380 research outputs found

    New Bounds for the Harmonic Energy and Harmonic Estrada index of Graphs

    Get PDF
    Let GG be a finite simple undirected graph with nn vertices and mm edges. The Harmonic energy of a graph GG, denoted by HE(G)\mathcal{H}E(G), is defined as the sum of the absolute values of all Harmonic eigenvalues of GG. The Harmonic Estrada index of a graph GG, denoted by HEE(G)\mathcal{H}EE(G), is defined as HEE=HEE(G)=∑i=1neγi,\mathcal{H}EE=\mathcal{H}EE(G)=\sum_{i=1}^{n}e^{\gamma_i}, where γ1⩾γ2⩾⋯⩾γn\gamma_1\geqslant \gamma_2\geqslant \dots\geqslant \gamma_n are the H\mathcal{H}-eigenvalueseigenvalues of GG. In this paper we present some new bounds for HE(G)\mathcal{H}E(G) and HEE(G)\mathcal{H}EE(G) in terms of number of vertices, number of edges and the sum-connectivity index

    The Physics of Communicability in Complex Networks

    Full text link
    A fundamental problem in the study of complex networks is to provide quantitative measures of correlation and information flow between different parts of a system. To this end, several notions of communicability have been introduced and applied to a wide variety of real-world networks in recent years. Several such communicability functions are reviewed in this paper. It is emphasized that communication and correlation in networks can take place through many more routes than the shortest paths, a fact that may not have been sufficiently appreciated in previously proposed correlation measures. In contrast to these, the communicability measures reviewed in this paper are defined by taking into account all possible routes between two nodes, assigning smaller weights to longer ones. This point of view naturally leads to the definition of communicability in terms of matrix functions, such as the exponential, resolvent, and hyperbolic functions, in which the matrix argument is either the adjacency matrix or the graph Laplacian associated with the network. Considerable insight on communicability can be gained by modeling a network as a system of oscillators and deriving physical interpretations, both classical and quantum-mechanical, of various communicability functions. Applications of communicability measures to the analysis of complex systems are illustrated on a variety of biological, physical and social networks. The last part of the paper is devoted to a review of the notion of locality in complex networks and to computational aspects that by exploiting sparsity can greatly reduce the computational efforts for the calculation of communicability functions for large networks.Comment: Review Article. 90 pages, 14 figures. Contents: Introduction; Communicability in Networks; Physical Analogies; Comparing Communicability Functions; Communicability and the Analysis of Networks; Communicability and Localization in Complex Networks; Computability of Communicability Functions; Conclusions and Prespective

    Spectral graph theory : from practice to theory

    Get PDF
    Graph theory is the area of mathematics that studies networks, or graphs. It arose from the need to analyse many diverse network-like structures like road networks, molecules, the Internet, social networks and electrical networks. In spectral graph theory, which is a branch of graph theory, matrices are constructed from such graphs and analysed from the point of view of their so-called eigenvalues and eigenvectors. The first practical need for studying graph eigenvalues was in quantum chemistry in the thirties, forties and fifties, specifically to describe the Hückel molecular orbital theory for unsaturated conjugated hydrocarbons. This study led to the field which nowadays is called chemical graph theory. A few years later, during the late fifties and sixties, graph eigenvalues also proved to be important in physics, particularly in the solution of the membrane vibration problem via the discrete approximation of the membrane as a graph. This paper delves into the journey of how the practical needs of quantum chemistry and vibrating membranes compelled the creation of the more abstract spectral graph theory. Important, yet basic, mathematical results stemming from spectral graph theory shall be mentioned in this paper. Later, areas of study that make full use of these mathematical results, thus benefitting greatly from spectral graph theory, shall be described. These fields of study include the P versus NP problem in the field of computational complexity, Internet search, network centrality measures and control theory.peer-reviewe

    "Clumpiness" Mixing in Complex Networks

    Get PDF
    Three measures of clumpiness of complex networks are introduced. The measures quantify how most central nodes of a network are clumped together. The assortativity coefficient defined in a previous study measures a similar characteristic, but accounts only for the clumpiness of the central nodes that are directly connected to each other. The clumpiness coefficient defined in the present paper also takes into account the cases where central nodes are separated by a few links. The definition is based on the node degrees and the distances between pairs of nodes. The clumpiness coefficient together with the assortativity coefficient can define four classes of network. Numerical calculations demonstrate that the classification scheme successfully categorizes 30 real-world networks into the four classes: clumped assortative, clumped disassortative, loose assortative and loose disassortative networks. The clumpiness coefficient also differentiates the Erdos-Renyi model from the Barabasi-Albert model, which the assortativity coefficient could not differentiate. In addition, the bounds of the clumpiness coefficient as well as the relationships between the three measures of clumpiness are discussed.Comment: 47 pages, 11 figure

    "Clumpiness" Mixing in Complex Networks

    Get PDF
    Three measures of clumpiness of complex networks are introduced. The measures quantify how most central nodes of a network are clumped together. The assortativity coefficient defined in a previous study measures a similar characteristic, but accounts only for the clumpiness of the central nodes that are directly connected to each other. The clumpiness coefficient defined in the present paper also takes into account the cases where central nodes are separated by a few links. The definition is based on the node degrees and the distances between pairs of nodes. The clumpiness coefficient together with the assortativity coefficient can define four classes of network. Numerical calculations demonstrate that the classification scheme successfully categorizes 30 real-world networks into the four classes: clumped assortative, clumped disassortative, loose assortative and loose disassortative networks. The clumpiness coefficient also differentiates the Erdos-Renyi model from the Barabasi-Albert model, which the assortativity coefficient could not differentiate. In addition, the bounds of the clumpiness coefficient as well as the relationships between the three measures of clumpiness are discussed.Comment: 47 pages, 11 figure

    On Some Aspects of the Generalized Petersen Graph

    Full text link
    Let p≥3p \ge 3 be a positive integer and let k∈1,2,...,p−1 ⌊p/2⌋k \in {1, 2, ..., p-1} \ \lfloor p/2 \rfloor. The generalized Petersen graph GP(p,k) has its vertex and edge set as V(GP(p,k))={ui:i∈Zp}∪{ui′:i∈Zp}V(GP(p, k)) = \{u_i : i \in Zp\} \cup \{u_i^\prime : i \in Z_p\} and E(GP(p,k))={uiui+1:i∈Zp}∪{ui′ui+k′∈Zp}∪{uiui′:i∈Zp}E(GP(p, k)) = \{u_i u_{i+1} : i \in Z_p\} \cup \{u_i^\prime u_{i+k}^\prime \in Z_p\} \cup \{u_iu_i^\prime : i \in Z_p\}. In this paper we probe its spectrum and determine the Estrada index, Laplacian Estrada index, signless Laplacian Estrada index, normalized Laplacian Estrada index, and energy of a graph. While obtaining some interesting results, we also provide relevant background and problems

    Decay properties of spectral projectors with applications to electronic structure

    Full text link
    Motivated by applications in quantum chemistry and solid state physics, we apply general results from approximation theory and matrix analysis to the study of the decay properties of spectral projectors associated with large and sparse Hermitian matrices. Our theory leads to a rigorous proof of the exponential off-diagonal decay ("nearsightedness") for the density matrix of gapped systems at zero electronic temperature in both orthogonal and non-orthogonal representations, thus providing a firm theoretical basis for the possibility of linear scaling methods in electronic structure calculations for non-metallic systems. We further discuss the case of density matrices for metallic systems at positive electronic temperature. A few other possible applications are also discussed.Comment: 63 pages, 13 figure
    • …
    corecore