1,1]]\

*Z(3)^0;

L10 := [[2,1,0,1,1,0],\

[2,2,1,0,0,1]]\

*Z(3)^0;

L11 := [[2,2,0,1,1,0],\

[1,2,1,0,0,1]]\

*Z(3)^0;

L12 := [[1,0,1,1,1,0],\

[2,1,1,1,0,1]]\

*Z(3)^0;

L13 := [[2,2,1,1,1,0],\

[1,0,1,2,0,1]]\

*Z(3)^0;

L14 := [[1,0,2,1,1,0],\

[1,1,1,2,0,1]]\

*Z(3)^0;

L15 := [[2,1,2,1,1,0],\

[2,0,1,1,0,1]]\

*Z(3)^0;

L16 := [[2,1,0,2,1,0],\
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[1,0,2,2,0,1]]\

*Z(3)^0;

L17 := [[2,2,0,2,1,0],\

[2,0,2,1,0,1]]\

*Z(3)^0;

L18 := [[1,0,1,2,1,0],\

[2,2,2,2,0,1]]\

*Z(3)^0;

L19 := [[1,1,1,2,1,0],\

[2,1,2,0,0,1]]\

*Z(3)^0;

L20 := [[1,0,2,2,1,0],\

[1,2,2,1,0,1]]\

*Z(3)^0;

L21 := [[1,2,2,2,1,0],\

[1,1,2,0,0,1]]\

*Z(3)^0;

#

21_lines := [L1, L2, L3, L4, L5, L6, L7,\

L8, L9, L10, L11, L12, L13, L14,\

L15, L16, L17, L18, L19, L20, L21];

# assign lines to PG(5,3)

line := [];

for i in [1 .. Length(21_lines)] do

line[i] := \

VectorSpaceToElement( ps,21_lines[i] );

od;

#

line_list := function()

local line_listt;

line_listt := [];

for i in [1 .. Length(21_lines)] do

line_listt[i] := \

VectorSpaceToElement( ps,21_lines[i] );

od;

return line_listt;

end;;

#

# "loop_1" returns a list of lines,

# all lines being in the solid made by

59



# line L and line j.

# if the solid made by lines L and j

# does not contain more of the 21 lines,

# the return list is empty.

loop_1 := function(L,j)

local new_line, intersec, solid, k,new_list;

new_line := line_list();

new_list := [];

solid := Span(new_line[L],new_line[j]);

k := Length(new_line);

for i in [1..k] do

intersec := Meet(solid, new_line[i]);

if i = L then continue;

elif i = j then continue;

elif ProjectiveDimension(intersec) = 1 then

Add(new_list, L);

Add(new_list, j);

Add(new_list, i);

# update list!

fi;

od;

return new_list;

end;;

#

# "loop_2" collects all non-empty lists

# from "loop_1" fixing line L and going

# through line j.

loop_2 := function(L)

local new_line,k,j, new_list;

new_line := line_list();

new_list := [];

k := Length(new_line);

for j in [1..k] do

if Length(loop_1(L,j))>0 then

Add(new_list, loop_1(L,j));

fi;

# Append(new_list,loop_1(L,j));

od;

return new_list;

end;;
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#

# "loop_3" prints all lists of solids

# from "loop_2", going through L.

loop_3 := function()

local L;

for L in [1..Length(line)] do

Print(L, " ", loop_2(L),"\n","\n");

od;

end;;

#

loop_3();

After the script is run, a list of all solids containing 3 of the 21 lines is produced.
Given this list, a manual calculation was made to find 7 solids, holding the 21
lines in total. Such solids and their common line can explicitly be printed out by
running:

7_solids := [ [ 1, 4 ], [ 2, 13 ], [ 3, 16 ],\

[ 6, 8 ], [ 7, 11 ], [ 9, 12 ],\

[ 10, 14 ] ];

solids := [];

for a in 7_solids do

Add(solids, Span(line[a[1]],line[a[2]]));

od;

print_seven_S := function()

local i,j;

j := 1;

for i in solids do

Print("S",j,"\n");

Display(i);

j := j+1;

od;

end;;

#

print_seven_S();

Display(Meet(solids[1],solids[2]));

In [11] the authors give a geometric construction specific for these 21 lines,
but at the time of writing this report it is not yet clear how to generalize the
construction for these 21 lines in PG(5, 3) into higher dimensions or a projective
space with a different underlying finite field.
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Chapter 5

Conclusions

In this report maximal arcs were constructed as well as other combinatorial struc-
tures related to them. We now give a review.

