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Abstract 
 
Graph theory is the area of mathematics that studies networks, or graphs. It arose 
from the need to analyse many diverse network-like structures like road networks, 
molecules, the Internet, social networks and electrical networks. In spectral graph 
theory, which is a branch of graph theory, matrices are constructed from such 
graphs and analysed from the point of view of their so-called eigenvalues and 
eigenvectors. The first practical need for studying graph eigenvalues was in 
quantum chemistry in the thirties, forties and fifties, specifically to describe the 
Hückel molecular orbital theory for unsaturated conjugated hydrocarbons. This 
study led to the field which nowadays is called chemical graph theory. A few years 
later, during the late fifties and sixties, graph eigenvalues also proved to be 
important in physics, particularly in the solution of the membrane vibration 
problem via the discrete approximation of the membrane as a graph. This paper 
delves into the journey of how the practical needs of quantum chemistry and 
vibrating membranes compelled the creation of the more abstract spectral graph 
theory. Important, yet basic, mathematical results stemming from spectral graph 
theory shall be mentioned in this paper. Later, areas of study that make full use of 
these mathematical results, thus benefitting greatly from spectral graph theory, 
shall be described. These fields of study include the P versus NP problem in the 
field of computational complexity, Internet search, network centrality measures 
and control theory. 
 
Keywords: spectral graph theory, eigenvalue, eigenvector, graph. 
 
 
Introduction: Spectral Graph Theory 
 
Graph theory is the area of mathematics that deals with networks. In its simplest 
form, a graph, or network, is a set of points called vertices, connected to each 
other by edges (Wilson, 1996). Such a graph may represent things as diverse as, but 
not limited to, molecules, road networks, computer networks, interconnections of 
a brain, electrical networks and social networks. This vast array of representations 
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allows graph theory to be applied in virtually all areas related to science, 
technology, engineering and mathematics. 
     Spectral graph theory is a subfield of graph theory in which a matrix is used to 
represent the underlying graph, then the graph is studied using the eigenvalues 
and eigenvectors of this matrix. (Cvetković et al., 2009). The simplest graph matrix 
representation is the so-called adjacency matrix A, which is the 𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛 matrix (𝑛𝑛𝑛𝑛 
being the number of vertices in the graph) whose entry in its 𝑗𝑗𝑗𝑗th row and 𝑘𝑘𝑘𝑘th 
column is 1 if vertices 𝑗𝑗𝑗𝑗 and 𝑘𝑘𝑘𝑘 are connected by an edge in the graph and is 0 
otherwise. But other matrices are possible, for example the Laplacian matrix 𝐋𝐋𝐋𝐋 =
𝐃𝐃𝐃𝐃 − 𝐀𝐀𝐀𝐀, where 𝐃𝐃𝐃𝐃 is the diagonal matrix of vertex degrees of the graph (by degree is 
meant the number of vertices that are incident to a particular vertex) and the 
generalized adjacency matrix 𝐀𝐀𝐀𝐀 + 𝑦𝑦𝑦𝑦𝐉𝐉𝐉𝐉, where 𝐉𝐉𝐉𝐉 is the matrix of all ones and 𝑦𝑦𝑦𝑦 is any 
real number (Cvetković et al., 2009). 
     If, for some 𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛 matrix 𝐌𝐌𝐌𝐌, there exists a nonzero vector 𝐱𝐱𝐱𝐱 (an 𝑛𝑛𝑛𝑛 × 1 matrix) 
that satisfies the following equation: 
                                                                    𝐌𝐌𝐌𝐌𝐱𝐱𝐱𝐱 = 𝜆𝜆𝜆𝜆𝐱𝐱𝐱𝐱                                                            [1] 
then 𝜆𝜆𝜆𝜆 is called an eigenvalue of 𝐌𝐌𝐌𝐌 and 𝐱𝐱𝐱𝐱 is called an eigenvector associated with 
the eigenvalue 𝜆𝜆𝜆𝜆. The set of all the 𝑛𝑛𝑛𝑛 eigenvalues obtained in this way is called the 
spectrum of 𝐌𝐌𝐌𝐌 (Horn & Johnson, 2012). 
     Spectral graph theory deals with discovering properties of a graph from the 
spectrum (and, sometimes, the eigenvectors) of some matrix representing it. Doing 
this may seem unnecessary and devoid of any applications at this point, but this 
couldn’t be further from the truth. 
 
 
Hückel Molecular Orbital Theory 
 
In 1926, the Austrian Erwin Schrödinger (1926) published what would later be 
called the Schrödinger equation. The time-independent version of this equation is 
of the form 
                                                                  𝐻𝐻𝐻𝐻� 𝛹𝛹𝛹𝛹 = ℰ 𝛹𝛹𝛹𝛹                                                          [2] 
where Ψ is the wave function of the system modelled by the partial differential 
equation above, 𝐻𝐻𝐻𝐻� is the Hamiltonian operator of the system and ℰ is the energy of 
the system. If the Schrödinger equation is applied to a molecule and is solved, then 
its solutions end up describing the behaviour of the electrons in the molecule, as 
well as their energies (Majstorović et al., 2009). Unfortunately, solving the 
Schrödinger equation proved difficult. 
     In 1931, Erich Hückel, a German scholar, proposed the following method to 
approximate solutions of [2], the Schrödinger equation for unsaturated conjugated 
hydrocarbons. Hückel’s approach (1931), nowadays called the Hückel Molecular 
Orbital theory (HMO) was to express Ψ as a linear combination of a finite number 
of suitably chosen basis functions. This transforms [2] into 

