33 research outputs found

    The role of anterior and posterior insula in male genital response and in visual attention: an exploratory multimodal fMRI study

    Get PDF
    Several studies highlighted the role of insula on several functions and in sexual behavior. This exploratory study examines the relationships among genital responses, brain responses, and eye movements, to disentangle the role played by the anterior and posterior insula during different stages of male sexual response and during visual attention to sexual stimuli. In 19 healthy men, fMRI, eye movement, and penile tumescence data were collected during a visual sexual stimulation task. After a whole-brain analysis comparing neutral and sexual clips and confirming a role for the bilateral insulae, we selected two bilateral seed regions in anterior and posterior insula for functional connectivity analysis. Single-ROI-GLMs were run for the FC target regions. Single-ROI-GLMs were performed based on areas to which participants fixate: "Faces", "Genitals," and "Background" with the contrast "Genitals > Faces". Single-ROI-GLMs with baseline, onset, and sustained PT response for the sexual clips were performed. We found stronger effects for the posterior than the anterior insula. In the target regions of the posterior insula, we found three different pathways: the first involved in visual attention, onset of erection, and sustained erection; the second involved only in the onset of erection, and the third limited to sustained erection

    Doing it … wild? On the role of the cerebral cortex in human sexual activity

    Get PDF
    BACKGROUND: We like to think about sexual activity as something fixed, basic and primal. However, this does not seem to fully capture reality. Even when we relish sex, we may be capable of mentalizing, talking, voluntarily postponing orgasm, and much more. This might indicate that the central control mechanisms of sexual activity are quite flexible and susceptible to learning mechanisms, and that cortical brain areas play a critical part. OBJECTIVE: This study aimed to identify those cortical areas and mechanisms most consistently implicated in sexual activity. DESIGN: A comprehensive review of the human functional neuroimaging literature on sexual activity, i.e. genital stimulation and orgasm, is made. RESULTS: Genital stimulation recruits the classical somatosensory matrix, but also areas far beyond that. The posterior insula may be particularly important for processing input from the engorged penis and coordinating penile responses. Extrastriate visual cortex tracks sexual arousal and responds to genital stimulation even when subjects have their eyes closed. The ventromedial prefrontal cortex is also tightly coupled to sexual arousal, but low activity in this area predicts high sexual arousal. CONCLUSION: This review has indicated cortical sites where activity is moderated by tactile genital inflow and high sexual arousal. Behavioral implications are discussed and where possible the relevance for learning mechanisms is indicated. Overall, it is clear that the cerebral cortex has something to say about sexual activity

    Does erotic stimulus presentation design affect brain activation patterns? Event-related vs. blocked fMRI designs

    Get PDF
    Background Existing brain imaging studies, investigating sexual arousal via the presentation of erotic pictures or film excerpts, have mainly used blocked designs with long stimulus presentation times. Methods To clarify how experimental functional magnetic resonance imaging (fMRI) design affects stimulus-induced brain activity, we compared brief event-related presentation of erotic vs. neutral stimuli with blocked presentation in 10 male volunteers. Results Brain activation differed depending on design type in only 10% of the voxels showing task related brain activity. Differences between blocked and event-related stimulus presentation were found in occipitotemporal and temporal regions (Brodmann Area (BA) 19, 37, 48), parietal areas (BA 7, 40) and areas in the frontal lobe (BA 6, 44). Conclusion Our results suggest that event-related designs might be a potential alternative when the core interest is the detection of networks associated with immediate processing of erotic stimuli. Additionally, blocked, compared to event-related, stimulus presentation allows the emergence and detection of non-specific secondary processes, such as sustained attention, motor imagery and inhibition of sexual arousal

    Does erotic stimulus presentation design affect brain activation patterns? Event-related vs. blocked fMRI designs

    Get PDF
    Background Existing brain imaging studies, investigating sexual arousal via the presentation of erotic pictures or film excerpts, have mainly used blocked designs with long stimulus presentation times. Methods To clarify how experimental functional magnetic resonance imaging (fMRI) design affects stimulus-induced brain activity, we compared brief event-related presentation of erotic vs. neutral stimuli with blocked presentation in 10 male volunteers. Results Brain activation differed depending on design type in only 10% of the voxels showing task related brain activity. Differences between blocked and event-related stimulus presentation were found in occipitotemporal and temporal regions (Brodmann Area (BA) 19, 37, 48), parietal areas (BA 7, 40) and areas in the frontal lobe (BA 6, 44). Conclusion Our results suggest that event-related designs might be a potential alternative when the core interest is the detection of networks associated with immediate processing of erotic stimuli. Additionally, blocked, compared to event-related, stimulus presentation allows the emergence and detection of non-specific secondary processes, such as sustained attention, motor imagery and inhibition of sexual arousal

    Primary somatosensory cortex organization for engineering artificial somatosensation