5.1 Maximal arcs

As defined in 1, a maximal arc is a non-empty proper subset K of points in
PG(2, q), such that every line of PG(2, q) meets K in 0 or d points. We have

k = |K| = (d− 1)(q + 1) + 1

= qd− q + d

Maximal arcs can only exist when q is even, as seen in Chapter 3.

Given an irreducible polynomial f(ω) = ηω2 + ω + μ over F2h , one can con-
struct a maximal arc K by considering the point set of a closed set of 2g−1 conics
of the form

Fη,μ,λ : ηx2 + xy + μy2 + λz2 = 0 λ ∈ F2h

together with their nucleus F0, in which every line meets K in 0 or d = 2g points.

5.2 Above maximal arcs

In Chapter 1 several combinatorial objects were defined, and in Chapters 1 and 2
their relationship with each other and with maximal arcs was established. We
summarise.

Let K be a maximal arc in PG(2, q) in which each line of PG(2, q) meets K in
0 or d points, and so |K| = qd− q + d. We have:
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• A two weight code can be built by taking the points of a maximal arc as
the column vectors of a generator matrix for the code. Conversely, maximal
arcs can be built by taking the column vectors of a generator matrix of a
two weight code as points in a projective plane.

• Maximal arcs give rise to partial geometries via Method 1 (2.1.1) and
Method 2 (2.1.2).

Let K be a maximal arc in PG(2, q) in which each line of PG(2, q) meets
K in 0 or d points.

� Method 1 (2.1.1) gives a partial geometry with parameters:

pg(q − d, q − q

d
, q − q

d
+ 1− d).

� Method 2 (2.1.2) gives a partial geometry with parameters:

pg(q − 1, qd− q + d− 1, d− 1).

• The point graph of a partial geometry pg(s, t, α) is a strongly regular graph
with parameters:

srg
((s+ 1)st

α
+ s+ 1, s(t+ 1), s− 1 + t(α− 1), α(t+ 1)

)
.

• The incidence matrix N of a partial geometry seen as a parity check matrix
gives an LDPC code CLDPC over F2 with the following length n, minimum
distance d, rank r and number of minimum length cycles N6 in its tanner
graph:

n = l =
(t+ 1)st

α
+ t+ 1

d ≥ max

{
(t+ 1)(s+ 1− t+ α)

α
,
2(s+ α)

α

}

r ≥ l −
(
1 +

st(s+ 1)(t+ 1)

α(s+ t+ 1− α)

)

N6 =
lt(α− 1)

3

(
s+ 1

2

)
.

Its generator matrix is N⊥ such that N · (N⊥)t = 0, and has only r rows
different from the all zero vector.

Examples of such constructions can be found in Chapter 2.
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5.3 Beyond maximal arcs

A generalization of maximal arcs into higher dimensions is given in Chapter 4 by
defining Perp-systems.

Given a perp-system R(r) in PG(n, q), we can build a partial geometry with
parameters

pg
(
qr+1 − 1, |R(r)| − 1, α

)
where

|R(r)| = t̄(q(n+1)/2 + 1)

t̄+ 1

α =
qr+1 − 1

t̄+ 1

t̄ = q(n−2r−1)/2.

An example of a perp-system L = R(1) of 21 lines in PG(5, 3), and its associated
partial geometry with parameters

pg(8, 20, 2)

was also given in Chapter 4, and in Chapter 2 the parameters of its associated
strongly regular graph

srg(729, 168, 141, 42)

and bounds for its associated LDPC code

n = 1701

d ≥ 10

r ≥ 1140

T6 = 408240

were given.
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Chapter 6

Future work

We now collect some interesting open topics related to the previous work.