                                                               𝑯𝑯𝑯𝑯 𝛹𝛹𝛹𝛹 = 𝐸𝐸𝐸𝐸 𝛹𝛹𝛹𝛹                                                             [3] 
so that the Hamiltonian operator 𝐇𝐇𝐇𝐇 is now a finite matrix. The similarity of 
equations [1] and [3] is apparent. 
     The matrix 𝐇𝐇𝐇𝐇 was defined such that its diagonal entries are all equal to a 
constant 𝛼𝛼𝛼𝛼 and any entry in the 𝑗𝑗𝑗𝑗th row and 𝑘𝑘𝑘𝑘th column is equal to a constant 𝛽𝛽𝛽𝛽 if 
the (carbon) atoms 𝑗𝑗𝑗𝑗 and 𝑘𝑘𝑘𝑘 are chemically bonded and is equal to 0 otherwise. In 
other words, 𝐇𝐇𝐇𝐇 = 𝛼𝛼𝛼𝛼𝐈𝐈𝐈𝐈 + 𝛽𝛽𝛽𝛽𝐀𝐀𝐀𝐀, where 𝐈𝐈𝐈𝐈 is the identity matrix and 𝐀𝐀𝐀𝐀 is the adjacency 
matrix of the graph corresponding to the carbon-atom skeleton of the conjugated 
molecule. Interestingly, this relation became known only in 1956, a full 25 years 
after Hückel proposed his HMO theory (Majstorović et al., 2009). 
     This means that the energy levels of the 𝜋𝜋𝜋𝜋-electrons are 𝐸𝐸𝐸𝐸𝑗𝑗𝑗𝑗 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽𝜆𝜆𝜆𝜆𝑗𝑗𝑗𝑗 for all 𝑗𝑗𝑗𝑗 =
1,2, … ,𝑛𝑛𝑛𝑛, where 𝜆𝜆𝜆𝜆𝑗𝑗𝑗𝑗  is the 𝑗𝑗𝑗𝑗th eigenvalue of the adjacency matrix 𝐀𝐀𝐀𝐀. The 
eigenvectors, in turn, were taken as discrete approximations to the molecular 
orbitals Ψ1, … ,Ψ𝑛𝑛𝑛𝑛. Thus, a clear association between the 𝜋𝜋𝜋𝜋-electron energy levels 
of the hydrocarbon, the molecular orbitals and the eigenvalues and eigenvectors of 
the adjacency matrix of the underlying graph has been established. The area of 
spectral graph theory was born. 
     From here, Ivan Gutman deduced the total 𝜋𝜋𝜋𝜋-electron energy as being 

𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋 = 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛 + 𝛽𝛽𝛽𝛽(|𝜆𝜆𝜆𝜆1| + |𝜆𝜆𝜆𝜆2| + ⋯+ |𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛|). 
     Because of this, he called the expression in brackets |𝜆𝜆𝜆𝜆1| + |𝜆𝜆𝜆𝜆2| + ⋯+ |𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛| the 
energy of the graph (Gutman, 1978). Researchers ignored this achievement until 
around the turn of this century, when suddenly the graph energy concept started 
to attract attention. This resulted in what Gutman himself called an ‘energy deluge’ 
of papers! (Gutman, 2017, pers. comm., 17 April). 
 
 
Vibrating Membranes 
 
Another problem that contributed to the birth of spectral graph theory was the 
study of vibrating membranes. It is assumed that a vibrating membrane is held 
fixed along its boundary, which may have any shape. A simple example of such a 
membrane is a drumhead, which is hit by hands or sticks to produce certain 
frequencies. Its displacement 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑡𝑡𝑡𝑡) orthogonal to the (𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) plane at time 𝑡𝑡𝑡𝑡 is 
given by the wave equation (Cvetković et al., 1978; Cvetković et al. 2009). When 
the harmonic vibrations, given by solutions of the form 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑡𝑡𝑡𝑡) = 𝑧𝑧𝑧𝑧(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
are substituted in this wave equation, a partial differential equation of the 
following form is obtained: 

𝜕𝜕𝜕𝜕2𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2

+
𝜕𝜕𝜕𝜕2𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2

+ 𝜆𝜆𝜆𝜆𝑧𝑧𝑧𝑧 = 0, 𝑧𝑧𝑧𝑧(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = 0 at boundary. 

     Solutions to the above equations are approximated by forming a regular lattice, 
for example a square lattice, and only considering the 𝑧𝑧𝑧𝑧 coordinates that lie on this 
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allows graph theory to be applied in virtually all areas related to science, 
technology, engineering and mathematics. 
     Spectral graph theory is a subfield of graph theory in which a matrix is used to 
represent the underlying graph, then the graph is studied using the eigenvalues 
and eigenvectors of this matrix. (Cvetković et al., 2009). The simplest graph matrix 
representation is the so-called adjacency matrix A, which is the 𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛 matrix (𝑛𝑛𝑛𝑛 
being the number of vertices in the graph) whose entry in its 𝑗𝑗𝑗𝑗th row and 𝑘𝑘𝑘𝑘th 
column is 1 if vertices 𝑗𝑗𝑗𝑗 and 𝑘𝑘𝑘𝑘 are connected by an edge in the graph and is 0 
otherwise. But other matrices are possible, for example the Laplacian matrix 𝐋𝐋𝐋𝐋 =
𝐃𝐃𝐃𝐃 − 𝐀𝐀𝐀𝐀, where 𝐃𝐃𝐃𝐃 is the diagonal matrix of vertex degrees of the graph (by degree is 
meant the number of vertices that are incident to a particular vertex) and the 
generalized adjacency matrix 𝐀𝐀𝐀𝐀 + 𝑦𝑦𝑦𝑦𝐉𝐉𝐉𝐉, where 𝐉𝐉𝐉𝐉 is the matrix of all ones and 𝑦𝑦𝑦𝑦 is any 
real number (Cvetković et al., 2009). 
     If, for some 𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛 matrix 𝐌𝐌𝐌𝐌, there exists a nonzero vector 𝐱𝐱𝐱𝐱 (an 𝑛𝑛𝑛𝑛 × 1 matrix) 
that satisfies the following equation: 
                                                                    𝐌𝐌𝐌𝐌𝐱𝐱𝐱𝐱 = 𝜆𝜆𝜆𝜆𝐱𝐱𝐱𝐱                                                            [1] 
then 𝜆𝜆𝜆𝜆 is called an eigenvalue of 𝐌𝐌𝐌𝐌 and 𝐱𝐱𝐱𝐱 is called an eigenvector associated with 
the eigenvalue 𝜆𝜆𝜆𝜆. The set of all the 𝑛𝑛𝑛𝑛 eigenvalues obtained in this way is called the 
spectrum of 𝐌𝐌𝐌𝐌 (Horn & Johnson, 2012). 
     Spectral graph theory deals with discovering properties of a graph from the 
spectrum (and, sometimes, the eigenvectors) of some matrix representing it. Doing 
this may seem unnecessary and devoid of any applications at this point, but this 
couldn’t be further from the truth. 
 
