372 research outputs found

    Metals Challenged by Neutron and Synchrotron Radiation

    Get PDF
    Neutron and Synchrotron radiation methods have matured to become powerful techniques for the study of a vast range of materials, including metals. The characterization methods comprise the categories of diffraction, spectroscopy and imaging, which themselves can alter greatly in detail, to include hundreds of variants, problems and sample environments. In a similar way, their applications to metals and hard condensed matter materials cover disciplines spanning engineering, physics, chemistry, materials science and their derivatives such as geology, energy storage, etc. … The present book, “Metals Challenged by Neutron and Synchrotron Radiation” is a first compilation in Metals of 20 original and review works on research utilizing or designing those state-of-the-art techniques at modern facilities. The Editorial reviews the context of and identifies thematic links between these papers, grouping them into five interwoven themes, namely Sintering Techniques and Microstructure Evolution, Titanium Aluminides and Titanium Alloys Under Extreme Conditions, Metallic Glass and Disordered Crystals, In Situ and Time-Resolved Response to Mechanical Load and Shock, and Thin Films and Layers. This book represents a good cross-section of the status quo of neutron and synchrotron radiation with respect to questions in the metallurgical field, which by far is not exhaustive. Nor are the methods and other materials, which motivated me to the creation of a new sister-journal, entitled Quantum Beam Science. With this, I would like to thank all authors, reviewers and contributors behind the scene for the creation of this work, presenting to you a piece of interesting reading and reference literature

    Local order in aqueous solutions of rare gases and the role of the solute concentration: a computer simulation study with a polarizable potential

    Full text link
    Aqueous solutions of rare gases are studied by computer simulation employing a polarizable potential for both water and solutes. The use of a polarizable potential allows to study the systems from ambient to supercritical conditions for water. In particular the effects of increasing the concentration and the size of the apolar solutes are considered in an extended range of temperatures. By comparing the results at increasing temperature it appears clearly the change of behaviour from the tendency to demix at ambient conditions to a regime of complete solubility in the supercritical region. In this respect the role of the hydrogen bond network of water is evidenced.Comment: Accepted for publication in Molecular Physics 2004. 19 pages, 10 figure

    Ancient and historical systems

    Get PDF

    EXPERIMENTS REPORTS

    Get PDF
    New insight into make-up used in Ancient Egypt: the x-ray diffraction pattern measured on BM16 reveals the recipes of the cosmetics made from synthetic and natural lead compounds to beautify and treat the eye. The micrograph of the powder preserved for 3500 years i

    BEER - The Beamline for European Materials Engineering Research at the ESS

    Get PDF
    The Beamline for European Materials Engineering Research (BEER) will be built at the European Spallation Source (ESS). The diffractometer utilizes the high brilliance of the long-pulse neutron source and offers high instrument flexibility. It includes a novel chopper technique that extracts several short pulses out of the long pulse, leading to substantial intensity gain of up to an order of magnitude compared to pulse shaping methods for materials with high crystal symmetry. This intensity gain is achieved without compromising resolution. Materials of lower crystal symmetry or multi-phase materials will be investigated by additional pulse shaping methods. The different chopper set-ups and advanced beam extracting techniques offer an extremely broad intensity/resolution range. Furthermore, BEER offers an option of simultaneous SANS or imaging measurements without compromising diffraction investigations. This flexibility opens up new possibilities for in-situ experiments studying materials processing and performance under operation conditions. To fulfil this task, advanced sample environments, dedicated to thermo-mechanical processing, are foreseen

    Class of Ferromagnetic Semiconductors

    Get PDF
    Single crystal and polycrystal oxoruthenates having the generalized compositions (Baz,Sr1−z)FexCoyRu6−(x+y)O11 (1≦(x+y)≦5; 0≦z≦1) and (Ba,Sr)M2±xRu4∓xO11 (M=Fe,Co) belong to a novel class of ferromagnetic semiconductors with applications in spin-based field effect transistors, spin-based light emitting diodes, and magnetic random access memories
    corecore