6.1 Combinatorics and non-existance of maxi-

mal arcs

Projective planes were defined in Chapter 1 by having an underlying finite field
as their coordinate system. One can also define a projective plane P in a purely
combinatorial way by demanding three axioms [12]:

• Each two points are joined by exactly one line.

• Each two lines meet in exactly one point.

• There are at least two lines and each line contains at least three points.

An immediate consequence of these axioms is that each line contains a constant
number O + 1 of points. We call O the order of the projective plane.

If Desargues’ Theorem holds in an axiomatic projective plane P, then there must
be an underlying finite field acting as a coordinate system for P; and if P has an
underlying finite field acting as a coordinate system, then Desargues’ Theorem
holds. We refer to [4] for details.

There are finite projective planes P where Desargues’ Theorem does not hold.

Given the hard algebraic nature of the proof why maximal arcs in projective
planes PG(2, q) with q odd cannot exist, it would be desirable to extend it into a
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more combinatorial reasoning. This might allow to prove non-existence of maxi-
mal arcs in projective planes that do not have an underlying finite field.

As seen in [39], by considering the internal structure of a possible projective
plane of order 10, it was possible to determine the non-existance of such a plane.
With this in mind, such a combinatorial proof would provide insight on the inter-
nal structure of projective planes, and so could possibly be used in determining
whether or not projective planes can only exist when their order is the power of
a prime.

6.2 Building impossible maximal arcs

Given Mathon’s construction for maximal arcs given in Chapter 3, it would be of
interest to find a similar construction for perp-systems, since perp-systems gener-
alize maximal arcs into higher dimensions.

Moreover, because maximal arcs cannot exist in PG(2, q) with q odd [7], such
a construction would be of particular interest when the perp-system is built in
PG(n, q) with q odd and n > 2. In particular, we focus on q a power of 3.

We analyze the example of the 21 lines in PG(5, 3) to arrive at a possible con-
struction.

6.2.1 Analysis of the 21 lines

As mentioned in Chapter 2, a maximal arc in PG(2, 9) would have 21 points. Fol-
lowing Mathon’s construction, we could come up with the point set of a cubic
polynomial F and its nucleus F0 where F has 10 points [6].

The next step would be to find another cubic polynomial F ′ with 10 points and
nucleus F0 such that the point set of {F ∪ F ′ ∪ F0} would yield 21 points, and
every line intersects in 0 or 3 points. We know this cannot be the case, so we try
to fix it in PG(5, 3).

Consider the blow up of PG(2, 9) into PG(5, 3). The image of the zeros of F
and F0 under the blow up yields 11 lines.

Also following Mathon’s construction, the operation ⊕ acts as a movement of
the conics fixing their nucleus, so it would be interesting to see if there is a way
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to move the 11 lines fixing the image of F0 to get 21 lines total in PG(5, 3) that
form a perp-system.

6.2.2 Recipe for what would be an impossible maximal
arcs

We summarise the mentioned construction. Let PG(2, 3h) be our projective plane.
We want to build a perp-system R(r) in PG(2 · h− 1, 3) with

|R(r)| = 3h+m − 3h + 3m

where r = 1 and m < h.

• Consider a cubic polynomial F with 3h +1 points in PG(2, q) and a nucleus
F0 (such polynomials exist [6]). Call K′ the pointset of F ∪ F0.

• Blow up PG(2, 3h) into PG(2 · h− 1, 3) and consider B(K′) the image of K′

under the blow up consisting of 3h+2 disjoint (h−1)-dimensional subspaces.

• Move B(K′) fixing F0 in some “smart” way to get a total of:

y(3h + 1) + 1 = 3h+m − 3h + 3m (6.1)

disjoint (h − 1)-dimensional subspaces satisfying the conditions for a perp-
system R(1) as in Chapter 4. From equation 6.1 we see that such a move-
ment would have to have an order of at least y = 3m − 1:

(3m − 1)(3h + 1) + 1 = 3h+m − 3h + 3m.
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