 
Hückel Molecular Orbital Theory 
 
In 1926, the Austrian Erwin Schrödinger (1926) published what would later be 
called the Schrödinger equation. The time-independent version of this equation is 
of the form 
                                                                  𝐻𝐻𝐻𝐻� 𝛹𝛹𝛹𝛹 = ℰ 𝛹𝛹𝛹𝛹                                                          [2] 
where Ψ is the wave function of the system modelled by the partial differential 
equation above, 𝐻𝐻𝐻𝐻� is the Hamiltonian operator of the system and ℰ is the energy of 
the system. If the Schrödinger equation is applied to a molecule and is solved, then 
its solutions end up describing the behaviour of the electrons in the molecule, as 
well as their energies (Majstorović et al., 2009). Unfortunately, solving the 
Schrödinger equation proved difficult. 
     In 1931, Erich Hückel, a German scholar, proposed the following method to 
approximate solutions of [2], the Schrödinger equation for unsaturated conjugated 
hydrocarbons. Hückel’s approach (1931), nowadays called the Hückel Molecular 
Orbital theory (HMO) was to express Ψ as a linear combination of a finite number 
of suitably chosen basis functions. This transforms [2] into 

                                                               𝑯𝑯𝑯𝑯 𝛹𝛹𝛹𝛹 = 𝐸𝐸𝐸𝐸 𝛹𝛹𝛹𝛹                                                             [3] 
so that the Hamiltonian operator 𝐇𝐇𝐇𝐇 is now a finite matrix. The similarity of 
equations [1] and [3] is apparent. 
     The matrix 𝐇𝐇𝐇𝐇 was defined such that its diagonal entries are all equal to a 
constant 𝛼𝛼𝛼𝛼 and any entry in the 𝑗𝑗𝑗𝑗th row and 𝑘𝑘𝑘𝑘th column is equal to a constant 𝛽𝛽𝛽𝛽 if 
the (carbon) atoms 𝑗𝑗𝑗𝑗 and 𝑘𝑘𝑘𝑘 are chemically bonded and is equal to 0 otherwise. In 
other words, 𝐇𝐇𝐇𝐇 = 𝛼𝛼𝛼𝛼𝐈𝐈𝐈𝐈 + 𝛽𝛽𝛽𝛽𝐀𝐀𝐀𝐀, where 𝐈𝐈𝐈𝐈 is the identity matrix and 𝐀𝐀𝐀𝐀 is the adjacency 
matrix of the graph corresponding to the carbon-atom skeleton of the conjugated 
molecule. Interestingly, this relation became known only in 1956, a full 25 years 
after Hückel proposed his HMO theory (Majstorović et al., 2009). 
     This means that the energy levels of the 𝜋𝜋𝜋𝜋-electrons are 𝐸𝐸𝐸𝐸𝑗𝑗𝑗𝑗 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽𝜆𝜆𝜆𝜆𝑗𝑗𝑗𝑗 for all 𝑗𝑗𝑗𝑗 =
1,2, … ,𝑛𝑛𝑛𝑛, where 𝜆𝜆𝜆𝜆𝑗𝑗𝑗𝑗  is the 𝑗𝑗𝑗𝑗th eigenvalue of the adjacency matrix 𝐀𝐀𝐀𝐀. The 
eigenvectors, in turn, were taken as discrete approximations to the molecular 
orbitals Ψ1, … ,Ψ𝑛𝑛𝑛𝑛. Thus, a clear association between the 𝜋𝜋𝜋𝜋-electron energy levels 
of the hydrocarbon, the molecular orbitals and the eigenvalues and eigenvectors of 
the adjacency matrix of the underlying graph has been established. The area of 
spectral graph theory was born. 
     From here, Ivan Gutman deduced the total 𝜋𝜋𝜋𝜋-electron energy as being 

𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋 = 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛 + 𝛽𝛽𝛽𝛽(|𝜆𝜆𝜆𝜆1| + |𝜆𝜆𝜆𝜆2| + ⋯+ |𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛|). 
     Because of this, he called the expression in brackets |𝜆𝜆𝜆𝜆1| + |𝜆𝜆𝜆𝜆2| + ⋯+ |𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛| the 
energy of the graph (Gutman, 1978). Researchers ignored this achievement until 
around the turn of this century, when suddenly the graph energy concept started 
to attract attention. This resulted in what Gutman himself called an ‘energy deluge’ 
of papers! (Gutman, 2017, pers. comm., 17 April). 
 
 
Vibrating Membranes 
 
Another problem that contributed to the birth of spectral graph theory was the 
study of vibrating membranes. It is assumed that a vibrating membrane is held 
fixed along its boundary, which may have any shape. A simple example of such a 
membrane is a drumhead, which is hit by hands or sticks to produce certain 
frequencies. Its displacement 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑡𝑡𝑡𝑡) orthogonal to the (𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) plane at time 𝑡𝑡𝑡𝑡 is 
given by the wave equation (Cvetković et al., 1978; Cvetković et al. 2009). When 
the harmonic vibrations, given by solutions of the form 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑡𝑡𝑡𝑡) = 𝑧𝑧𝑧𝑧(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
are substituted in this wave equation, a partial differential equation of the 
following form is obtained: 

𝜕𝜕𝜕𝜕2𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2

+
𝜕𝜕𝜕𝜕2𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2

+ 𝜆𝜆𝜆𝜆𝑧𝑧𝑧𝑧 = 0, 𝑧𝑧𝑧𝑧(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = 0 at boundary. 