    Get PDF
    \ua9 2024 The Authors. Somatosensory deficits from stroke, spinal cord injury, or other neurologic damage can lead to a significant degree of functional impairment. The primary (SI) and secondary (SII) somatosensory cortices encode information in a medial to lateral organization. SI is generally organized topographically, with more discrete cortical representations of specific body regions. SII regions corresponding to anatomical areas are less discrete and may represent a more functional rather than topographic organization. Human somatosensory research continues to map cortical areas of sensory processing with efforts primarily focused on hand and upper extremity information in SI. However, research into SII and other body regions is lacking. In this review, we synthesize the current state of knowledge regarding the cortical organization of human somatosensation and discuss potential applications for brain computer interface. In addition to accurate individualized mapping of cortical somatosensation, further research is required to uncover the neurophysiological mechanisms of how somatosensory information is encoded in the cortex

    Differences in structural connectivity between diabetic and psychological erectile dysfunction revealed by network-based statistic: A diffusion tensor imaging study

    Get PDF
    IntroductionType 2 diabetes mellitus (T2DM) has been found to be associated with abnormalities of the central and peripheral vascular nervous system, which were considered to be involved in the development of cognitive impairments and erectile dysfunction (ED). In addition, altered brain function and structure were identified in patients with ED, especially psychological ED (pED). However, the similarities and the differences of the central neural mechanisms underlying pED and T2DM with ED (DM-ED) remained unclear.MethodsDiffusion tensor imaging data were acquired from 30 T2DM, 32 ED, and 31 DM-ED patients and 47 healthy controls (HCs). Then, whole-brain structural networks were constructed, which were mapped by connectivity matrices (90 × 90) representing the white matter between 90 brain regions parcellated by the anatomical automatic labeling template. Finally, the method of network-based statistic (NBS) was applied to assess the group differences of the structural connectivity.ResultsOur NBS analysis demonstrated three subnetworks with reduced structural connectivity in DM, pED, and DM-ED patients when compared to HCs, which were predominantly located in the prefrontal and subcortical areas. Compared with DM patients, DM-ED patients had an impaired subnetwork with increased structural connectivity, which were primarily located in the parietal regions. Compared with pED patients, an altered subnetwork with increased structural connectivity was identified in DM-ED patients, which were mainly located in the prefrontal and cingulate areas.ConclusionThese findings highlighted that the reduced structural connections in the prefrontal and subcortical areas were similar mechanisms to those associated with pED and DM-ED. However, different connectivity patterns were found between pED and DM-ED, and the increased connectivity in the frontal–parietal network might be due to the compensation mechanisms that were devoted to improving erectile function

    Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies

    Get PDF
    One fundamental question concerning brain reward mechanisms is to determine how reward-related activity is influenced by the nature of rewards. Here, we review the neuroimaging literature and explicitly assess to what extent the representations of primary and secondary rewards overlap in the human brain. To achieve this goal, we performed an activation likelihood estimation (ALE) meta-analysis of 87 studies (1452 subjects) comparing the brain responses to monetary, erotic and food reward outcomes. Those three rewards robustly engaged a common brain network including the ventromedial prefrontal cortex, ventral striatum, amygdala, anterior insula and mediodorsal thalamus, although with some variations in the intensity and location of peak activity. Money-specific responses were further observed in the most anterior portion of the orbitofrontal cortex, supporting the idea that abstract secondary rewards are represented in evolutionary more recent brain regions. In contrast, food and erotic (i.e. primary) rewards were more strongly represented in the anterior insula, while erotic stimuli elicited particularly robust responses in the amygdala. Together, these results indicate that the computation of experienced reward value does not only recruit a core "reward system" but also reward type-dependent brain structures

    High Field fMRI Reveals Thalamocortical Integration of Segregated Cognitive and Emotional Processing in Mediodorsal and Intralaminar Thalamic Nuclei

    Get PDF
    Thalamocortical loops, connecting functionally segregated, higher order cortical regions, and basal ganglia, have been proposed not only for well described motor and sensory regions, but also for limbic and prefrontal areas relevant for affective and cognitive processes. These functions are, however, more specific to humans, rendering most invasive neuroanatomical approaches impossible and interspecies translations difficult. In contrast, non-invasive imaging of functional neuroanatomy using fMRI allows for the development of elaborate task paradigms capable of testing the specific functionalities proposed for these circuits. Until recently, spatial resolution largely limited the anatomical definition of functional clusters at the level of distinct thalamic nuclei. Since their anatomical distinction seems crucial not only for the segregation of cognitive and limbic loops but also for the detection of their functional interaction during cognitive–emotional integration, we applied high resolution fMRI on 7 Tesla. Using an event-related design, we could isolate thalamic effects for preceding attention as well as experience of erotic stimuli. We could demonstrate specific thalamic effects of general emotional arousal in mediodorsal nucleus and effects specific to preceding attention and expectancy in intralaminar centromedian/parafascicular complex. These thalamic effects were paralleled by specific coactivations in the head of caudate nucleus as well as segregated portions of rostral or caudal cingulate cortex and anterior insula supporting distinct thalamo–striato–cortical loops. In addition to predescribed effects of sexual arousal in hypothalamus and ventral striatum, high resolution fMRI could extent this network to paraventricular thalamus encompassing laterodorsal and parataenial nuclei. We could lend evidence to segregated subcortical loops which integrate cognitive and emotional aspects of basic human behavior such as sexual processing
    corecore