     Solutions to the above equations are approximated by forming a regular lattice, 
for example a square lattice, and only considering the 𝑧𝑧𝑧𝑧 coordinates that lie on this 
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lattice. The lattice, of course, is a graph. The value of 𝜕𝜕𝜕𝜕
2𝑧𝑧𝑧𝑧

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2
+ 𝜕𝜕𝜕𝜕2𝑧𝑧𝑧𝑧

𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2
 at the point (𝑥𝑥𝑥𝑥0,𝑦𝑦𝑦𝑦0) 

can be approximated by 
1
ℎ2
�𝑧𝑧𝑧𝑧(𝑥𝑥𝑥𝑥0 + ℎ,𝑦𝑦𝑦𝑦0) + 𝑧𝑧𝑧𝑧(𝑥𝑥𝑥𝑥0 − ℎ,𝑦𝑦𝑦𝑦0) + 𝑧𝑧𝑧𝑧(𝑥𝑥𝑥𝑥0,𝑦𝑦𝑦𝑦0 + ℎ) + 𝑧𝑧𝑧𝑧(𝑥𝑥𝑥𝑥0,𝑦𝑦𝑦𝑦0 − ℎ) − 4 𝑧𝑧𝑧𝑧(𝑥𝑥𝑥𝑥0,𝑦𝑦𝑦𝑦0)�. 

     By substituting this in the partial differential equation and summing up over all 
internal points 𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗  (points within the boundary) that neighbour the point 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖, the 
following equation is obtained: 

(4 − 𝜆𝜆𝜆𝜆ℎ2)𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 = �𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗
𝑗𝑗𝑗𝑗~𝑖𝑖𝑖𝑖

. 

     Considering the subgraph of the lattice induced by the internal vertices, the 
above equation is just the eigenvalue equation for this graph, which are then used 
to obtain approximate solutions to the original partial differential equation 
(Cvetković et al, 2009). 
     This led to Mark Kac (1966) asking the question “Can we hear the shape of a 
drum?”. In other words, if the vibrating frequencies of a drum are heard, can the 
shape of the drum be reconstructed uniquely? Or are there two different drum 
shapes that produce the same frequencies? In spectral graph theory terms, this 
question asks whether one can reconstruct a graph uniquely given its spectrum. As 
shall be presented in the subsequent sections, the answer is, in general, no. 
 
 
Back to Spectral Graph Theory 
 
Research in spectral graph theory thus began roughly in the late fifties. In 1978, the 
very first monograph on spectral graph theory called Spectra of Graphs: Theory and 
Application (Cvetković, Doob & Sachs, 1978) was published. This book attempted, 
and largely succeeded, to serve “as a unifying collection of material in the subject” 
of spectral graph theory. Its bibliography contains 683 papers on different aspects 
of this topic, which the authors claimed to comprise most papers written in this 
area up to that point in time. A survey of the important mathematical results 
stemming from spectral graph theory, taken from this monograph and its modern 
follow-up An Introduction to the Theory of Graph Spectra (Cvetković et al., 2009), 
shall now be presented. 
     One important aspect of spectral graph theory is discovering what information 
of the graph can be extracted from the eigenvalues of the adjacency matrix. Early 
on, researchers, including the notable Frank Harary, thought that the eigenvalues 
characterize the graph completely, that is, no two graphs share the same 
eigenvalues. This was shown to be incorrect by several researchers, the earliest of 
whom can be traced back to 1957 (Collatz & Sinogowitz, 1957). Thus, from a set of 
eigenvalues, one cannot, in general, uniquely reconstruct the original graph. 

Researchers thus turned their attention to what aspects of the graph can be 
deduced from its spectrum. 
     It is assumed henceforth that the eigenvalues 𝜆𝜆𝜆𝜆1, 𝜆𝜆𝜆𝜆2, … , 𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛 are in non-increasing 
order, so that 𝜆𝜆𝜆𝜆1 is the largest and 𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛 is the smallest among the 𝑛𝑛𝑛𝑛 eigenvalues. The 
𝑘𝑘𝑘𝑘th spectral moment 𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘  is defined as the sum 𝜆𝜆𝜆𝜆1

𝑘𝑘𝑘𝑘 + 𝜆𝜆𝜆𝜆2
𝑘𝑘𝑘𝑘 + ⋯+ 𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘. A closed walk 
of length 𝑘𝑘𝑘𝑘 in a graph is a sequence of vertices 𝑣𝑣𝑣𝑣1, 𝑣𝑣𝑣𝑣2, … , 𝑣𝑣𝑣𝑣𝑘𝑘𝑘𝑘 , 𝑣𝑣𝑣𝑣1 having (𝑘𝑘𝑘𝑘 + 1) 
vertices where the first and last vertex are identical and every two consecutive 
vertices in the sequence are connected by an edge. An early result states that 𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘  is 
precisely the number of closed walks of length 𝑘𝑘𝑘𝑘 in the graph (Cvetković et al., 
2009). There is also the reverse result that states that if the spectral moments 
𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2, … , 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 are known, without prior knowledge of the eigenvalues, then the 𝑛𝑛𝑛𝑛 
eigenvalues themselves can be extracted uniquely. Thus, knowledge of the 
spectrum of a graph is equivalent to the knowledge of the number of closed walks 
of length 0,1,2, … ,𝑛𝑛𝑛𝑛 in the graph (Cvetković et al., 2009). 
     For any graph, the number of closed walks of length zero is 𝑛𝑛𝑛𝑛, while the number 
of closed walks of length one is 0. The number of closed walks of length two is 
equal to twice the number of edges – this tells us that the number of edges of a 
graph is deducible from its spectrum. The number of closed walks of length three is 
equal to six times the number of triangles – cycles of length three – in the graph. 
This implies that the number of triangles is also recognisable from the spectrum. 
     A graph is regular if its vertices have the same degree, that is, if each vertex has 
the same number of edges incident to it. Collatz and Sinogowitz (1957) proved that 
the largest eigenvalue 𝜆𝜆𝜆𝜆1 is at least equal to the average degree and at most equal 
to the maximum degree in the graph. This immediately implies that 𝜆𝜆𝜆𝜆1 is equal to 
the (common) degree of the graph if the graph is regular. Remarkably, this 
condition is also sufficient. Thus, a graph is regular exactly when 𝑛𝑛𝑛𝑛𝜆𝜆𝜆𝜆1 = 𝑠𝑠𝑠𝑠2, showing 
that whether a graph is regular or not is also recognisable from its spectrum 
(Cvetković et al., 2009). 
     A graph is 𝑘𝑘𝑘𝑘-colourable if it is possible to assign 𝑘𝑘𝑘𝑘 colours to the vertices of the 
graph such that adjacent vertices have different colours. If a graph is 2-colourable, 
then it is said to be bipartite. Many hydrocarbons studied by chemical graph 
theorists are, in fact, bipartite. Whether a graph is bipartite or not is also deducible 
from the spectrum; indeed, a graph is bipartite if and only if 𝜆𝜆𝜆𝜆1 = −𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛. Moreover, 
when this is true, the other eigenvalues would also share a similar trait; 𝜆𝜆𝜆𝜆2 =
−𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛−1, 𝜆𝜆𝜆𝜆3 = −𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛−2, and so on (Cvetković et al. 1978). (It is known that 𝜆𝜆𝜆𝜆1 > −𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛 
except when the graph is bipartite.) 
     The chromatic number of a graph is the smallest possible 𝑘𝑘𝑘𝑘 such that the graph 
is 𝑘𝑘𝑘𝑘-colourable. For example, bipartite graphs have chromatic number 2. The 
calculation of the chromatic number is, in general, an NP-complete problem – see 
the next section. However, Wilf (1986) showed that the chromatic number is at 
most equal to 1 + 𝜆𝜆𝜆𝜆1, while Hoffman (1970) showed that it is at least equal to 1 −
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lattice. The lattice, of course, is a graph. The value of 𝜕𝜕𝜕𝜕
2𝑧𝑧𝑧𝑧

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2
+ 𝜕𝜕𝜕𝜕2𝑧𝑧𝑧𝑧

𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2
 at the point (𝑥𝑥𝑥𝑥0,𝑦𝑦𝑦𝑦0) 

can be approximated by 
1
ℎ2
�𝑧𝑧𝑧𝑧(𝑥𝑥𝑥𝑥0 + ℎ,𝑦𝑦𝑦𝑦0) + 𝑧𝑧𝑧𝑧(𝑥𝑥𝑥𝑥0 − ℎ,𝑦𝑦𝑦𝑦0) + 𝑧𝑧𝑧𝑧(𝑥𝑥𝑥𝑥0,𝑦𝑦𝑦𝑦0 + ℎ) + 𝑧𝑧𝑧𝑧(𝑥𝑥𝑥𝑥0,𝑦𝑦𝑦𝑦0 − ℎ) − 4 𝑧𝑧𝑧𝑧(𝑥𝑥𝑥𝑥0, 𝑦𝑦𝑦𝑦0)�. 

     By substituting this in the partial differential equation and summing up over all 
internal points 𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗  (points within the boundary) that neighbour the point 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖, the 
following equation is obtained: 

(4 − 𝜆𝜆𝜆𝜆ℎ2)𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 = �𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗
𝑗𝑗𝑗𝑗~𝑖𝑖𝑖𝑖

. 

     Considering the subgraph of the lattice induced by the internal vertices, the 
above equation is just the eigenvalue equation for this graph, which are then used 
to obtain approximate solutions to the original partial differential equation 
(Cvetković et al, 2009). 
     This led to Mark Kac (1966) asking the question “Can we hear the shape of a 
drum?”. In other words, if the vibrating frequencies of a drum are heard, can the 
shape of the drum be reconstructed uniquely? Or are there two different drum 
shapes that produce the same frequencies? In spectral graph theory terms, this 
question asks whether one can reconstruct a graph uniquely given its spectrum. As 
shall be presented in the subsequent sections, the answer is, in general, no. 
 
 
Back to Spectral Graph Theory 
 
Research in spectral graph theory thus began roughly in the late fifties. In 1978, the 
very first monograph on spectral graph theory called Spectra of Graphs: Theory and 
Application (Cvetković, Doob & Sachs, 1978) was published. This book attempted, 
and largely succeeded, to serve “as a unifying collection of material in the subject” 
of spectral graph theory. Its bibliography contains 683 papers on different aspects 
of this topic, which the authors claimed to comprise most papers written in this 
area up to that point in time. A survey of the important mathematical results 
stemming from spectral graph theory, taken from this monograph and its modern 
follow-up An Introduction to the Theory of Graph Spectra (Cvetković et al., 2009), 
shall now be presented. 
     One important aspect of spectral graph theory is discovering what information 
of the graph can be extracted from the eigenvalues of the adjacency matrix. Early 
on, researchers, including the notable Frank Harary, thought that the eigenvalues 
characterize the graph completely, that is, no two graphs share the same 
eigenvalues. This was shown to be incorrect by several researchers, the earliest of 
whom can be traced back to 1957 (Collatz & Sinogowitz, 1957). Thus, from a set of 
eigenvalues, one cannot, in general, uniquely reconstruct the original graph. 

Researchers thus turned their attention to what aspects of the graph can be 
deduced from its spectrum. 
     It is assumed henceforth that the eigenvalues 𝜆𝜆𝜆𝜆1, 𝜆𝜆𝜆𝜆2, … , 𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛 are in non-increasing 
order, so that 𝜆𝜆𝜆𝜆1 is the largest and 𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛 is the smallest among the 𝑛𝑛𝑛𝑛 eigenvalues. The 
𝑘𝑘𝑘𝑘th spectral moment 𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘  is defined as the sum 𝜆𝜆𝜆𝜆1

𝑘𝑘𝑘𝑘 + 𝜆𝜆𝜆𝜆2
𝑘𝑘𝑘𝑘 + ⋯+ 𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘. A closed walk 
of length 𝑘𝑘𝑘𝑘 in a graph is a sequence of vertices 𝑣𝑣𝑣𝑣1, 𝑣𝑣𝑣𝑣2, … , 𝑣𝑣𝑣𝑣𝑘𝑘𝑘𝑘 , 𝑣𝑣𝑣𝑣1 having (𝑘𝑘𝑘𝑘 + 1) 
vertices where the first and last vertex are identical and every two consecutive 
vertices in the sequence are connected by an edge. An early result states that 𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘  is 
precisely the number of closed walks of length 𝑘𝑘𝑘𝑘 in the graph (Cvetković et al., 
2009). There is also the reverse result that states that if the spectral moments 
𝑠𝑠𝑠𝑠0, 𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2, … , 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 are known, without prior knowledge of the eigenvalues, then the 𝑛𝑛𝑛𝑛 
eigenvalues themselves can be extracted uniquely. Thus, knowledge of the 
spectrum of a graph is equivalent to the knowledge of the number of closed walks 
of length 0,1,2, … ,𝑛𝑛𝑛𝑛 in the graph (Cvetković et al., 2009). 
     For any graph, the number of closed walks of length zero is 𝑛𝑛𝑛𝑛, while the number 
of closed walks of length one is 0. The number of closed walks of length two is 
equal to twice the number of edges – this tells us that the number of edges of a 
graph is deducible from its spectrum. The number of closed walks of length three is 
equal to six times the number of triangles – cycles of length three – in the graph. 
This implies that the number of triangles is also recognisable from the spectrum. 
     A graph is regular if its vertices have the same degree, that is, if each vertex has 
the same number of edges incident to it. Collatz and Sinogowitz (1957) proved that 
the largest eigenvalue 𝜆𝜆𝜆𝜆1 is at least equal to the average degree and at most equal 
to the maximum degree in the graph. This immediately implies that 𝜆𝜆𝜆𝜆1 is equal to 
the (common) degree of the graph if the graph is regular. Remarkably, this 
condition is also sufficient. Thus, a graph is regular exactly when 𝑛𝑛𝑛𝑛𝜆𝜆𝜆𝜆1 = 𝑠𝑠𝑠𝑠2, showing 
that whether a graph is regular or not is also recognisable from its spectrum 
(Cvetković et al., 2009). 
     A graph is 𝑘𝑘𝑘𝑘-colourable if it is possible to assign 𝑘𝑘𝑘𝑘 colours to the vertices of the 
graph such that adjacent vertices have different colours. If a graph is 2-colourable, 
then it is said to be bipartite. Many hydrocarbons studied by chemical graph 
theorists are, in fact, bipartite. Whether a graph is bipartite or not is also deducible 
from the spectrum; indeed, a graph is bipartite if and only if 𝜆𝜆𝜆𝜆1 = −𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛. Moreover, 
when this is true, the other eigenvalues would also share a similar trait; 𝜆𝜆𝜆𝜆2 =
−𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛−1, 𝜆𝜆𝜆𝜆3 = −𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛−2, and so on (Cvetković et al. 1978). (It is known that 𝜆𝜆𝜆𝜆1 > −𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛 
except when the graph is bipartite.) 
     The chromatic number of a graph is the smallest possible 𝑘𝑘𝑘𝑘 such that the graph 
is 𝑘𝑘𝑘𝑘-colourable. For example, bipartite graphs have chromatic number 2. The 
calculation of the chromatic number is, in general, an NP-complete problem – see 
the next section. However, Wilf (1986) showed that the chromatic number is at 
most equal to 1 + 𝜆𝜆𝜆𝜆1, while Hoffman (1970) showed that it is at least equal to 1 −
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𝜆𝜆𝜆𝜆1
𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛

. These results are striking, because even though determining the chromatic 

number is NP-complete, spectral graph theory provides bounds for what it can be, 
and clearly determining the spectrum of a graph can be performed in polynomial 
time. 
 
 
Recent Applications of Spectral Graph Theory 
 
Computer Science: the P versus NP problem 
 
The P versus NP problem in computer science asks, informally, whether any 
problem that can be verified in polynomial time (NP) can also be solved in 
polynomial time (P) (Cook, 1971). This question is made relevant by quite a few 
problems that can be verified in polynomial time but that, so far, their solution 
does not seem to be possible in polynomial time. Some of these problems are also 
known to be NP-complete; this means that any NP problem can be transformed to 
an NP-complete problem in polynomial time (van Leeuwen, 1998). Examples of NP-
complete problems include the games of Sudoku, Rubik’s Cube and Lemmings 
(Kendall et al., 2008). There are many problems related to graph theory that are 
also NP-complete; as mentioned earlier, finding the chromatic number of a graph is 
one of them. Many experts believe the answer to the P versus NP problem is “no”. 
     Some NP problems are not known whether they are also NP-complete. One of 
them is the graph isomorphism problem, which asks whether two graphs are 
isomorphic, or essentially the same (Schöning, 1988). There is a class of graphs 
called strongly regular graphs for which deducing whether two such graphs are 
isomorphic is particularly hard. However, spectral graph theory characterizes 
strongly regular graphs completely – they are the regular graphs whose spectrum 
contains three distinct numbers only (Shrikhande & Bhagwandas, 1965). Thus, a 
strongly regular graph cannot share its spectrum with another regular graph that is 
not strongly regular, and this provides a way of recognising that two such graphs 
are non-isomorphic in polynomial time. Moreover, if two graphs have different 
spectra, then they must clearly be non-isomorphic, irrespective of whether they 
are strongly regular or not. 
     We have already mentioned, however, that two graphs may share the same 
spectrum without being isomorphic. Such pairs of graphs are called cospectral. 
Sometimes, such graphs are distinguished by using a more general matrix, different 
from the adjacency matrix 𝐀𝐀𝐀𝐀, to represent them. A popular choice is the 
generalized adjacency matrix 𝐀𝐀𝐀𝐀 + 𝑦𝑦𝑦𝑦𝐉𝐉𝐉𝐉 described in the introduction (Abiad & 
Haemers, 2012; Farrugia, 2019a). Unfortunately, some graphs are cospectral with 
respect to this matrix for all real numbers 𝑦𝑦𝑦𝑦 (called generalized cospectral), even 
though they are not isomorphic! Indeed, the author of this paper recently 

described a method to generate thousands of pairs of non-isomorphic, generalized 
cospectral graphs from just one pair of such graphs (Farrugia, 2019a).  
 
Internet Search – The Google PageRank Algorithm 
 
It is perhaps surprising that spectral graph theory is at the heart of the PageRank 
algorithm, which millions of people use every day to perform Google searches (Brin 
& Page, 1998). It assumes a directed graph on 𝑛𝑛𝑛𝑛 web pages, with an arrow from 
web page 𝑥𝑥𝑥𝑥 to web page 𝑦𝑦𝑦𝑦 if 𝑥𝑥𝑥𝑥 contains a link to 𝑦𝑦𝑦𝑦. The adjacency matrix 𝐀𝐀𝐀𝐀 is, as 
usual, the matrix containing an entry 1 at the 𝑥𝑥𝑥𝑥th row and 𝑦𝑦𝑦𝑦th column if 𝑥𝑥𝑥𝑥 is a web 
page linking to web page 𝑦𝑦𝑦𝑦. Note that, for this application, it’s not always the case 
that the reverse arrow exists. The algorithm uses matrix 𝐌𝐌𝐌𝐌, equal to 1−𝛼𝛼𝛼𝛼

𝑛𝑛𝑛𝑛
𝐉𝐉𝐉𝐉 +

𝛼𝛼𝛼𝛼𝐃𝐃𝐃𝐃−1𝐀𝐀𝐀𝐀, where 𝐃𝐃𝐃𝐃 is the matrix where each diagonal entry contains the number of 
links that web page links to externally and 𝛼𝛼𝛼𝛼 is some constant between 0 and 1 
(the authors suggest 𝛼𝛼𝛼𝛼 = 0.85). If some web page has no external links, the 
relevant diagonal entry of 𝐃𝐃𝐃𝐃 is 1 instead of 0 (otherwise 𝐃𝐃𝐃𝐃−1 would not exist). The 
spectrum of 𝐌𝐌𝐌𝐌 is then found and the eigenvector 𝐮𝐮𝐮𝐮 of the largest eigenvalue 𝜆𝜆𝜆𝜆1 is 
focused upon. The web pages displayed in the search are then ordered according 
to the entries of 𝐮𝐮𝐮𝐮. Intuitively, each entry of 𝐮𝐮𝐮𝐮 represents the expectation of finding 
oneself at that web page, either by clicking on a random link on the current page, 
with probability 𝛼𝛼𝛼𝛼, or by selecting an Internet web page at random, with 
probability 1 − 𝛼𝛼𝛼𝛼 (Brouwer & Haemers, 2012). 
 
Network Centrality Measures 
 
In many networks, measuring which vertices are deemed more important than 
others is paramount. This is what we mean by network centrality. The Google 
PageRank algorithm measures the more important web pages on the Internet that 
correspond to the user’s search query; in this sense, the PageRank algorithm can 
be understood as pertaining to this section as well. 
     There are various other ways to measure network centrality. One of them, due 
to Estrada (2000) calculates the number of closed walks of the graph and then 
combines them together by assigning a weighting to each of them, giving priority 
to the shortest walks, and adding them up. The vertices that score highest are 
deemed more important. Note that, as was mentioned earlier, the number of 
closed walks of any length in a graph is obtained from the knowledge of the 𝑛𝑛𝑛𝑛 
eigenvalues of matrix 𝐀𝐀𝐀𝐀. 
     The Estrada index (Estrada, 2000) is a way of totalling these network centralities 
to give an overall score to the graph. Its initial application was in biochemistry, to 
quantify the degree of folding in proteins (Deng et al., 2009). Only later was the 
Estrada index used to measure the centrality of complex networks like metabolic, 
communication and social networks (Estrada, 2007). The Estrada index has also 
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. These results are striking, because even though determining the chromatic 

number is NP-complete, spectral graph theory provides bounds for what it can be, 
and clearly determining the spectrum of a graph can be performed in polynomial 
time. 
 
 
Recent Applications of Spectral Graph Theory 
 
Computer Science: the P versus NP problem 
 
The P versus NP problem in computer science asks, informally, whether any 
problem that can be verified in polynomial time (NP) can also be solved in 
polynomial time (P) (Cook, 1971). This question is made relevant by quite a few 
problems that can be verified in polynomial time but that, so far, their solution 
does not seem to be possible in polynomial time. Some of these problems are also 
known to be NP-complete; this means that any NP problem can be transformed to 
an NP-complete problem in polynomial time (van Leeuwen, 1998). Examples of NP-
complete problems include the games of Sudoku, Rubik’s Cube and Lemmings 
(Kendall et al., 2008). There are many problems related to graph theory that are 
also NP-complete; as mentioned earlier, finding the chromatic number of a graph is 
one of them. Many experts believe the answer to the P versus NP problem is “no”. 
     Some NP problems are not known whether they are also NP-complete. One of 
them is the graph isomorphism problem, which asks whether two graphs are 
isomorphic, or essentially the same (Schöning, 1988). There is a class of graphs 
called strongly regular graphs for which deducing whether two such graphs are 
isomorphic is particularly hard. However, spectral graph theory characterizes 
strongly regular graphs completely – they are the regular graphs whose spectrum 
contains three distinct numbers only (Shrikhande & Bhagwandas, 1965). Thus, a 
strongly regular graph cannot share its spectrum with another regular graph that is 
not strongly regular, and this provides a way of recognising that two such graphs 
are non-isomorphic in polynomial time. Moreover, if two graphs have different 
spectra, then they must clearly be non-isomorphic, irrespective of whether they 
are strongly regular or not. 
     We have already mentioned, however, that two graphs may share the same 
spectrum without being isomorphic. Such pairs of graphs are called cospectral. 
Sometimes, such graphs are distinguished by using a more general matrix, different 
from the adjacency matrix 𝐀𝐀𝐀𝐀, to represent them. A popular choice is the 
generalized adjacency matrix 𝐀𝐀𝐀𝐀 + 𝑦𝑦𝑦𝑦𝐉𝐉𝐉𝐉 described in the introduction (Abiad & 
Haemers, 2012; Farrugia, 2019a). Unfortunately, some graphs are cospectral with 
respect to this matrix for all real numbers 𝑦𝑦𝑦𝑦 (called generalized cospectral), even 
though they are not isomorphic! Indeed, the author of this paper recently 

described a method to generate thousands of pairs of non-isomorphic, generalized 
cospectral graphs from just one pair of such graphs (Farrugia, 2019a).  
 
Internet Search – The Google PageRank Algorithm 
 
It is perhaps surprising that spectral graph theory is at the heart of the PageRank 
algorithm, which millions of people use every day to perform Google searches (Brin 
& Page, 1998). It assumes a directed graph on 𝑛𝑛𝑛𝑛 web pages, with an arrow from 
web page 𝑥𝑥𝑥𝑥 to web page 𝑦𝑦𝑦𝑦 if 𝑥𝑥𝑥𝑥 contains a link to 𝑦𝑦𝑦𝑦. The adjacency matrix 𝐀𝐀𝐀𝐀 is, as 
usual, the matrix containing an entry 1 at the 𝑥𝑥𝑥𝑥th row and 𝑦𝑦𝑦𝑦th column if 𝑥𝑥𝑥𝑥 is a web 
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𝛼𝛼𝛼𝛼𝐃𝐃𝐃𝐃−1𝐀𝐀𝐀𝐀, where 𝐃𝐃𝐃𝐃 is the matrix where each diagonal entry contains the number of 
links that web page links to externally and 𝛼𝛼𝛼𝛼 is some constant between 0 and 1 
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relevant diagonal entry of 𝐃𝐃𝐃𝐃 is 1 instead of 0 (otherwise 𝐃𝐃𝐃𝐃−1 would not exist). The 
spectrum of 𝐌𝐌𝐌𝐌 is then found and the eigenvector 𝐮𝐮𝐮𝐮 of the largest eigenvalue 𝜆𝜆𝜆𝜆1 is 
focused upon. The web pages displayed in the search are then ordered according 
to the entries of 𝐮𝐮𝐮𝐮. Intuitively, each entry of 𝐮𝐮𝐮𝐮 represents the expectation of finding 
oneself at that web page, either by clicking on a random link on the current page, 
with probability 𝛼𝛼𝛼𝛼, or by selecting an Internet web page at random, with 
probability 1 − 𝛼𝛼𝛼𝛼 (Brouwer & Haemers, 2012). 
 
Network Centrality Measures 
 
In many networks, measuring which vertices are deemed more important than 
others is paramount. This is what we mean by network centrality. The Google 
PageRank algorithm measures the more important web pages on the Internet that 
correspond to the user’s search query; in this sense, the PageRank algorithm can 
be understood as pertaining to this section as well. 
     There are various other ways to measure network centrality. One of them, due 
to Estrada (2000) calculates the number of closed walks of the graph and then 
combines them together by assigning a weighting to each of them, giving priority 
to the shortest walks, and adding them up. The vertices that score highest are 
deemed more important. Note that, as was mentioned earlier, the number of 
closed walks of any length in a graph is obtained from the knowledge of the 𝑛𝑛𝑛𝑛 
eigenvalues of matrix 𝐀𝐀𝐀𝐀. 
     The Estrada index (Estrada, 2000) is a way of totalling these network centralities 
to give an overall score to the graph. Its initial application was in biochemistry, to 
quantify the degree of folding in proteins (Deng et al., 2009). Only later was the 
Estrada index used to measure the centrality of complex networks like metabolic, 
communication and social networks (Estrada, 2007). The Estrada index has also 
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found utility in statistical thermodynamics (Estrada & Hatano, 2007) and 
information theory (Carbó-Dorca, 2008), so much so that its importance is now 
widely accepted and used by scientists, not just mathematicians. 
     Another way to interpret network centrality is as clustering a large data set 
given as a graph. An effective way of doing this is by using the eigenvectors 
associated with the 𝑚𝑚𝑚𝑚 smallest eigenvalues of the Laplacian matrix 𝐋𝐋𝐋𝐋 (or a 
normalised version) and producing an 𝑚𝑚𝑚𝑚-dimensional plot of points obtained from 
these eigenvectors, to obtain a visual clue as to which data points ‘cluster’ together 
(Brouwer & Haemers, 2012). 
 
Control Theory 
 
A control system is represented by a diagram showing how several agents are 
linked together, exchanging information to move from one state to another. This is 
akin to a graph where the agents are represented by the vertices and edges are 
represented by their interconnections. The controllability, or otherwise, of such a 
system can be investigated by considering the eigenvectors of the matrix 
associated with the underlying graph and applying the Popov-Belevitch-Hautus 
(PBH) test (Kailath, 1980). Since spectral graph theory deals with the revealing of 
the structure of a graph from its eigenvalues and eigenvectors, control system 
theory has recently received much research attention from leading graph theorists 
such as Cvetković (2011) and Godsil (2012). Their research has applications in the 
control of biological systems (Julius et al, 2008) and quantum spin networks 
(Christiandl et al., 2005). 
     Another way to check for the controllability of a system is by using Kalman’s 
controllability criterion – a system is controllable if and only if its controllability 
matrix has an inverse (Kailath, 1980). It so happens that the controllability matrix is 
precisely the same as the matrix containing the enumeration of walks in the 
underlying graph, called a walk matrix in the graph-theoretical literature. This adds 
to the value of using spectral graph theory to analyse the controllability of systems. 
The graph theory community defined a controllable graph as one that represents 
interconnected agents that can be controlled by an external agent that can 
communicate with all agents with equal sensitivity (Cvetković et al., 2011). The 
author of this paper has also contributed to the research of controllable graphs and 
has recently generalised the concept of a walk matrix to one where the starting 
and ending points of walks is arbitrary (Farrugia, 2019b). This allows the future 
study of controllability of systems whose control requirements do not necessarily 
start and end at the same set of vertices. 
 
 
 
 

Conclusion 
 
With this paper, the reader has gone through the history of the practical needs of 
what required the introduction of the theoretical subject of spectral graph theory, 
to the subsequent applications of this theory to other fields. Together, we have 
thus progressed from practice to theory, and then from theory back to practice 
again. 
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